xref: /freebsd/crypto/openssl/doc/man1/openssl-pkeyutl.pod.in (revision e7be843b4a162e68651d3911f0357ed464915629)
1=pod
2{- OpenSSL::safe::output_do_not_edit_headers(); -}
3
4=head1 NAME
5
6openssl-pkeyutl - asymmetric key command
7
8=head1 SYNOPSIS
9
10B<openssl> B<pkeyutl>
11[B<-help>]
12[B<-in> I<file>]
13[B<-rawin>]
14[B<-digest> I<algorithm>]
15[B<-out> I<file>]
16[B<-secret> I<file>]
17[B<-sigfile> I<file>]
18[B<-inkey> I<filename>|I<uri>]
19[B<-keyform> B<DER>|B<PEM>|B<P12>|B<ENGINE>]
20[B<-passin> I<arg>]
21[B<-pubin>]
22[B<-certin>]
23[B<-rev>]
24[B<-sign>]
25[B<-verify>]
26[B<-verifyrecover>]
27[B<-encrypt>]
28[B<-decrypt>]
29[B<-derive>]
30[B<-peerkey> I<file>]
31[B<-peerform> B<DER>|B<PEM>|B<P12>|B<ENGINE>]
32[B<-encap>]
33[B<-decap>]
34[B<-kdf> I<algorithm>]
35[B<-kdflen> I<length>]
36[B<-kemop> I<mode>]
37[B<-pkeyopt> I<opt>:I<value>]
38[B<-pkeyopt_passin> I<opt>[:I<passarg>]]
39[B<-hexdump>]
40[B<-asn1parse>]
41{- $OpenSSL::safe::opt_engine_synopsis -}[B<-engine_impl>]
42{- $OpenSSL::safe::opt_r_synopsis -}
43{- $OpenSSL::safe::opt_provider_synopsis -}
44{- $OpenSSL::safe::opt_config_synopsis -}
45
46=head1 DESCRIPTION
47
48This command can be used to perform low-level operations
49on asymmetric (public or private) keys using any supported algorithm.
50
51By default the signing operation (see B<-sign> option) is assumed.
52
53=head1 OPTIONS
54
55=over 4
56
57=item B<-help>
58
59Print out a usage message.
60
61=item B<-in> I<filename>
62
63This specifies the input filename to read data from or standard input
64if this option is not specified.
65
66=item B<-rawin>
67
68This indicates that the signature or verification input data is raw data,
69which is not hashed by any message digest algorithm.
70Except with EdDSA,
71the user can specify a digest algorithm by using the B<-digest> option.
72For signature algorithms like RSA, DSA and ECDSA,
73the default digest algorithm is SHA256. For SM2, it is SM3.
74
75This option can only be used with B<-sign> and B<-verify>.
76For EdDSA (the Ed25519 and Ed448 algorithms) this option
77is implied since OpenSSL 3.5, and required in earlier versions.
78
79The B<-digest> option implies B<-rawin> since OpenSSL 3.5.
80
81=item B<-digest> I<algorithm>
82
83This option can only be used with B<-sign> and B<-verify>.
84It specifies the digest algorithm that is used to hash the input data
85before signing or verifying it with the input key. This option could be omitted
86if the signature algorithm does not require preprocessing the input through
87a pluggable hash function before signing (for instance, EdDSA). If this option
88is omitted but the signature algorithm requires one and the B<-rawin> option
89is given, a default value will be used (see B<-rawin> for details).
90If this option is present, then the B<-rawin> option
91is implied since OpenSSL 3.5, and required in earlier versions.
92
93At this time, HashEdDSA (the ph or "prehash" variant of EdDSA) is not supported,
94so the B<-digest> option cannot be used with EdDSA.
95
96=item B<-out> I<filename>
97
98Specifies the output filename to write to or standard output by default.
99
100=item B<-secret> I<filename>
101
102Specifies the shared-secret output filename for when performing encapsulation
103via the B<-encap> option or decapsulation via the B<-decap> option.
104The B<-encap> option also produces a separate (public) ciphertext output which
105is by default written to standard output, but being I<binary> non-text data,
106is typically also redirected to a file selected via the I<-out> option.
107
108=item B<-sigfile> I<file>
109
110Signature file, required and allowed for B<-verify> operations only.
111
112=item B<-inkey> I<filename>|I<uri>
113
114The input key, by default it should be a private key.
115
116=item B<-keyform> B<DER>|B<PEM>|B<P12>|B<ENGINE>
117
118The key format; unspecified by default.
119See L<openssl-format-options(1)> for details.
120
121=item B<-passin> I<arg>
122
123The input key password source. For more information about the format of I<arg>
124see L<openssl-passphrase-options(1)>.
125
126=item B<-pubin>
127
128By default a private key is read from the key input.
129With this option a public key is read instead.
130If the input contains no public key but a private key, its public part is used.
131
132=item B<-certin>
133
134The input is a certificate containing a public key.
135
136=item B<-rev>
137
138Reverse the order of the input buffer. This is useful for some libraries
139(such as CryptoAPI) which represent the buffer in little-endian format.
140This cannot be used in conjunction with B<-rawin>.
141
142=item B<-sign>
143
144Sign the input data and output the signed result. This requires a private key.
145Using a message digest operation along with this is recommended,
146when applicable, see the B<-rawin> and B<-digest> options for details.
147Otherwise, the input data given with the B<-in> option is assumed to already
148be a digest, but this may then require an additional B<-pkeyopt> C<digest:>I<md>
149in some cases (e.g., RSA with the default PKCS#1 padding mode).
150Even for other algorithms like ECDSA, where the additional B<-pkeyopt> option
151does not affect signature output, it is recommended, as it enables
152checking that the input length is consistent with the intended digest.
153
154=item B<-verify>
155
156Verify the input data against the signature given with the B<-sigfile> option
157and indicate if the verification succeeded or failed.
158The input data given with the B<-in> option is assumed to be a hash value
159unless the B<-rawin> option is specified or implied.
160With raw data, when a digest algorithm is applicable, though it may be inferred
161from the signature or take a default value, it should also be specified.
162
163=item B<-verifyrecover>
164
165Verify the given signature and output the recovered data (signature payload).
166For example, in case of RSA PKCS#1 the recovered data is the B<EMSA-PKCS-v1_5>
167DER encoding of the digest algorithm OID and value as specified in
168L<RFC8017 Section 9.2|https://datatracker.ietf.org/doc/html/rfc8017#section-9.2>.
169
170Note that here the input given with the B<-in> option is not a signature input
171(as with the B<-sign> and B<-verify> options) but a signature output value,
172typically produced using the B<-sign> option.
173
174This option is available only for use with RSA keys.
175
176=item B<-encrypt>
177
178Encrypt the input data using a public key.
179
180=item B<-decrypt>
181
182Decrypt the input data using a private key.
183
184=item B<-derive>
185
186Derive a shared secret using own private (EC)DH key and peer key.
187
188=item B<-peerkey> I<file>
189
190File containing the peer public or private (EC)DH key
191to use with the key derivation (agreement) operation.
192Its type must match the type of the own private key given with B<-inkey>.
193
194=item B<-peerform> B<DER>|B<PEM>|B<P12>|B<ENGINE>
195
196The peer key format; unspecified by default.
197See L<openssl-format-options(1)> for details.
198
199=item B<-encap>
200
201Use a Key Encapsulation Mechanism (B<KEM>) to B<encapsulate> a shared-secret to
202a peer's B<public> key.
203The encapsulated result (or ciphertext, non-text binary data) is written to
204standard output by default, or else to the file specified with I<-out>.
205The I<-secret> option must also be provided to specify the output file for the
206derived shared-secret value generated in the encapsulation process.
207Encapsulation is supported with a number of public key algorithms, currently:
208L<ML-KEM|EVP_PKEY-ML-KEM(7)>,
209L<X25519|EVP_KEM-X25519(7)>,
210L<X449|EVP_KEM-X448(7)>,
211and
212L<EC|EVP_KEM-EC(7)>.
213The ECX and EC algorithms use the
214L<RFC9180|https://www.rfc-editor.org/rfc/rfc9180> DHKEM construction.
215Encapsulation is also supported with L<RSA|EVP_KEM-RSA(7)> keys via the
216B<RSASVE> construction.
217
218At the API level, encapsulation and decapsulation are also supported for a few
219hybrid ECDHE (no DHKEM) plus B<ML-KEM> algorithms, but these are intended
220primarily for use with TLS and should not be used standalone.
221There are in any case no standard public and private key formats for the hybrid
222algorithms, so it is not possible to provide the required key material.
223
224=item B<-decap>
225
226Decode an encapsulated secret, with the use of a B<-private> key, to derive the
227same shared-secret as that obtained when the secret was encapsulated to the
228corresponding public key.
229The encapsulated secret is by default read from the standard input, or else
230from the file specified with B<-in>.
231The derived shared-secret is written to the file specified with the B<-secret>
232option, which I<must> also be provided.
233Decapsulation is supported with a number of public key algorithms, currently:
234L<ML-KEM|EVP_PKEY-ML-KEM(7)>,
235L<X25519|EVP_KEM-X25519(7)>,
236L<X448|EVP_KEM-X448(7)>,
237and
238L<EC|EVP_KEM-EC(7)>.
239The ECX and EC algorithms use the
240L<RFC9180|https://www.rfc-editor.org/rfc/rfc9180> DHKEM construction.
241Decapsulation is also supported with L<RSA|EVP_KEM-RSA(7)> keys via the
242B<RSASVE> construction.
243
244=item B<-kemop> I<mode>
245
246This option is used with the I<-encap>/I<-decap> commands and specifies the KEM
247I<mode> specific for the key algorithm when there is no default way to
248encapsulate and decapsulate shared secrets with the chosen key type.
249All the supported algorithms presently support only their default I<mode>, and
250this option, though available, is not required.
251
252=item B<-kdf> I<algorithm>
253
254Use key derivation function I<algorithm>.  The supported algorithms are
255at present B<TLS1-PRF> and B<HKDF>.
256Note: additional parameters and the KDF output length will normally have to be
257set for this to work.
258See L<EVP_PKEY_CTX_set_hkdf_md(3)> and L<EVP_PKEY_CTX_set_tls1_prf_md(3)>
259for the supported string parameters of each algorithm.
260
261=item B<-kdflen> I<length>
262
263Set the output length for KDF.
264
265=item B<-pkeyopt> I<opt>:I<value>
266
267Public key options specified as opt:value. See NOTES below for more details.
268
269=item B<-pkeyopt_passin> I<opt>[:I<passarg>]
270
271Allows reading a public key option I<opt> from stdin or a password source.
272If only I<opt> is specified, the user will be prompted to enter a password on
273stdin.  Alternatively, I<passarg> can be specified which can be any value
274supported by L<openssl-passphrase-options(1)>.
275
276=item B<-hexdump>
277
278hex dump the output data.
279
280=item B<-asn1parse>
281
282Parse the ASN.1 output data to check its DER encoding and print any errors.
283When combined with the B<-verifyrecover> option, this may be useful in case
284an ASN.1 DER-encoded structure had been signed directly (without hashing it)
285and when checking a signature in PKCS#1 v1.5 format, which has a DER encoding.
286
287{- $OpenSSL::safe::opt_engine_item -}
288
289{- output_off() if $disabled{"deprecated-3.0"}; "" -}
290=item B<-engine_impl>
291
292When used with the B<-engine> option, it specifies to also use
293engine I<id> for crypto operations.
294{- output_on() if $disabled{"deprecated-3.0"}; "" -}
295
296{- $OpenSSL::safe::opt_r_item -}
297
298{- $OpenSSL::safe::opt_provider_item -}
299
300{- $OpenSSL::safe::opt_config_item -}
301
302=back
303
304=head1 NOTES
305
306The operations and options supported vary according to the key algorithm
307and its implementation. The OpenSSL operations and options are indicated below.
308
309Unless otherwise mentioned, the B<-pkeyopt> option supports
310for all public-key types the C<digest:>I<alg> argument,
311which specifies the digest in use for the signing and verification operations.
312The value I<alg> should represent a digest name as used in the
313EVP_get_digestbyname() function for example B<sha256>. This value is not used to
314hash the input data. It is used (by some algorithms) for sanity-checking the
315lengths of data passed in and for creating the structures that make up the
316signature (e.g., B<DigestInfo> in RSASSA PKCS#1 v1.5 signatures).
317
318For instance,
319if the value of the B<-pkeyopt> option C<digest> argument is B<sha256>,
320the signature or verification input should be the 32 bytes long binary value
321of the SHA256 hash function output.
322
323Unless B<-rawin> is used or implied, this command does not hash the input data
324but rather it will use the data directly as input to the signature algorithm.
325Depending on the key type, signature type, and mode of padding, the maximum
326sensible lengths of input data differ. With RSA the signed data cannot be longer
327than the key modulus. In case of ECDSA and DSA the data should not be longer
328than the field size, otherwise it will be silently truncated to the field size.
329In any event the input size must not be larger than the largest supported digest
330output size B<EVP_MAX_MD_SIZE>, which currently is 64 bytes.
331
332=head1 RSA ALGORITHM
333
334The RSA algorithm generally supports the encrypt, decrypt, sign,
335verify and verifyrecover operations. However, some padding modes
336support only a subset of these operations. The following additional
337B<pkeyopt> values are supported:
338
339=over 4
340
341=item B<rsa_padding_mode:>I<mode>
342
343This sets the RSA padding mode. Acceptable values for I<mode> are B<pkcs1> for
344PKCS#1 padding, B<none> for no padding, B<oaep>
345for B<OAEP> mode, B<x931> for X9.31 mode and B<pss> for PSS.
346
347In PKCS#1 padding, if the message digest is not set, then the supplied data is
348signed or verified directly instead of using a B<DigestInfo> structure. If a
349digest is set, then the B<DigestInfo> structure is used and its length
350must correspond to the digest type.
351
352Note, for B<pkcs1> padding, as a protection against the Bleichenbacher attack,
353the decryption will not fail in case of padding check failures. Use B<none>
354and manual inspection of the decrypted message to verify if the decrypted
355value has correct PKCS#1 v1.5 padding.
356
357For B<oaep> mode only encryption and decryption is supported.
358
359For B<x931> if the digest type is set it is used to format the block data
360otherwise the first byte is used to specify the X9.31 digest ID. Sign,
361verify and verifyrecover are can be performed in this mode.
362
363For B<pss> mode only sign and verify are supported and the digest type must be
364specified.
365
366=item B<rsa_pss_saltlen:>I<len>
367
368For B<pss> mode only this option specifies the salt length. Three special
369values are supported: B<digest> sets the salt length to the digest length,
370B<max> sets the salt length to the maximum permissible value. When verifying
371B<auto> causes the salt length to be automatically determined based on the
372B<PSS> block structure.
373
374=item B<rsa_mgf1_md:>I<digest>
375
376For PSS and OAEP padding sets the MGF1 digest. If the MGF1 digest is not
377explicitly set in PSS mode then the signing digest is used.
378
379=item B<rsa_oaep_md:>I<digest>
380
381Sets the digest used for the OAEP hash function. If not explicitly set then
382SHA256 is used.
383
384=item B<rsa_pkcs1_implicit_rejection:>I<flag>
385
386Disables (when set to 0) or enables (when set to 1) the use of implicit
387rejection with PKCS#1 v1.5 decryption. When enabled (the default), as a
388protection against Bleichenbacher attack, the library will generate a
389deterministic random plaintext that it will return to the caller in case
390of padding check failure.
391When disabled, it's the callers' responsibility to handle the returned
392errors in a side-channel free manner.
393
394=back
395
396=head1 RSA-PSS ALGORITHM
397
398The RSA-PSS algorithm is a restricted version of the RSA algorithm which only
399supports the sign and verify operations with PSS padding. The following
400additional B<-pkeyopt> values are supported:
401
402=over 4
403
404=item B<rsa_padding_mode:>I<mode>, B<rsa_pss_saltlen:>I<len>,
405B<rsa_mgf1_md:>I<digest>
406
407These have the same meaning as the B<RSA> algorithm with some additional
408restrictions. The padding mode can only be set to B<pss> which is the
409default value.
410
411If the key has parameter restrictions then the digest, MGF1
412digest and salt length are set to the values specified in the parameters.
413The digest and MG cannot be changed and the salt length cannot be set to a
414value less than the minimum restriction.
415
416=back
417
418=head1 DSA ALGORITHM
419
420The DSA algorithm supports signing and verification operations only. Currently
421there are no additional B<-pkeyopt> options other than B<digest>. The SHA256
422digest is assumed by default.
423
424=head1 DH ALGORITHM
425
426The DH algorithm only supports the derivation operation and no additional
427B<-pkeyopt> options.
428
429=head1 EC ALGORITHM
430
431The EC algorithm supports sign, verify and derive operations. The sign and
432verify operations use ECDSA and derive uses ECDH. SHA256 is assumed by default
433for the B<-pkeyopt> B<digest> option.
434
435=head1 X25519 AND X448 ALGORITHMS
436
437The X25519 and X448 algorithms support key derivation only. Currently there are
438no additional options.
439
440=head2 SLH-DSA ALGORITHMS
441
442The SLH-DSA algorithms (SLH-DSA-SHA2-128s, SLH-DSA-SHA2-128f, SLH-DSA-SHA2-192s, SLH-DSA-SHA2-192f, SLH-DSA-SHA2-256s, SLH-DSA-SHA2-256f) are post-quantum signature algorithms. When using SLH-DSA with pkeyutl, the following options are available:
443
444=over 4
445
446=item B<-sign>
447
448Sign the input data using an SLH-DSA private key. For example:
449
450  $ openssl pkeyutl -sign -in file.txt -inkey slhdsa.pem -out sig
451
452=item B<-verify>
453
454Verify the signature using an SLH-DSA public key. For example:
455
456  $ openssl pkeyutl -verify -in file.txt -inkey slhdsa.pem -sigfile sig
457
458=back
459
460See L<EVP_PKEY-SLH-DSA(7)> and L<EVP_SIGNATURE-SLH-DSA(7)> for additional details about the SLH-DSA algorithm and its implementation.
461
462=head1 ML-DSA-44, ML-DSA-65 AND ML-DSA-87 ALGORITHMS
463
464The ML-DSA algorithms are post-quantum signature algorithms that support signing and verification of "raw" messages.
465No preliminary hashing is performed. When using ML-DSA with pkeyutl, the following options are available:
466
467=over 4
468
469=item B<-sign>
470
471Sign the input data using an ML-DSA private key. For example:
472
473  $ openssl pkeyutl -sign -in file.txt -inkey mldsa65.pem -out sig
474
475=item B<-verify>
476
477Verify the signature using an ML-DSA public key. For example:
478
479  $ openssl pkeyutl -verify -in file.txt -inkey mldsa65.pem -sigfile sig
480
481=item B<-pkeyopt> I<opt>:I<value>
482
483Additional options for ML-DSA signing and verification:
484
485=over 4
486
487=item B<message-encoding>:I<value>
488
489Specifies the message encoding mode used for signing. This controls how the input message is processed before signing. Valid values are described in L<EVP_SIGNATURE-ML-DSA(7)>. For example:
490
491  $ openssl pkeyutl -sign -in file.txt -inkey mldsa65.pem -out sig -pkeyopt message-encoding:1
492
493=item B<test-entropy>:I<value>
494
495Specifies a test entropy value for deterministic signing. For example:
496
497  $ openssl pkeyutl -sign -in file.txt -inkey mldsa65.pem -out sig -pkeyopt test-entropy:abcdefghijklmnopqrstuvwxyz012345
498
499=item B<hextest-entropy>:I<value>
500
501Specifies a test entropy value in hex format. For example:
502
503  $ openssl pkeyutl -sign -in file.txt -inkey mldsa65.pem -out sig -pkeyopt hextest-entropy:000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
504
505=item B<deterministic>:I<value>
506
507Enables deterministic signing. For example:
508
509  $ openssl pkeyutl -sign -in file.txt -inkey mldsa65.pem -out sig -pkeyopt deterministic:1
510
511=item B<mu>:I<value>
512
513Specifies the mu parameter. For example:
514
515  $ echo -n "0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef" >file.txt
516  $ openssl pkeyutl -sign -in file.txt -inkey mldsa65.pem -out sig -pkeyopt mu:1
517
518=back
519
520=item B<context-string>:I<string>
521
522Specifies a context string for both signing and verification operations. The context string must be the same for verification to succeed. For example:
523
524  $ openssl pkeyutl -sign -in file.txt -inkey mldsa65.pem -out sig -pkeyopt context-string:mycontext
525  $ openssl pkeyutl -verify -in file.txt -inkey mldsa65.pem -sigfile sig -pkeyopt context-string:mycontext
526
527=item B<hexcontext-string>:I<string>
528
529Specifies a context string in hex format, allowing binary control values. For example:
530
531  $ openssl pkeyutl -sign -in file.txt -inkey mldsa65.pem -out sig -pkeyopt hexcontext-string:6d79636f6e74657874
532
533=back
534
535The signing operation supports a B<deterministic>:I<bool> option,
536with I<bool> set to C<1> if a deterministic signature is to be generated
537with a fixed all zero random input.
538By default, or if the I<bool> is C<0> a random entropy value is used.
539A deterministic result can also be obtained by specifying an explicit
540entropy value via the B<hextest-entropy>:I<value> parameter.
541Deterministic B<ML-DSA> signing should only be used in tests.
542
543See L<EVP_SIGNATURE-ML-DSA(7)> for additional details about the ML-DSA algorithms and their implementation.
544
545=head1 ML-KEM-512, ML-KEM-768 AND ML-KEM-1024 ALGORITHMS
546
547The ML-KEM algorithms support encapsulation and decapsulation only.
548The encapsulation operation supports a B<hexikme>:I<entropy> option,
549with I<entropy> the 64 hexadecimal digit encoding of a 32-byte value.
550This should only be used in tests, known or leaked values of the option may
551compromise the generated shared secret.
552
553See L<EVP_KEM-ML-KEM(7)> for additional detail.
554
555=head1 ED25519 AND ED448 ALGORITHMS
556
557These algorithms only support signing and verifying. OpenSSL only implements the
558"pure" variants of these algorithms so raw data can be passed directly to them
559without hashing them first. OpenSSL only supports
560"oneshot" operation with these algorithms. This means that the entire file to
561be signed/verified must be read into memory before processing it. Signing or
562Verifying very large files should be avoided. Additionally the size of the file
563must be known for this to work. If the size of the file cannot be determined
564(for example if the input is stdin) then the sign or verify operation will fail.
565
566=head1 SM2
567
568The SM2 algorithm supports sign, verify, encrypt and decrypt operations. For
569the sign and verify operations, SM2 requires an Distinguishing ID string to
570be passed in. The following B<-pkeyopt> value is supported:
571
572=over 4
573
574=item B<distid:>I<string>
575
576This sets the ID string used in SM2 sign or verify operations. While verifying
577an SM2 signature, the ID string must be the same one used when signing the data.
578Otherwise the verification will fail.
579
580=item B<hexdistid:>I<hex_string>
581
582This sets the ID string used in SM2 sign or verify operations. While verifying
583an SM2 signature, the ID string must be the same one used when signing the data.
584Otherwise the verification will fail. The ID string provided with this option
585should be a valid hexadecimal value.
586
587=back
588
589=head1 EXAMPLES
590
591Sign some data using a private key:
592
593 openssl pkeyutl -sign -in file -inkey key.pem -out sig
594
595Recover the signed data (e.g. if an RSA key is used):
596
597 openssl pkeyutl -verifyrecover -in sig -inkey key.pem
598
599Verify the signature (e.g. a DSA key):
600
601 openssl pkeyutl -verify -in file -sigfile sig -inkey key.pem
602
603Sign data using a message digest value (this is currently only valid for RSA):
604
605 openssl pkeyutl -sign -in file -inkey key.pem -out sig -pkeyopt digest:sha256
606
607Derive a shared secret value:
608
609 openssl pkeyutl -derive -inkey key.pem -peerkey pubkey.pem -out secret
610
611Hexdump 48 bytes of TLS1 PRF using digest B<SHA256> and shared secret and
612seed consisting of the single byte 0xFF:
613
614 openssl pkeyutl -kdf TLS1-PRF -kdflen 48 -pkeyopt md:SHA256 \
615    -pkeyopt hexsecret:ff -pkeyopt hexseed:ff -hexdump
616
617Derive a key using B<scrypt> where the password is read from command line:
618
619 openssl pkeyutl -kdf scrypt -kdflen 16 -pkeyopt_passin pass \
620    -pkeyopt hexsalt:aabbcc -pkeyopt N:16384 -pkeyopt r:8 -pkeyopt p:1
621
622Derive using the same algorithm, but read key from environment variable MYPASS:
623
624 openssl pkeyutl -kdf scrypt -kdflen 16 -pkeyopt_passin pass:env:MYPASS \
625    -pkeyopt hexsalt:aabbcc -pkeyopt N:16384 -pkeyopt r:8 -pkeyopt p:1
626
627Sign some data using an L<SM2(7)> private key and a specific ID:
628
629 openssl pkeyutl -sign -in file -inkey sm2.key -out sig -rawin -digest sm3 \
630    -pkeyopt distid:someid
631
632Verify some data using an L<SM2(7)> certificate and a specific ID:
633
634 openssl pkeyutl -verify -certin -in file -inkey sm2.cert -sigfile sig \
635    -rawin -digest sm3 -pkeyopt distid:someid
636
637Decrypt some data using a private key with OAEP padding using SHA256:
638
639 openssl pkeyutl -decrypt -in file -inkey key.pem -out secret \
640    -pkeyopt rsa_padding_mode:oaep -pkeyopt rsa_oaep_md:sha256
641
642Create an ML-DSA key pair and sign data with a specific context string:
643
644  $ openssl genpkey -algorithm ML-DSA-65 -out mldsa65.pem
645  $ openssl pkeyutl -sign -in file.txt -inkey mldsa65.pem -out sig -pkeyopt context-string:example
646
647Verify a signature using ML-DSA with the same context string:
648
649  $ openssl pkeyutl -verify -in file.txt -inkey mldsa65.pem -sigfile sig -pkeyopt context-string:example
650
651Generate an ML-KEM key pair and use it for encapsulation:
652
653  $ openssl genpkey -algorithm ML-KEM-768 -out mlkem768.pem
654  $ openssl pkey -in mlkem768.pem -pubout -out mlkem768_pub.pem
655  $ openssl pkeyutl -encap -inkey mlkem768_pub.pem -pubin -out ciphertext -secret shared_secret.bin
656
657Decapsulate a shared secret using an ML-KEM private key:
658
659  $ openssl pkeyutl -decap -inkey mlkem768.pem -in ciphertext -secret decapsulated_secret.bin
660
661Create an SLH-DSA key pair and sign data:
662
663  $ openssl genpkey -algorithm SLH-DSA-SHA2-128s -out slh-dsa.pem
664  $ openssl pkeyutl -sign -in file.txt -inkey slh-dsa.pem -out sig
665
666Verify a signature using SLH-DSA:
667
668  $ openssl pkeyutl -verify -in file.txt -inkey slh-dsa.pem -sigfile sig
669
670=head1 SEE ALSO
671
672L<openssl(1)>,
673L<openssl-genpkey(1)>,
674L<openssl-pkey(1)>,
675L<openssl-rsautl(1)>
676L<openssl-dgst(1)>,
677L<openssl-rsa(1)>,
678L<openssl-genrsa(1)>,
679L<openssl-kdf(1)>
680L<EVP_PKEY_CTX_set_hkdf_md(3)>,
681L<EVP_PKEY_CTX_set_tls1_prf_md(3)>,
682
683=head1 HISTORY
684
685Since OpenSSL 3.5,
686the B<-digest> option implies B<-rawin>, and these two options are
687no longer required when signing or verifying with an Ed25519 or Ed448 key.
688
689Also since OpenSSL 3.5, the B<-kemop> option is no longer required for any of
690the supported algorithms, the only supported B<mode> is now the default.
691
692The B<-engine> option was deprecated in OpenSSL 3.0.
693
694=head1 COPYRIGHT
695
696Copyright 2006-2025 The OpenSSL Project Authors. All Rights Reserved.
697
698Licensed under the Apache License 2.0 (the "License").  You may not use
699this file except in compliance with the License.  You can obtain a copy
700in the file LICENSE in the source distribution or at
701L<https://www.openssl.org/source/license.html>.
702
703=cut
704