xref: /freebsd/sys/dev/stge/if_stge.c (revision 4e62c3cafa4c4e41efd6f87b7fe559cf819cf3e4)
1 /*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2 
3 /*-
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 2001 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Jason R. Thorpe.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Device driver for the Sundance Tech. TC9021 10/100/1000
36  * Ethernet controller.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef HAVE_KERNEL_OPTION_HEADERS
41 #include "opt_device_polling.h"
42 #endif
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/endian.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/kernel.h>
50 #include <sys/module.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/taskqueue.h>
55 
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_types.h>
63 #include <net/if_vlan_var.h>
64 
65 #include <machine/bus.h>
66 #include <machine/resource.h>
67 #include <sys/bus.h>
68 #include <sys/rman.h>
69 
70 #include <dev/mii/mii.h>
71 #include <dev/mii/mii_bitbang.h>
72 #include <dev/mii/miivar.h>
73 
74 #include <dev/pci/pcireg.h>
75 #include <dev/pci/pcivar.h>
76 
77 #include <dev/stge/if_stgereg.h>
78 
79 #define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(stge, pci, 1, 1, 1);
82 MODULE_DEPEND(stge, ether, 1, 1, 1);
83 MODULE_DEPEND(stge, miibus, 1, 1, 1);
84 
85 /* "device miibus" required.  See GENERIC if you get errors here. */
86 #include "miibus_if.h"
87 
88 /*
89  * Devices supported by this driver.
90  */
91 static const struct stge_product {
92 	uint16_t	stge_vendorid;
93 	uint16_t	stge_deviceid;
94 	const char	*stge_name;
95 } stge_products[] = {
96 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
97 	  "Sundance ST-1023 Gigabit Ethernet" },
98 
99 	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
100 	  "Sundance ST-2021 Gigabit Ethernet" },
101 
102 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
103 	  "Tamarack TC9021 Gigabit Ethernet" },
104 
105 	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
106 	  "Tamarack TC9021 Gigabit Ethernet" },
107 
108 	/*
109 	 * The Sundance sample boards use the Sundance vendor ID,
110 	 * but the Tamarack product ID.
111 	 */
112 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
113 	  "Sundance TC9021 Gigabit Ethernet" },
114 
115 	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
116 	  "Sundance TC9021 Gigabit Ethernet" },
117 
118 	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
119 	  "D-Link DL-4000 Gigabit Ethernet" },
120 
121 	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
122 	  "Antares Gigabit Ethernet" }
123 };
124 
125 static int	stge_probe(device_t);
126 static int	stge_attach(device_t);
127 static int	stge_detach(device_t);
128 static int	stge_shutdown(device_t);
129 static int	stge_suspend(device_t);
130 static int	stge_resume(device_t);
131 
132 static int	stge_encap(struct stge_softc *, struct mbuf **);
133 static void	stge_start(if_t);
134 static void	stge_start_locked(if_t);
135 static void	stge_watchdog(struct stge_softc *);
136 static int	stge_ioctl(if_t, u_long, caddr_t);
137 static void	stge_init(void *);
138 static void	stge_init_locked(struct stge_softc *);
139 static void	stge_vlan_setup(struct stge_softc *);
140 static void	stge_stop(struct stge_softc *);
141 static void	stge_start_tx(struct stge_softc *);
142 static void	stge_start_rx(struct stge_softc *);
143 static void	stge_stop_tx(struct stge_softc *);
144 static void	stge_stop_rx(struct stge_softc *);
145 
146 static void	stge_reset(struct stge_softc *, uint32_t);
147 static int	stge_eeprom_wait(struct stge_softc *);
148 static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
149 static void	stge_tick(void *);
150 static void	stge_stats_update(struct stge_softc *);
151 static void	stge_set_filter(struct stge_softc *);
152 static void	stge_set_multi(struct stge_softc *);
153 
154 static void	stge_link_task(void *, int);
155 static void	stge_intr(void *);
156 static __inline int stge_tx_error(struct stge_softc *);
157 static void	stge_txeof(struct stge_softc *);
158 static int	stge_rxeof(struct stge_softc *);
159 static __inline void stge_discard_rxbuf(struct stge_softc *, int);
160 static int	stge_newbuf(struct stge_softc *, int);
161 #ifndef __NO_STRICT_ALIGNMENT
162 static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
163 #endif
164 
165 static int	stge_miibus_readreg(device_t, int, int);
166 static int	stge_miibus_writereg(device_t, int, int, int);
167 static void	stge_miibus_statchg(device_t);
168 static int	stge_mediachange(if_t);
169 static void	stge_mediastatus(if_t, struct ifmediareq *);
170 
171 static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
172 static int	stge_dma_alloc(struct stge_softc *);
173 static void	stge_dma_free(struct stge_softc *);
174 static void	stge_dma_wait(struct stge_softc *);
175 static void	stge_init_tx_ring(struct stge_softc *);
176 static int	stge_init_rx_ring(struct stge_softc *);
177 #ifdef DEVICE_POLLING
178 static int	stge_poll(if_t, enum poll_cmd, int);
179 #endif
180 
181 static void	stge_setwol(struct stge_softc *);
182 static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
183 static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
184 static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
185 
186 /*
187  * MII bit-bang glue
188  */
189 static uint32_t stge_mii_bitbang_read(device_t);
190 static void	stge_mii_bitbang_write(device_t, uint32_t);
191 
192 static const struct mii_bitbang_ops stge_mii_bitbang_ops = {
193 	stge_mii_bitbang_read,
194 	stge_mii_bitbang_write,
195 	{
196 		PC_MgmtData,		/* MII_BIT_MDO */
197 		PC_MgmtData,		/* MII_BIT_MDI */
198 		PC_MgmtClk,		/* MII_BIT_MDC */
199 		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
200 		0,			/* MII_BIT_DIR_PHY_HOST */
201 	}
202 };
203 
204 static device_method_t stge_methods[] = {
205 	/* Device interface */
206 	DEVMETHOD(device_probe,		stge_probe),
207 	DEVMETHOD(device_attach,	stge_attach),
208 	DEVMETHOD(device_detach,	stge_detach),
209 	DEVMETHOD(device_shutdown,	stge_shutdown),
210 	DEVMETHOD(device_suspend,	stge_suspend),
211 	DEVMETHOD(device_resume,	stge_resume),
212 
213 	/* MII interface */
214 	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
215 	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
216 	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
217 
218 	DEVMETHOD_END
219 };
220 
221 static driver_t stge_driver = {
222 	"stge",
223 	stge_methods,
224 	sizeof(struct stge_softc)
225 };
226 
227 DRIVER_MODULE(stge, pci, stge_driver, 0, 0);
228 DRIVER_MODULE(miibus, stge, miibus_driver, 0, 0);
229 
230 static struct resource_spec stge_res_spec_io[] = {
231 	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
232 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
233 	{ -1,			0,		0 }
234 };
235 
236 static struct resource_spec stge_res_spec_mem[] = {
237 	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
238 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
239 	{ -1,			0,		0 }
240 };
241 
242 /*
243  * stge_mii_bitbang_read: [mii bit-bang interface function]
244  *
245  *	Read the MII serial port for the MII bit-bang module.
246  */
247 static uint32_t
stge_mii_bitbang_read(device_t dev)248 stge_mii_bitbang_read(device_t dev)
249 {
250 	struct stge_softc *sc;
251 	uint32_t val;
252 
253 	sc = device_get_softc(dev);
254 
255 	val = CSR_READ_1(sc, STGE_PhyCtrl);
256 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
257 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
258 	return (val);
259 }
260 
261 /*
262  * stge_mii_bitbang_write: [mii big-bang interface function]
263  *
264  *	Write the MII serial port for the MII bit-bang module.
265  */
266 static void
stge_mii_bitbang_write(device_t dev,uint32_t val)267 stge_mii_bitbang_write(device_t dev, uint32_t val)
268 {
269 	struct stge_softc *sc;
270 
271 	sc = device_get_softc(dev);
272 
273 	CSR_WRITE_1(sc, STGE_PhyCtrl, val);
274 	CSR_BARRIER(sc, STGE_PhyCtrl, 1,
275 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
276 }
277 
278 /*
279  * sc_miibus_readreg:	[mii interface function]
280  *
281  *	Read a PHY register on the MII of the TC9021.
282  */
283 static int
stge_miibus_readreg(device_t dev,int phy,int reg)284 stge_miibus_readreg(device_t dev, int phy, int reg)
285 {
286 	struct stge_softc *sc;
287 	int error, val;
288 
289 	sc = device_get_softc(dev);
290 
291 	if (reg == STGE_PhyCtrl) {
292 		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
293 		STGE_MII_LOCK(sc);
294 		error = CSR_READ_1(sc, STGE_PhyCtrl);
295 		STGE_MII_UNLOCK(sc);
296 		return (error);
297 	}
298 
299 	STGE_MII_LOCK(sc);
300 	val = mii_bitbang_readreg(dev, &stge_mii_bitbang_ops, phy, reg);
301 	STGE_MII_UNLOCK(sc);
302 	return (val);
303 }
304 
305 /*
306  * stge_miibus_writereg:	[mii interface function]
307  *
308  *	Write a PHY register on the MII of the TC9021.
309  */
310 static int
stge_miibus_writereg(device_t dev,int phy,int reg,int val)311 stge_miibus_writereg(device_t dev, int phy, int reg, int val)
312 {
313 	struct stge_softc *sc;
314 
315 	sc = device_get_softc(dev);
316 
317 	STGE_MII_LOCK(sc);
318 	mii_bitbang_writereg(dev, &stge_mii_bitbang_ops, phy, reg, val);
319 	STGE_MII_UNLOCK(sc);
320 	return (0);
321 }
322 
323 /*
324  * stge_miibus_statchg:	[mii interface function]
325  *
326  *	Callback from MII layer when media changes.
327  */
328 static void
stge_miibus_statchg(device_t dev)329 stge_miibus_statchg(device_t dev)
330 {
331 	struct stge_softc *sc;
332 
333 	sc = device_get_softc(dev);
334 	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
335 }
336 
337 /*
338  * stge_mediastatus:	[ifmedia interface function]
339  *
340  *	Get the current interface media status.
341  */
342 static void
stge_mediastatus(if_t ifp,struct ifmediareq * ifmr)343 stge_mediastatus(if_t ifp, struct ifmediareq *ifmr)
344 {
345 	struct stge_softc *sc;
346 	struct mii_data *mii;
347 
348 	sc = if_getsoftc(ifp);
349 	mii = device_get_softc(sc->sc_miibus);
350 
351 	mii_pollstat(mii);
352 	ifmr->ifm_status = mii->mii_media_status;
353 	ifmr->ifm_active = mii->mii_media_active;
354 }
355 
356 /*
357  * stge_mediachange:	[ifmedia interface function]
358  *
359  *	Set hardware to newly-selected media.
360  */
361 static int
stge_mediachange(if_t ifp)362 stge_mediachange(if_t ifp)
363 {
364 	struct stge_softc *sc;
365 	struct mii_data *mii;
366 
367 	sc = if_getsoftc(ifp);
368 	mii = device_get_softc(sc->sc_miibus);
369 	mii_mediachg(mii);
370 
371 	return (0);
372 }
373 
374 static int
stge_eeprom_wait(struct stge_softc * sc)375 stge_eeprom_wait(struct stge_softc *sc)
376 {
377 	int i;
378 
379 	for (i = 0; i < STGE_TIMEOUT; i++) {
380 		DELAY(1000);
381 		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
382 			return (0);
383 	}
384 	return (1);
385 }
386 
387 /*
388  * stge_read_eeprom:
389  *
390  *	Read data from the serial EEPROM.
391  */
392 static void
stge_read_eeprom(struct stge_softc * sc,int offset,uint16_t * data)393 stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
394 {
395 
396 	if (stge_eeprom_wait(sc))
397 		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
398 
399 	CSR_WRITE_2(sc, STGE_EepromCtrl,
400 	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
401 	if (stge_eeprom_wait(sc))
402 		device_printf(sc->sc_dev, "EEPROM read timed out\n");
403 	*data = CSR_READ_2(sc, STGE_EepromData);
404 }
405 
406 static int
stge_probe(device_t dev)407 stge_probe(device_t dev)
408 {
409 	const struct stge_product *sp;
410 	int i;
411 	uint16_t vendor, devid;
412 
413 	vendor = pci_get_vendor(dev);
414 	devid = pci_get_device(dev);
415 	sp = stge_products;
416 	for (i = 0; i < nitems(stge_products); i++, sp++) {
417 		if (vendor == sp->stge_vendorid &&
418 		    devid == sp->stge_deviceid) {
419 			device_set_desc(dev, sp->stge_name);
420 			return (BUS_PROBE_DEFAULT);
421 		}
422 	}
423 
424 	return (ENXIO);
425 }
426 
427 static int
stge_attach(device_t dev)428 stge_attach(device_t dev)
429 {
430 	struct stge_softc *sc;
431 	if_t ifp;
432 	uint8_t enaddr[ETHER_ADDR_LEN];
433 	int error, flags, i;
434 	uint16_t cmd;
435 	uint32_t val;
436 
437 	error = 0;
438 	sc = device_get_softc(dev);
439 	sc->sc_dev = dev;
440 
441 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
442 	    MTX_DEF);
443 	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
444 	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
445 	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
446 
447 	/*
448 	 * Map the device.
449 	 */
450 	pci_enable_busmaster(dev);
451 	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
452 	val = pci_read_config(dev, PCIR_BAR(1), 4);
453 	if (PCI_BAR_IO(val))
454 		sc->sc_spec = stge_res_spec_mem;
455 	else {
456 		val = pci_read_config(dev, PCIR_BAR(0), 4);
457 		if (!PCI_BAR_IO(val)) {
458 			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
459 			error = ENXIO;
460 			goto fail;
461 		}
462 		sc->sc_spec = stge_res_spec_io;
463 	}
464 	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
465 	if (error != 0) {
466 		device_printf(dev, "couldn't allocate %s resources\n",
467 		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
468 		goto fail;
469 	}
470 	sc->sc_rev = pci_get_revid(dev);
471 
472 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
473 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
474 	    "rxint_nframe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
475 	    &sc->sc_rxint_nframe, 0, sysctl_hw_stge_rxint_nframe, "I",
476 	    "stge rx interrupt nframe");
477 
478 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
479 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
480 	    "rxint_dmawait", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
481 	    &sc->sc_rxint_dmawait, 0, sysctl_hw_stge_rxint_dmawait, "I",
482 	    "stge rx interrupt dmawait");
483 
484 	/* Pull in device tunables. */
485 	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
486 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
487 	    "rxint_nframe", &sc->sc_rxint_nframe);
488 	if (error == 0) {
489 		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
490 		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
491 			device_printf(dev, "rxint_nframe value out of range; "
492 			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
493 			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
494 		}
495 	}
496 
497 	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
498 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
499 	    "rxint_dmawait", &sc->sc_rxint_dmawait);
500 	if (error == 0) {
501 		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
502 		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
503 			device_printf(dev, "rxint_dmawait value out of range; "
504 			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
505 			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
506 		}
507 	}
508 
509 	if ((error = stge_dma_alloc(sc)) != 0)
510 		goto fail;
511 
512 	/*
513 	 * Determine if we're copper or fiber.  It affects how we
514 	 * reset the card.
515 	 */
516 	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
517 		sc->sc_usefiber = 1;
518 	else
519 		sc->sc_usefiber = 0;
520 
521 	/* Load LED configuration from EEPROM. */
522 	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
523 
524 	/*
525 	 * Reset the chip to a known state.
526 	 */
527 	STGE_LOCK(sc);
528 	stge_reset(sc, STGE_RESET_FULL);
529 	STGE_UNLOCK(sc);
530 
531 	/*
532 	 * Reading the station address from the EEPROM doesn't seem
533 	 * to work, at least on my sample boards.  Instead, since
534 	 * the reset sequence does AutoInit, read it from the station
535 	 * address registers. For Sundance 1023 you can only read it
536 	 * from EEPROM.
537 	 */
538 	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
539 		uint16_t v;
540 
541 		v = CSR_READ_2(sc, STGE_StationAddress0);
542 		enaddr[0] = v & 0xff;
543 		enaddr[1] = v >> 8;
544 		v = CSR_READ_2(sc, STGE_StationAddress1);
545 		enaddr[2] = v & 0xff;
546 		enaddr[3] = v >> 8;
547 		v = CSR_READ_2(sc, STGE_StationAddress2);
548 		enaddr[4] = v & 0xff;
549 		enaddr[5] = v >> 8;
550 		sc->sc_stge1023 = 0;
551 	} else {
552 		uint16_t myaddr[ETHER_ADDR_LEN / 2];
553 		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
554 			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
555 			    &myaddr[i]);
556 			myaddr[i] = le16toh(myaddr[i]);
557 		}
558 		bcopy(myaddr, enaddr, sizeof(enaddr));
559 		sc->sc_stge1023 = 1;
560 	}
561 
562 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
563 	if_setsoftc(ifp, sc);
564 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
565 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
566 	if_setioctlfn(ifp, stge_ioctl);
567 	if_setstartfn(ifp, stge_start);
568 	if_setinitfn(ifp, stge_init);
569 	if_setsendqlen(ifp, STGE_TX_RING_CNT - 1);
570 	if_setsendqready(ifp);
571 	/* Revision B3 and earlier chips have checksum bug. */
572 	if (sc->sc_rev >= 0x0c) {
573 		if_sethwassist(ifp, STGE_CSUM_FEATURES);
574 		if_setcapabilities(ifp, IFCAP_HWCSUM);
575 	} else {
576 		if_sethwassist(ifp, 0);
577 		if_setcapabilities(ifp, 0);
578 	}
579 	if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
580 	if_setcapenable(ifp, if_getcapabilities(ifp));
581 
582 	/*
583 	 * Read some important bits from the PhyCtrl register.
584 	 */
585 	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
586 	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
587 
588 	/* Set up MII bus. */
589 	flags = MIIF_DOPAUSE;
590 	if (sc->sc_rev >= 0x40 && sc->sc_rev <= 0x4e)
591 		flags |= MIIF_MACPRIV0;
592 	error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, stge_mediachange,
593 	    stge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
594 	    flags);
595 	if (error != 0) {
596 		device_printf(sc->sc_dev, "attaching PHYs failed\n");
597 		goto fail;
598 	}
599 
600 	ether_ifattach(ifp, enaddr);
601 
602 	/* VLAN capability setup */
603 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING, 0);
604 	if (sc->sc_rev >= 0x0c)
605 		if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
606 	if_setcapenable(ifp, if_getcapabilities(ifp));
607 #ifdef DEVICE_POLLING
608 	if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
609 #endif
610 	/*
611 	 * Tell the upper layer(s) we support long frames.
612 	 * Must appear after the call to ether_ifattach() because
613 	 * ether_ifattach() sets ifi_hdrlen to the default value.
614 	 */
615 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
616 
617 	/*
618 	 * The manual recommends disabling early transmit, so we
619 	 * do.  It's disabled anyway, if using IP checksumming,
620 	 * since the entire packet must be in the FIFO in order
621 	 * for the chip to perform the checksum.
622 	 */
623 	sc->sc_txthresh = 0x0fff;
624 
625 	/*
626 	 * Disable MWI if the PCI layer tells us to.
627 	 */
628 	sc->sc_DMACtrl = 0;
629 	if ((cmd & PCIM_CMD_MWRICEN) == 0)
630 		sc->sc_DMACtrl |= DMAC_MWIDisable;
631 
632 	/*
633 	 * Hookup IRQ
634 	 */
635 	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
636 	    NULL, stge_intr, sc, &sc->sc_ih);
637 	if (error != 0) {
638 		ether_ifdetach(ifp);
639 		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
640 		sc->sc_ifp = NULL;
641 		goto fail;
642 	}
643 
644 fail:
645 	if (error != 0)
646 		stge_detach(dev);
647 
648 	return (error);
649 }
650 
651 static int
stge_detach(device_t dev)652 stge_detach(device_t dev)
653 {
654 	struct stge_softc *sc;
655 	if_t ifp;
656 
657 	sc = device_get_softc(dev);
658 
659 	ifp = sc->sc_ifp;
660 #ifdef DEVICE_POLLING
661 	if (ifp && if_getcapenable(ifp) & IFCAP_POLLING)
662 		ether_poll_deregister(ifp);
663 #endif
664 	if (device_is_attached(dev)) {
665 		STGE_LOCK(sc);
666 		/* XXX */
667 		sc->sc_detach = 1;
668 		stge_stop(sc);
669 		STGE_UNLOCK(sc);
670 		callout_drain(&sc->sc_tick_ch);
671 		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
672 		ether_ifdetach(ifp);
673 	}
674 
675 	bus_generic_detach(dev);
676 	stge_dma_free(sc);
677 
678 	if (ifp != NULL) {
679 		if_free(ifp);
680 		sc->sc_ifp = NULL;
681 	}
682 
683 	if (sc->sc_ih) {
684 		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
685 		sc->sc_ih = NULL;
686 	}
687 
688 	if (sc->sc_spec)
689 		bus_release_resources(dev, sc->sc_spec, sc->sc_res);
690 
691 	mtx_destroy(&sc->sc_mii_mtx);
692 	mtx_destroy(&sc->sc_mtx);
693 
694 	return (0);
695 }
696 
697 struct stge_dmamap_arg {
698 	bus_addr_t	stge_busaddr;
699 };
700 
701 static void
stge_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)702 stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
703 {
704 	struct stge_dmamap_arg *ctx;
705 
706 	if (error != 0)
707 		return;
708 
709 	ctx = (struct stge_dmamap_arg *)arg;
710 	ctx->stge_busaddr = segs[0].ds_addr;
711 }
712 
713 static int
stge_dma_alloc(struct stge_softc * sc)714 stge_dma_alloc(struct stge_softc *sc)
715 {
716 	struct stge_dmamap_arg ctx;
717 	struct stge_txdesc *txd;
718 	struct stge_rxdesc *rxd;
719 	int error, i;
720 
721 	/* create parent tag. */
722 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
723 		    1, 0,			/* algnmnt, boundary */
724 		    STGE_DMA_MAXADDR,		/* lowaddr */
725 		    BUS_SPACE_MAXADDR,		/* highaddr */
726 		    NULL, NULL,			/* filter, filterarg */
727 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
728 		    0,				/* nsegments */
729 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
730 		    0,				/* flags */
731 		    NULL, NULL,			/* lockfunc, lockarg */
732 		    &sc->sc_cdata.stge_parent_tag);
733 	if (error != 0) {
734 		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
735 		goto fail;
736 	}
737 	/* create tag for Tx ring. */
738 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
739 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
740 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
741 		    BUS_SPACE_MAXADDR,		/* highaddr */
742 		    NULL, NULL,			/* filter, filterarg */
743 		    STGE_TX_RING_SZ,		/* maxsize */
744 		    1,				/* nsegments */
745 		    STGE_TX_RING_SZ,		/* maxsegsize */
746 		    0,				/* flags */
747 		    NULL, NULL,			/* lockfunc, lockarg */
748 		    &sc->sc_cdata.stge_tx_ring_tag);
749 	if (error != 0) {
750 		device_printf(sc->sc_dev,
751 		    "failed to allocate Tx ring DMA tag\n");
752 		goto fail;
753 	}
754 
755 	/* create tag for Rx ring. */
756 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
757 		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
758 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
759 		    BUS_SPACE_MAXADDR,		/* highaddr */
760 		    NULL, NULL,			/* filter, filterarg */
761 		    STGE_RX_RING_SZ,		/* maxsize */
762 		    1,				/* nsegments */
763 		    STGE_RX_RING_SZ,		/* maxsegsize */
764 		    0,				/* flags */
765 		    NULL, NULL,			/* lockfunc, lockarg */
766 		    &sc->sc_cdata.stge_rx_ring_tag);
767 	if (error != 0) {
768 		device_printf(sc->sc_dev,
769 		    "failed to allocate Rx ring DMA tag\n");
770 		goto fail;
771 	}
772 
773 	/* create tag for Tx buffers. */
774 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
775 		    1, 0,			/* algnmnt, boundary */
776 		    BUS_SPACE_MAXADDR,		/* lowaddr */
777 		    BUS_SPACE_MAXADDR,		/* highaddr */
778 		    NULL, NULL,			/* filter, filterarg */
779 		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
780 		    STGE_MAXTXSEGS,		/* nsegments */
781 		    MCLBYTES,			/* maxsegsize */
782 		    0,				/* flags */
783 		    NULL, NULL,			/* lockfunc, lockarg */
784 		    &sc->sc_cdata.stge_tx_tag);
785 	if (error != 0) {
786 		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
787 		goto fail;
788 	}
789 
790 	/* create tag for Rx buffers. */
791 	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
792 		    1, 0,			/* algnmnt, boundary */
793 		    BUS_SPACE_MAXADDR,		/* lowaddr */
794 		    BUS_SPACE_MAXADDR,		/* highaddr */
795 		    NULL, NULL,			/* filter, filterarg */
796 		    MCLBYTES,			/* maxsize */
797 		    1,				/* nsegments */
798 		    MCLBYTES,			/* maxsegsize */
799 		    0,				/* flags */
800 		    NULL, NULL,			/* lockfunc, lockarg */
801 		    &sc->sc_cdata.stge_rx_tag);
802 	if (error != 0) {
803 		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
804 		goto fail;
805 	}
806 
807 	/* allocate DMA'able memory and load the DMA map for Tx ring. */
808 	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
809 	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT |
810 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_tx_ring_map);
811 	if (error != 0) {
812 		device_printf(sc->sc_dev,
813 		    "failed to allocate DMA'able memory for Tx ring\n");
814 		goto fail;
815 	}
816 
817 	ctx.stge_busaddr = 0;
818 	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
819 	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
820 	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
821 	if (error != 0 || ctx.stge_busaddr == 0) {
822 		device_printf(sc->sc_dev,
823 		    "failed to load DMA'able memory for Tx ring\n");
824 		goto fail;
825 	}
826 	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
827 
828 	/* allocate DMA'able memory and load the DMA map for Rx ring. */
829 	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
830 	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT |
831 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdata.stge_rx_ring_map);
832 	if (error != 0) {
833 		device_printf(sc->sc_dev,
834 		    "failed to allocate DMA'able memory for Rx ring\n");
835 		goto fail;
836 	}
837 
838 	ctx.stge_busaddr = 0;
839 	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
840 	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
841 	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
842 	if (error != 0 || ctx.stge_busaddr == 0) {
843 		device_printf(sc->sc_dev,
844 		    "failed to load DMA'able memory for Rx ring\n");
845 		goto fail;
846 	}
847 	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
848 
849 	/* create DMA maps for Tx buffers. */
850 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
851 		txd = &sc->sc_cdata.stge_txdesc[i];
852 		txd->tx_m = NULL;
853 		txd->tx_dmamap = 0;
854 		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
855 		    &txd->tx_dmamap);
856 		if (error != 0) {
857 			device_printf(sc->sc_dev,
858 			    "failed to create Tx dmamap\n");
859 			goto fail;
860 		}
861 	}
862 	/* create DMA maps for Rx buffers. */
863 	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
864 	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
865 		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
866 		goto fail;
867 	}
868 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
869 		rxd = &sc->sc_cdata.stge_rxdesc[i];
870 		rxd->rx_m = NULL;
871 		rxd->rx_dmamap = 0;
872 		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
873 		    &rxd->rx_dmamap);
874 		if (error != 0) {
875 			device_printf(sc->sc_dev,
876 			    "failed to create Rx dmamap\n");
877 			goto fail;
878 		}
879 	}
880 
881 fail:
882 	return (error);
883 }
884 
885 static void
stge_dma_free(struct stge_softc * sc)886 stge_dma_free(struct stge_softc *sc)
887 {
888 	struct stge_txdesc *txd;
889 	struct stge_rxdesc *rxd;
890 	int i;
891 
892 	/* Tx ring */
893 	if (sc->sc_cdata.stge_tx_ring_tag) {
894 		if (sc->sc_rdata.stge_tx_ring_paddr)
895 			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
896 			    sc->sc_cdata.stge_tx_ring_map);
897 		if (sc->sc_rdata.stge_tx_ring)
898 			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
899 			    sc->sc_rdata.stge_tx_ring,
900 			    sc->sc_cdata.stge_tx_ring_map);
901 		sc->sc_rdata.stge_tx_ring = NULL;
902 		sc->sc_rdata.stge_tx_ring_paddr = 0;
903 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
904 		sc->sc_cdata.stge_tx_ring_tag = NULL;
905 	}
906 	/* Rx ring */
907 	if (sc->sc_cdata.stge_rx_ring_tag) {
908 		if (sc->sc_rdata.stge_rx_ring_paddr)
909 			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
910 			    sc->sc_cdata.stge_rx_ring_map);
911 		if (sc->sc_rdata.stge_rx_ring)
912 			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
913 			    sc->sc_rdata.stge_rx_ring,
914 			    sc->sc_cdata.stge_rx_ring_map);
915 		sc->sc_rdata.stge_rx_ring = NULL;
916 		sc->sc_rdata.stge_rx_ring_paddr = 0;
917 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
918 		sc->sc_cdata.stge_rx_ring_tag = NULL;
919 	}
920 	/* Tx buffers */
921 	if (sc->sc_cdata.stge_tx_tag) {
922 		for (i = 0; i < STGE_TX_RING_CNT; i++) {
923 			txd = &sc->sc_cdata.stge_txdesc[i];
924 			if (txd->tx_dmamap) {
925 				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
926 				    txd->tx_dmamap);
927 				txd->tx_dmamap = 0;
928 			}
929 		}
930 		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
931 		sc->sc_cdata.stge_tx_tag = NULL;
932 	}
933 	/* Rx buffers */
934 	if (sc->sc_cdata.stge_rx_tag) {
935 		for (i = 0; i < STGE_RX_RING_CNT; i++) {
936 			rxd = &sc->sc_cdata.stge_rxdesc[i];
937 			if (rxd->rx_dmamap) {
938 				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
939 				    rxd->rx_dmamap);
940 				rxd->rx_dmamap = 0;
941 			}
942 		}
943 		if (sc->sc_cdata.stge_rx_sparemap) {
944 			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
945 			    sc->sc_cdata.stge_rx_sparemap);
946 			sc->sc_cdata.stge_rx_sparemap = 0;
947 		}
948 		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
949 		sc->sc_cdata.stge_rx_tag = NULL;
950 	}
951 
952 	if (sc->sc_cdata.stge_parent_tag) {
953 		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
954 		sc->sc_cdata.stge_parent_tag = NULL;
955 	}
956 }
957 
958 /*
959  * stge_shutdown:
960  *
961  *	Make sure the interface is stopped at reboot time.
962  */
963 static int
stge_shutdown(device_t dev)964 stge_shutdown(device_t dev)
965 {
966 
967 	return (stge_suspend(dev));
968 }
969 
970 static void
stge_setwol(struct stge_softc * sc)971 stge_setwol(struct stge_softc *sc)
972 {
973 	if_t ifp;
974 	uint8_t v;
975 
976 	STGE_LOCK_ASSERT(sc);
977 
978 	ifp = sc->sc_ifp;
979 	v = CSR_READ_1(sc, STGE_WakeEvent);
980 	/* Disable all WOL bits. */
981 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
982 	    WE_WakeOnLanEnable);
983 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
984 		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
985 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
986 	/* Reset Tx and prevent transmission. */
987 	CSR_WRITE_4(sc, STGE_AsicCtrl,
988 	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
989 	/*
990 	 * TC9021 automatically reset link speed to 100Mbps when it's put
991 	 * into sleep so there is no need to try to resetting link speed.
992 	 */
993 }
994 
995 static int
stge_suspend(device_t dev)996 stge_suspend(device_t dev)
997 {
998 	struct stge_softc *sc;
999 
1000 	sc = device_get_softc(dev);
1001 
1002 	STGE_LOCK(sc);
1003 	stge_stop(sc);
1004 	sc->sc_suspended = 1;
1005 	stge_setwol(sc);
1006 	STGE_UNLOCK(sc);
1007 
1008 	return (0);
1009 }
1010 
1011 static int
stge_resume(device_t dev)1012 stge_resume(device_t dev)
1013 {
1014 	struct stge_softc *sc;
1015 	if_t ifp;
1016 	uint8_t v;
1017 
1018 	sc = device_get_softc(dev);
1019 
1020 	STGE_LOCK(sc);
1021 	/*
1022 	 * Clear WOL bits, so special frames wouldn't interfere
1023 	 * normal Rx operation anymore.
1024 	 */
1025 	v = CSR_READ_1(sc, STGE_WakeEvent);
1026 	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1027 	    WE_WakeOnLanEnable);
1028 	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1029 	ifp = sc->sc_ifp;
1030 	if (if_getflags(ifp) & IFF_UP)
1031 		stge_init_locked(sc);
1032 
1033 	sc->sc_suspended = 0;
1034 	STGE_UNLOCK(sc);
1035 
1036 	return (0);
1037 }
1038 
1039 static void
stge_dma_wait(struct stge_softc * sc)1040 stge_dma_wait(struct stge_softc *sc)
1041 {
1042 	int i;
1043 
1044 	for (i = 0; i < STGE_TIMEOUT; i++) {
1045 		DELAY(2);
1046 		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1047 			break;
1048 	}
1049 
1050 	if (i == STGE_TIMEOUT)
1051 		device_printf(sc->sc_dev, "DMA wait timed out\n");
1052 }
1053 
1054 static int
stge_encap(struct stge_softc * sc,struct mbuf ** m_head)1055 stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1056 {
1057 	struct stge_txdesc *txd;
1058 	struct stge_tfd *tfd;
1059 	struct mbuf *m;
1060 	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1061 	int error, i, nsegs, si;
1062 	uint64_t csum_flags, tfc;
1063 
1064 	STGE_LOCK_ASSERT(sc);
1065 
1066 	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1067 		return (ENOBUFS);
1068 
1069 	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1070 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1071 	if (error == EFBIG) {
1072 		m = m_collapse(*m_head, M_NOWAIT, STGE_MAXTXSEGS);
1073 		if (m == NULL) {
1074 			m_freem(*m_head);
1075 			*m_head = NULL;
1076 			return (ENOMEM);
1077 		}
1078 		*m_head = m;
1079 		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1080 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1081 		if (error != 0) {
1082 			m_freem(*m_head);
1083 			*m_head = NULL;
1084 			return (error);
1085 		}
1086 	} else if (error != 0)
1087 		return (error);
1088 	if (nsegs == 0) {
1089 		m_freem(*m_head);
1090 		*m_head = NULL;
1091 		return (EIO);
1092 	}
1093 
1094 	m = *m_head;
1095 	csum_flags = 0;
1096 	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1097 		if (m->m_pkthdr.csum_flags & CSUM_IP)
1098 			csum_flags |= TFD_IPChecksumEnable;
1099 		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1100 			csum_flags |= TFD_TCPChecksumEnable;
1101 		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1102 			csum_flags |= TFD_UDPChecksumEnable;
1103 	}
1104 
1105 	si = sc->sc_cdata.stge_tx_prod;
1106 	tfd = &sc->sc_rdata.stge_tx_ring[si];
1107 	for (i = 0; i < nsegs; i++)
1108 		tfd->tfd_frags[i].frag_word0 =
1109 		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1110 		    FRAG_LEN(txsegs[i].ds_len));
1111 	sc->sc_cdata.stge_tx_cnt++;
1112 
1113 	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1114 	    TFD_FragCount(nsegs) | csum_flags;
1115 	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1116 		tfc |= TFD_TxDMAIndicate;
1117 
1118 	/* Update producer index. */
1119 	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1120 
1121 	/* Check if we have a VLAN tag to insert. */
1122 	if (m->m_flags & M_VLANTAG)
1123 		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1124 	tfd->tfd_control = htole64(tfc);
1125 
1126 	/* Update Tx Queue. */
1127 	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1128 	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1129 	txd->tx_m = m;
1130 
1131 	/* Sync descriptors. */
1132 	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1133 	    BUS_DMASYNC_PREWRITE);
1134 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1135 	    sc->sc_cdata.stge_tx_ring_map,
1136 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1137 
1138 	return (0);
1139 }
1140 
1141 /*
1142  * stge_start:		[ifnet interface function]
1143  *
1144  *	Start packet transmission on the interface.
1145  */
1146 static void
stge_start(if_t ifp)1147 stge_start(if_t ifp)
1148 {
1149 	struct stge_softc *sc;
1150 
1151 	sc = if_getsoftc(ifp);
1152 	STGE_LOCK(sc);
1153 	stge_start_locked(ifp);
1154 	STGE_UNLOCK(sc);
1155 }
1156 
1157 static void
stge_start_locked(if_t ifp)1158 stge_start_locked(if_t ifp)
1159 {
1160         struct stge_softc *sc;
1161         struct mbuf *m_head;
1162 	int enq;
1163 
1164 	sc = if_getsoftc(ifp);
1165 
1166 	STGE_LOCK_ASSERT(sc);
1167 
1168 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1169 	    IFF_DRV_RUNNING || sc->sc_link == 0)
1170 		return;
1171 
1172 	for (enq = 0; !if_sendq_empty(ifp); ) {
1173 		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1174 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1175 			break;
1176 		}
1177 
1178 		m_head = if_dequeue(ifp);
1179 		if (m_head == NULL)
1180 			break;
1181 		/*
1182 		 * Pack the data into the transmit ring. If we
1183 		 * don't have room, set the OACTIVE flag and wait
1184 		 * for the NIC to drain the ring.
1185 		 */
1186 		if (stge_encap(sc, &m_head)) {
1187 			if (m_head == NULL)
1188 				break;
1189 			if_sendq_prepend(ifp, m_head);
1190 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1191 			break;
1192 		}
1193 
1194 		enq++;
1195 		/*
1196 		 * If there's a BPF listener, bounce a copy of this frame
1197 		 * to him.
1198 		 */
1199 		ETHER_BPF_MTAP(ifp, m_head);
1200 	}
1201 
1202 	if (enq > 0) {
1203 		/* Transmit */
1204 		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1205 
1206 		/* Set a timeout in case the chip goes out to lunch. */
1207 		sc->sc_watchdog_timer = 5;
1208 	}
1209 }
1210 
1211 /*
1212  * stge_watchdog:
1213  *
1214  *	Watchdog timer handler.
1215  */
1216 static void
stge_watchdog(struct stge_softc * sc)1217 stge_watchdog(struct stge_softc *sc)
1218 {
1219 	if_t ifp;
1220 
1221 	STGE_LOCK_ASSERT(sc);
1222 
1223 	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1224 		return;
1225 
1226 	ifp = sc->sc_ifp;
1227 	if_printf(sc->sc_ifp, "device timeout\n");
1228 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1229 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1230 	stge_init_locked(sc);
1231 	if (!if_sendq_empty(ifp))
1232 		stge_start_locked(ifp);
1233 }
1234 
1235 /*
1236  * stge_ioctl:		[ifnet interface function]
1237  *
1238  *	Handle control requests from the operator.
1239  */
1240 static int
stge_ioctl(if_t ifp,u_long cmd,caddr_t data)1241 stge_ioctl(if_t ifp, u_long cmd, caddr_t data)
1242 {
1243 	struct stge_softc *sc;
1244 	struct ifreq *ifr;
1245 	struct mii_data *mii;
1246 	int error, mask;
1247 
1248 	sc = if_getsoftc(ifp);
1249 	ifr = (struct ifreq *)data;
1250 	error = 0;
1251 	switch (cmd) {
1252 	case SIOCSIFMTU:
1253 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1254 			error = EINVAL;
1255 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1256 			if_setmtu(ifp, ifr->ifr_mtu);
1257 			STGE_LOCK(sc);
1258 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1259 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1260 				stge_init_locked(sc);
1261 			}
1262 			STGE_UNLOCK(sc);
1263 		}
1264 		break;
1265 	case SIOCSIFFLAGS:
1266 		STGE_LOCK(sc);
1267 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1268 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1269 				if (((if_getflags(ifp) ^ sc->sc_if_flags)
1270 				    & IFF_PROMISC) != 0)
1271 					stge_set_filter(sc);
1272 			} else {
1273 				if (sc->sc_detach == 0)
1274 					stge_init_locked(sc);
1275 			}
1276 		} else {
1277 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1278 				stge_stop(sc);
1279 		}
1280 		sc->sc_if_flags = if_getflags(ifp);
1281 		STGE_UNLOCK(sc);
1282 		break;
1283 	case SIOCADDMULTI:
1284 	case SIOCDELMULTI:
1285 		STGE_LOCK(sc);
1286 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1287 			stge_set_multi(sc);
1288 		STGE_UNLOCK(sc);
1289 		break;
1290 	case SIOCSIFMEDIA:
1291 	case SIOCGIFMEDIA:
1292 		mii = device_get_softc(sc->sc_miibus);
1293 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1294 		break;
1295 	case SIOCSIFCAP:
1296 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1297 #ifdef DEVICE_POLLING
1298 		if ((mask & IFCAP_POLLING) != 0) {
1299 			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1300 				error = ether_poll_register(stge_poll, ifp);
1301 				if (error != 0)
1302 					break;
1303 				STGE_LOCK(sc);
1304 				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1305 				if_setcapenablebit(ifp, IFCAP_POLLING, 0);
1306 				STGE_UNLOCK(sc);
1307 			} else {
1308 				error = ether_poll_deregister(ifp);
1309 				if (error != 0)
1310 					break;
1311 				STGE_LOCK(sc);
1312 				CSR_WRITE_2(sc, STGE_IntEnable,
1313 				    sc->sc_IntEnable);
1314 				if_setcapenablebit(ifp, 0, IFCAP_POLLING);
1315 				STGE_UNLOCK(sc);
1316 			}
1317 		}
1318 #endif
1319 		if ((mask & IFCAP_HWCSUM) != 0) {
1320 			if_togglecapenable(ifp, IFCAP_HWCSUM);
1321 			if ((IFCAP_HWCSUM & if_getcapenable(ifp)) != 0 &&
1322 			    (IFCAP_HWCSUM & if_getcapabilities(ifp)) != 0)
1323 				if_sethwassist(ifp, STGE_CSUM_FEATURES);
1324 			else
1325 				if_sethwassist(ifp, 0);
1326 		}
1327 		if ((mask & IFCAP_WOL) != 0 &&
1328 		    (if_getcapabilities(ifp) & IFCAP_WOL) != 0) {
1329 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1330 				if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1331 		}
1332 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1333 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1334 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1335 				STGE_LOCK(sc);
1336 				stge_vlan_setup(sc);
1337 				STGE_UNLOCK(sc);
1338 			}
1339 		}
1340 		VLAN_CAPABILITIES(ifp);
1341 		break;
1342 	default:
1343 		error = ether_ioctl(ifp, cmd, data);
1344 		break;
1345 	}
1346 
1347 	return (error);
1348 }
1349 
1350 static void
stge_link_task(void * arg,int pending)1351 stge_link_task(void *arg, int pending)
1352 {
1353 	struct stge_softc *sc;
1354 	struct mii_data *mii;
1355 	uint32_t v, ac;
1356 	int i;
1357 
1358 	sc = (struct stge_softc *)arg;
1359 	STGE_LOCK(sc);
1360 
1361 	mii = device_get_softc(sc->sc_miibus);
1362 	if (mii->mii_media_status & IFM_ACTIVE) {
1363 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1364 			sc->sc_link = 1;
1365 	} else
1366 		sc->sc_link = 0;
1367 
1368 	sc->sc_MACCtrl = 0;
1369 	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1370 		sc->sc_MACCtrl |= MC_DuplexSelect;
1371 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
1372 		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1373 	if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
1374 		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1375 	/*
1376 	 * Update STGE_MACCtrl register depending on link status.
1377 	 * (duplex, flow control etc)
1378 	 */
1379 	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1380 	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1381 	v |= sc->sc_MACCtrl;
1382 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1383 	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1384 		/* Duplex setting changed, reset Tx/Rx functions. */
1385 		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1386 		ac |= AC_TxReset | AC_RxReset;
1387 		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1388 		for (i = 0; i < STGE_TIMEOUT; i++) {
1389 			DELAY(100);
1390 			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1391 				break;
1392 		}
1393 		if (i == STGE_TIMEOUT)
1394 			device_printf(sc->sc_dev, "reset failed to complete\n");
1395 	}
1396 	STGE_UNLOCK(sc);
1397 }
1398 
1399 static __inline int
stge_tx_error(struct stge_softc * sc)1400 stge_tx_error(struct stge_softc *sc)
1401 {
1402 	uint32_t txstat;
1403 	int error;
1404 
1405 	for (error = 0;;) {
1406 		txstat = CSR_READ_4(sc, STGE_TxStatus);
1407 		if ((txstat & TS_TxComplete) == 0)
1408 			break;
1409 		/* Tx underrun */
1410 		if ((txstat & TS_TxUnderrun) != 0) {
1411 			/*
1412 			 * XXX
1413 			 * There should be a more better way to recover
1414 			 * from Tx underrun instead of a full reset.
1415 			 */
1416 			if (sc->sc_nerr++ < STGE_MAXERR)
1417 				device_printf(sc->sc_dev, "Tx underrun, "
1418 				    "resetting...\n");
1419 			if (sc->sc_nerr == STGE_MAXERR)
1420 				device_printf(sc->sc_dev, "too many errors; "
1421 				    "not reporting any more\n");
1422 			error = -1;
1423 			break;
1424 		}
1425 		/* Maximum/Late collisions, Re-enable Tx MAC. */
1426 		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1427 			CSR_WRITE_4(sc, STGE_MACCtrl,
1428 			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1429 			    MC_TxEnable);
1430 	}
1431 
1432 	return (error);
1433 }
1434 
1435 /*
1436  * stge_intr:
1437  *
1438  *	Interrupt service routine.
1439  */
1440 static void
stge_intr(void * arg)1441 stge_intr(void *arg)
1442 {
1443 	struct stge_softc *sc;
1444 	if_t ifp;
1445 	int reinit;
1446 	uint16_t status;
1447 
1448 	sc = (struct stge_softc *)arg;
1449 	ifp = sc->sc_ifp;
1450 
1451 	STGE_LOCK(sc);
1452 
1453 #ifdef DEVICE_POLLING
1454 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
1455 		goto done_locked;
1456 #endif
1457 	status = CSR_READ_2(sc, STGE_IntStatus);
1458 	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1459 		goto done_locked;
1460 
1461 	/* Disable interrupts. */
1462 	for (reinit = 0;;) {
1463 		status = CSR_READ_2(sc, STGE_IntStatusAck);
1464 		status &= sc->sc_IntEnable;
1465 		if (status == 0)
1466 			break;
1467 		/* Host interface errors. */
1468 		if ((status & IS_HostError) != 0) {
1469 			device_printf(sc->sc_dev,
1470 			    "Host interface error, resetting...\n");
1471 			reinit = 1;
1472 			goto force_init;
1473 		}
1474 
1475 		/* Receive interrupts. */
1476 		if ((status & IS_RxDMAComplete) != 0) {
1477 			stge_rxeof(sc);
1478 			if ((status & IS_RFDListEnd) != 0)
1479 				CSR_WRITE_4(sc, STGE_DMACtrl,
1480 				    DMAC_RxDMAPollNow);
1481 		}
1482 
1483 		/* Transmit interrupts. */
1484 		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1485 			stge_txeof(sc);
1486 
1487 		/* Transmission errors.*/
1488 		if ((status & IS_TxComplete) != 0) {
1489 			if ((reinit = stge_tx_error(sc)) != 0)
1490 				break;
1491 		}
1492 	}
1493 
1494 force_init:
1495 	if (reinit != 0) {
1496 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1497 		stge_init_locked(sc);
1498 	}
1499 
1500 	/* Re-enable interrupts. */
1501 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1502 
1503 	/* Try to get more packets going. */
1504 	if (!if_sendq_empty(ifp))
1505 		stge_start_locked(ifp);
1506 
1507 done_locked:
1508 	STGE_UNLOCK(sc);
1509 }
1510 
1511 /*
1512  * stge_txeof:
1513  *
1514  *	Helper; handle transmit interrupts.
1515  */
1516 static void
stge_txeof(struct stge_softc * sc)1517 stge_txeof(struct stge_softc *sc)
1518 {
1519 	if_t ifp;
1520 	struct stge_txdesc *txd;
1521 	uint64_t control;
1522 	int cons;
1523 
1524 	STGE_LOCK_ASSERT(sc);
1525 
1526 	ifp = sc->sc_ifp;
1527 
1528 	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1529 	if (txd == NULL)
1530 		return;
1531 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1532 	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1533 
1534 	/*
1535 	 * Go through our Tx list and free mbufs for those
1536 	 * frames which have been transmitted.
1537 	 */
1538 	for (cons = sc->sc_cdata.stge_tx_cons;;
1539 	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1540 		if (sc->sc_cdata.stge_tx_cnt <= 0)
1541 			break;
1542 		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1543 		if ((control & TFD_TFDDone) == 0)
1544 			break;
1545 		sc->sc_cdata.stge_tx_cnt--;
1546 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1547 
1548 		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1549 		    BUS_DMASYNC_POSTWRITE);
1550 		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1551 
1552 		/* Output counter is updated with statistics register */
1553 		m_freem(txd->tx_m);
1554 		txd->tx_m = NULL;
1555 		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1556 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1557 		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1558 	}
1559 	sc->sc_cdata.stge_tx_cons = cons;
1560 	if (sc->sc_cdata.stge_tx_cnt == 0)
1561 		sc->sc_watchdog_timer = 0;
1562 
1563         bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1564 	    sc->sc_cdata.stge_tx_ring_map,
1565 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1566 }
1567 
1568 static __inline void
stge_discard_rxbuf(struct stge_softc * sc,int idx)1569 stge_discard_rxbuf(struct stge_softc *sc, int idx)
1570 {
1571 	struct stge_rfd *rfd;
1572 
1573 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1574 	rfd->rfd_status = 0;
1575 }
1576 
1577 #ifndef __NO_STRICT_ALIGNMENT
1578 /*
1579  * It seems that TC9021's DMA engine has alignment restrictions in
1580  * DMA scatter operations. The first DMA segment has no address
1581  * alignment restrictins but the rest should be aligned on 4(?) bytes
1582  * boundary. Otherwise it would corrupt random memory. Since we don't
1583  * know which one is used for the first segment in advance we simply
1584  * don't align at all.
1585  * To avoid copying over an entire frame to align, we allocate a new
1586  * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1587  * prepended into the existing mbuf chain.
1588  */
1589 static __inline struct mbuf *
stge_fixup_rx(struct stge_softc * sc,struct mbuf * m)1590 stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1591 {
1592 	struct mbuf *n;
1593 
1594 	n = NULL;
1595 	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1596 		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1597 		m->m_data += ETHER_HDR_LEN;
1598 		n = m;
1599 	} else {
1600 		MGETHDR(n, M_NOWAIT, MT_DATA);
1601 		if (n != NULL) {
1602 			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1603 			m->m_data += ETHER_HDR_LEN;
1604 			m->m_len -= ETHER_HDR_LEN;
1605 			n->m_len = ETHER_HDR_LEN;
1606 			M_MOVE_PKTHDR(n, m);
1607 			n->m_next = m;
1608 		} else
1609 			m_freem(m);
1610 	}
1611 
1612 	return (n);
1613 }
1614 #endif
1615 
1616 /*
1617  * stge_rxeof:
1618  *
1619  *	Helper; handle receive interrupts.
1620  */
1621 static int
stge_rxeof(struct stge_softc * sc)1622 stge_rxeof(struct stge_softc *sc)
1623 {
1624 	if_t ifp;
1625 	struct stge_rxdesc *rxd;
1626 	struct mbuf *mp, *m;
1627 	uint64_t status64;
1628 	uint32_t status;
1629 	int cons, prog, rx_npkts;
1630 
1631 	STGE_LOCK_ASSERT(sc);
1632 
1633 	rx_npkts = 0;
1634 	ifp = sc->sc_ifp;
1635 
1636 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1637 	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1638 
1639 	prog = 0;
1640 	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1641 	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1642 		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1643 		status = RFD_RxStatus(status64);
1644 		if ((status & RFD_RFDDone) == 0)
1645 			break;
1646 #ifdef DEVICE_POLLING
1647 		if (if_getcapenable(ifp) & IFCAP_POLLING) {
1648 			if (sc->sc_cdata.stge_rxcycles <= 0)
1649 				break;
1650 			sc->sc_cdata.stge_rxcycles--;
1651 		}
1652 #endif
1653 		prog++;
1654 		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1655 		mp = rxd->rx_m;
1656 
1657 		/*
1658 		 * If the packet had an error, drop it.  Note we count
1659 		 * the error later in the periodic stats update.
1660 		 */
1661 		if ((status & RFD_FrameEnd) != 0 && (status &
1662 		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1663 		    RFD_RxAlignmentError | RFD_RxFCSError |
1664 		    RFD_RxLengthError)) != 0) {
1665 			stge_discard_rxbuf(sc, cons);
1666 			if (sc->sc_cdata.stge_rxhead != NULL) {
1667 				m_freem(sc->sc_cdata.stge_rxhead);
1668 				STGE_RXCHAIN_RESET(sc);
1669 			}
1670 			continue;
1671 		}
1672 		/*
1673 		 * Add a new receive buffer to the ring.
1674 		 */
1675 		if (stge_newbuf(sc, cons) != 0) {
1676 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1677 			stge_discard_rxbuf(sc, cons);
1678 			if (sc->sc_cdata.stge_rxhead != NULL) {
1679 				m_freem(sc->sc_cdata.stge_rxhead);
1680 				STGE_RXCHAIN_RESET(sc);
1681 			}
1682 			continue;
1683 		}
1684 
1685 		if ((status & RFD_FrameEnd) != 0)
1686 			mp->m_len = RFD_RxDMAFrameLen(status) -
1687 			    sc->sc_cdata.stge_rxlen;
1688 		sc->sc_cdata.stge_rxlen += mp->m_len;
1689 
1690 		/* Chain mbufs. */
1691 		if (sc->sc_cdata.stge_rxhead == NULL) {
1692 			sc->sc_cdata.stge_rxhead = mp;
1693 			sc->sc_cdata.stge_rxtail = mp;
1694 		} else {
1695 			mp->m_flags &= ~M_PKTHDR;
1696 			sc->sc_cdata.stge_rxtail->m_next = mp;
1697 			sc->sc_cdata.stge_rxtail = mp;
1698 		}
1699 
1700 		if ((status & RFD_FrameEnd) != 0) {
1701 			m = sc->sc_cdata.stge_rxhead;
1702 			m->m_pkthdr.rcvif = ifp;
1703 			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1704 
1705 			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1706 				m_freem(m);
1707 				STGE_RXCHAIN_RESET(sc);
1708 				continue;
1709 			}
1710 			/*
1711 			 * Set the incoming checksum information for
1712 			 * the packet.
1713 			 */
1714 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
1715 				if ((status & RFD_IPDetected) != 0) {
1716 					m->m_pkthdr.csum_flags |=
1717 						CSUM_IP_CHECKED;
1718 					if ((status & RFD_IPError) == 0)
1719 						m->m_pkthdr.csum_flags |=
1720 						    CSUM_IP_VALID;
1721 				}
1722 				if (((status & RFD_TCPDetected) != 0 &&
1723 				    (status & RFD_TCPError) == 0) ||
1724 				    ((status & RFD_UDPDetected) != 0 &&
1725 				    (status & RFD_UDPError) == 0)) {
1726 					m->m_pkthdr.csum_flags |=
1727 					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1728 					m->m_pkthdr.csum_data = 0xffff;
1729 				}
1730 			}
1731 
1732 #ifndef __NO_STRICT_ALIGNMENT
1733 			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1734 				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1735 					STGE_RXCHAIN_RESET(sc);
1736 					continue;
1737 				}
1738 			}
1739 #endif
1740 			/* Check for VLAN tagged packets. */
1741 			if ((status & RFD_VLANDetected) != 0 &&
1742 			    (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1743 				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1744 				m->m_flags |= M_VLANTAG;
1745 			}
1746 
1747 			STGE_UNLOCK(sc);
1748 			/* Pass it on. */
1749 			if_input(ifp, m);
1750 			STGE_LOCK(sc);
1751 			rx_npkts++;
1752 
1753 			STGE_RXCHAIN_RESET(sc);
1754 		}
1755 	}
1756 
1757 	if (prog > 0) {
1758 		/* Update the consumer index. */
1759 		sc->sc_cdata.stge_rx_cons = cons;
1760 		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1761 		    sc->sc_cdata.stge_rx_ring_map,
1762 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1763 	}
1764 	return (rx_npkts);
1765 }
1766 
1767 #ifdef DEVICE_POLLING
1768 static int
stge_poll(if_t ifp,enum poll_cmd cmd,int count)1769 stge_poll(if_t ifp, enum poll_cmd cmd, int count)
1770 {
1771 	struct stge_softc *sc;
1772 	uint16_t status;
1773 	int rx_npkts;
1774 
1775 	rx_npkts = 0;
1776 	sc = if_getsoftc(ifp);
1777 	STGE_LOCK(sc);
1778 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1779 		STGE_UNLOCK(sc);
1780 		return (rx_npkts);
1781 	}
1782 
1783 	sc->sc_cdata.stge_rxcycles = count;
1784 	rx_npkts = stge_rxeof(sc);
1785 	stge_txeof(sc);
1786 
1787 	if (cmd == POLL_AND_CHECK_STATUS) {
1788 		status = CSR_READ_2(sc, STGE_IntStatus);
1789 		status &= sc->sc_IntEnable;
1790 		if (status != 0) {
1791 			if ((status & IS_HostError) != 0) {
1792 				device_printf(sc->sc_dev,
1793 				    "Host interface error, resetting...\n");
1794 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1795 				stge_init_locked(sc);
1796 			}
1797 			if ((status & IS_TxComplete) != 0) {
1798 				if (stge_tx_error(sc) != 0) {
1799 					if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1800 					stge_init_locked(sc);
1801 				}
1802 			}
1803 		}
1804 	}
1805 
1806 	if (!if_sendq_empty(ifp))
1807 		stge_start_locked(ifp);
1808 
1809 	STGE_UNLOCK(sc);
1810 	return (rx_npkts);
1811 }
1812 #endif	/* DEVICE_POLLING */
1813 
1814 /*
1815  * stge_tick:
1816  *
1817  *	One second timer, used to tick the MII.
1818  */
1819 static void
stge_tick(void * arg)1820 stge_tick(void *arg)
1821 {
1822 	struct stge_softc *sc;
1823 	struct mii_data *mii;
1824 
1825 	sc = (struct stge_softc *)arg;
1826 
1827 	STGE_LOCK_ASSERT(sc);
1828 
1829 	mii = device_get_softc(sc->sc_miibus);
1830 	mii_tick(mii);
1831 
1832 	/* Update statistics counters. */
1833 	stge_stats_update(sc);
1834 
1835 	/*
1836 	 * Relcaim any pending Tx descriptors to release mbufs in a
1837 	 * timely manner as we don't generate Tx completion interrupts
1838 	 * for every frame. This limits the delay to a maximum of one
1839 	 * second.
1840 	 */
1841 	if (sc->sc_cdata.stge_tx_cnt != 0)
1842 		stge_txeof(sc);
1843 
1844 	stge_watchdog(sc);
1845 
1846 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1847 }
1848 
1849 /*
1850  * stge_stats_update:
1851  *
1852  *	Read the TC9021 statistics counters.
1853  */
1854 static void
stge_stats_update(struct stge_softc * sc)1855 stge_stats_update(struct stge_softc *sc)
1856 {
1857 	if_t ifp;
1858 
1859 	STGE_LOCK_ASSERT(sc);
1860 
1861 	ifp = sc->sc_ifp;
1862 
1863 	CSR_READ_4(sc,STGE_OctetRcvOk);
1864 
1865 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, CSR_READ_4(sc, STGE_FramesRcvdOk));
1866 
1867 	if_inc_counter(ifp, IFCOUNTER_IERRORS, CSR_READ_2(sc, STGE_FramesLostRxErrors));
1868 
1869 	CSR_READ_4(sc, STGE_OctetXmtdOk);
1870 
1871 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, CSR_READ_4(sc, STGE_FramesXmtdOk));
1872 
1873 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
1874 	    CSR_READ_4(sc, STGE_LateCollisions) +
1875 	    CSR_READ_4(sc, STGE_MultiColFrames) +
1876 	    CSR_READ_4(sc, STGE_SingleColFrames));
1877 
1878 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
1879 	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
1880 	    CSR_READ_2(sc, STGE_FramesWEXDeferal));
1881 }
1882 
1883 /*
1884  * stge_reset:
1885  *
1886  *	Perform a soft reset on the TC9021.
1887  */
1888 static void
stge_reset(struct stge_softc * sc,uint32_t how)1889 stge_reset(struct stge_softc *sc, uint32_t how)
1890 {
1891 	uint32_t ac;
1892 	uint8_t v;
1893 	int i, dv;
1894 
1895 	STGE_LOCK_ASSERT(sc);
1896 
1897 	dv = 5000;
1898 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1899 	switch (how) {
1900 	case STGE_RESET_TX:
1901 		ac |= AC_TxReset | AC_FIFO;
1902 		dv = 100;
1903 		break;
1904 	case STGE_RESET_RX:
1905 		ac |= AC_RxReset | AC_FIFO;
1906 		dv = 100;
1907 		break;
1908 	case STGE_RESET_FULL:
1909 	default:
1910 		/*
1911 		 * Only assert RstOut if we're fiber.  We need GMII clocks
1912 		 * to be present in order for the reset to complete on fiber
1913 		 * cards.
1914 		 */
1915 		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
1916 		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
1917 		    (sc->sc_usefiber ? AC_RstOut : 0);
1918 		break;
1919 	}
1920 
1921 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1922 
1923 	/* Account for reset problem at 10Mbps. */
1924 	DELAY(dv);
1925 
1926 	for (i = 0; i < STGE_TIMEOUT; i++) {
1927 		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1928 			break;
1929 		DELAY(dv);
1930 	}
1931 
1932 	if (i == STGE_TIMEOUT)
1933 		device_printf(sc->sc_dev, "reset failed to complete\n");
1934 
1935 	/* Set LED, from Linux IPG driver. */
1936 	ac = CSR_READ_4(sc, STGE_AsicCtrl);
1937 	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
1938 	if ((sc->sc_led & 0x01) != 0)
1939 		ac |= AC_LEDMode;
1940 	if ((sc->sc_led & 0x03) != 0)
1941 		ac |= AC_LEDModeBit1;
1942 	if ((sc->sc_led & 0x08) != 0)
1943 		ac |= AC_LEDSpeed;
1944 	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1945 
1946 	/* Set PHY, from Linux IPG driver */
1947 	v = CSR_READ_1(sc, STGE_PhySet);
1948 	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
1949 	v |= ((sc->sc_led & 0x70) >> 4);
1950 	CSR_WRITE_1(sc, STGE_PhySet, v);
1951 }
1952 
1953 /*
1954  * stge_init:		[ ifnet interface function ]
1955  *
1956  *	Initialize the interface.
1957  */
1958 static void
stge_init(void * xsc)1959 stge_init(void *xsc)
1960 {
1961 	struct stge_softc *sc;
1962 
1963 	sc = (struct stge_softc *)xsc;
1964 	STGE_LOCK(sc);
1965 	stge_init_locked(sc);
1966 	STGE_UNLOCK(sc);
1967 }
1968 
1969 static void
stge_init_locked(struct stge_softc * sc)1970 stge_init_locked(struct stge_softc *sc)
1971 {
1972 	if_t ifp;
1973 	struct mii_data *mii;
1974 	uint16_t eaddr[3];
1975 	uint32_t v;
1976 	int error;
1977 
1978 	STGE_LOCK_ASSERT(sc);
1979 
1980 	ifp = sc->sc_ifp;
1981 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1982 		return;
1983 	mii = device_get_softc(sc->sc_miibus);
1984 
1985 	/*
1986 	 * Cancel any pending I/O.
1987 	 */
1988 	stge_stop(sc);
1989 
1990 	/*
1991 	 * Reset the chip to a known state.
1992 	 */
1993 	stge_reset(sc, STGE_RESET_FULL);
1994 
1995 	/* Init descriptors. */
1996 	error = stge_init_rx_ring(sc);
1997         if (error != 0) {
1998                 device_printf(sc->sc_dev,
1999                     "initialization failed: no memory for rx buffers\n");
2000                 stge_stop(sc);
2001 		goto out;
2002         }
2003 	stge_init_tx_ring(sc);
2004 
2005 	/* Set the station address. */
2006 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2007 	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2008 	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2009 	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2010 
2011 	/*
2012 	 * Set the statistics masks.  Disable all the RMON stats,
2013 	 * and disable selected stats in the non-RMON stats registers.
2014 	 */
2015 	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2016 	CSR_WRITE_4(sc, STGE_StatisticsMask,
2017 	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2018 	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2019 	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2020 	    (1U << 21));
2021 
2022 	/* Set up the receive filter. */
2023 	stge_set_filter(sc);
2024 	/* Program multicast filter. */
2025 	stge_set_multi(sc);
2026 
2027 	/*
2028 	 * Give the transmit and receive ring to the chip.
2029 	 */
2030 	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2031 	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2032 	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2033 	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2034 
2035 	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2036 	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2037 	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2038 	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2039 
2040 	/*
2041 	 * Initialize the Tx auto-poll period.  It's OK to make this number
2042 	 * large (255 is the max, but we use 127) -- we explicitly kick the
2043 	 * transmit engine when there's actually a packet.
2044 	 */
2045 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2046 
2047 	/* ..and the Rx auto-poll period. */
2048 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2049 
2050 	/* Initialize the Tx start threshold. */
2051 	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2052 
2053 	/* Rx DMA thresholds, from Linux */
2054 	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2055 	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2056 
2057 	/* Rx early threhold, from Linux */
2058 	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2059 
2060 	/* Tx DMA thresholds, from Linux */
2061 	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2062 	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2063 
2064 	/*
2065 	 * Initialize the Rx DMA interrupt control register.  We
2066 	 * request an interrupt after every incoming packet, but
2067 	 * defer it for sc_rxint_dmawait us. When the number of
2068 	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2069 	 * deferring the interrupt, and signal it immediately.
2070 	 */
2071 	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2072 	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2073 	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2074 
2075 	/*
2076 	 * Initialize the interrupt mask.
2077 	 */
2078 	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2079 	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2080 #ifdef DEVICE_POLLING
2081 	/* Disable interrupts if we are polling. */
2082 	if ((if_getcapenable(ifp) & IFCAP_POLLING) != 0)
2083 		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2084 	else
2085 #endif
2086 	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2087 
2088 	/*
2089 	 * Configure the DMA engine.
2090 	 * XXX Should auto-tune TxBurstLimit.
2091 	 */
2092 	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2093 
2094 	/*
2095 	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2096 	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2097 	 * in the Rx FIFO.
2098 	 */
2099 	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2100 	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2101 
2102 	/*
2103 	 * Set the maximum frame size.
2104 	 */
2105 	sc->sc_if_framesize = if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN;
2106 	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2107 
2108 	/*
2109 	 * Initialize MacCtrl -- do it before setting the media,
2110 	 * as setting the media will actually program the register.
2111 	 *
2112 	 * Note: We have to poke the IFS value before poking
2113 	 * anything else.
2114 	 */
2115 	/* Tx/Rx MAC should be disabled before programming IFS.*/
2116 	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2117 
2118 	stge_vlan_setup(sc);
2119 
2120 	if (sc->sc_rev >= 6) {		/* >= B.2 */
2121 		/* Multi-frag frame bug work-around. */
2122 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2123 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2124 
2125 		/* Tx Poll Now bug work-around. */
2126 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2127 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2128 		/* Tx Poll Now bug work-around. */
2129 		CSR_WRITE_2(sc, STGE_DebugCtrl,
2130 		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2131 	}
2132 
2133 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2134 	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2135 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2136 	/*
2137 	 * It seems that transmitting frames without checking the state of
2138 	 * Rx/Tx MAC wedge the hardware.
2139 	 */
2140 	stge_start_tx(sc);
2141 	stge_start_rx(sc);
2142 
2143 	sc->sc_link = 0;
2144 	/*
2145 	 * Set the current media.
2146 	 */
2147 	mii_mediachg(mii);
2148 
2149 	/*
2150 	 * Start the one second MII clock.
2151 	 */
2152 	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2153 
2154 	/*
2155 	 * ...all done!
2156 	 */
2157 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2158 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2159 
2160  out:
2161 	if (error != 0)
2162 		device_printf(sc->sc_dev, "interface not running\n");
2163 }
2164 
2165 static void
stge_vlan_setup(struct stge_softc * sc)2166 stge_vlan_setup(struct stge_softc *sc)
2167 {
2168 	if_t ifp;
2169 	uint32_t v;
2170 
2171 	ifp = sc->sc_ifp;
2172 	/*
2173 	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2174 	 * MC_AutoVLANuntagging bit.
2175 	 * MC_AutoVLANtagging bit selects which VLAN source to use
2176 	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2177 	 * bit has priority over MC_AutoVLANtagging bit. So we always
2178 	 * use TFC instead of STGE_VLANTag register.
2179 	 */
2180 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2181 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
2182 		v |= MC_AutoVLANuntagging;
2183 	else
2184 		v &= ~MC_AutoVLANuntagging;
2185 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2186 }
2187 
2188 /*
2189  *	Stop transmission on the interface.
2190  */
2191 static void
stge_stop(struct stge_softc * sc)2192 stge_stop(struct stge_softc *sc)
2193 {
2194 	if_t ifp;
2195 	struct stge_txdesc *txd;
2196 	struct stge_rxdesc *rxd;
2197 	uint32_t v;
2198 	int i;
2199 
2200 	STGE_LOCK_ASSERT(sc);
2201 	/*
2202 	 * Stop the one second clock.
2203 	 */
2204 	callout_stop(&sc->sc_tick_ch);
2205 	sc->sc_watchdog_timer = 0;
2206 
2207 	/*
2208 	 * Disable interrupts.
2209 	 */
2210 	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2211 
2212 	/*
2213 	 * Stop receiver, transmitter, and stats update.
2214 	 */
2215 	stge_stop_rx(sc);
2216 	stge_stop_tx(sc);
2217 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2218 	v |= MC_StatisticsDisable;
2219 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2220 
2221 	/*
2222 	 * Stop the transmit and receive DMA.
2223 	 */
2224 	stge_dma_wait(sc);
2225 	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2226 	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2227 	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2228 	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2229 
2230 	/*
2231 	 * Free RX and TX mbufs still in the queues.
2232 	 */
2233 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2234 		rxd = &sc->sc_cdata.stge_rxdesc[i];
2235 		if (rxd->rx_m != NULL) {
2236 			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2237 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2238 			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2239 			    rxd->rx_dmamap);
2240 			m_freem(rxd->rx_m);
2241 			rxd->rx_m = NULL;
2242 		}
2243         }
2244 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2245 		txd = &sc->sc_cdata.stge_txdesc[i];
2246 		if (txd->tx_m != NULL) {
2247 			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2248 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2249 			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2250 			    txd->tx_dmamap);
2251 			m_freem(txd->tx_m);
2252 			txd->tx_m = NULL;
2253 		}
2254         }
2255 
2256 	/*
2257 	 * Mark the interface down and cancel the watchdog timer.
2258 	 */
2259 	ifp = sc->sc_ifp;
2260 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2261 	sc->sc_link = 0;
2262 }
2263 
2264 static void
stge_start_tx(struct stge_softc * sc)2265 stge_start_tx(struct stge_softc *sc)
2266 {
2267 	uint32_t v;
2268 	int i;
2269 
2270 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2271 	if ((v & MC_TxEnabled) != 0)
2272 		return;
2273 	v |= MC_TxEnable;
2274 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2275 	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2276 	for (i = STGE_TIMEOUT; i > 0; i--) {
2277 		DELAY(10);
2278 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2279 		if ((v & MC_TxEnabled) != 0)
2280 			break;
2281 	}
2282 	if (i == 0)
2283 		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2284 }
2285 
2286 static void
stge_start_rx(struct stge_softc * sc)2287 stge_start_rx(struct stge_softc *sc)
2288 {
2289 	uint32_t v;
2290 	int i;
2291 
2292 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2293 	if ((v & MC_RxEnabled) != 0)
2294 		return;
2295 	v |= MC_RxEnable;
2296 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2297 	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2298 	for (i = STGE_TIMEOUT; i > 0; i--) {
2299 		DELAY(10);
2300 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2301 		if ((v & MC_RxEnabled) != 0)
2302 			break;
2303 	}
2304 	if (i == 0)
2305 		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2306 }
2307 
2308 static void
stge_stop_tx(struct stge_softc * sc)2309 stge_stop_tx(struct stge_softc *sc)
2310 {
2311 	uint32_t v;
2312 	int i;
2313 
2314 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2315 	if ((v & MC_TxEnabled) == 0)
2316 		return;
2317 	v |= MC_TxDisable;
2318 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2319 	for (i = STGE_TIMEOUT; i > 0; i--) {
2320 		DELAY(10);
2321 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2322 		if ((v & MC_TxEnabled) == 0)
2323 			break;
2324 	}
2325 	if (i == 0)
2326 		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2327 }
2328 
2329 static void
stge_stop_rx(struct stge_softc * sc)2330 stge_stop_rx(struct stge_softc *sc)
2331 {
2332 	uint32_t v;
2333 	int i;
2334 
2335 	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2336 	if ((v & MC_RxEnabled) == 0)
2337 		return;
2338 	v |= MC_RxDisable;
2339 	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2340 	for (i = STGE_TIMEOUT; i > 0; i--) {
2341 		DELAY(10);
2342 		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2343 		if ((v & MC_RxEnabled) == 0)
2344 			break;
2345 	}
2346 	if (i == 0)
2347 		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2348 }
2349 
2350 static void
stge_init_tx_ring(struct stge_softc * sc)2351 stge_init_tx_ring(struct stge_softc *sc)
2352 {
2353 	struct stge_ring_data *rd;
2354 	struct stge_txdesc *txd;
2355 	bus_addr_t addr;
2356 	int i;
2357 
2358 	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2359 	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2360 
2361 	sc->sc_cdata.stge_tx_prod = 0;
2362 	sc->sc_cdata.stge_tx_cons = 0;
2363 	sc->sc_cdata.stge_tx_cnt = 0;
2364 
2365 	rd = &sc->sc_rdata;
2366 	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2367 	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2368 		if (i == (STGE_TX_RING_CNT - 1))
2369 			addr = STGE_TX_RING_ADDR(sc, 0);
2370 		else
2371 			addr = STGE_TX_RING_ADDR(sc, i + 1);
2372 		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2373 		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2374 		txd = &sc->sc_cdata.stge_txdesc[i];
2375 		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2376 	}
2377 
2378 	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2379 	    sc->sc_cdata.stge_tx_ring_map,
2380 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2381 
2382 }
2383 
2384 static int
stge_init_rx_ring(struct stge_softc * sc)2385 stge_init_rx_ring(struct stge_softc *sc)
2386 {
2387 	struct stge_ring_data *rd;
2388 	bus_addr_t addr;
2389 	int i;
2390 
2391 	sc->sc_cdata.stge_rx_cons = 0;
2392 	STGE_RXCHAIN_RESET(sc);
2393 
2394 	rd = &sc->sc_rdata;
2395 	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2396 	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2397 		if (stge_newbuf(sc, i) != 0)
2398 			return (ENOBUFS);
2399 		if (i == (STGE_RX_RING_CNT - 1))
2400 			addr = STGE_RX_RING_ADDR(sc, 0);
2401 		else
2402 			addr = STGE_RX_RING_ADDR(sc, i + 1);
2403 		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2404 		rd->stge_rx_ring[i].rfd_status = 0;
2405 	}
2406 
2407 	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2408 	    sc->sc_cdata.stge_rx_ring_map,
2409 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2410 
2411 	return (0);
2412 }
2413 
2414 /*
2415  * stge_newbuf:
2416  *
2417  *	Add a receive buffer to the indicated descriptor.
2418  */
2419 static int
stge_newbuf(struct stge_softc * sc,int idx)2420 stge_newbuf(struct stge_softc *sc, int idx)
2421 {
2422 	struct stge_rxdesc *rxd;
2423 	struct stge_rfd *rfd;
2424 	struct mbuf *m;
2425 	bus_dma_segment_t segs[1];
2426 	bus_dmamap_t map;
2427 	int nsegs;
2428 
2429 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2430 	if (m == NULL)
2431 		return (ENOBUFS);
2432 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2433 	/*
2434 	 * The hardware requires 4bytes aligned DMA address when JUMBO
2435 	 * frame is used.
2436 	 */
2437 	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2438 		m_adj(m, ETHER_ALIGN);
2439 
2440 	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2441 	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2442 		m_freem(m);
2443 		return (ENOBUFS);
2444 	}
2445 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2446 
2447 	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2448 	if (rxd->rx_m != NULL) {
2449 		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2450 		    BUS_DMASYNC_POSTREAD);
2451 		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2452 	}
2453 	map = rxd->rx_dmamap;
2454 	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2455 	sc->sc_cdata.stge_rx_sparemap = map;
2456 	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2457 	    BUS_DMASYNC_PREREAD);
2458 	rxd->rx_m = m;
2459 
2460 	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2461 	rfd->rfd_frag.frag_word0 =
2462 	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2463 	rfd->rfd_status = 0;
2464 
2465 	return (0);
2466 }
2467 
2468 /*
2469  * stge_set_filter:
2470  *
2471  *	Set up the receive filter.
2472  */
2473 static void
stge_set_filter(struct stge_softc * sc)2474 stge_set_filter(struct stge_softc *sc)
2475 {
2476 	if_t ifp;
2477 	uint16_t mode;
2478 
2479 	STGE_LOCK_ASSERT(sc);
2480 
2481 	ifp = sc->sc_ifp;
2482 
2483 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2484 	mode |= RM_ReceiveUnicast;
2485 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
2486 		mode |= RM_ReceiveBroadcast;
2487 	else
2488 		mode &= ~RM_ReceiveBroadcast;
2489 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2490 		mode |= RM_ReceiveAllFrames;
2491 	else
2492 		mode &= ~RM_ReceiveAllFrames;
2493 
2494 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2495 }
2496 
2497 static u_int
stge_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)2498 stge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2499 {
2500 	uint32_t crc, *mchash = arg;
2501 
2502 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
2503 	/* Just want the 6 least significant bits. */
2504 	crc &= 0x3f;
2505 	/* Set the corresponding bit in the hash table. */
2506 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
2507 
2508 	return (1);
2509 }
2510 
2511 static void
stge_set_multi(struct stge_softc * sc)2512 stge_set_multi(struct stge_softc *sc)
2513 {
2514 	if_t ifp;
2515 	uint32_t mchash[2];
2516 	uint16_t mode;
2517 	int count;
2518 
2519 	STGE_LOCK_ASSERT(sc);
2520 
2521 	ifp = sc->sc_ifp;
2522 
2523 	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2524 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2525 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
2526 			mode |= RM_ReceiveAllFrames;
2527 		else if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
2528 			mode |= RM_ReceiveMulticast;
2529 		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2530 		return;
2531 	}
2532 
2533 	/* clear existing filters. */
2534 	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2535 	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2536 
2537 	/*
2538 	 * Set up the multicast address filter by passing all multicast
2539 	 * addresses through a CRC generator, and then using the low-order
2540 	 * 6 bits as an index into the 64 bit multicast hash table.  The
2541 	 * high order bits select the register, while the rest of the bits
2542 	 * select the bit within the register.
2543 	 */
2544 	bzero(mchash, sizeof(mchash));
2545 	count = if_foreach_llmaddr(ifp, stge_hash_maddr, mchash);
2546 
2547 	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2548 	if (count > 0)
2549 		mode |= RM_ReceiveMulticastHash;
2550 	else
2551 		mode &= ~RM_ReceiveMulticastHash;
2552 
2553 	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2554 	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2555 	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2556 }
2557 
2558 static int
sysctl_int_range(SYSCTL_HANDLER_ARGS,int low,int high)2559 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2560 {
2561 	int error, value;
2562 
2563 	if (!arg1)
2564 		return (EINVAL);
2565 	value = *(int *)arg1;
2566 	error = sysctl_handle_int(oidp, &value, 0, req);
2567 	if (error || !req->newptr)
2568 		return (error);
2569 	if (value < low || value > high)
2570 		return (EINVAL);
2571         *(int *)arg1 = value;
2572 
2573         return (0);
2574 }
2575 
2576 static int
sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)2577 sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2578 {
2579 	return (sysctl_int_range(oidp, arg1, arg2, req,
2580 	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2581 }
2582 
2583 static int
sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)2584 sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2585 {
2586 	return (sysctl_int_range(oidp, arg1, arg2, req,
2587 	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2588 }
2589