1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 #ifdef HAVE_KERNEL_OPTION_HEADERS
37 #include "opt_device_polling.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bus.h>
43 #include <sys/endian.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/module.h>
49 #include <sys/rman.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/sysctl.h>
53
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_var.h>
57 #include <net/if_arp.h>
58 #include <net/ethernet.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_vlan_var.h>
63
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66
67 #include <dev/mii/mii.h>
68 #include <dev/mii/mii_bitbang.h>
69 #include <dev/mii/miivar.h>
70
71 #include <dev/pci/pcireg.h>
72 #include <dev/pci/pcivar.h>
73
74 #include <dev/ste/if_stereg.h>
75
76 /* "device miibus" required. See GENERIC if you get errors here. */
77 #include "miibus_if.h"
78
79 MODULE_DEPEND(ste, pci, 1, 1, 1);
80 MODULE_DEPEND(ste, ether, 1, 1, 1);
81 MODULE_DEPEND(ste, miibus, 1, 1, 1);
82
83 /* Define to show Tx error status. */
84 #define STE_SHOW_TXERRORS
85
86 /*
87 * Various supported device vendors/types and their names.
88 */
89 static const struct ste_type ste_devs[] = {
90 { ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
91 { ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
92 { DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
93 { 0, 0, NULL }
94 };
95
96 static int ste_attach(device_t);
97 static int ste_detach(device_t);
98 static int ste_probe(device_t);
99 static int ste_resume(device_t);
100 static int ste_shutdown(device_t);
101 static int ste_suspend(device_t);
102
103 static int ste_dma_alloc(struct ste_softc *);
104 static void ste_dma_free(struct ste_softc *);
105 static void ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
106 static int ste_eeprom_wait(struct ste_softc *);
107 static int ste_encap(struct ste_softc *, struct mbuf **,
108 struct ste_chain *);
109 static int ste_ifmedia_upd(if_t);
110 static void ste_ifmedia_sts(if_t, struct ifmediareq *);
111 static void ste_init(void *);
112 static void ste_init_locked(struct ste_softc *);
113 static int ste_init_rx_list(struct ste_softc *);
114 static void ste_init_tx_list(struct ste_softc *);
115 static void ste_intr(void *);
116 static int ste_ioctl(if_t, u_long, caddr_t);
117 static uint32_t ste_mii_bitbang_read(device_t);
118 static void ste_mii_bitbang_write(device_t, uint32_t);
119 static int ste_miibus_readreg(device_t, int, int);
120 static void ste_miibus_statchg(device_t);
121 static int ste_miibus_writereg(device_t, int, int, int);
122 static int ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
123 static int ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
124 static void ste_reset(struct ste_softc *);
125 static void ste_restart_tx(struct ste_softc *);
126 static int ste_rxeof(struct ste_softc *, int);
127 static void ste_rxfilter(struct ste_softc *);
128 static void ste_setwol(struct ste_softc *);
129 static void ste_start(if_t);
130 static void ste_start_locked(if_t);
131 static void ste_stats_clear(struct ste_softc *);
132 static void ste_stats_update(struct ste_softc *);
133 static void ste_stop(struct ste_softc *);
134 static void ste_sysctl_node(struct ste_softc *);
135 static void ste_tick(void *);
136 static void ste_txeoc(struct ste_softc *);
137 static void ste_txeof(struct ste_softc *);
138 static void ste_wait(struct ste_softc *);
139 static void ste_watchdog(struct ste_softc *);
140
141 /*
142 * MII bit-bang glue
143 */
144 static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
145 ste_mii_bitbang_read,
146 ste_mii_bitbang_write,
147 {
148 STE_PHYCTL_MDATA, /* MII_BIT_MDO */
149 STE_PHYCTL_MDATA, /* MII_BIT_MDI */
150 STE_PHYCTL_MCLK, /* MII_BIT_MDC */
151 STE_PHYCTL_MDIR, /* MII_BIT_DIR_HOST_PHY */
152 0, /* MII_BIT_DIR_PHY_HOST */
153 }
154 };
155
156 static device_method_t ste_methods[] = {
157 /* Device interface */
158 DEVMETHOD(device_probe, ste_probe),
159 DEVMETHOD(device_attach, ste_attach),
160 DEVMETHOD(device_detach, ste_detach),
161 DEVMETHOD(device_shutdown, ste_shutdown),
162 DEVMETHOD(device_suspend, ste_suspend),
163 DEVMETHOD(device_resume, ste_resume),
164
165 /* MII interface */
166 DEVMETHOD(miibus_readreg, ste_miibus_readreg),
167 DEVMETHOD(miibus_writereg, ste_miibus_writereg),
168 DEVMETHOD(miibus_statchg, ste_miibus_statchg),
169
170 DEVMETHOD_END
171 };
172
173 static driver_t ste_driver = {
174 "ste",
175 ste_methods,
176 sizeof(struct ste_softc)
177 };
178
179 DRIVER_MODULE(ste, pci, ste_driver, 0, 0);
180 DRIVER_MODULE(miibus, ste, miibus_driver, 0, 0);
181
182 #define STE_SETBIT4(sc, reg, x) \
183 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
184
185 #define STE_CLRBIT4(sc, reg, x) \
186 CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
187
188 #define STE_SETBIT2(sc, reg, x) \
189 CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
190
191 #define STE_CLRBIT2(sc, reg, x) \
192 CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
193
194 #define STE_SETBIT1(sc, reg, x) \
195 CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
196
197 #define STE_CLRBIT1(sc, reg, x) \
198 CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
199
200 /*
201 * Read the MII serial port for the MII bit-bang module.
202 */
203 static uint32_t
ste_mii_bitbang_read(device_t dev)204 ste_mii_bitbang_read(device_t dev)
205 {
206 struct ste_softc *sc;
207 uint32_t val;
208
209 sc = device_get_softc(dev);
210
211 val = CSR_READ_1(sc, STE_PHYCTL);
212 CSR_BARRIER(sc, STE_PHYCTL, 1,
213 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
214
215 return (val);
216 }
217
218 /*
219 * Write the MII serial port for the MII bit-bang module.
220 */
221 static void
ste_mii_bitbang_write(device_t dev,uint32_t val)222 ste_mii_bitbang_write(device_t dev, uint32_t val)
223 {
224 struct ste_softc *sc;
225
226 sc = device_get_softc(dev);
227
228 CSR_WRITE_1(sc, STE_PHYCTL, val);
229 CSR_BARRIER(sc, STE_PHYCTL, 1,
230 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
231 }
232
233 static int
ste_miibus_readreg(device_t dev,int phy,int reg)234 ste_miibus_readreg(device_t dev, int phy, int reg)
235 {
236
237 return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
238 }
239
240 static int
ste_miibus_writereg(device_t dev,int phy,int reg,int data)241 ste_miibus_writereg(device_t dev, int phy, int reg, int data)
242 {
243
244 mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
245
246 return (0);
247 }
248
249 static void
ste_miibus_statchg(device_t dev)250 ste_miibus_statchg(device_t dev)
251 {
252 struct ste_softc *sc;
253 struct mii_data *mii;
254 if_t ifp;
255 uint16_t cfg;
256
257 sc = device_get_softc(dev);
258
259 mii = device_get_softc(sc->ste_miibus);
260 ifp = sc->ste_ifp;
261 if (mii == NULL || ifp == NULL ||
262 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
263 return;
264
265 sc->ste_flags &= ~STE_FLAG_LINK;
266 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
267 (IFM_ACTIVE | IFM_AVALID)) {
268 switch (IFM_SUBTYPE(mii->mii_media_active)) {
269 case IFM_10_T:
270 case IFM_100_TX:
271 case IFM_100_FX:
272 case IFM_100_T4:
273 sc->ste_flags |= STE_FLAG_LINK;
274 default:
275 break;
276 }
277 }
278
279 /* Program MACs with resolved speed/duplex/flow-control. */
280 if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
281 cfg = CSR_READ_2(sc, STE_MACCTL0);
282 cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
283 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
284 /*
285 * ST201 data sheet says driver should enable receiving
286 * MAC control frames bit of receive mode register to
287 * receive flow-control frames but the register has no
288 * such bits. In addition the controller has no ability
289 * to send pause frames so it should be handled in
290 * driver. Implementing pause timer handling in driver
291 * layer is not trivial, so don't enable flow-control
292 * here.
293 */
294 cfg |= STE_MACCTL0_FULLDUPLEX;
295 }
296 CSR_WRITE_2(sc, STE_MACCTL0, cfg);
297 }
298 }
299
300 static int
ste_ifmedia_upd(if_t ifp)301 ste_ifmedia_upd(if_t ifp)
302 {
303 struct ste_softc *sc;
304 struct mii_data *mii;
305 struct mii_softc *miisc;
306 int error;
307
308 sc = if_getsoftc(ifp);
309 STE_LOCK(sc);
310 mii = device_get_softc(sc->ste_miibus);
311 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
312 PHY_RESET(miisc);
313 error = mii_mediachg(mii);
314 STE_UNLOCK(sc);
315
316 return (error);
317 }
318
319 static void
ste_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)320 ste_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
321 {
322 struct ste_softc *sc;
323 struct mii_data *mii;
324
325 sc = if_getsoftc(ifp);
326 mii = device_get_softc(sc->ste_miibus);
327
328 STE_LOCK(sc);
329 if ((if_getflags(ifp) & IFF_UP) == 0) {
330 STE_UNLOCK(sc);
331 return;
332 }
333 mii_pollstat(mii);
334 ifmr->ifm_active = mii->mii_media_active;
335 ifmr->ifm_status = mii->mii_media_status;
336 STE_UNLOCK(sc);
337 }
338
339 static void
ste_wait(struct ste_softc * sc)340 ste_wait(struct ste_softc *sc)
341 {
342 int i;
343
344 for (i = 0; i < STE_TIMEOUT; i++) {
345 if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
346 break;
347 DELAY(1);
348 }
349
350 if (i == STE_TIMEOUT)
351 device_printf(sc->ste_dev, "command never completed!\n");
352 }
353
354 /*
355 * The EEPROM is slow: give it time to come ready after issuing
356 * it a command.
357 */
358 static int
ste_eeprom_wait(struct ste_softc * sc)359 ste_eeprom_wait(struct ste_softc *sc)
360 {
361 int i;
362
363 DELAY(1000);
364
365 for (i = 0; i < 100; i++) {
366 if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
367 DELAY(1000);
368 else
369 break;
370 }
371
372 if (i == 100) {
373 device_printf(sc->ste_dev, "eeprom failed to come ready\n");
374 return (1);
375 }
376
377 return (0);
378 }
379
380 /*
381 * Read a sequence of words from the EEPROM. Note that ethernet address
382 * data is stored in the EEPROM in network byte order.
383 */
384 static int
ste_read_eeprom(struct ste_softc * sc,uint16_t * dest,int off,int cnt)385 ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
386 {
387 int err = 0, i;
388
389 if (ste_eeprom_wait(sc))
390 return (1);
391
392 for (i = 0; i < cnt; i++) {
393 CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
394 err = ste_eeprom_wait(sc);
395 if (err)
396 break;
397 *dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
398 dest++;
399 }
400
401 return (err ? 1 : 0);
402 }
403
404 static u_int
ste_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)405 ste_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
406 {
407 uint32_t *hashes = arg;
408 int h;
409
410 h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) & 0x3F;
411 if (h < 32)
412 hashes[0] |= (1 << h);
413 else
414 hashes[1] |= (1 << (h - 32));
415
416 return (1);
417 }
418
419 static void
ste_rxfilter(struct ste_softc * sc)420 ste_rxfilter(struct ste_softc *sc)
421 {
422 if_t ifp;
423 uint32_t hashes[2] = { 0, 0 };
424 uint8_t rxcfg;
425
426 STE_LOCK_ASSERT(sc);
427
428 ifp = sc->ste_ifp;
429 rxcfg = CSR_READ_1(sc, STE_RX_MODE);
430 rxcfg |= STE_RXMODE_UNICAST;
431 rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
432 STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
433 if (if_getflags(ifp) & IFF_BROADCAST)
434 rxcfg |= STE_RXMODE_BROADCAST;
435 if ((if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
436 if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
437 rxcfg |= STE_RXMODE_ALLMULTI;
438 if ((if_getflags(ifp) & IFF_PROMISC) != 0)
439 rxcfg |= STE_RXMODE_PROMISC;
440 goto chipit;
441 }
442
443 rxcfg |= STE_RXMODE_MULTIHASH;
444 /* Now program new ones. */
445 if_foreach_llmaddr(ifp, ste_hash_maddr, hashes);
446
447 chipit:
448 CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
449 CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
450 CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
451 CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
452 CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
453 CSR_READ_1(sc, STE_RX_MODE);
454 }
455
456 #ifdef DEVICE_POLLING
457 static poll_handler_t ste_poll, ste_poll_locked;
458
459 static int
ste_poll(if_t ifp,enum poll_cmd cmd,int count)460 ste_poll(if_t ifp, enum poll_cmd cmd, int count)
461 {
462 struct ste_softc *sc = if_getsoftc(ifp);
463 int rx_npkts = 0;
464
465 STE_LOCK(sc);
466 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
467 rx_npkts = ste_poll_locked(ifp, cmd, count);
468 STE_UNLOCK(sc);
469 return (rx_npkts);
470 }
471
472 static int
ste_poll_locked(if_t ifp,enum poll_cmd cmd,int count)473 ste_poll_locked(if_t ifp, enum poll_cmd cmd, int count)
474 {
475 struct ste_softc *sc = if_getsoftc(ifp);
476 int rx_npkts;
477
478 STE_LOCK_ASSERT(sc);
479
480 rx_npkts = ste_rxeof(sc, count);
481 ste_txeof(sc);
482 ste_txeoc(sc);
483 if (!if_sendq_empty(ifp))
484 ste_start_locked(ifp);
485
486 if (cmd == POLL_AND_CHECK_STATUS) {
487 uint16_t status;
488
489 status = CSR_READ_2(sc, STE_ISR_ACK);
490
491 if (status & STE_ISR_STATS_OFLOW)
492 ste_stats_update(sc);
493
494 if (status & STE_ISR_HOSTERR) {
495 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
496 ste_init_locked(sc);
497 }
498 }
499 return (rx_npkts);
500 }
501 #endif /* DEVICE_POLLING */
502
503 static void
ste_intr(void * xsc)504 ste_intr(void *xsc)
505 {
506 struct ste_softc *sc;
507 if_t ifp;
508 uint16_t intrs, status;
509
510 sc = xsc;
511 STE_LOCK(sc);
512 ifp = sc->ste_ifp;
513
514 #ifdef DEVICE_POLLING
515 if (if_getcapenable(ifp) & IFCAP_POLLING) {
516 STE_UNLOCK(sc);
517 return;
518 }
519 #endif
520 /* Reading STE_ISR_ACK clears STE_IMR register. */
521 status = CSR_READ_2(sc, STE_ISR_ACK);
522 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
523 STE_UNLOCK(sc);
524 return;
525 }
526
527 intrs = STE_INTRS;
528 if (status == 0xFFFF || (status & intrs) == 0)
529 goto done;
530
531 if (sc->ste_int_rx_act > 0) {
532 status &= ~STE_ISR_RX_DMADONE;
533 intrs &= ~STE_IMR_RX_DMADONE;
534 }
535
536 if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
537 ste_rxeof(sc, -1);
538 /*
539 * The controller has no ability to Rx interrupt
540 * moderation feature. Receiving 64 bytes frames
541 * from wire generates too many interrupts which in
542 * turn make system useless to process other useful
543 * things. Fortunately ST201 supports single shot
544 * timer so use the timer to implement Rx interrupt
545 * moderation in driver. This adds more register
546 * access but it greatly reduces number of Rx
547 * interrupts under high network load.
548 */
549 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
550 (sc->ste_int_rx_mod != 0)) {
551 if ((status & STE_ISR_RX_DMADONE) != 0) {
552 CSR_WRITE_2(sc, STE_COUNTDOWN,
553 STE_TIMER_USECS(sc->ste_int_rx_mod));
554 intrs &= ~STE_IMR_RX_DMADONE;
555 sc->ste_int_rx_act = 1;
556 } else {
557 intrs |= STE_IMR_RX_DMADONE;
558 sc->ste_int_rx_act = 0;
559 }
560 }
561 }
562 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
563 if ((status & STE_ISR_TX_DMADONE) != 0)
564 ste_txeof(sc);
565 if ((status & STE_ISR_TX_DONE) != 0)
566 ste_txeoc(sc);
567 if ((status & STE_ISR_STATS_OFLOW) != 0)
568 ste_stats_update(sc);
569 if ((status & STE_ISR_HOSTERR) != 0) {
570 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
571 ste_init_locked(sc);
572 STE_UNLOCK(sc);
573 return;
574 }
575 if (!if_sendq_empty(ifp))
576 ste_start_locked(ifp);
577 done:
578 /* Re-enable interrupts */
579 CSR_WRITE_2(sc, STE_IMR, intrs);
580 }
581 STE_UNLOCK(sc);
582 }
583
584 /*
585 * A frame has been uploaded: pass the resulting mbuf chain up to
586 * the higher level protocols.
587 */
588 static int
ste_rxeof(struct ste_softc * sc,int count)589 ste_rxeof(struct ste_softc *sc, int count)
590 {
591 struct mbuf *m;
592 if_t ifp;
593 struct ste_chain_onefrag *cur_rx;
594 uint32_t rxstat;
595 int total_len, rx_npkts;
596
597 ifp = sc->ste_ifp;
598
599 bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
600 sc->ste_cdata.ste_rx_list_map,
601 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
602
603 cur_rx = sc->ste_cdata.ste_rx_head;
604 for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
605 cur_rx = cur_rx->ste_next) {
606 rxstat = le32toh(cur_rx->ste_ptr->ste_status);
607 if ((rxstat & STE_RXSTAT_DMADONE) == 0)
608 break;
609 #ifdef DEVICE_POLLING
610 if (if_getcapenable(ifp) & IFCAP_POLLING) {
611 if (count == 0)
612 break;
613 count--;
614 }
615 #endif
616 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
617 break;
618 /*
619 * If an error occurs, update stats, clear the
620 * status word and leave the mbuf cluster in place:
621 * it should simply get re-used next time this descriptor
622 * comes up in the ring.
623 */
624 if (rxstat & STE_RXSTAT_FRAME_ERR) {
625 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
626 cur_rx->ste_ptr->ste_status = 0;
627 continue;
628 }
629
630 /* No errors; receive the packet. */
631 m = cur_rx->ste_mbuf;
632 total_len = STE_RX_BYTES(rxstat);
633
634 /*
635 * Try to conjure up a new mbuf cluster. If that
636 * fails, it means we have an out of memory condition and
637 * should leave the buffer in place and continue. This will
638 * result in a lost packet, but there's little else we
639 * can do in this situation.
640 */
641 if (ste_newbuf(sc, cur_rx) != 0) {
642 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
643 cur_rx->ste_ptr->ste_status = 0;
644 continue;
645 }
646
647 m->m_pkthdr.rcvif = ifp;
648 m->m_pkthdr.len = m->m_len = total_len;
649
650 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
651 STE_UNLOCK(sc);
652 if_input(ifp, m);
653 STE_LOCK(sc);
654 }
655
656 if (rx_npkts > 0) {
657 sc->ste_cdata.ste_rx_head = cur_rx;
658 bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
659 sc->ste_cdata.ste_rx_list_map,
660 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
661 }
662
663 return (rx_npkts);
664 }
665
666 static void
ste_txeoc(struct ste_softc * sc)667 ste_txeoc(struct ste_softc *sc)
668 {
669 uint16_t txstat;
670 if_t ifp;
671
672 STE_LOCK_ASSERT(sc);
673
674 ifp = sc->ste_ifp;
675
676 /*
677 * STE_TX_STATUS register implements a queue of up to 31
678 * transmit status byte. Writing an arbitrary value to the
679 * register will advance the queue to the next transmit
680 * status byte. This means if driver does not read
681 * STE_TX_STATUS register after completing sending more
682 * than 31 frames the controller would be stalled so driver
683 * should re-wake the Tx MAC. This is the most severe
684 * limitation of ST201 based controller.
685 */
686 for (;;) {
687 txstat = CSR_READ_2(sc, STE_TX_STATUS);
688 if ((txstat & STE_TXSTATUS_TXDONE) == 0)
689 break;
690 if ((txstat & (STE_TXSTATUS_UNDERRUN |
691 STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
692 STE_TXSTATUS_STATSOFLOW)) != 0) {
693 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
694 #ifdef STE_SHOW_TXERRORS
695 device_printf(sc->ste_dev, "TX error : 0x%b\n",
696 txstat & 0xFF, STE_ERR_BITS);
697 #endif
698 if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
699 sc->ste_tx_thresh < STE_PACKET_SIZE) {
700 sc->ste_tx_thresh += STE_MIN_FRAMELEN;
701 if (sc->ste_tx_thresh > STE_PACKET_SIZE)
702 sc->ste_tx_thresh = STE_PACKET_SIZE;
703 device_printf(sc->ste_dev,
704 "TX underrun, increasing TX"
705 " start threshold to %d bytes\n",
706 sc->ste_tx_thresh);
707 /* Make sure to disable active DMA cycles. */
708 STE_SETBIT4(sc, STE_DMACTL,
709 STE_DMACTL_TXDMA_STALL);
710 ste_wait(sc);
711 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
712 ste_init_locked(sc);
713 break;
714 }
715 /* Restart Tx. */
716 ste_restart_tx(sc);
717 }
718 /*
719 * Advance to next status and ACK TxComplete
720 * interrupt. ST201 data sheet was wrong here, to
721 * get next Tx status, we have to write both
722 * STE_TX_STATUS and STE_TX_FRAMEID register.
723 * Otherwise controller returns the same status
724 * as well as not acknowledge Tx completion
725 * interrupt.
726 */
727 CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
728 }
729 }
730
731 static void
ste_tick(void * arg)732 ste_tick(void *arg)
733 {
734 struct ste_softc *sc;
735 struct mii_data *mii;
736
737 sc = (struct ste_softc *)arg;
738
739 STE_LOCK_ASSERT(sc);
740
741 mii = device_get_softc(sc->ste_miibus);
742 mii_tick(mii);
743 /*
744 * ukphy(4) does not seem to generate CB that reports
745 * resolved link state so if we know we lost a link,
746 * explicitly check the link state.
747 */
748 if ((sc->ste_flags & STE_FLAG_LINK) == 0)
749 ste_miibus_statchg(sc->ste_dev);
750 /*
751 * Because we are not generating Tx completion
752 * interrupt for every frame, reclaim transmitted
753 * buffers here.
754 */
755 ste_txeof(sc);
756 ste_txeoc(sc);
757 ste_stats_update(sc);
758 ste_watchdog(sc);
759 callout_reset(&sc->ste_callout, hz, ste_tick, sc);
760 }
761
762 static void
ste_txeof(struct ste_softc * sc)763 ste_txeof(struct ste_softc *sc)
764 {
765 if_t ifp;
766 struct ste_chain *cur_tx;
767 uint32_t txstat;
768 int idx;
769
770 STE_LOCK_ASSERT(sc);
771
772 ifp = sc->ste_ifp;
773 idx = sc->ste_cdata.ste_tx_cons;
774 if (idx == sc->ste_cdata.ste_tx_prod)
775 return;
776
777 bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
778 sc->ste_cdata.ste_tx_list_map,
779 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
780
781 while (idx != sc->ste_cdata.ste_tx_prod) {
782 cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
783 txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
784 if ((txstat & STE_TXCTL_DMADONE) == 0)
785 break;
786 bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
787 BUS_DMASYNC_POSTWRITE);
788 bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
789 KASSERT(cur_tx->ste_mbuf != NULL,
790 ("%s: freeing NULL mbuf!\n", __func__));
791 m_freem(cur_tx->ste_mbuf);
792 cur_tx->ste_mbuf = NULL;
793 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
794 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
795 sc->ste_cdata.ste_tx_cnt--;
796 STE_INC(idx, STE_TX_LIST_CNT);
797 }
798
799 sc->ste_cdata.ste_tx_cons = idx;
800 if (sc->ste_cdata.ste_tx_cnt == 0)
801 sc->ste_timer = 0;
802 }
803
804 static void
ste_stats_clear(struct ste_softc * sc)805 ste_stats_clear(struct ste_softc *sc)
806 {
807
808 STE_LOCK_ASSERT(sc);
809
810 /* Rx stats. */
811 CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
812 CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
813 CSR_READ_2(sc, STE_STAT_RX_FRAMES);
814 CSR_READ_1(sc, STE_STAT_RX_BCAST);
815 CSR_READ_1(sc, STE_STAT_RX_MCAST);
816 CSR_READ_1(sc, STE_STAT_RX_LOST);
817 /* Tx stats. */
818 CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
819 CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
820 CSR_READ_2(sc, STE_STAT_TX_FRAMES);
821 CSR_READ_1(sc, STE_STAT_TX_BCAST);
822 CSR_READ_1(sc, STE_STAT_TX_MCAST);
823 CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
824 CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
825 CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
826 CSR_READ_1(sc, STE_STAT_LATE_COLLS);
827 CSR_READ_1(sc, STE_STAT_TX_DEFER);
828 CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
829 CSR_READ_1(sc, STE_STAT_TX_ABORT);
830 }
831
832 static void
ste_stats_update(struct ste_softc * sc)833 ste_stats_update(struct ste_softc *sc)
834 {
835 if_t ifp;
836 struct ste_hw_stats *stats;
837 uint32_t val;
838
839 STE_LOCK_ASSERT(sc);
840
841 ifp = sc->ste_ifp;
842 stats = &sc->ste_stats;
843 /* Rx stats. */
844 val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
845 ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
846 val &= 0x000FFFFF;
847 stats->rx_bytes += val;
848 stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
849 stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
850 stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
851 stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
852 /* Tx stats. */
853 val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
854 ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
855 val &= 0x000FFFFF;
856 stats->tx_bytes += val;
857 stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
858 stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
859 stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
860 stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
861 val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
862 stats->tx_single_colls += val;
863 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
864 val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
865 stats->tx_multi_colls += val;
866 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
867 val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
868 stats->tx_late_colls += val;
869 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, val);
870 stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
871 stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
872 stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
873 }
874
875 /*
876 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
877 * IDs against our list and return a device name if we find a match.
878 */
879 static int
ste_probe(device_t dev)880 ste_probe(device_t dev)
881 {
882 const struct ste_type *t;
883
884 t = ste_devs;
885
886 while (t->ste_name != NULL) {
887 if ((pci_get_vendor(dev) == t->ste_vid) &&
888 (pci_get_device(dev) == t->ste_did)) {
889 device_set_desc(dev, t->ste_name);
890 return (BUS_PROBE_DEFAULT);
891 }
892 t++;
893 }
894
895 return (ENXIO);
896 }
897
898 /*
899 * Attach the interface. Allocate softc structures, do ifmedia
900 * setup and ethernet/BPF attach.
901 */
902 static int
ste_attach(device_t dev)903 ste_attach(device_t dev)
904 {
905 struct ste_softc *sc;
906 if_t ifp;
907 uint16_t eaddr[ETHER_ADDR_LEN / 2];
908 int error = 0, phy, pmc, prefer_iomap, rid;
909
910 sc = device_get_softc(dev);
911 sc->ste_dev = dev;
912
913 /*
914 * Only use one PHY since this chip reports multiple
915 * Note on the DFE-550 the PHY is at 1 on the DFE-580
916 * it is at 0 & 1. It is rev 0x12.
917 */
918 if (pci_get_vendor(dev) == DL_VENDORID &&
919 pci_get_device(dev) == DL_DEVICEID_DL10050 &&
920 pci_get_revid(dev) == 0x12 )
921 sc->ste_flags |= STE_FLAG_ONE_PHY;
922
923 mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
924 MTX_DEF);
925 /*
926 * Map control/status registers.
927 */
928 pci_enable_busmaster(dev);
929
930 /*
931 * Prefer memory space register mapping over IO space but use
932 * IO space for a device that is known to have issues on memory
933 * mapping.
934 */
935 prefer_iomap = 0;
936 if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
937 prefer_iomap = 1;
938 else
939 resource_int_value(device_get_name(sc->ste_dev),
940 device_get_unit(sc->ste_dev), "prefer_iomap",
941 &prefer_iomap);
942 if (prefer_iomap == 0) {
943 sc->ste_res_id = PCIR_BAR(1);
944 sc->ste_res_type = SYS_RES_MEMORY;
945 sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
946 &sc->ste_res_id, RF_ACTIVE);
947 }
948 if (prefer_iomap || sc->ste_res == NULL) {
949 sc->ste_res_id = PCIR_BAR(0);
950 sc->ste_res_type = SYS_RES_IOPORT;
951 sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
952 &sc->ste_res_id, RF_ACTIVE);
953 }
954 if (sc->ste_res == NULL) {
955 device_printf(dev, "couldn't map ports/memory\n");
956 error = ENXIO;
957 goto fail;
958 }
959
960 /* Allocate interrupt */
961 rid = 0;
962 sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
963 RF_SHAREABLE | RF_ACTIVE);
964
965 if (sc->ste_irq == NULL) {
966 device_printf(dev, "couldn't map interrupt\n");
967 error = ENXIO;
968 goto fail;
969 }
970
971 callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
972
973 /* Reset the adapter. */
974 ste_reset(sc);
975
976 /*
977 * Get station address from the EEPROM.
978 */
979 if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
980 device_printf(dev, "failed to read station address\n");
981 error = ENXIO;
982 goto fail;
983 }
984 ste_sysctl_node(sc);
985
986 if ((error = ste_dma_alloc(sc)) != 0)
987 goto fail;
988
989 ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
990
991 /* Do MII setup. */
992 phy = MII_PHY_ANY;
993 if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
994 phy = 0;
995 error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
996 ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
997 if (error != 0) {
998 device_printf(dev, "attaching PHYs failed\n");
999 goto fail;
1000 }
1001
1002 if_setsoftc(ifp, sc);
1003 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1004 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1005 if_setioctlfn(ifp, ste_ioctl);
1006 if_setstartfn(ifp, ste_start);
1007 if_setinitfn(ifp, ste_init);
1008 if_setsendqlen(ifp, STE_TX_LIST_CNT - 1);
1009 if_setsendqready(ifp);
1010
1011 sc->ste_tx_thresh = STE_TXSTART_THRESH;
1012
1013 /*
1014 * Call MI attach routine.
1015 */
1016 ether_ifattach(ifp, (uint8_t *)eaddr);
1017
1018 /*
1019 * Tell the upper layer(s) we support long frames.
1020 */
1021 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1022 if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
1023 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
1024 if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
1025 if_setcapenable(ifp, if_getcapabilities(ifp));
1026 #ifdef DEVICE_POLLING
1027 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
1028 #endif
1029
1030 /* Hook interrupt last to avoid having to lock softc */
1031 error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1032 NULL, ste_intr, sc, &sc->ste_intrhand);
1033
1034 if (error) {
1035 device_printf(dev, "couldn't set up irq\n");
1036 ether_ifdetach(ifp);
1037 goto fail;
1038 }
1039
1040 fail:
1041 if (error)
1042 ste_detach(dev);
1043
1044 return (error);
1045 }
1046
1047 /*
1048 * Shutdown hardware and free up resources. This can be called any
1049 * time after the mutex has been initialized. It is called in both
1050 * the error case in attach and the normal detach case so it needs
1051 * to be careful about only freeing resources that have actually been
1052 * allocated.
1053 */
1054 static int
ste_detach(device_t dev)1055 ste_detach(device_t dev)
1056 {
1057 struct ste_softc *sc;
1058 if_t ifp;
1059
1060 sc = device_get_softc(dev);
1061 KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1062 ifp = sc->ste_ifp;
1063
1064 #ifdef DEVICE_POLLING
1065 if (if_getcapenable(ifp) & IFCAP_POLLING)
1066 ether_poll_deregister(ifp);
1067 #endif
1068
1069 /* These should only be active if attach succeeded */
1070 if (device_is_attached(dev)) {
1071 ether_ifdetach(ifp);
1072 STE_LOCK(sc);
1073 ste_stop(sc);
1074 STE_UNLOCK(sc);
1075 callout_drain(&sc->ste_callout);
1076 }
1077 bus_generic_detach(dev);
1078
1079 if (sc->ste_intrhand)
1080 bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1081 if (sc->ste_irq)
1082 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1083 if (sc->ste_res)
1084 bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1085 sc->ste_res);
1086
1087 if (ifp)
1088 if_free(ifp);
1089
1090 ste_dma_free(sc);
1091 mtx_destroy(&sc->ste_mtx);
1092
1093 return (0);
1094 }
1095
1096 struct ste_dmamap_arg {
1097 bus_addr_t ste_busaddr;
1098 };
1099
1100 static void
ste_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)1101 ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1102 {
1103 struct ste_dmamap_arg *ctx;
1104
1105 if (error != 0)
1106 return;
1107
1108 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1109
1110 ctx = (struct ste_dmamap_arg *)arg;
1111 ctx->ste_busaddr = segs[0].ds_addr;
1112 }
1113
1114 static int
ste_dma_alloc(struct ste_softc * sc)1115 ste_dma_alloc(struct ste_softc *sc)
1116 {
1117 struct ste_chain *txc;
1118 struct ste_chain_onefrag *rxc;
1119 struct ste_dmamap_arg ctx;
1120 int error, i;
1121
1122 /* Create parent DMA tag. */
1123 error = bus_dma_tag_create(
1124 bus_get_dma_tag(sc->ste_dev), /* parent */
1125 1, 0, /* alignment, boundary */
1126 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1127 BUS_SPACE_MAXADDR, /* highaddr */
1128 NULL, NULL, /* filter, filterarg */
1129 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1130 0, /* nsegments */
1131 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1132 0, /* flags */
1133 NULL, NULL, /* lockfunc, lockarg */
1134 &sc->ste_cdata.ste_parent_tag);
1135 if (error != 0) {
1136 device_printf(sc->ste_dev,
1137 "could not create parent DMA tag.\n");
1138 goto fail;
1139 }
1140
1141 /* Create DMA tag for Tx descriptor list. */
1142 error = bus_dma_tag_create(
1143 sc->ste_cdata.ste_parent_tag, /* parent */
1144 STE_DESC_ALIGN, 0, /* alignment, boundary */
1145 BUS_SPACE_MAXADDR, /* lowaddr */
1146 BUS_SPACE_MAXADDR, /* highaddr */
1147 NULL, NULL, /* filter, filterarg */
1148 STE_TX_LIST_SZ, /* maxsize */
1149 1, /* nsegments */
1150 STE_TX_LIST_SZ, /* maxsegsize */
1151 0, /* flags */
1152 NULL, NULL, /* lockfunc, lockarg */
1153 &sc->ste_cdata.ste_tx_list_tag);
1154 if (error != 0) {
1155 device_printf(sc->ste_dev,
1156 "could not create Tx list DMA tag.\n");
1157 goto fail;
1158 }
1159
1160 /* Create DMA tag for Rx descriptor list. */
1161 error = bus_dma_tag_create(
1162 sc->ste_cdata.ste_parent_tag, /* parent */
1163 STE_DESC_ALIGN, 0, /* alignment, boundary */
1164 BUS_SPACE_MAXADDR, /* lowaddr */
1165 BUS_SPACE_MAXADDR, /* highaddr */
1166 NULL, NULL, /* filter, filterarg */
1167 STE_RX_LIST_SZ, /* maxsize */
1168 1, /* nsegments */
1169 STE_RX_LIST_SZ, /* maxsegsize */
1170 0, /* flags */
1171 NULL, NULL, /* lockfunc, lockarg */
1172 &sc->ste_cdata.ste_rx_list_tag);
1173 if (error != 0) {
1174 device_printf(sc->ste_dev,
1175 "could not create Rx list DMA tag.\n");
1176 goto fail;
1177 }
1178
1179 /* Create DMA tag for Tx buffers. */
1180 error = bus_dma_tag_create(
1181 sc->ste_cdata.ste_parent_tag, /* parent */
1182 1, 0, /* alignment, boundary */
1183 BUS_SPACE_MAXADDR, /* lowaddr */
1184 BUS_SPACE_MAXADDR, /* highaddr */
1185 NULL, NULL, /* filter, filterarg */
1186 MCLBYTES * STE_MAXFRAGS, /* maxsize */
1187 STE_MAXFRAGS, /* nsegments */
1188 MCLBYTES, /* maxsegsize */
1189 0, /* flags */
1190 NULL, NULL, /* lockfunc, lockarg */
1191 &sc->ste_cdata.ste_tx_tag);
1192 if (error != 0) {
1193 device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1194 goto fail;
1195 }
1196
1197 /* Create DMA tag for Rx buffers. */
1198 error = bus_dma_tag_create(
1199 sc->ste_cdata.ste_parent_tag, /* parent */
1200 1, 0, /* alignment, boundary */
1201 BUS_SPACE_MAXADDR, /* lowaddr */
1202 BUS_SPACE_MAXADDR, /* highaddr */
1203 NULL, NULL, /* filter, filterarg */
1204 MCLBYTES, /* maxsize */
1205 1, /* nsegments */
1206 MCLBYTES, /* maxsegsize */
1207 0, /* flags */
1208 NULL, NULL, /* lockfunc, lockarg */
1209 &sc->ste_cdata.ste_rx_tag);
1210 if (error != 0) {
1211 device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1212 goto fail;
1213 }
1214
1215 /* Allocate DMA'able memory and load the DMA map for Tx list. */
1216 error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1217 (void **)&sc->ste_ldata.ste_tx_list,
1218 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1219 &sc->ste_cdata.ste_tx_list_map);
1220 if (error != 0) {
1221 device_printf(sc->ste_dev,
1222 "could not allocate DMA'able memory for Tx list.\n");
1223 goto fail;
1224 }
1225 ctx.ste_busaddr = 0;
1226 error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1227 sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1228 STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1229 if (error != 0 || ctx.ste_busaddr == 0) {
1230 device_printf(sc->ste_dev,
1231 "could not load DMA'able memory for Tx list.\n");
1232 goto fail;
1233 }
1234 sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1235
1236 /* Allocate DMA'able memory and load the DMA map for Rx list. */
1237 error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1238 (void **)&sc->ste_ldata.ste_rx_list,
1239 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1240 &sc->ste_cdata.ste_rx_list_map);
1241 if (error != 0) {
1242 device_printf(sc->ste_dev,
1243 "could not allocate DMA'able memory for Rx list.\n");
1244 goto fail;
1245 }
1246 ctx.ste_busaddr = 0;
1247 error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1248 sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1249 STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1250 if (error != 0 || ctx.ste_busaddr == 0) {
1251 device_printf(sc->ste_dev,
1252 "could not load DMA'able memory for Rx list.\n");
1253 goto fail;
1254 }
1255 sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1256
1257 /* Create DMA maps for Tx buffers. */
1258 for (i = 0; i < STE_TX_LIST_CNT; i++) {
1259 txc = &sc->ste_cdata.ste_tx_chain[i];
1260 txc->ste_ptr = NULL;
1261 txc->ste_mbuf = NULL;
1262 txc->ste_next = NULL;
1263 txc->ste_phys = 0;
1264 txc->ste_map = NULL;
1265 error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1266 &txc->ste_map);
1267 if (error != 0) {
1268 device_printf(sc->ste_dev,
1269 "could not create Tx dmamap.\n");
1270 goto fail;
1271 }
1272 }
1273 /* Create DMA maps for Rx buffers. */
1274 if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1275 &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1276 device_printf(sc->ste_dev,
1277 "could not create spare Rx dmamap.\n");
1278 goto fail;
1279 }
1280 for (i = 0; i < STE_RX_LIST_CNT; i++) {
1281 rxc = &sc->ste_cdata.ste_rx_chain[i];
1282 rxc->ste_ptr = NULL;
1283 rxc->ste_mbuf = NULL;
1284 rxc->ste_next = NULL;
1285 rxc->ste_map = NULL;
1286 error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1287 &rxc->ste_map);
1288 if (error != 0) {
1289 device_printf(sc->ste_dev,
1290 "could not create Rx dmamap.\n");
1291 goto fail;
1292 }
1293 }
1294
1295 fail:
1296 return (error);
1297 }
1298
1299 static void
ste_dma_free(struct ste_softc * sc)1300 ste_dma_free(struct ste_softc *sc)
1301 {
1302 struct ste_chain *txc;
1303 struct ste_chain_onefrag *rxc;
1304 int i;
1305
1306 /* Tx buffers. */
1307 if (sc->ste_cdata.ste_tx_tag != NULL) {
1308 for (i = 0; i < STE_TX_LIST_CNT; i++) {
1309 txc = &sc->ste_cdata.ste_tx_chain[i];
1310 if (txc->ste_map != NULL) {
1311 bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1312 txc->ste_map);
1313 txc->ste_map = NULL;
1314 }
1315 }
1316 bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1317 sc->ste_cdata.ste_tx_tag = NULL;
1318 }
1319 /* Rx buffers. */
1320 if (sc->ste_cdata.ste_rx_tag != NULL) {
1321 for (i = 0; i < STE_RX_LIST_CNT; i++) {
1322 rxc = &sc->ste_cdata.ste_rx_chain[i];
1323 if (rxc->ste_map != NULL) {
1324 bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1325 rxc->ste_map);
1326 rxc->ste_map = NULL;
1327 }
1328 }
1329 if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1330 bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1331 sc->ste_cdata.ste_rx_sparemap);
1332 sc->ste_cdata.ste_rx_sparemap = NULL;
1333 }
1334 bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1335 sc->ste_cdata.ste_rx_tag = NULL;
1336 }
1337 /* Tx descriptor list. */
1338 if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1339 if (sc->ste_ldata.ste_tx_list_paddr != 0)
1340 bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1341 sc->ste_cdata.ste_tx_list_map);
1342 if (sc->ste_ldata.ste_tx_list != NULL)
1343 bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1344 sc->ste_ldata.ste_tx_list,
1345 sc->ste_cdata.ste_tx_list_map);
1346 sc->ste_ldata.ste_tx_list = NULL;
1347 sc->ste_ldata.ste_tx_list_paddr = 0;
1348 bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1349 sc->ste_cdata.ste_tx_list_tag = NULL;
1350 }
1351 /* Rx descriptor list. */
1352 if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1353 if (sc->ste_ldata.ste_rx_list_paddr != 0)
1354 bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1355 sc->ste_cdata.ste_rx_list_map);
1356 if (sc->ste_ldata.ste_rx_list != NULL)
1357 bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1358 sc->ste_ldata.ste_rx_list,
1359 sc->ste_cdata.ste_rx_list_map);
1360 sc->ste_ldata.ste_rx_list = NULL;
1361 sc->ste_ldata.ste_rx_list_paddr = 0;
1362 bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1363 sc->ste_cdata.ste_rx_list_tag = NULL;
1364 }
1365 if (sc->ste_cdata.ste_parent_tag != NULL) {
1366 bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1367 sc->ste_cdata.ste_parent_tag = NULL;
1368 }
1369 }
1370
1371 static int
ste_newbuf(struct ste_softc * sc,struct ste_chain_onefrag * rxc)1372 ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1373 {
1374 struct mbuf *m;
1375 bus_dma_segment_t segs[1];
1376 bus_dmamap_t map;
1377 int error, nsegs;
1378
1379 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1380 if (m == NULL)
1381 return (ENOBUFS);
1382 m->m_len = m->m_pkthdr.len = MCLBYTES;
1383 m_adj(m, ETHER_ALIGN);
1384
1385 if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1386 sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1387 m_freem(m);
1388 return (error);
1389 }
1390 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1391
1392 if (rxc->ste_mbuf != NULL) {
1393 bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1394 BUS_DMASYNC_POSTREAD);
1395 bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1396 }
1397 map = rxc->ste_map;
1398 rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1399 sc->ste_cdata.ste_rx_sparemap = map;
1400 bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1401 BUS_DMASYNC_PREREAD);
1402 rxc->ste_mbuf = m;
1403 rxc->ste_ptr->ste_status = 0;
1404 rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1405 rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1406 STE_FRAG_LAST);
1407 return (0);
1408 }
1409
1410 static int
ste_init_rx_list(struct ste_softc * sc)1411 ste_init_rx_list(struct ste_softc *sc)
1412 {
1413 struct ste_chain_data *cd;
1414 struct ste_list_data *ld;
1415 int error, i;
1416
1417 sc->ste_int_rx_act = 0;
1418 cd = &sc->ste_cdata;
1419 ld = &sc->ste_ldata;
1420 bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1421 for (i = 0; i < STE_RX_LIST_CNT; i++) {
1422 cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1423 error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1424 if (error != 0)
1425 return (error);
1426 if (i == (STE_RX_LIST_CNT - 1)) {
1427 cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1428 ld->ste_rx_list[i].ste_next =
1429 htole32(ld->ste_rx_list_paddr +
1430 (sizeof(struct ste_desc_onefrag) * 0));
1431 } else {
1432 cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1433 ld->ste_rx_list[i].ste_next =
1434 htole32(ld->ste_rx_list_paddr +
1435 (sizeof(struct ste_desc_onefrag) * (i + 1)));
1436 }
1437 }
1438
1439 cd->ste_rx_head = &cd->ste_rx_chain[0];
1440 bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1441 sc->ste_cdata.ste_rx_list_map,
1442 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1443
1444 return (0);
1445 }
1446
1447 static void
ste_init_tx_list(struct ste_softc * sc)1448 ste_init_tx_list(struct ste_softc *sc)
1449 {
1450 struct ste_chain_data *cd;
1451 struct ste_list_data *ld;
1452 int i;
1453
1454 cd = &sc->ste_cdata;
1455 ld = &sc->ste_ldata;
1456 bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1457 for (i = 0; i < STE_TX_LIST_CNT; i++) {
1458 cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1459 cd->ste_tx_chain[i].ste_mbuf = NULL;
1460 if (i == (STE_TX_LIST_CNT - 1)) {
1461 cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1462 cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1463 ld->ste_tx_list_paddr +
1464 (sizeof(struct ste_desc) * 0)));
1465 } else {
1466 cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1467 cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1468 ld->ste_tx_list_paddr +
1469 (sizeof(struct ste_desc) * (i + 1))));
1470 }
1471 }
1472
1473 cd->ste_last_tx = NULL;
1474 cd->ste_tx_prod = 0;
1475 cd->ste_tx_cons = 0;
1476 cd->ste_tx_cnt = 0;
1477
1478 bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1479 sc->ste_cdata.ste_tx_list_map,
1480 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1481 }
1482
1483 static void
ste_init(void * xsc)1484 ste_init(void *xsc)
1485 {
1486 struct ste_softc *sc;
1487
1488 sc = xsc;
1489 STE_LOCK(sc);
1490 ste_init_locked(sc);
1491 STE_UNLOCK(sc);
1492 }
1493
1494 static void
ste_init_locked(struct ste_softc * sc)1495 ste_init_locked(struct ste_softc *sc)
1496 {
1497 if_t ifp;
1498 struct mii_data *mii;
1499 uint8_t val;
1500 int i;
1501
1502 STE_LOCK_ASSERT(sc);
1503 ifp = sc->ste_ifp;
1504 mii = device_get_softc(sc->ste_miibus);
1505
1506 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1507 return;
1508
1509 ste_stop(sc);
1510 /* Reset the chip to a known state. */
1511 ste_reset(sc);
1512
1513 /* Init our MAC address */
1514 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1515 CSR_WRITE_2(sc, STE_PAR0 + i,
1516 ((if_getlladdr(sc->ste_ifp)[i] & 0xff) |
1517 if_getlladdr(sc->ste_ifp)[i + 1] << 8));
1518 }
1519
1520 /* Init RX list */
1521 if (ste_init_rx_list(sc) != 0) {
1522 device_printf(sc->ste_dev,
1523 "initialization failed: no memory for RX buffers\n");
1524 ste_stop(sc);
1525 return;
1526 }
1527
1528 /* Set RX polling interval */
1529 CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1530
1531 /* Init TX descriptors */
1532 ste_init_tx_list(sc);
1533
1534 /* Clear and disable WOL. */
1535 val = CSR_READ_1(sc, STE_WAKE_EVENT);
1536 val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1537 STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1538 CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1539
1540 /* Set the TX freethresh value */
1541 CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1542
1543 /* Set the TX start threshold for best performance. */
1544 CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1545
1546 /* Set the TX reclaim threshold. */
1547 CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1548
1549 /* Accept VLAN length packets */
1550 CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1551
1552 /* Set up the RX filter. */
1553 ste_rxfilter(sc);
1554
1555 /* Load the address of the RX list. */
1556 STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1557 ste_wait(sc);
1558 CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1559 STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1560 STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1561 STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1562
1563 /* Set TX polling interval(defer until we TX first packet). */
1564 CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1565
1566 /* Load address of the TX list */
1567 STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1568 ste_wait(sc);
1569 CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1570 STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1571 STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1572 ste_wait(sc);
1573 /* Select 3.2us timer. */
1574 STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1575 STE_DMACTL_COUNTDOWN_MODE);
1576
1577 /* Enable receiver and transmitter */
1578 CSR_WRITE_2(sc, STE_MACCTL0, 0);
1579 CSR_WRITE_2(sc, STE_MACCTL1, 0);
1580 STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1581 STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1582
1583 /* Enable stats counters. */
1584 STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1585 /* Clear stats counters. */
1586 ste_stats_clear(sc);
1587
1588 CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1589 CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1590 #ifdef DEVICE_POLLING
1591 /* Disable interrupts if we are polling. */
1592 if (if_getcapenable(ifp) & IFCAP_POLLING)
1593 CSR_WRITE_2(sc, STE_IMR, 0);
1594 else
1595 #endif
1596 /* Enable interrupts. */
1597 CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1598
1599 sc->ste_flags &= ~STE_FLAG_LINK;
1600 /* Switch to the current media. */
1601 mii_mediachg(mii);
1602
1603 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1604 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1605
1606 callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1607 }
1608
1609 static void
ste_stop(struct ste_softc * sc)1610 ste_stop(struct ste_softc *sc)
1611 {
1612 if_t ifp;
1613 struct ste_chain_onefrag *cur_rx;
1614 struct ste_chain *cur_tx;
1615 uint32_t val;
1616 int i;
1617
1618 STE_LOCK_ASSERT(sc);
1619 ifp = sc->ste_ifp;
1620
1621 callout_stop(&sc->ste_callout);
1622 sc->ste_timer = 0;
1623 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING|IFF_DRV_OACTIVE));
1624
1625 CSR_WRITE_2(sc, STE_IMR, 0);
1626 CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1627 /* Stop pending DMA. */
1628 val = CSR_READ_4(sc, STE_DMACTL);
1629 val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1630 CSR_WRITE_4(sc, STE_DMACTL, val);
1631 ste_wait(sc);
1632 /* Disable auto-polling. */
1633 CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1634 CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1635 /* Nullify DMA address to stop any further DMA. */
1636 CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1637 CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1638 /* Stop TX/RX MAC. */
1639 val = CSR_READ_2(sc, STE_MACCTL1);
1640 val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1641 STE_MACCTL1_STATS_DISABLE;
1642 CSR_WRITE_2(sc, STE_MACCTL1, val);
1643 for (i = 0; i < STE_TIMEOUT; i++) {
1644 DELAY(10);
1645 if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1646 STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1647 break;
1648 }
1649 if (i == STE_TIMEOUT)
1650 device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1651 /* Acknowledge any pending interrupts. */
1652 CSR_READ_2(sc, STE_ISR_ACK);
1653 ste_stats_update(sc);
1654
1655 for (i = 0; i < STE_RX_LIST_CNT; i++) {
1656 cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1657 if (cur_rx->ste_mbuf != NULL) {
1658 bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1659 cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1660 bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1661 cur_rx->ste_map);
1662 m_freem(cur_rx->ste_mbuf);
1663 cur_rx->ste_mbuf = NULL;
1664 }
1665 }
1666
1667 for (i = 0; i < STE_TX_LIST_CNT; i++) {
1668 cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1669 if (cur_tx->ste_mbuf != NULL) {
1670 bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1671 cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1672 bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1673 cur_tx->ste_map);
1674 m_freem(cur_tx->ste_mbuf);
1675 cur_tx->ste_mbuf = NULL;
1676 }
1677 }
1678 }
1679
1680 static void
ste_reset(struct ste_softc * sc)1681 ste_reset(struct ste_softc *sc)
1682 {
1683 uint32_t ctl;
1684 int i;
1685
1686 ctl = CSR_READ_4(sc, STE_ASICCTL);
1687 ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1688 STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1689 STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1690 STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1691 STE_ASICCTL_EXTRESET_RESET;
1692 CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1693 CSR_READ_4(sc, STE_ASICCTL);
1694 /*
1695 * Due to the need of accessing EEPROM controller can take
1696 * up to 1ms to complete the global reset.
1697 */
1698 DELAY(1000);
1699
1700 for (i = 0; i < STE_TIMEOUT; i++) {
1701 if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1702 break;
1703 DELAY(10);
1704 }
1705
1706 if (i == STE_TIMEOUT)
1707 device_printf(sc->ste_dev, "global reset never completed\n");
1708 }
1709
1710 static void
ste_restart_tx(struct ste_softc * sc)1711 ste_restart_tx(struct ste_softc *sc)
1712 {
1713 uint16_t mac;
1714 int i;
1715
1716 for (i = 0; i < STE_TIMEOUT; i++) {
1717 mac = CSR_READ_2(sc, STE_MACCTL1);
1718 mac |= STE_MACCTL1_TX_ENABLE;
1719 CSR_WRITE_2(sc, STE_MACCTL1, mac);
1720 mac = CSR_READ_2(sc, STE_MACCTL1);
1721 if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1722 break;
1723 DELAY(10);
1724 }
1725
1726 if (i == STE_TIMEOUT)
1727 device_printf(sc->ste_dev, "starting Tx failed");
1728 }
1729
1730 static int
ste_ioctl(if_t ifp,u_long command,caddr_t data)1731 ste_ioctl(if_t ifp, u_long command, caddr_t data)
1732 {
1733 struct ste_softc *sc;
1734 struct ifreq *ifr;
1735 struct mii_data *mii;
1736 int error = 0, mask;
1737
1738 sc = if_getsoftc(ifp);
1739 ifr = (struct ifreq *)data;
1740
1741 switch (command) {
1742 case SIOCSIFFLAGS:
1743 STE_LOCK(sc);
1744 if ((if_getflags(ifp) & IFF_UP) != 0) {
1745 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
1746 ((if_getflags(ifp) ^ sc->ste_if_flags) &
1747 (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1748 ste_rxfilter(sc);
1749 else
1750 ste_init_locked(sc);
1751 } else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1752 ste_stop(sc);
1753 sc->ste_if_flags = if_getflags(ifp);
1754 STE_UNLOCK(sc);
1755 break;
1756 case SIOCADDMULTI:
1757 case SIOCDELMULTI:
1758 STE_LOCK(sc);
1759 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1760 ste_rxfilter(sc);
1761 STE_UNLOCK(sc);
1762 break;
1763 case SIOCGIFMEDIA:
1764 case SIOCSIFMEDIA:
1765 mii = device_get_softc(sc->ste_miibus);
1766 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1767 break;
1768 case SIOCSIFCAP:
1769 STE_LOCK(sc);
1770 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1771 #ifdef DEVICE_POLLING
1772 if ((mask & IFCAP_POLLING) != 0 &&
1773 (IFCAP_POLLING & if_getcapabilities(ifp)) != 0) {
1774 if_togglecapenable(ifp, IFCAP_POLLING);
1775 if ((IFCAP_POLLING & if_getcapenable(ifp)) != 0) {
1776 error = ether_poll_register(ste_poll, ifp);
1777 if (error != 0) {
1778 STE_UNLOCK(sc);
1779 break;
1780 }
1781 /* Disable interrupts. */
1782 CSR_WRITE_2(sc, STE_IMR, 0);
1783 } else {
1784 error = ether_poll_deregister(ifp);
1785 /* Enable interrupts. */
1786 CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1787 }
1788 }
1789 #endif /* DEVICE_POLLING */
1790 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1791 (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1792 if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1793 STE_UNLOCK(sc);
1794 break;
1795 default:
1796 error = ether_ioctl(ifp, command, data);
1797 break;
1798 }
1799
1800 return (error);
1801 }
1802
1803 static int
ste_encap(struct ste_softc * sc,struct mbuf ** m_head,struct ste_chain * txc)1804 ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1805 {
1806 struct ste_frag *frag;
1807 struct mbuf *m;
1808 struct ste_desc *desc;
1809 bus_dma_segment_t txsegs[STE_MAXFRAGS];
1810 int error, i, nsegs;
1811
1812 STE_LOCK_ASSERT(sc);
1813 M_ASSERTPKTHDR((*m_head));
1814
1815 error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1816 txc->ste_map, *m_head, txsegs, &nsegs, 0);
1817 if (error == EFBIG) {
1818 m = m_collapse(*m_head, M_NOWAIT, STE_MAXFRAGS);
1819 if (m == NULL) {
1820 m_freem(*m_head);
1821 *m_head = NULL;
1822 return (ENOMEM);
1823 }
1824 *m_head = m;
1825 error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1826 txc->ste_map, *m_head, txsegs, &nsegs, 0);
1827 if (error != 0) {
1828 m_freem(*m_head);
1829 *m_head = NULL;
1830 return (error);
1831 }
1832 } else if (error != 0)
1833 return (error);
1834 if (nsegs == 0) {
1835 m_freem(*m_head);
1836 *m_head = NULL;
1837 return (EIO);
1838 }
1839 bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1840 BUS_DMASYNC_PREWRITE);
1841
1842 desc = txc->ste_ptr;
1843 for (i = 0; i < nsegs; i++) {
1844 frag = &desc->ste_frags[i];
1845 frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1846 frag->ste_len = htole32(txsegs[i].ds_len);
1847 }
1848 desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1849 /*
1850 * Because we use Tx polling we can't chain multiple
1851 * Tx descriptors here. Otherwise we race with controller.
1852 */
1853 desc->ste_next = 0;
1854 if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
1855 desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
1856 STE_TXCTL_DMAINTR);
1857 else
1858 desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
1859 txc->ste_mbuf = *m_head;
1860 STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
1861 sc->ste_cdata.ste_tx_cnt++;
1862
1863 return (0);
1864 }
1865
1866 static void
ste_start(if_t ifp)1867 ste_start(if_t ifp)
1868 {
1869 struct ste_softc *sc;
1870
1871 sc = if_getsoftc(ifp);
1872 STE_LOCK(sc);
1873 ste_start_locked(ifp);
1874 STE_UNLOCK(sc);
1875 }
1876
1877 static void
ste_start_locked(if_t ifp)1878 ste_start_locked(if_t ifp)
1879 {
1880 struct ste_softc *sc;
1881 struct ste_chain *cur_tx;
1882 struct mbuf *m_head = NULL;
1883 int enq;
1884
1885 sc = if_getsoftc(ifp);
1886 STE_LOCK_ASSERT(sc);
1887
1888 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1889 IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
1890 return;
1891
1892 for (enq = 0; !if_sendq_empty(ifp);) {
1893 if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
1894 /*
1895 * Controller may have cached copy of the last used
1896 * next ptr so we have to reserve one TFD to avoid
1897 * TFD overruns.
1898 */
1899 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1900 break;
1901 }
1902 m_head = if_dequeue(ifp);
1903 if (m_head == NULL)
1904 break;
1905 cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
1906 if (ste_encap(sc, &m_head, cur_tx) != 0) {
1907 if (m_head == NULL)
1908 break;
1909 if_sendq_prepend(ifp, m_head);
1910 break;
1911 }
1912 if (sc->ste_cdata.ste_last_tx == NULL) {
1913 bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1914 sc->ste_cdata.ste_tx_list_map,
1915 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1916 STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1917 ste_wait(sc);
1918 CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1919 STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
1920 CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1921 STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1922 ste_wait(sc);
1923 } else {
1924 sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
1925 sc->ste_cdata.ste_last_tx->ste_phys;
1926 bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1927 sc->ste_cdata.ste_tx_list_map,
1928 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1929 }
1930 sc->ste_cdata.ste_last_tx = cur_tx;
1931
1932 enq++;
1933 /*
1934 * If there's a BPF listener, bounce a copy of this frame
1935 * to him.
1936 */
1937 BPF_MTAP(ifp, m_head);
1938 }
1939
1940 if (enq > 0)
1941 sc->ste_timer = STE_TX_TIMEOUT;
1942 }
1943
1944 static void
ste_watchdog(struct ste_softc * sc)1945 ste_watchdog(struct ste_softc *sc)
1946 {
1947 if_t ifp;
1948
1949 ifp = sc->ste_ifp;
1950 STE_LOCK_ASSERT(sc);
1951
1952 if (sc->ste_timer == 0 || --sc->ste_timer)
1953 return;
1954
1955 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1956 if_printf(ifp, "watchdog timeout\n");
1957
1958 ste_txeof(sc);
1959 ste_txeoc(sc);
1960 ste_rxeof(sc, -1);
1961 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1962 ste_init_locked(sc);
1963
1964 if (!if_sendq_empty(ifp))
1965 ste_start_locked(ifp);
1966 }
1967
1968 static int
ste_shutdown(device_t dev)1969 ste_shutdown(device_t dev)
1970 {
1971
1972 return (ste_suspend(dev));
1973 }
1974
1975 static int
ste_suspend(device_t dev)1976 ste_suspend(device_t dev)
1977 {
1978 struct ste_softc *sc;
1979
1980 sc = device_get_softc(dev);
1981
1982 STE_LOCK(sc);
1983 ste_stop(sc);
1984 ste_setwol(sc);
1985 STE_UNLOCK(sc);
1986
1987 return (0);
1988 }
1989
1990 static int
ste_resume(device_t dev)1991 ste_resume(device_t dev)
1992 {
1993 struct ste_softc *sc;
1994 if_t ifp;
1995 int pmc;
1996 uint16_t pmstat;
1997
1998 sc = device_get_softc(dev);
1999 STE_LOCK(sc);
2000 if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2001 /* Disable PME and clear PME status. */
2002 pmstat = pci_read_config(sc->ste_dev,
2003 pmc + PCIR_POWER_STATUS, 2);
2004 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2005 pmstat &= ~PCIM_PSTAT_PMEENABLE;
2006 pci_write_config(sc->ste_dev,
2007 pmc + PCIR_POWER_STATUS, pmstat, 2);
2008 }
2009 }
2010 ifp = sc->ste_ifp;
2011 if ((if_getflags(ifp) & IFF_UP) != 0) {
2012 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2013 ste_init_locked(sc);
2014 }
2015 STE_UNLOCK(sc);
2016
2017 return (0);
2018 }
2019
2020 #define STE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
2021 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2022 #define STE_SYSCTL_STAT_ADD64(c, h, n, p, d) \
2023 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2024
2025 static void
ste_sysctl_node(struct ste_softc * sc)2026 ste_sysctl_node(struct ste_softc *sc)
2027 {
2028 struct sysctl_ctx_list *ctx;
2029 struct sysctl_oid_list *child, *parent;
2030 struct sysctl_oid *tree;
2031 struct ste_hw_stats *stats;
2032
2033 stats = &sc->ste_stats;
2034 ctx = device_get_sysctl_ctx(sc->ste_dev);
2035 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2036
2037 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2038 CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2039 /* Pull in device tunables. */
2040 sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2041 resource_int_value(device_get_name(sc->ste_dev),
2042 device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2043
2044 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
2045 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "STE statistics");
2046 parent = SYSCTL_CHILDREN(tree);
2047
2048 /* Rx statistics. */
2049 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
2050 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
2051 child = SYSCTL_CHILDREN(tree);
2052 STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2053 &stats->rx_bytes, "Good octets");
2054 STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2055 &stats->rx_frames, "Good frames");
2056 STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2057 &stats->rx_bcast_frames, "Good broadcast frames");
2058 STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2059 &stats->rx_mcast_frames, "Good multicast frames");
2060 STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2061 &stats->rx_lost_frames, "Lost frames");
2062
2063 /* Tx statistics. */
2064 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
2065 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
2066 child = SYSCTL_CHILDREN(tree);
2067 STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2068 &stats->tx_bytes, "Good octets");
2069 STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2070 &stats->tx_frames, "Good frames");
2071 STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2072 &stats->tx_bcast_frames, "Good broadcast frames");
2073 STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2074 &stats->tx_mcast_frames, "Good multicast frames");
2075 STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2076 &stats->tx_carrsense_errs, "Carrier sense errors");
2077 STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2078 &stats->tx_single_colls, "Single collisions");
2079 STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2080 &stats->tx_multi_colls, "Multiple collisions");
2081 STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2082 &stats->tx_late_colls, "Late collisions");
2083 STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2084 &stats->tx_frames_defered, "Frames with deferrals");
2085 STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2086 &stats->tx_excess_defers, "Frames with excessive derferrals");
2087 STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2088 &stats->tx_abort, "Aborted frames due to Excessive collisions");
2089 }
2090
2091 #undef STE_SYSCTL_STAT_ADD32
2092 #undef STE_SYSCTL_STAT_ADD64
2093
2094 static void
ste_setwol(struct ste_softc * sc)2095 ste_setwol(struct ste_softc *sc)
2096 {
2097 if_t ifp;
2098 uint16_t pmstat;
2099 uint8_t val;
2100 int pmc;
2101
2102 STE_LOCK_ASSERT(sc);
2103
2104 if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2105 /* Disable WOL. */
2106 CSR_READ_1(sc, STE_WAKE_EVENT);
2107 CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2108 return;
2109 }
2110
2111 ifp = sc->ste_ifp;
2112 val = CSR_READ_1(sc, STE_WAKE_EVENT);
2113 val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2114 STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2115 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2116 val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2117 CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2118 /* Request PME. */
2119 pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2120 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2121 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
2122 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2123 pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2124 }
2125