1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul@windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44 /*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 * o Descriptor based DMA mechanism. Each descriptor represents
56 * a single packet fragment. Data buffers may be aligned on
57 * any byte boundary.
58 *
59 * o 64-bit DMA
60 *
61 * o TCP/IP checksum offload for both RX and TX
62 *
63 * o High and normal priority transmit DMA rings
64 *
65 * o VLAN tag insertion and extraction
66 *
67 * o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 * o 1000Mbps mode
79 *
80 * o Jumbo frames
81 *
82 * o GMII and TBI ports/registers for interfacing with copper
83 * or fiber PHYs
84 *
85 * o RX and TX DMA rings can have up to 1024 descriptors
86 * (the 8139C+ allows a maximum of 64)
87 *
88 * o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/sysctl.h>
127 #include <sys/taskqueue.h>
128
129 #include <net/debugnet.h>
130 #include <net/if.h>
131 #include <net/if_var.h>
132 #include <net/if_arp.h>
133 #include <net/ethernet.h>
134 #include <net/if_dl.h>
135 #include <net/if_media.h>
136 #include <net/if_types.h>
137 #include <net/if_vlan_var.h>
138
139 #include <net/bpf.h>
140
141 #include <machine/bus.h>
142 #include <machine/resource.h>
143 #include <sys/bus.h>
144 #include <sys/rman.h>
145
146 #include <dev/mii/mii.h>
147 #include <dev/mii/miivar.h>
148
149 #include <dev/pci/pcireg.h>
150 #include <dev/pci/pcivar.h>
151
152 #include <dev/rl/if_rlreg.h>
153
154 MODULE_DEPEND(re, pci, 1, 1, 1);
155 MODULE_DEPEND(re, ether, 1, 1, 1);
156 MODULE_DEPEND(re, miibus, 1, 1, 1);
157
158 /* "device miibus" required. See GENERIC if you get errors here. */
159 #include "miibus_if.h"
160
161 /* Tunables. */
162 static int intr_filter = 0;
163 TUNABLE_INT("hw.re.intr_filter", &intr_filter);
164 static int msi_disable = 0;
165 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
166 static int msix_disable = 0;
167 TUNABLE_INT("hw.re.msix_disable", &msix_disable);
168 static int prefer_iomap = 0;
169 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
170
171 #define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
172
173 /*
174 * Various supported device vendors/types and their names.
175 */
176 static const struct rl_type re_devs[] = {
177 { DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
178 "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
179 { DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
180 "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
181 { RT_VENDORID, RT_DEVICEID_2600, 0,
182 "RealTek Killer E2600 Gigabit Ethernet Controller" },
183 { RT_VENDORID, RT_DEVICEID_8139, 0,
184 "RealTek 8139C+ 10/100BaseTX" },
185 { RT_VENDORID, RT_DEVICEID_8101E, 0,
186 "RealTek 810xE PCIe 10/100baseTX" },
187 { RT_VENDORID, RT_DEVICEID_8168, 0,
188 "RealTek 8168/8111 B/C/CP/D/DP/E/F/G PCIe Gigabit Ethernet" },
189 { RT_VENDORID, RT_DEVICEID_8161, 0,
190 "RealTek 8168 Gigabit Ethernet" },
191 { NCUBE_VENDORID, RT_DEVICEID_8168, 0,
192 "TP-Link TG-3468 v2 (RTL8168) Gigabit Ethernet" },
193 { RT_VENDORID, RT_DEVICEID_8169, 0,
194 "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
195 { RT_VENDORID, RT_DEVICEID_8169SC, 0,
196 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
197 { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
198 "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
199 { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
200 "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
201 { USR_VENDORID, USR_DEVICEID_997902, 0,
202 "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
203 };
204
205 static const struct rl_hwrev re_hwrevs[] = {
206 { RL_HWREV_8139, RL_8139, "", RL_MTU },
207 { RL_HWREV_8139A, RL_8139, "A", RL_MTU },
208 { RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
209 { RL_HWREV_8139B, RL_8139, "B", RL_MTU },
210 { RL_HWREV_8130, RL_8139, "8130", RL_MTU },
211 { RL_HWREV_8139C, RL_8139, "C", RL_MTU },
212 { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
213 { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
214 { RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
215 { RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
216 { RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
217 { RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
218 { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
219 { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
220 { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
221 { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
222 { RL_HWREV_8100, RL_8139, "8100", RL_MTU },
223 { RL_HWREV_8101, RL_8139, "8101", RL_MTU },
224 { RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
225 { RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
226 { RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
227 { RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
228 { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
229 { RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
230 { RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
231 { RL_HWREV_8402, RL_8169, "8402", RL_MTU },
232 { RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
233 { RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU },
234 { RL_HWREV_8106E, RL_8169, "8106E", RL_MTU },
235 { RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
236 { RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
237 { RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
238 { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
239 { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
240 { RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
241 { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
242 { RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
243 { RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
244 { RL_HWREV_8168EP, RL_8169, "8168EP/8111EP", RL_JUMBO_MTU_9K},
245 { RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K},
246 { RL_HWREV_8168FP, RL_8169, "8168FP/8111FP", RL_JUMBO_MTU_9K},
247 { RL_HWREV_8168G, RL_8169, "8168G/8111G", RL_JUMBO_MTU_9K},
248 { RL_HWREV_8168GU, RL_8169, "8168GU/8111GU", RL_JUMBO_MTU_9K},
249 { RL_HWREV_8168H, RL_8169, "8168H/8111H", RL_JUMBO_MTU_9K},
250 { RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K},
251 { RL_HWREV_8411B, RL_8169, "8411B", RL_JUMBO_MTU_9K},
252 { 0, 0, NULL, 0 }
253 };
254
255 static int re_probe (device_t);
256 static int re_attach (device_t);
257 static int re_detach (device_t);
258
259 static int re_encap (struct rl_softc *, struct mbuf **);
260
261 static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int);
262 static int re_allocmem (device_t, struct rl_softc *);
263 static __inline void re_discard_rxbuf
264 (struct rl_softc *, int);
265 static int re_newbuf (struct rl_softc *, int);
266 static int re_jumbo_newbuf (struct rl_softc *, int);
267 static int re_rx_list_init (struct rl_softc *);
268 static int re_jrx_list_init (struct rl_softc *);
269 static int re_tx_list_init (struct rl_softc *);
270 #ifdef RE_FIXUP_RX
271 static __inline void re_fixup_rx
272 (struct mbuf *);
273 #endif
274 static int re_rxeof (struct rl_softc *, int *);
275 static void re_txeof (struct rl_softc *);
276 #ifdef DEVICE_POLLING
277 static int re_poll (if_t, enum poll_cmd, int);
278 static int re_poll_locked (if_t, enum poll_cmd, int);
279 #endif
280 static int re_intr (void *);
281 static void re_intr_msi (void *);
282 static void re_tick (void *);
283 static void re_int_task (void *, int);
284 static void re_start (if_t);
285 static void re_start_locked (if_t);
286 static void re_start_tx (struct rl_softc *);
287 static int re_ioctl (if_t, u_long, caddr_t);
288 static void re_init (void *);
289 static void re_init_locked (struct rl_softc *);
290 static void re_stop (struct rl_softc *);
291 static void re_watchdog (struct rl_softc *);
292 static int re_suspend (device_t);
293 static int re_resume (device_t);
294 static int re_shutdown (device_t);
295 static int re_ifmedia_upd (if_t);
296 static void re_ifmedia_sts (if_t, struct ifmediareq *);
297
298 static void re_eeprom_putbyte (struct rl_softc *, int);
299 static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *);
300 static void re_read_eeprom (struct rl_softc *, caddr_t, int, int);
301 static int re_gmii_readreg (device_t, int, int);
302 static int re_gmii_writereg (device_t, int, int, int);
303
304 static int re_miibus_readreg (device_t, int, int);
305 static int re_miibus_writereg (device_t, int, int, int);
306 static void re_miibus_statchg (device_t);
307
308 static void re_set_jumbo (struct rl_softc *, int);
309 static void re_set_rxmode (struct rl_softc *);
310 static void re_reset (struct rl_softc *);
311 static void re_setwol (struct rl_softc *);
312 static void re_clrwol (struct rl_softc *);
313 static void re_set_linkspeed (struct rl_softc *);
314
315 DEBUGNET_DEFINE(re);
316
317 #ifdef DEV_NETMAP /* see ixgbe.c for details */
318 #include <dev/netmap/if_re_netmap.h>
319 MODULE_DEPEND(re, netmap, 1, 1, 1);
320 #endif /* !DEV_NETMAP */
321
322 #ifdef RE_DIAG
323 static int re_diag (struct rl_softc *);
324 #endif
325
326 static void re_add_sysctls (struct rl_softc *);
327 static int re_sysctl_stats (SYSCTL_HANDLER_ARGS);
328 static int sysctl_int_range (SYSCTL_HANDLER_ARGS, int, int);
329 static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS);
330
331 static device_method_t re_methods[] = {
332 /* Device interface */
333 DEVMETHOD(device_probe, re_probe),
334 DEVMETHOD(device_attach, re_attach),
335 DEVMETHOD(device_detach, re_detach),
336 DEVMETHOD(device_suspend, re_suspend),
337 DEVMETHOD(device_resume, re_resume),
338 DEVMETHOD(device_shutdown, re_shutdown),
339
340 /* MII interface */
341 DEVMETHOD(miibus_readreg, re_miibus_readreg),
342 DEVMETHOD(miibus_writereg, re_miibus_writereg),
343 DEVMETHOD(miibus_statchg, re_miibus_statchg),
344
345 DEVMETHOD_END
346 };
347
348 static driver_t re_driver = {
349 "re",
350 re_methods,
351 sizeof(struct rl_softc)
352 };
353
354 DRIVER_MODULE(re, pci, re_driver, 0, 0);
355 DRIVER_MODULE(miibus, re, miibus_driver, 0, 0);
356
357 #define EE_SET(x) \
358 CSR_WRITE_1(sc, RL_EECMD, \
359 CSR_READ_1(sc, RL_EECMD) | x)
360
361 #define EE_CLR(x) \
362 CSR_WRITE_1(sc, RL_EECMD, \
363 CSR_READ_1(sc, RL_EECMD) & ~x)
364
365 /*
366 * Send a read command and address to the EEPROM, check for ACK.
367 */
368 static void
re_eeprom_putbyte(struct rl_softc * sc,int addr)369 re_eeprom_putbyte(struct rl_softc *sc, int addr)
370 {
371 int d, i;
372
373 d = addr | (RL_9346_READ << sc->rl_eewidth);
374
375 /*
376 * Feed in each bit and strobe the clock.
377 */
378
379 for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
380 if (d & i) {
381 EE_SET(RL_EE_DATAIN);
382 } else {
383 EE_CLR(RL_EE_DATAIN);
384 }
385 DELAY(100);
386 EE_SET(RL_EE_CLK);
387 DELAY(150);
388 EE_CLR(RL_EE_CLK);
389 DELAY(100);
390 }
391 }
392
393 /*
394 * Read a word of data stored in the EEPROM at address 'addr.'
395 */
396 static void
re_eeprom_getword(struct rl_softc * sc,int addr,u_int16_t * dest)397 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
398 {
399 int i;
400 u_int16_t word = 0;
401
402 /*
403 * Send address of word we want to read.
404 */
405 re_eeprom_putbyte(sc, addr);
406
407 /*
408 * Start reading bits from EEPROM.
409 */
410 for (i = 0x8000; i; i >>= 1) {
411 EE_SET(RL_EE_CLK);
412 DELAY(100);
413 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
414 word |= i;
415 EE_CLR(RL_EE_CLK);
416 DELAY(100);
417 }
418
419 *dest = word;
420 }
421
422 /*
423 * Read a sequence of words from the EEPROM.
424 */
425 static void
re_read_eeprom(struct rl_softc * sc,caddr_t dest,int off,int cnt)426 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
427 {
428 int i;
429 u_int16_t word = 0, *ptr;
430
431 CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
432
433 DELAY(100);
434
435 for (i = 0; i < cnt; i++) {
436 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
437 re_eeprom_getword(sc, off + i, &word);
438 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
439 ptr = (u_int16_t *)(dest + (i * 2));
440 *ptr = word;
441 }
442
443 CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
444 }
445
446 static int
re_gmii_readreg(device_t dev,int phy,int reg)447 re_gmii_readreg(device_t dev, int phy, int reg)
448 {
449 struct rl_softc *sc;
450 u_int32_t rval;
451 int i;
452
453 sc = device_get_softc(dev);
454
455 /* Let the rgephy driver read the GMEDIASTAT register */
456
457 if (reg == RL_GMEDIASTAT) {
458 rval = CSR_READ_1(sc, RL_GMEDIASTAT);
459 return (rval);
460 }
461
462 CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
463
464 for (i = 0; i < RL_PHY_TIMEOUT; i++) {
465 rval = CSR_READ_4(sc, RL_PHYAR);
466 if (rval & RL_PHYAR_BUSY)
467 break;
468 DELAY(25);
469 }
470
471 if (i == RL_PHY_TIMEOUT) {
472 device_printf(sc->rl_dev, "PHY read failed\n");
473 return (0);
474 }
475
476 /*
477 * Controller requires a 20us delay to process next MDIO request.
478 */
479 DELAY(20);
480
481 return (rval & RL_PHYAR_PHYDATA);
482 }
483
484 static int
re_gmii_writereg(device_t dev,int phy,int reg,int data)485 re_gmii_writereg(device_t dev, int phy, int reg, int data)
486 {
487 struct rl_softc *sc;
488 u_int32_t rval;
489 int i;
490
491 sc = device_get_softc(dev);
492
493 CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
494 (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
495
496 for (i = 0; i < RL_PHY_TIMEOUT; i++) {
497 rval = CSR_READ_4(sc, RL_PHYAR);
498 if (!(rval & RL_PHYAR_BUSY))
499 break;
500 DELAY(25);
501 }
502
503 if (i == RL_PHY_TIMEOUT) {
504 device_printf(sc->rl_dev, "PHY write failed\n");
505 return (0);
506 }
507
508 /*
509 * Controller requires a 20us delay to process next MDIO request.
510 */
511 DELAY(20);
512
513 return (0);
514 }
515
516 static int
re_miibus_readreg(device_t dev,int phy,int reg)517 re_miibus_readreg(device_t dev, int phy, int reg)
518 {
519 struct rl_softc *sc;
520 u_int16_t rval = 0;
521 u_int16_t re8139_reg = 0;
522
523 sc = device_get_softc(dev);
524
525 if (sc->rl_type == RL_8169) {
526 rval = re_gmii_readreg(dev, phy, reg);
527 return (rval);
528 }
529
530 switch (reg) {
531 case MII_BMCR:
532 re8139_reg = RL_BMCR;
533 break;
534 case MII_BMSR:
535 re8139_reg = RL_BMSR;
536 break;
537 case MII_ANAR:
538 re8139_reg = RL_ANAR;
539 break;
540 case MII_ANER:
541 re8139_reg = RL_ANER;
542 break;
543 case MII_ANLPAR:
544 re8139_reg = RL_LPAR;
545 break;
546 case MII_PHYIDR1:
547 case MII_PHYIDR2:
548 return (0);
549 /*
550 * Allow the rlphy driver to read the media status
551 * register. If we have a link partner which does not
552 * support NWAY, this is the register which will tell
553 * us the results of parallel detection.
554 */
555 case RL_MEDIASTAT:
556 rval = CSR_READ_1(sc, RL_MEDIASTAT);
557 return (rval);
558 default:
559 device_printf(sc->rl_dev, "bad phy register\n");
560 return (0);
561 }
562 rval = CSR_READ_2(sc, re8139_reg);
563 if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
564 /* 8139C+ has different bit layout. */
565 rval &= ~(BMCR_LOOP | BMCR_ISO);
566 }
567 return (rval);
568 }
569
570 static int
re_miibus_writereg(device_t dev,int phy,int reg,int data)571 re_miibus_writereg(device_t dev, int phy, int reg, int data)
572 {
573 struct rl_softc *sc;
574 u_int16_t re8139_reg = 0;
575 int rval = 0;
576
577 sc = device_get_softc(dev);
578
579 if (sc->rl_type == RL_8169) {
580 rval = re_gmii_writereg(dev, phy, reg, data);
581 return (rval);
582 }
583
584 switch (reg) {
585 case MII_BMCR:
586 re8139_reg = RL_BMCR;
587 if (sc->rl_type == RL_8139CPLUS) {
588 /* 8139C+ has different bit layout. */
589 data &= ~(BMCR_LOOP | BMCR_ISO);
590 }
591 break;
592 case MII_BMSR:
593 re8139_reg = RL_BMSR;
594 break;
595 case MII_ANAR:
596 re8139_reg = RL_ANAR;
597 break;
598 case MII_ANER:
599 re8139_reg = RL_ANER;
600 break;
601 case MII_ANLPAR:
602 re8139_reg = RL_LPAR;
603 break;
604 case MII_PHYIDR1:
605 case MII_PHYIDR2:
606 return (0);
607 break;
608 default:
609 device_printf(sc->rl_dev, "bad phy register\n");
610 return (0);
611 }
612 CSR_WRITE_2(sc, re8139_reg, data);
613 return (0);
614 }
615
616 static void
re_miibus_statchg(device_t dev)617 re_miibus_statchg(device_t dev)
618 {
619 struct rl_softc *sc;
620 if_t ifp;
621 struct mii_data *mii;
622
623 sc = device_get_softc(dev);
624 mii = device_get_softc(sc->rl_miibus);
625 ifp = sc->rl_ifp;
626 if (mii == NULL || ifp == NULL ||
627 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
628 return;
629
630 sc->rl_flags &= ~RL_FLAG_LINK;
631 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
632 (IFM_ACTIVE | IFM_AVALID)) {
633 switch (IFM_SUBTYPE(mii->mii_media_active)) {
634 case IFM_10_T:
635 case IFM_100_TX:
636 sc->rl_flags |= RL_FLAG_LINK;
637 break;
638 case IFM_1000_T:
639 if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
640 break;
641 sc->rl_flags |= RL_FLAG_LINK;
642 break;
643 default:
644 break;
645 }
646 }
647 /*
648 * RealTek controllers do not provide any interface to the RX/TX
649 * MACs for resolved speed, duplex and flow-control parameters.
650 */
651 }
652
653 static u_int
re_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)654 re_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
655 {
656 uint32_t h, *hashes = arg;
657
658 h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
659 if (h < 32)
660 hashes[0] |= (1 << h);
661 else
662 hashes[1] |= (1 << (h - 32));
663
664 return (1);
665 }
666
667 /*
668 * Set the RX configuration and 64-bit multicast hash filter.
669 */
670 static void
re_set_rxmode(struct rl_softc * sc)671 re_set_rxmode(struct rl_softc *sc)
672 {
673 if_t ifp;
674 uint32_t h, hashes[2] = { 0, 0 };
675 uint32_t rxfilt;
676
677 RL_LOCK_ASSERT(sc);
678
679 ifp = sc->rl_ifp;
680
681 rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
682 if ((sc->rl_flags & RL_FLAG_EARLYOFF) != 0)
683 rxfilt |= RL_RXCFG_EARLYOFF;
684 else if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0)
685 rxfilt |= RL_RXCFG_EARLYOFFV2;
686
687 if (if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) {
688 if (if_getflags(ifp) & IFF_PROMISC)
689 rxfilt |= RL_RXCFG_RX_ALLPHYS;
690 /*
691 * Unlike other hardwares, we have to explicitly set
692 * RL_RXCFG_RX_MULTI to receive multicast frames in
693 * promiscuous mode.
694 */
695 rxfilt |= RL_RXCFG_RX_MULTI;
696 hashes[0] = hashes[1] = 0xffffffff;
697 goto done;
698 }
699
700 if_foreach_llmaddr(ifp, re_hash_maddr, hashes);
701
702 if (hashes[0] != 0 || hashes[1] != 0) {
703 /*
704 * For some unfathomable reason, RealTek decided to
705 * reverse the order of the multicast hash registers
706 * in the PCI Express parts. This means we have to
707 * write the hash pattern in reverse order for those
708 * devices.
709 */
710 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
711 h = bswap32(hashes[0]);
712 hashes[0] = bswap32(hashes[1]);
713 hashes[1] = h;
714 }
715 rxfilt |= RL_RXCFG_RX_MULTI;
716 }
717
718 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168F) {
719 /* Disable multicast filtering due to silicon bug. */
720 hashes[0] = 0xffffffff;
721 hashes[1] = 0xffffffff;
722 }
723
724 done:
725 CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
726 CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
727 CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
728 }
729
730 static void
re_reset(struct rl_softc * sc)731 re_reset(struct rl_softc *sc)
732 {
733 int i;
734
735 RL_LOCK_ASSERT(sc);
736
737 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
738
739 for (i = 0; i < RL_TIMEOUT; i++) {
740 DELAY(10);
741 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
742 break;
743 }
744 if (i == RL_TIMEOUT)
745 device_printf(sc->rl_dev, "reset never completed!\n");
746
747 if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
748 CSR_WRITE_1(sc, 0x82, 1);
749 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
750 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
751 }
752
753 #ifdef RE_DIAG
754
755 /*
756 * The following routine is designed to test for a defect on some
757 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
758 * lines connected to the bus, however for a 32-bit only card, they
759 * should be pulled high. The result of this defect is that the
760 * NIC will not work right if you plug it into a 64-bit slot: DMA
761 * operations will be done with 64-bit transfers, which will fail
762 * because the 64-bit data lines aren't connected.
763 *
764 * There's no way to work around this (short of talking a soldering
765 * iron to the board), however we can detect it. The method we use
766 * here is to put the NIC into digital loopback mode, set the receiver
767 * to promiscuous mode, and then try to send a frame. We then compare
768 * the frame data we sent to what was received. If the data matches,
769 * then the NIC is working correctly, otherwise we know the user has
770 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
771 * slot. In the latter case, there's no way the NIC can work correctly,
772 * so we print out a message on the console and abort the device attach.
773 */
774
775 static int
re_diag(struct rl_softc * sc)776 re_diag(struct rl_softc *sc)
777 {
778 if_t ifp = sc->rl_ifp;
779 struct mbuf *m0;
780 struct ether_header *eh;
781 struct rl_desc *cur_rx;
782 u_int16_t status;
783 u_int32_t rxstat;
784 int total_len, i, error = 0, phyaddr;
785 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
786 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
787
788 /* Allocate a single mbuf */
789 MGETHDR(m0, M_NOWAIT, MT_DATA);
790 if (m0 == NULL)
791 return (ENOBUFS);
792
793 RL_LOCK(sc);
794
795 /*
796 * Initialize the NIC in test mode. This sets the chip up
797 * so that it can send and receive frames, but performs the
798 * following special functions:
799 * - Puts receiver in promiscuous mode
800 * - Enables digital loopback mode
801 * - Leaves interrupts turned off
802 */
803
804 if_setflagbit(ifp, IFF_PROMISC, 0);
805 sc->rl_testmode = 1;
806 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
807 re_init_locked(sc);
808 sc->rl_flags |= RL_FLAG_LINK;
809 if (sc->rl_type == RL_8169)
810 phyaddr = 1;
811 else
812 phyaddr = 0;
813
814 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
815 for (i = 0; i < RL_TIMEOUT; i++) {
816 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
817 if (!(status & BMCR_RESET))
818 break;
819 }
820
821 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
822 CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
823
824 DELAY(100000);
825
826 /* Put some data in the mbuf */
827
828 eh = mtod(m0, struct ether_header *);
829 bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
830 bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
831 eh->ether_type = htons(ETHERTYPE_IP);
832 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
833
834 /*
835 * Queue the packet, start transmission.
836 * Note: IF_HANDOFF() ultimately calls re_start() for us.
837 */
838
839 CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
840 RL_UNLOCK(sc);
841 /* XXX: re_diag must not be called when in ALTQ mode */
842 if_handoff(ifp, m0, ifp);
843 RL_LOCK(sc);
844 m0 = NULL;
845
846 /* Wait for it to propagate through the chip */
847
848 DELAY(100000);
849 for (i = 0; i < RL_TIMEOUT; i++) {
850 status = CSR_READ_2(sc, RL_ISR);
851 CSR_WRITE_2(sc, RL_ISR, status);
852 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
853 (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
854 break;
855 DELAY(10);
856 }
857
858 if (i == RL_TIMEOUT) {
859 device_printf(sc->rl_dev,
860 "diagnostic failed, failed to receive packet in"
861 " loopback mode\n");
862 error = EIO;
863 goto done;
864 }
865
866 /*
867 * The packet should have been dumped into the first
868 * entry in the RX DMA ring. Grab it from there.
869 */
870
871 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
872 sc->rl_ldata.rl_rx_list_map,
873 BUS_DMASYNC_POSTREAD);
874 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
875 sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
876 BUS_DMASYNC_POSTREAD);
877 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
878 sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
879
880 m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
881 sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
882 eh = mtod(m0, struct ether_header *);
883
884 cur_rx = &sc->rl_ldata.rl_rx_list[0];
885 total_len = RL_RXBYTES(cur_rx);
886 rxstat = le32toh(cur_rx->rl_cmdstat);
887
888 if (total_len != ETHER_MIN_LEN) {
889 device_printf(sc->rl_dev,
890 "diagnostic failed, received short packet\n");
891 error = EIO;
892 goto done;
893 }
894
895 /* Test that the received packet data matches what we sent. */
896
897 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
898 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
899 ntohs(eh->ether_type) != ETHERTYPE_IP) {
900 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
901 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
902 dst, ":", src, ":", ETHERTYPE_IP);
903 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
904 eh->ether_dhost, ":", eh->ether_shost, ":",
905 ntohs(eh->ether_type));
906 device_printf(sc->rl_dev, "You may have a defective 32-bit "
907 "NIC plugged into a 64-bit PCI slot.\n");
908 device_printf(sc->rl_dev, "Please re-install the NIC in a "
909 "32-bit slot for proper operation.\n");
910 device_printf(sc->rl_dev, "Read the re(4) man page for more "
911 "details.\n");
912 error = EIO;
913 }
914
915 done:
916 /* Turn interface off, release resources */
917
918 sc->rl_testmode = 0;
919 sc->rl_flags &= ~RL_FLAG_LINK;
920 if_setflagbit(ifp, 0, IFF_PROMISC);
921 re_stop(sc);
922 if (m0 != NULL)
923 m_freem(m0);
924
925 RL_UNLOCK(sc);
926
927 return (error);
928 }
929
930 #endif
931
932 /*
933 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
934 * IDs against our list and return a device name if we find a match.
935 */
936 static int
re_probe(device_t dev)937 re_probe(device_t dev)
938 {
939 const struct rl_type *t;
940 uint16_t devid, vendor;
941 uint16_t revid, sdevid;
942 int i;
943
944 vendor = pci_get_vendor(dev);
945 devid = pci_get_device(dev);
946 revid = pci_get_revid(dev);
947 sdevid = pci_get_subdevice(dev);
948
949 if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
950 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
951 /*
952 * Only attach to rev. 3 of the Linksys EG1032 adapter.
953 * Rev. 2 is supported by sk(4).
954 */
955 return (ENXIO);
956 }
957 }
958
959 if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
960 if (revid != 0x20) {
961 /* 8139, let rl(4) take care of this device. */
962 return (ENXIO);
963 }
964 }
965
966 t = re_devs;
967 for (i = 0; i < nitems(re_devs); i++, t++) {
968 if (vendor == t->rl_vid && devid == t->rl_did) {
969 device_set_desc(dev, t->rl_name);
970 return (BUS_PROBE_DEFAULT);
971 }
972 }
973
974 return (ENXIO);
975 }
976
977 /*
978 * Map a single buffer address.
979 */
980
981 static void
re_dma_map_addr(void * arg,bus_dma_segment_t * segs,int nseg,int error)982 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
983 {
984 bus_addr_t *addr;
985
986 if (error)
987 return;
988
989 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
990 addr = arg;
991 *addr = segs->ds_addr;
992 }
993
994 static int
re_allocmem(device_t dev,struct rl_softc * sc)995 re_allocmem(device_t dev, struct rl_softc *sc)
996 {
997 bus_addr_t lowaddr;
998 bus_size_t rx_list_size, tx_list_size;
999 int error;
1000 int i;
1001
1002 rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
1003 tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
1004
1005 /*
1006 * Allocate the parent bus DMA tag appropriate for PCI.
1007 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
1008 * register should be set. However some RealTek chips are known
1009 * to be buggy on DAC handling, therefore disable DAC by limiting
1010 * DMA address space to 32bit. PCIe variants of RealTek chips
1011 * may not have the limitation.
1012 */
1013 lowaddr = BUS_SPACE_MAXADDR;
1014 if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
1015 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1016 error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
1017 lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
1018 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1019 NULL, NULL, &sc->rl_parent_tag);
1020 if (error) {
1021 device_printf(dev, "could not allocate parent DMA tag\n");
1022 return (error);
1023 }
1024
1025 /*
1026 * Allocate map for TX mbufs.
1027 */
1028 error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
1029 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1030 NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
1031 NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1032 if (error) {
1033 device_printf(dev, "could not allocate TX DMA tag\n");
1034 return (error);
1035 }
1036
1037 /*
1038 * Allocate map for RX mbufs.
1039 */
1040
1041 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1042 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
1043 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1044 MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
1045 &sc->rl_ldata.rl_jrx_mtag);
1046 if (error) {
1047 device_printf(dev,
1048 "could not allocate jumbo RX DMA tag\n");
1049 return (error);
1050 }
1051 }
1052 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1053 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1054 MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1055 if (error) {
1056 device_printf(dev, "could not allocate RX DMA tag\n");
1057 return (error);
1058 }
1059
1060 /*
1061 * Allocate map for TX descriptor list.
1062 */
1063 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1064 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1065 NULL, tx_list_size, 1, tx_list_size, 0,
1066 NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1067 if (error) {
1068 device_printf(dev, "could not allocate TX DMA ring tag\n");
1069 return (error);
1070 }
1071
1072 /* Allocate DMA'able memory for the TX ring */
1073
1074 error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1075 (void **)&sc->rl_ldata.rl_tx_list,
1076 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1077 &sc->rl_ldata.rl_tx_list_map);
1078 if (error) {
1079 device_printf(dev, "could not allocate TX DMA ring\n");
1080 return (error);
1081 }
1082
1083 /* Load the map for the TX ring. */
1084
1085 sc->rl_ldata.rl_tx_list_addr = 0;
1086 error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1087 sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1088 tx_list_size, re_dma_map_addr,
1089 &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1090 if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1091 device_printf(dev, "could not load TX DMA ring\n");
1092 return (ENOMEM);
1093 }
1094
1095 /* Create DMA maps for TX buffers */
1096
1097 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1098 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1099 &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1100 if (error) {
1101 device_printf(dev, "could not create DMA map for TX\n");
1102 return (error);
1103 }
1104 }
1105
1106 /*
1107 * Allocate map for RX descriptor list.
1108 */
1109 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1110 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1111 NULL, rx_list_size, 1, rx_list_size, 0,
1112 NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1113 if (error) {
1114 device_printf(dev, "could not create RX DMA ring tag\n");
1115 return (error);
1116 }
1117
1118 /* Allocate DMA'able memory for the RX ring */
1119
1120 error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1121 (void **)&sc->rl_ldata.rl_rx_list,
1122 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1123 &sc->rl_ldata.rl_rx_list_map);
1124 if (error) {
1125 device_printf(dev, "could not allocate RX DMA ring\n");
1126 return (error);
1127 }
1128
1129 /* Load the map for the RX ring. */
1130
1131 sc->rl_ldata.rl_rx_list_addr = 0;
1132 error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1133 sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1134 rx_list_size, re_dma_map_addr,
1135 &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1136 if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1137 device_printf(dev, "could not load RX DMA ring\n");
1138 return (ENOMEM);
1139 }
1140
1141 /* Create DMA maps for RX buffers */
1142
1143 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1144 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1145 &sc->rl_ldata.rl_jrx_sparemap);
1146 if (error) {
1147 device_printf(dev,
1148 "could not create spare DMA map for jumbo RX\n");
1149 return (error);
1150 }
1151 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1152 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1153 &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1154 if (error) {
1155 device_printf(dev,
1156 "could not create DMA map for jumbo RX\n");
1157 return (error);
1158 }
1159 }
1160 }
1161 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1162 &sc->rl_ldata.rl_rx_sparemap);
1163 if (error) {
1164 device_printf(dev, "could not create spare DMA map for RX\n");
1165 return (error);
1166 }
1167 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1168 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1169 &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1170 if (error) {
1171 device_printf(dev, "could not create DMA map for RX\n");
1172 return (error);
1173 }
1174 }
1175
1176 /* Create DMA map for statistics. */
1177 error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1178 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1179 sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1180 &sc->rl_ldata.rl_stag);
1181 if (error) {
1182 device_printf(dev, "could not create statistics DMA tag\n");
1183 return (error);
1184 }
1185 /* Allocate DMA'able memory for statistics. */
1186 error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1187 (void **)&sc->rl_ldata.rl_stats,
1188 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1189 &sc->rl_ldata.rl_smap);
1190 if (error) {
1191 device_printf(dev,
1192 "could not allocate statistics DMA memory\n");
1193 return (error);
1194 }
1195 /* Load the map for statistics. */
1196 sc->rl_ldata.rl_stats_addr = 0;
1197 error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1198 sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1199 &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1200 if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1201 device_printf(dev, "could not load statistics DMA memory\n");
1202 return (ENOMEM);
1203 }
1204
1205 return (0);
1206 }
1207
1208 /*
1209 * Attach the interface. Allocate softc structures, do ifmedia
1210 * setup and ethernet/BPF attach.
1211 */
1212 static int
re_attach(device_t dev)1213 re_attach(device_t dev)
1214 {
1215 u_char eaddr[ETHER_ADDR_LEN];
1216 u_int16_t as[ETHER_ADDR_LEN / 2];
1217 struct rl_softc *sc;
1218 if_t ifp;
1219 const struct rl_hwrev *hw_rev;
1220 int capmask, error = 0, hwrev, i, msic, msixc,
1221 phy, reg, rid;
1222 u_int32_t cap, ctl;
1223 u_int16_t devid, re_did = 0;
1224 uint8_t cfg;
1225
1226 sc = device_get_softc(dev);
1227 sc->rl_dev = dev;
1228
1229 mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1230 MTX_DEF);
1231 callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1232
1233 /*
1234 * Map control/status registers.
1235 */
1236 pci_enable_busmaster(dev);
1237
1238 devid = pci_get_device(dev);
1239 /*
1240 * Prefer memory space register mapping over IO space.
1241 * Because RTL8169SC does not seem to work when memory mapping
1242 * is used always activate io mapping.
1243 */
1244 if (devid == RT_DEVICEID_8169SC)
1245 prefer_iomap = 1;
1246 if (prefer_iomap == 0) {
1247 sc->rl_res_id = PCIR_BAR(1);
1248 sc->rl_res_type = SYS_RES_MEMORY;
1249 /* RTL8168/8101E seems to use different BARs. */
1250 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1251 sc->rl_res_id = PCIR_BAR(2);
1252 } else {
1253 sc->rl_res_id = PCIR_BAR(0);
1254 sc->rl_res_type = SYS_RES_IOPORT;
1255 }
1256 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1257 &sc->rl_res_id, RF_ACTIVE);
1258 if (sc->rl_res == NULL && prefer_iomap == 0) {
1259 sc->rl_res_id = PCIR_BAR(0);
1260 sc->rl_res_type = SYS_RES_IOPORT;
1261 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1262 &sc->rl_res_id, RF_ACTIVE);
1263 }
1264 if (sc->rl_res == NULL) {
1265 device_printf(dev, "couldn't map ports/memory\n");
1266 error = ENXIO;
1267 goto fail;
1268 }
1269
1270 sc->rl_btag = rman_get_bustag(sc->rl_res);
1271 sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1272
1273 msic = pci_msi_count(dev);
1274 msixc = pci_msix_count(dev);
1275 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) {
1276 sc->rl_flags |= RL_FLAG_PCIE;
1277 sc->rl_expcap = reg;
1278 }
1279 if (bootverbose) {
1280 device_printf(dev, "MSI count : %d\n", msic);
1281 device_printf(dev, "MSI-X count : %d\n", msixc);
1282 }
1283 if (msix_disable > 0)
1284 msixc = 0;
1285 if (msi_disable > 0)
1286 msic = 0;
1287 /* Prefer MSI-X to MSI. */
1288 if (msixc > 0) {
1289 msixc = RL_MSI_MESSAGES;
1290 rid = PCIR_BAR(4);
1291 sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1292 &rid, RF_ACTIVE);
1293 if (sc->rl_res_pba == NULL) {
1294 device_printf(sc->rl_dev,
1295 "could not allocate MSI-X PBA resource\n");
1296 }
1297 if (sc->rl_res_pba != NULL &&
1298 pci_alloc_msix(dev, &msixc) == 0) {
1299 if (msixc == RL_MSI_MESSAGES) {
1300 device_printf(dev, "Using %d MSI-X message\n",
1301 msixc);
1302 sc->rl_flags |= RL_FLAG_MSIX;
1303 } else
1304 pci_release_msi(dev);
1305 }
1306 if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
1307 if (sc->rl_res_pba != NULL)
1308 bus_release_resource(dev, SYS_RES_MEMORY, rid,
1309 sc->rl_res_pba);
1310 sc->rl_res_pba = NULL;
1311 msixc = 0;
1312 }
1313 }
1314 /* Prefer MSI to INTx. */
1315 if (msixc == 0 && msic > 0) {
1316 msic = RL_MSI_MESSAGES;
1317 if (pci_alloc_msi(dev, &msic) == 0) {
1318 if (msic == RL_MSI_MESSAGES) {
1319 device_printf(dev, "Using %d MSI message\n",
1320 msic);
1321 sc->rl_flags |= RL_FLAG_MSI;
1322 /* Explicitly set MSI enable bit. */
1323 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1324 cfg = CSR_READ_1(sc, RL_CFG2);
1325 cfg |= RL_CFG2_MSI;
1326 CSR_WRITE_1(sc, RL_CFG2, cfg);
1327 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1328 } else
1329 pci_release_msi(dev);
1330 }
1331 if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1332 msic = 0;
1333 }
1334
1335 /* Allocate interrupt */
1336 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
1337 rid = 0;
1338 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1339 RF_SHAREABLE | RF_ACTIVE);
1340 if (sc->rl_irq[0] == NULL) {
1341 device_printf(dev, "couldn't allocate IRQ resources\n");
1342 error = ENXIO;
1343 goto fail;
1344 }
1345 } else {
1346 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1347 sc->rl_irq[i] = bus_alloc_resource_any(dev,
1348 SYS_RES_IRQ, &rid, RF_ACTIVE);
1349 if (sc->rl_irq[i] == NULL) {
1350 device_printf(dev,
1351 "couldn't allocate IRQ resources for "
1352 "message %d\n", rid);
1353 error = ENXIO;
1354 goto fail;
1355 }
1356 }
1357 }
1358
1359 if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1360 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1361 cfg = CSR_READ_1(sc, RL_CFG2);
1362 if ((cfg & RL_CFG2_MSI) != 0) {
1363 device_printf(dev, "turning off MSI enable bit.\n");
1364 cfg &= ~RL_CFG2_MSI;
1365 CSR_WRITE_1(sc, RL_CFG2, cfg);
1366 }
1367 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1368 }
1369
1370 /* Disable ASPM L0S/L1 and CLKREQ. */
1371 if (sc->rl_expcap != 0) {
1372 cap = pci_read_config(dev, sc->rl_expcap +
1373 PCIER_LINK_CAP, 2);
1374 if ((cap & PCIEM_LINK_CAP_ASPM) != 0) {
1375 ctl = pci_read_config(dev, sc->rl_expcap +
1376 PCIER_LINK_CTL, 2);
1377 if ((ctl & (PCIEM_LINK_CTL_ECPM |
1378 PCIEM_LINK_CTL_ASPMC))!= 0) {
1379 ctl &= ~(PCIEM_LINK_CTL_ECPM |
1380 PCIEM_LINK_CTL_ASPMC);
1381 pci_write_config(dev, sc->rl_expcap +
1382 PCIER_LINK_CTL, ctl, 2);
1383 device_printf(dev, "ASPM disabled\n");
1384 }
1385 } else
1386 device_printf(dev, "no ASPM capability\n");
1387 }
1388
1389 hw_rev = re_hwrevs;
1390 hwrev = CSR_READ_4(sc, RL_TXCFG);
1391 switch (hwrev & 0x70000000) {
1392 case 0x00000000:
1393 case 0x10000000:
1394 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1395 hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1396 break;
1397 default:
1398 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1399 sc->rl_macrev = hwrev & 0x00700000;
1400 hwrev &= RL_TXCFG_HWREV;
1401 break;
1402 }
1403 device_printf(dev, "MAC rev. 0x%08x\n", sc->rl_macrev);
1404 while (hw_rev->rl_desc != NULL) {
1405 if (hw_rev->rl_rev == hwrev) {
1406 sc->rl_type = hw_rev->rl_type;
1407 sc->rl_hwrev = hw_rev;
1408 break;
1409 }
1410 hw_rev++;
1411 }
1412 if (hw_rev->rl_desc == NULL) {
1413 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1414 error = ENXIO;
1415 goto fail;
1416 }
1417
1418 switch (hw_rev->rl_rev) {
1419 case RL_HWREV_8139CPLUS:
1420 sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
1421 break;
1422 case RL_HWREV_8100E:
1423 case RL_HWREV_8101E:
1424 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1425 break;
1426 case RL_HWREV_8102E:
1427 case RL_HWREV_8102EL:
1428 case RL_HWREV_8102EL_SPIN1:
1429 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1430 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1431 RL_FLAG_AUTOPAD;
1432 break;
1433 case RL_HWREV_8103E:
1434 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1435 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1436 RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
1437 break;
1438 case RL_HWREV_8401E:
1439 case RL_HWREV_8105E:
1440 case RL_HWREV_8105E_SPIN1:
1441 case RL_HWREV_8106E:
1442 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1443 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1444 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1445 break;
1446 case RL_HWREV_8402:
1447 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1448 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1449 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
1450 RL_FLAG_CMDSTOP_WAIT_TXQ;
1451 break;
1452 case RL_HWREV_8168B_SPIN1:
1453 case RL_HWREV_8168B_SPIN2:
1454 sc->rl_flags |= RL_FLAG_WOLRXENB;
1455 /* FALLTHROUGH */
1456 case RL_HWREV_8168B_SPIN3:
1457 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1458 break;
1459 case RL_HWREV_8168C_SPIN2:
1460 sc->rl_flags |= RL_FLAG_MACSLEEP;
1461 /* FALLTHROUGH */
1462 case RL_HWREV_8168C:
1463 if (sc->rl_macrev == 0x00200000)
1464 sc->rl_flags |= RL_FLAG_MACSLEEP;
1465 /* FALLTHROUGH */
1466 case RL_HWREV_8168CP:
1467 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1468 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1469 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1470 break;
1471 case RL_HWREV_8168D:
1472 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1473 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1474 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1475 RL_FLAG_WOL_MANLINK;
1476 break;
1477 case RL_HWREV_8168DP:
1478 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1479 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD |
1480 RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK;
1481 break;
1482 case RL_HWREV_8168E:
1483 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1484 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1485 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1486 RL_FLAG_WOL_MANLINK;
1487 break;
1488 case RL_HWREV_8168E_VL:
1489 case RL_HWREV_8168F:
1490 sc->rl_flags |= RL_FLAG_EARLYOFF;
1491 /* FALLTHROUGH */
1492 case RL_HWREV_8411:
1493 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1494 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1495 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1496 RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK;
1497 break;
1498 case RL_HWREV_8168EP:
1499 case RL_HWREV_8168FP:
1500 case RL_HWREV_8168G:
1501 case RL_HWREV_8411B:
1502 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1503 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1504 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1505 RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK |
1506 RL_FLAG_8168G_PLUS;
1507 break;
1508 case RL_HWREV_8168GU:
1509 case RL_HWREV_8168H:
1510 if (pci_get_device(dev) == RT_DEVICEID_8101E) {
1511 /* RTL8106E(US), RTL8107E */
1512 sc->rl_flags |= RL_FLAG_FASTETHER;
1513 } else
1514 sc->rl_flags |= RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1515
1516 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1517 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1518 RL_FLAG_AUTOPAD | RL_FLAG_CMDSTOP_WAIT_TXQ |
1519 RL_FLAG_8168G_PLUS;
1520 break;
1521 case RL_HWREV_8169_8110SB:
1522 case RL_HWREV_8169_8110SBL:
1523 case RL_HWREV_8169_8110SC:
1524 case RL_HWREV_8169_8110SCE:
1525 sc->rl_flags |= RL_FLAG_PHYWAKE;
1526 /* FALLTHROUGH */
1527 case RL_HWREV_8169:
1528 case RL_HWREV_8169S:
1529 case RL_HWREV_8110S:
1530 sc->rl_flags |= RL_FLAG_MACRESET;
1531 break;
1532 default:
1533 break;
1534 }
1535
1536 if (sc->rl_hwrev->rl_rev == RL_HWREV_8139CPLUS) {
1537 sc->rl_cfg0 = RL_8139_CFG0;
1538 sc->rl_cfg1 = RL_8139_CFG1;
1539 sc->rl_cfg2 = 0;
1540 sc->rl_cfg3 = RL_8139_CFG3;
1541 sc->rl_cfg4 = RL_8139_CFG4;
1542 sc->rl_cfg5 = RL_8139_CFG5;
1543 } else {
1544 sc->rl_cfg0 = RL_CFG0;
1545 sc->rl_cfg1 = RL_CFG1;
1546 sc->rl_cfg2 = RL_CFG2;
1547 sc->rl_cfg3 = RL_CFG3;
1548 sc->rl_cfg4 = RL_CFG4;
1549 sc->rl_cfg5 = RL_CFG5;
1550 }
1551
1552 /* Reset the adapter. */
1553 RL_LOCK(sc);
1554 re_reset(sc);
1555 RL_UNLOCK(sc);
1556
1557 /* Enable PME. */
1558 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1559 cfg = CSR_READ_1(sc, sc->rl_cfg1);
1560 cfg |= RL_CFG1_PME;
1561 CSR_WRITE_1(sc, sc->rl_cfg1, cfg);
1562 cfg = CSR_READ_1(sc, sc->rl_cfg5);
1563 cfg &= RL_CFG5_PME_STS;
1564 CSR_WRITE_1(sc, sc->rl_cfg5, cfg);
1565 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1566
1567 if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1568 /*
1569 * XXX Should have a better way to extract station
1570 * address from EEPROM.
1571 */
1572 for (i = 0; i < ETHER_ADDR_LEN; i++)
1573 eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1574 } else {
1575 sc->rl_eewidth = RL_9356_ADDR_LEN;
1576 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1577 if (re_did != 0x8129)
1578 sc->rl_eewidth = RL_9346_ADDR_LEN;
1579
1580 /*
1581 * Get station address from the EEPROM.
1582 */
1583 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1584 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1585 as[i] = le16toh(as[i]);
1586 bcopy(as, eaddr, ETHER_ADDR_LEN);
1587 }
1588
1589 if (sc->rl_type == RL_8169) {
1590 /* Set RX length mask and number of descriptors. */
1591 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1592 sc->rl_txstart = RL_GTXSTART;
1593 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1594 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1595 } else {
1596 /* Set RX length mask and number of descriptors. */
1597 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1598 sc->rl_txstart = RL_TXSTART;
1599 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1600 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1601 }
1602
1603 error = re_allocmem(dev, sc);
1604 if (error)
1605 goto fail;
1606 re_add_sysctls(sc);
1607
1608 ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1609
1610 /* Take controller out of deep sleep mode. */
1611 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1612 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1613 CSR_WRITE_1(sc, RL_GPIO,
1614 CSR_READ_1(sc, RL_GPIO) | 0x01);
1615 else
1616 CSR_WRITE_1(sc, RL_GPIO,
1617 CSR_READ_1(sc, RL_GPIO) & ~0x01);
1618 }
1619
1620 /* Take PHY out of power down mode. */
1621 if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
1622 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1623 if (hw_rev->rl_rev == RL_HWREV_8401E)
1624 CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1625 }
1626 if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1627 re_gmii_writereg(dev, 1, 0x1f, 0);
1628 re_gmii_writereg(dev, 1, 0x0e, 0);
1629 }
1630
1631 if_setsoftc(ifp, sc);
1632 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1633 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1634 if_setioctlfn(ifp, re_ioctl);
1635 if_setstartfn(ifp, re_start);
1636 /*
1637 * RTL8168/8111C generates wrong IP checksummed frame if the
1638 * packet has IP options so disable TX checksum offloading.
1639 */
1640 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
1641 sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2 ||
1642 sc->rl_hwrev->rl_rev == RL_HWREV_8168CP) {
1643 if_sethwassist(ifp, 0);
1644 if_setcapabilities(ifp, IFCAP_RXCSUM | IFCAP_TSO4);
1645 } else {
1646 if_sethwassist(ifp, CSUM_IP | CSUM_TCP | CSUM_UDP);
1647 if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
1648 }
1649 if_sethwassistbits(ifp, CSUM_TSO, 0);
1650 if_setcapenable(ifp, if_getcapabilities(ifp));
1651 if_setinitfn(ifp, re_init);
1652 if_setsendqlen(ifp, RL_IFQ_MAXLEN);
1653 if_setsendqready(ifp);
1654
1655 NET_TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1656
1657 #define RE_PHYAD_INTERNAL 0
1658
1659 /* Do MII setup. */
1660 phy = RE_PHYAD_INTERNAL;
1661 if (sc->rl_type == RL_8169)
1662 phy = 1;
1663 capmask = BMSR_DEFCAPMASK;
1664 if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
1665 capmask &= ~BMSR_EXTSTAT;
1666 error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1667 re_ifmedia_sts, capmask, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1668 if (error != 0) {
1669 device_printf(dev, "attaching PHYs failed\n");
1670 goto fail;
1671 }
1672
1673 /* If address was not found, create one based on the hostid and name. */
1674 if (ETHER_IS_ZERO(eaddr)) {
1675 ether_gen_addr(ifp, (struct ether_addr *)eaddr);
1676 }
1677
1678 /*
1679 * Call MI attach routine.
1680 */
1681 ether_ifattach(ifp, eaddr);
1682
1683 /* VLAN capability setup */
1684 if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING, 0);
1685 if (if_getcapabilities(ifp) & IFCAP_HWCSUM)
1686 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
1687 /* Enable WOL if PM is supported. */
1688 if (pci_find_cap(sc->rl_dev, PCIY_PMG, ®) == 0)
1689 if_setcapabilitiesbit(ifp, IFCAP_WOL, 0);
1690 if_setcapenable(ifp, if_getcapabilities(ifp));
1691 if_setcapenablebit(ifp, 0, (IFCAP_WOL_UCAST | IFCAP_WOL_MCAST));
1692 /*
1693 * Don't enable TSO by default. It is known to generate
1694 * corrupted TCP segments(bad TCP options) under certain
1695 * circumstances.
1696 */
1697 if_sethwassistbits(ifp, 0, CSUM_TSO);
1698 if_setcapenablebit(ifp, 0, (IFCAP_TSO4 | IFCAP_VLAN_HWTSO));
1699 #ifdef DEVICE_POLLING
1700 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
1701 #endif
1702 /*
1703 * Tell the upper layer(s) we support long frames.
1704 * Must appear after the call to ether_ifattach() because
1705 * ether_ifattach() sets ifi_hdrlen to the default value.
1706 */
1707 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
1708
1709 #ifdef DEV_NETMAP
1710 re_netmap_attach(sc);
1711 #endif /* DEV_NETMAP */
1712
1713 #ifdef RE_DIAG
1714 /*
1715 * Perform hardware diagnostic on the original RTL8169.
1716 * Some 32-bit cards were incorrectly wired and would
1717 * malfunction if plugged into a 64-bit slot.
1718 */
1719 if (hwrev == RL_HWREV_8169) {
1720 error = re_diag(sc);
1721 if (error) {
1722 device_printf(dev,
1723 "attach aborted due to hardware diag failure\n");
1724 ether_ifdetach(ifp);
1725 goto fail;
1726 }
1727 }
1728 #endif
1729
1730 #ifdef RE_TX_MODERATION
1731 intr_filter = 1;
1732 #endif
1733 /* Hook interrupt last to avoid having to lock softc */
1734 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
1735 intr_filter == 0) {
1736 error = bus_setup_intr(dev, sc->rl_irq[0],
1737 INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
1738 &sc->rl_intrhand[0]);
1739 } else {
1740 error = bus_setup_intr(dev, sc->rl_irq[0],
1741 INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1742 &sc->rl_intrhand[0]);
1743 }
1744 if (error) {
1745 device_printf(dev, "couldn't set up irq\n");
1746 ether_ifdetach(ifp);
1747 goto fail;
1748 }
1749
1750 DEBUGNET_SET(ifp, re);
1751
1752 fail:
1753 if (error)
1754 re_detach(dev);
1755
1756 return (error);
1757 }
1758
1759 /*
1760 * Shutdown hardware and free up resources. This can be called any
1761 * time after the mutex has been initialized. It is called in both
1762 * the error case in attach and the normal detach case so it needs
1763 * to be careful about only freeing resources that have actually been
1764 * allocated.
1765 */
1766 static int
re_detach(device_t dev)1767 re_detach(device_t dev)
1768 {
1769 struct rl_softc *sc;
1770 if_t ifp;
1771 int i, rid;
1772
1773 sc = device_get_softc(dev);
1774 ifp = sc->rl_ifp;
1775 KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1776
1777 /* These should only be active if attach succeeded */
1778 if (device_is_attached(dev)) {
1779 #ifdef DEVICE_POLLING
1780 if (if_getcapenable(ifp) & IFCAP_POLLING)
1781 ether_poll_deregister(ifp);
1782 #endif
1783 RL_LOCK(sc);
1784 #if 0
1785 sc->suspended = 1;
1786 #endif
1787 re_stop(sc);
1788 RL_UNLOCK(sc);
1789 callout_drain(&sc->rl_stat_callout);
1790 taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1791 /*
1792 * Force off the IFF_UP flag here, in case someone
1793 * still had a BPF descriptor attached to this
1794 * interface. If they do, ether_ifdetach() will cause
1795 * the BPF code to try and clear the promisc mode
1796 * flag, which will bubble down to re_ioctl(),
1797 * which will try to call re_init() again. This will
1798 * turn the NIC back on and restart the MII ticker,
1799 * which will panic the system when the kernel tries
1800 * to invoke the re_tick() function that isn't there
1801 * anymore.
1802 */
1803 if_setflagbits(ifp, 0, IFF_UP);
1804 ether_ifdetach(ifp);
1805 }
1806 bus_generic_detach(dev);
1807
1808 /*
1809 * The rest is resource deallocation, so we should already be
1810 * stopped here.
1811 */
1812
1813 if (sc->rl_intrhand[0] != NULL) {
1814 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1815 sc->rl_intrhand[0] = NULL;
1816 }
1817 if (ifp != NULL) {
1818 #ifdef DEV_NETMAP
1819 netmap_detach(ifp);
1820 #endif /* DEV_NETMAP */
1821 if_free(ifp);
1822 }
1823 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
1824 rid = 0;
1825 else
1826 rid = 1;
1827 if (sc->rl_irq[0] != NULL) {
1828 bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
1829 sc->rl_irq[0] = NULL;
1830 }
1831 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
1832 pci_release_msi(dev);
1833 if (sc->rl_res_pba) {
1834 rid = PCIR_BAR(4);
1835 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
1836 }
1837 if (sc->rl_res)
1838 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1839 sc->rl_res);
1840
1841 /* Unload and free the RX DMA ring memory and map */
1842
1843 if (sc->rl_ldata.rl_rx_list_tag) {
1844 if (sc->rl_ldata.rl_rx_list_addr)
1845 bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1846 sc->rl_ldata.rl_rx_list_map);
1847 if (sc->rl_ldata.rl_rx_list)
1848 bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1849 sc->rl_ldata.rl_rx_list,
1850 sc->rl_ldata.rl_rx_list_map);
1851 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1852 }
1853
1854 /* Unload and free the TX DMA ring memory and map */
1855
1856 if (sc->rl_ldata.rl_tx_list_tag) {
1857 if (sc->rl_ldata.rl_tx_list_addr)
1858 bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1859 sc->rl_ldata.rl_tx_list_map);
1860 if (sc->rl_ldata.rl_tx_list)
1861 bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1862 sc->rl_ldata.rl_tx_list,
1863 sc->rl_ldata.rl_tx_list_map);
1864 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1865 }
1866
1867 /* Destroy all the RX and TX buffer maps */
1868
1869 if (sc->rl_ldata.rl_tx_mtag) {
1870 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1871 if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
1872 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1873 sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1874 }
1875 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1876 }
1877 if (sc->rl_ldata.rl_rx_mtag) {
1878 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1879 if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
1880 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1881 sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1882 }
1883 if (sc->rl_ldata.rl_rx_sparemap)
1884 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1885 sc->rl_ldata.rl_rx_sparemap);
1886 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1887 }
1888 if (sc->rl_ldata.rl_jrx_mtag) {
1889 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1890 if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
1891 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1892 sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1893 }
1894 if (sc->rl_ldata.rl_jrx_sparemap)
1895 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1896 sc->rl_ldata.rl_jrx_sparemap);
1897 bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
1898 }
1899 /* Unload and free the stats buffer and map */
1900
1901 if (sc->rl_ldata.rl_stag) {
1902 if (sc->rl_ldata.rl_stats_addr)
1903 bus_dmamap_unload(sc->rl_ldata.rl_stag,
1904 sc->rl_ldata.rl_smap);
1905 if (sc->rl_ldata.rl_stats)
1906 bus_dmamem_free(sc->rl_ldata.rl_stag,
1907 sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1908 bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1909 }
1910
1911 if (sc->rl_parent_tag)
1912 bus_dma_tag_destroy(sc->rl_parent_tag);
1913
1914 mtx_destroy(&sc->rl_mtx);
1915
1916 return (0);
1917 }
1918
1919 static __inline void
re_discard_rxbuf(struct rl_softc * sc,int idx)1920 re_discard_rxbuf(struct rl_softc *sc, int idx)
1921 {
1922 struct rl_desc *desc;
1923 struct rl_rxdesc *rxd;
1924 uint32_t cmdstat;
1925
1926 if (if_getmtu(sc->rl_ifp) > RL_MTU &&
1927 (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1928 rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1929 else
1930 rxd = &sc->rl_ldata.rl_rx_desc[idx];
1931 desc = &sc->rl_ldata.rl_rx_list[idx];
1932 desc->rl_vlanctl = 0;
1933 cmdstat = rxd->rx_size;
1934 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1935 cmdstat |= RL_RDESC_CMD_EOR;
1936 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1937 }
1938
1939 static int
re_newbuf(struct rl_softc * sc,int idx)1940 re_newbuf(struct rl_softc *sc, int idx)
1941 {
1942 struct mbuf *m;
1943 struct rl_rxdesc *rxd;
1944 bus_dma_segment_t segs[1];
1945 bus_dmamap_t map;
1946 struct rl_desc *desc;
1947 uint32_t cmdstat;
1948 int error, nsegs;
1949
1950 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1951 if (m == NULL)
1952 return (ENOBUFS);
1953
1954 m->m_len = m->m_pkthdr.len = MCLBYTES;
1955 #ifdef RE_FIXUP_RX
1956 /*
1957 * This is part of an evil trick to deal with non-x86 platforms.
1958 * The RealTek chip requires RX buffers to be aligned on 64-bit
1959 * boundaries, but that will hose non-x86 machines. To get around
1960 * this, we leave some empty space at the start of each buffer
1961 * and for non-x86 hosts, we copy the buffer back six bytes
1962 * to achieve word alignment. This is slightly more efficient
1963 * than allocating a new buffer, copying the contents, and
1964 * discarding the old buffer.
1965 */
1966 m_adj(m, RE_ETHER_ALIGN);
1967 #endif
1968 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1969 sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1970 if (error != 0) {
1971 m_freem(m);
1972 return (ENOBUFS);
1973 }
1974 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1975
1976 rxd = &sc->rl_ldata.rl_rx_desc[idx];
1977 if (rxd->rx_m != NULL) {
1978 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1979 BUS_DMASYNC_POSTREAD);
1980 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1981 }
1982
1983 rxd->rx_m = m;
1984 map = rxd->rx_dmamap;
1985 rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1986 rxd->rx_size = segs[0].ds_len;
1987 sc->rl_ldata.rl_rx_sparemap = map;
1988 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1989 BUS_DMASYNC_PREREAD);
1990
1991 desc = &sc->rl_ldata.rl_rx_list[idx];
1992 desc->rl_vlanctl = 0;
1993 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1994 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1995 cmdstat = segs[0].ds_len;
1996 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1997 cmdstat |= RL_RDESC_CMD_EOR;
1998 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1999
2000 return (0);
2001 }
2002
2003 static int
re_jumbo_newbuf(struct rl_softc * sc,int idx)2004 re_jumbo_newbuf(struct rl_softc *sc, int idx)
2005 {
2006 struct mbuf *m;
2007 struct rl_rxdesc *rxd;
2008 bus_dma_segment_t segs[1];
2009 bus_dmamap_t map;
2010 struct rl_desc *desc;
2011 uint32_t cmdstat;
2012 int error, nsegs;
2013
2014 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
2015 if (m == NULL)
2016 return (ENOBUFS);
2017 m->m_len = m->m_pkthdr.len = MJUM9BYTES;
2018 #ifdef RE_FIXUP_RX
2019 m_adj(m, RE_ETHER_ALIGN);
2020 #endif
2021 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
2022 sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
2023 if (error != 0) {
2024 m_freem(m);
2025 return (ENOBUFS);
2026 }
2027 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
2028
2029 rxd = &sc->rl_ldata.rl_jrx_desc[idx];
2030 if (rxd->rx_m != NULL) {
2031 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
2032 BUS_DMASYNC_POSTREAD);
2033 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
2034 }
2035
2036 rxd->rx_m = m;
2037 map = rxd->rx_dmamap;
2038 rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
2039 rxd->rx_size = segs[0].ds_len;
2040 sc->rl_ldata.rl_jrx_sparemap = map;
2041 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
2042 BUS_DMASYNC_PREREAD);
2043
2044 desc = &sc->rl_ldata.rl_rx_list[idx];
2045 desc->rl_vlanctl = 0;
2046 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
2047 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
2048 cmdstat = segs[0].ds_len;
2049 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
2050 cmdstat |= RL_RDESC_CMD_EOR;
2051 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
2052
2053 return (0);
2054 }
2055
2056 #ifdef RE_FIXUP_RX
2057 static __inline void
re_fixup_rx(struct mbuf * m)2058 re_fixup_rx(struct mbuf *m)
2059 {
2060 int i;
2061 uint16_t *src, *dst;
2062
2063 src = mtod(m, uint16_t *);
2064 dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
2065
2066 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2067 *dst++ = *src++;
2068
2069 m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
2070 }
2071 #endif
2072
2073 static int
re_tx_list_init(struct rl_softc * sc)2074 re_tx_list_init(struct rl_softc *sc)
2075 {
2076 struct rl_desc *desc;
2077 int i;
2078
2079 RL_LOCK_ASSERT(sc);
2080
2081 bzero(sc->rl_ldata.rl_tx_list,
2082 sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
2083 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
2084 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
2085 #ifdef DEV_NETMAP
2086 re_netmap_tx_init(sc);
2087 #endif /* DEV_NETMAP */
2088 /* Set EOR. */
2089 desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
2090 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
2091
2092 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2093 sc->rl_ldata.rl_tx_list_map,
2094 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2095
2096 sc->rl_ldata.rl_tx_prodidx = 0;
2097 sc->rl_ldata.rl_tx_considx = 0;
2098 sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
2099
2100 return (0);
2101 }
2102
2103 static int
re_rx_list_init(struct rl_softc * sc)2104 re_rx_list_init(struct rl_softc *sc)
2105 {
2106 int error, i;
2107
2108 bzero(sc->rl_ldata.rl_rx_list,
2109 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2110 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2111 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
2112 if ((error = re_newbuf(sc, i)) != 0)
2113 return (error);
2114 }
2115 #ifdef DEV_NETMAP
2116 re_netmap_rx_init(sc);
2117 #endif /* DEV_NETMAP */
2118
2119 /* Flush the RX descriptors */
2120
2121 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2122 sc->rl_ldata.rl_rx_list_map,
2123 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2124
2125 sc->rl_ldata.rl_rx_prodidx = 0;
2126 sc->rl_head = sc->rl_tail = NULL;
2127 sc->rl_int_rx_act = 0;
2128
2129 return (0);
2130 }
2131
2132 static int
re_jrx_list_init(struct rl_softc * sc)2133 re_jrx_list_init(struct rl_softc *sc)
2134 {
2135 int error, i;
2136
2137 bzero(sc->rl_ldata.rl_rx_list,
2138 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2139 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2140 sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
2141 if ((error = re_jumbo_newbuf(sc, i)) != 0)
2142 return (error);
2143 }
2144
2145 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2146 sc->rl_ldata.rl_rx_list_map,
2147 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2148
2149 sc->rl_ldata.rl_rx_prodidx = 0;
2150 sc->rl_head = sc->rl_tail = NULL;
2151 sc->rl_int_rx_act = 0;
2152
2153 return (0);
2154 }
2155
2156 /*
2157 * RX handler for C+ and 8169. For the gigE chips, we support
2158 * the reception of jumbo frames that have been fragmented
2159 * across multiple 2K mbuf cluster buffers.
2160 */
2161 static int
re_rxeof(struct rl_softc * sc,int * rx_npktsp)2162 re_rxeof(struct rl_softc *sc, int *rx_npktsp)
2163 {
2164 struct mbuf *m;
2165 if_t ifp;
2166 int i, rxerr, total_len;
2167 struct rl_desc *cur_rx;
2168 u_int32_t rxstat, rxvlan;
2169 int jumbo, maxpkt = 16, rx_npkts = 0;
2170
2171 RL_LOCK_ASSERT(sc);
2172
2173 ifp = sc->rl_ifp;
2174 #ifdef DEV_NETMAP
2175 if (netmap_rx_irq(ifp, 0, &rx_npkts))
2176 return 0;
2177 #endif /* DEV_NETMAP */
2178 if (if_getmtu(ifp) > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
2179 jumbo = 1;
2180 else
2181 jumbo = 0;
2182
2183 /* Invalidate the descriptor memory */
2184
2185 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2186 sc->rl_ldata.rl_rx_list_map,
2187 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2188
2189 for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
2190 i = RL_RX_DESC_NXT(sc, i)) {
2191 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
2192 break;
2193 cur_rx = &sc->rl_ldata.rl_rx_list[i];
2194 rxstat = le32toh(cur_rx->rl_cmdstat);
2195 if ((rxstat & RL_RDESC_STAT_OWN) != 0)
2196 break;
2197 total_len = rxstat & sc->rl_rxlenmask;
2198 rxvlan = le32toh(cur_rx->rl_vlanctl);
2199 if (jumbo != 0)
2200 m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
2201 else
2202 m = sc->rl_ldata.rl_rx_desc[i].rx_m;
2203
2204 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
2205 (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
2206 (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
2207 /*
2208 * RTL8168C or later controllers do not
2209 * support multi-fragment packet.
2210 */
2211 re_discard_rxbuf(sc, i);
2212 continue;
2213 } else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
2214 if (re_newbuf(sc, i) != 0) {
2215 /*
2216 * If this is part of a multi-fragment packet,
2217 * discard all the pieces.
2218 */
2219 if (sc->rl_head != NULL) {
2220 m_freem(sc->rl_head);
2221 sc->rl_head = sc->rl_tail = NULL;
2222 }
2223 re_discard_rxbuf(sc, i);
2224 continue;
2225 }
2226 m->m_len = RE_RX_DESC_BUFLEN;
2227 if (sc->rl_head == NULL)
2228 sc->rl_head = sc->rl_tail = m;
2229 else {
2230 m->m_flags &= ~M_PKTHDR;
2231 sc->rl_tail->m_next = m;
2232 sc->rl_tail = m;
2233 }
2234 continue;
2235 }
2236
2237 /*
2238 * NOTE: for the 8139C+, the frame length field
2239 * is always 12 bits in size, but for the gigE chips,
2240 * it is 13 bits (since the max RX frame length is 16K).
2241 * Unfortunately, all 32 bits in the status word
2242 * were already used, so to make room for the extra
2243 * length bit, RealTek took out the 'frame alignment
2244 * error' bit and shifted the other status bits
2245 * over one slot. The OWN, EOR, FS and LS bits are
2246 * still in the same places. We have already extracted
2247 * the frame length and checked the OWN bit, so rather
2248 * than using an alternate bit mapping, we shift the
2249 * status bits one space to the right so we can evaluate
2250 * them using the 8169 status as though it was in the
2251 * same format as that of the 8139C+.
2252 */
2253 if (sc->rl_type == RL_8169)
2254 rxstat >>= 1;
2255
2256 /*
2257 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
2258 * set, but if CRC is clear, it will still be a valid frame.
2259 */
2260 if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
2261 rxerr = 1;
2262 if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
2263 total_len > 8191 &&
2264 (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
2265 rxerr = 0;
2266 if (rxerr != 0) {
2267 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2268 /*
2269 * If this is part of a multi-fragment packet,
2270 * discard all the pieces.
2271 */
2272 if (sc->rl_head != NULL) {
2273 m_freem(sc->rl_head);
2274 sc->rl_head = sc->rl_tail = NULL;
2275 }
2276 re_discard_rxbuf(sc, i);
2277 continue;
2278 }
2279 }
2280
2281 /*
2282 * If allocating a replacement mbuf fails,
2283 * reload the current one.
2284 */
2285 if (jumbo != 0)
2286 rxerr = re_jumbo_newbuf(sc, i);
2287 else
2288 rxerr = re_newbuf(sc, i);
2289 if (rxerr != 0) {
2290 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2291 if (sc->rl_head != NULL) {
2292 m_freem(sc->rl_head);
2293 sc->rl_head = sc->rl_tail = NULL;
2294 }
2295 re_discard_rxbuf(sc, i);
2296 continue;
2297 }
2298
2299 if (sc->rl_head != NULL) {
2300 if (jumbo != 0)
2301 m->m_len = total_len;
2302 else {
2303 m->m_len = total_len % RE_RX_DESC_BUFLEN;
2304 if (m->m_len == 0)
2305 m->m_len = RE_RX_DESC_BUFLEN;
2306 }
2307 /*
2308 * Special case: if there's 4 bytes or less
2309 * in this buffer, the mbuf can be discarded:
2310 * the last 4 bytes is the CRC, which we don't
2311 * care about anyway.
2312 */
2313 if (m->m_len <= ETHER_CRC_LEN) {
2314 sc->rl_tail->m_len -=
2315 (ETHER_CRC_LEN - m->m_len);
2316 m_freem(m);
2317 } else {
2318 m->m_len -= ETHER_CRC_LEN;
2319 m->m_flags &= ~M_PKTHDR;
2320 sc->rl_tail->m_next = m;
2321 }
2322 m = sc->rl_head;
2323 sc->rl_head = sc->rl_tail = NULL;
2324 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2325 } else
2326 m->m_pkthdr.len = m->m_len =
2327 (total_len - ETHER_CRC_LEN);
2328
2329 #ifdef RE_FIXUP_RX
2330 re_fixup_rx(m);
2331 #endif
2332 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2333 m->m_pkthdr.rcvif = ifp;
2334
2335 /* Do RX checksumming if enabled */
2336
2337 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
2338 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2339 /* Check IP header checksum */
2340 if (rxstat & RL_RDESC_STAT_PROTOID)
2341 m->m_pkthdr.csum_flags |=
2342 CSUM_IP_CHECKED;
2343 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2344 m->m_pkthdr.csum_flags |=
2345 CSUM_IP_VALID;
2346
2347 /* Check TCP/UDP checksum */
2348 if ((RL_TCPPKT(rxstat) &&
2349 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2350 (RL_UDPPKT(rxstat) &&
2351 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2352 m->m_pkthdr.csum_flags |=
2353 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2354 m->m_pkthdr.csum_data = 0xffff;
2355 }
2356 } else {
2357 /*
2358 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2359 */
2360 if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2361 (rxvlan & RL_RDESC_IPV4))
2362 m->m_pkthdr.csum_flags |=
2363 CSUM_IP_CHECKED;
2364 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2365 (rxvlan & RL_RDESC_IPV4))
2366 m->m_pkthdr.csum_flags |=
2367 CSUM_IP_VALID;
2368 if (((rxstat & RL_RDESC_STAT_TCP) &&
2369 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2370 ((rxstat & RL_RDESC_STAT_UDP) &&
2371 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2372 m->m_pkthdr.csum_flags |=
2373 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2374 m->m_pkthdr.csum_data = 0xffff;
2375 }
2376 }
2377 }
2378 maxpkt--;
2379 if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2380 m->m_pkthdr.ether_vtag =
2381 bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2382 m->m_flags |= M_VLANTAG;
2383 }
2384 RL_UNLOCK(sc);
2385 if_input(ifp, m);
2386 RL_LOCK(sc);
2387 rx_npkts++;
2388 }
2389
2390 /* Flush the RX DMA ring */
2391
2392 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2393 sc->rl_ldata.rl_rx_list_map,
2394 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2395
2396 sc->rl_ldata.rl_rx_prodidx = i;
2397
2398 if (rx_npktsp != NULL)
2399 *rx_npktsp = rx_npkts;
2400 if (maxpkt)
2401 return (EAGAIN);
2402
2403 return (0);
2404 }
2405
2406 static void
re_txeof(struct rl_softc * sc)2407 re_txeof(struct rl_softc *sc)
2408 {
2409 if_t ifp;
2410 struct rl_txdesc *txd;
2411 u_int32_t txstat;
2412 int cons;
2413
2414 cons = sc->rl_ldata.rl_tx_considx;
2415 if (cons == sc->rl_ldata.rl_tx_prodidx)
2416 return;
2417
2418 ifp = sc->rl_ifp;
2419 #ifdef DEV_NETMAP
2420 if (netmap_tx_irq(ifp, 0))
2421 return;
2422 #endif /* DEV_NETMAP */
2423 /* Invalidate the TX descriptor list */
2424 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2425 sc->rl_ldata.rl_tx_list_map,
2426 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2427
2428 for (; cons != sc->rl_ldata.rl_tx_prodidx;
2429 cons = RL_TX_DESC_NXT(sc, cons)) {
2430 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2431 if (txstat & RL_TDESC_STAT_OWN)
2432 break;
2433 /*
2434 * We only stash mbufs in the last descriptor
2435 * in a fragment chain, which also happens to
2436 * be the only place where the TX status bits
2437 * are valid.
2438 */
2439 if (txstat & RL_TDESC_CMD_EOF) {
2440 txd = &sc->rl_ldata.rl_tx_desc[cons];
2441 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2442 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2443 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2444 txd->tx_dmamap);
2445 KASSERT(txd->tx_m != NULL,
2446 ("%s: freeing NULL mbufs!", __func__));
2447 m_freem(txd->tx_m);
2448 txd->tx_m = NULL;
2449 if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2450 RL_TDESC_STAT_COLCNT))
2451 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
2452 if (txstat & RL_TDESC_STAT_TXERRSUM)
2453 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2454 else
2455 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2456 }
2457 sc->rl_ldata.rl_tx_free++;
2458 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2459 }
2460 sc->rl_ldata.rl_tx_considx = cons;
2461
2462 /* No changes made to the TX ring, so no flush needed */
2463
2464 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2465 #ifdef RE_TX_MODERATION
2466 /*
2467 * If not all descriptors have been reaped yet, reload
2468 * the timer so that we will eventually get another
2469 * interrupt that will cause us to re-enter this routine.
2470 * This is done in case the transmitter has gone idle.
2471 */
2472 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2473 #endif
2474 } else
2475 sc->rl_watchdog_timer = 0;
2476 }
2477
2478 static void
re_tick(void * xsc)2479 re_tick(void *xsc)
2480 {
2481 struct rl_softc *sc;
2482 struct mii_data *mii;
2483
2484 sc = xsc;
2485
2486 RL_LOCK_ASSERT(sc);
2487
2488 mii = device_get_softc(sc->rl_miibus);
2489 mii_tick(mii);
2490 if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2491 re_miibus_statchg(sc->rl_dev);
2492 /*
2493 * Reclaim transmitted frames here. Technically it is not
2494 * necessary to do here but it ensures periodic reclamation
2495 * regardless of Tx completion interrupt which seems to be
2496 * lost on PCIe based controllers under certain situations.
2497 */
2498 re_txeof(sc);
2499 re_watchdog(sc);
2500 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2501 }
2502
2503 #ifdef DEVICE_POLLING
2504 static int
re_poll(if_t ifp,enum poll_cmd cmd,int count)2505 re_poll(if_t ifp, enum poll_cmd cmd, int count)
2506 {
2507 struct rl_softc *sc = if_getsoftc(ifp);
2508 int rx_npkts = 0;
2509
2510 RL_LOCK(sc);
2511 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2512 rx_npkts = re_poll_locked(ifp, cmd, count);
2513 RL_UNLOCK(sc);
2514 return (rx_npkts);
2515 }
2516
2517 static int
re_poll_locked(if_t ifp,enum poll_cmd cmd,int count)2518 re_poll_locked(if_t ifp, enum poll_cmd cmd, int count)
2519 {
2520 struct rl_softc *sc = if_getsoftc(ifp);
2521 int rx_npkts;
2522
2523 RL_LOCK_ASSERT(sc);
2524
2525 sc->rxcycles = count;
2526 re_rxeof(sc, &rx_npkts);
2527 re_txeof(sc);
2528
2529 if (!if_sendq_empty(ifp))
2530 re_start_locked(ifp);
2531
2532 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2533 u_int16_t status;
2534
2535 status = CSR_READ_2(sc, RL_ISR);
2536 if (status == 0xffff)
2537 return (rx_npkts);
2538 if (status)
2539 CSR_WRITE_2(sc, RL_ISR, status);
2540 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2541 (sc->rl_flags & RL_FLAG_PCIE))
2542 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2543
2544 /*
2545 * XXX check behaviour on receiver stalls.
2546 */
2547
2548 if (status & RL_ISR_SYSTEM_ERR) {
2549 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2550 re_init_locked(sc);
2551 }
2552 }
2553 return (rx_npkts);
2554 }
2555 #endif /* DEVICE_POLLING */
2556
2557 static int
re_intr(void * arg)2558 re_intr(void *arg)
2559 {
2560 struct rl_softc *sc;
2561 uint16_t status;
2562
2563 sc = arg;
2564
2565 status = CSR_READ_2(sc, RL_ISR);
2566 if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2567 return (FILTER_STRAY);
2568 CSR_WRITE_2(sc, RL_IMR, 0);
2569
2570 taskqueue_enqueue(taskqueue_fast, &sc->rl_inttask);
2571
2572 return (FILTER_HANDLED);
2573 }
2574
2575 static void
re_int_task(void * arg,int npending)2576 re_int_task(void *arg, int npending)
2577 {
2578 struct rl_softc *sc;
2579 if_t ifp;
2580 u_int16_t status;
2581 int rval = 0;
2582
2583 sc = arg;
2584 ifp = sc->rl_ifp;
2585
2586 RL_LOCK(sc);
2587
2588 status = CSR_READ_2(sc, RL_ISR);
2589 CSR_WRITE_2(sc, RL_ISR, status);
2590
2591 if (sc->suspended ||
2592 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2593 RL_UNLOCK(sc);
2594 return;
2595 }
2596
2597 #ifdef DEVICE_POLLING
2598 if (if_getcapenable(ifp) & IFCAP_POLLING) {
2599 RL_UNLOCK(sc);
2600 return;
2601 }
2602 #endif
2603
2604 if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2605 rval = re_rxeof(sc, NULL);
2606
2607 /*
2608 * Some chips will ignore a second TX request issued
2609 * while an existing transmission is in progress. If
2610 * the transmitter goes idle but there are still
2611 * packets waiting to be sent, we need to restart the
2612 * channel here to flush them out. This only seems to
2613 * be required with the PCIe devices.
2614 */
2615 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2616 (sc->rl_flags & RL_FLAG_PCIE))
2617 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2618 if (status & (
2619 #ifdef RE_TX_MODERATION
2620 RL_ISR_TIMEOUT_EXPIRED|
2621 #else
2622 RL_ISR_TX_OK|
2623 #endif
2624 RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2625 re_txeof(sc);
2626
2627 if (status & RL_ISR_SYSTEM_ERR) {
2628 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2629 re_init_locked(sc);
2630 }
2631
2632 if (!if_sendq_empty(ifp))
2633 re_start_locked(ifp);
2634
2635 RL_UNLOCK(sc);
2636
2637 if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2638 taskqueue_enqueue(taskqueue_fast, &sc->rl_inttask);
2639 return;
2640 }
2641
2642 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2643 }
2644
2645 static void
re_intr_msi(void * xsc)2646 re_intr_msi(void *xsc)
2647 {
2648 struct rl_softc *sc;
2649 if_t ifp;
2650 uint16_t intrs, status;
2651
2652 sc = xsc;
2653 RL_LOCK(sc);
2654
2655 ifp = sc->rl_ifp;
2656 #ifdef DEVICE_POLLING
2657 if (if_getcapenable(ifp) & IFCAP_POLLING) {
2658 RL_UNLOCK(sc);
2659 return;
2660 }
2661 #endif
2662 /* Disable interrupts. */
2663 CSR_WRITE_2(sc, RL_IMR, 0);
2664 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2665 RL_UNLOCK(sc);
2666 return;
2667 }
2668
2669 intrs = RL_INTRS_CPLUS;
2670 status = CSR_READ_2(sc, RL_ISR);
2671 CSR_WRITE_2(sc, RL_ISR, status);
2672 if (sc->rl_int_rx_act > 0) {
2673 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2674 RL_ISR_RX_OVERRUN);
2675 status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2676 RL_ISR_RX_OVERRUN);
2677 }
2678
2679 if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
2680 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
2681 re_rxeof(sc, NULL);
2682 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2683 if (sc->rl_int_rx_mod != 0 &&
2684 (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
2685 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
2686 /* Rearm one-shot timer. */
2687 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2688 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
2689 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
2690 sc->rl_int_rx_act = 1;
2691 } else {
2692 intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
2693 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
2694 sc->rl_int_rx_act = 0;
2695 }
2696 }
2697 }
2698
2699 /*
2700 * Some chips will ignore a second TX request issued
2701 * while an existing transmission is in progress. If
2702 * the transmitter goes idle but there are still
2703 * packets waiting to be sent, we need to restart the
2704 * channel here to flush them out. This only seems to
2705 * be required with the PCIe devices.
2706 */
2707 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2708 (sc->rl_flags & RL_FLAG_PCIE))
2709 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2710 if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
2711 re_txeof(sc);
2712
2713 if (status & RL_ISR_SYSTEM_ERR) {
2714 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2715 re_init_locked(sc);
2716 }
2717
2718 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2719 if (!if_sendq_empty(ifp))
2720 re_start_locked(ifp);
2721 CSR_WRITE_2(sc, RL_IMR, intrs);
2722 }
2723 RL_UNLOCK(sc);
2724 }
2725
2726 static int
re_encap(struct rl_softc * sc,struct mbuf ** m_head)2727 re_encap(struct rl_softc *sc, struct mbuf **m_head)
2728 {
2729 struct rl_txdesc *txd, *txd_last;
2730 bus_dma_segment_t segs[RL_NTXSEGS];
2731 bus_dmamap_t map;
2732 struct mbuf *m_new;
2733 struct rl_desc *desc;
2734 int nsegs, prod;
2735 int i, error, ei, si;
2736 int padlen;
2737 uint32_t cmdstat, csum_flags, vlanctl;
2738
2739 RL_LOCK_ASSERT(sc);
2740 M_ASSERTPKTHDR((*m_head));
2741
2742 /*
2743 * With some of the RealTek chips, using the checksum offload
2744 * support in conjunction with the autopadding feature results
2745 * in the transmission of corrupt frames. For example, if we
2746 * need to send a really small IP fragment that's less than 60
2747 * bytes in size, and IP header checksumming is enabled, the
2748 * resulting ethernet frame that appears on the wire will
2749 * have garbled payload. To work around this, if TX IP checksum
2750 * offload is enabled, we always manually pad short frames out
2751 * to the minimum ethernet frame size.
2752 */
2753 if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2754 (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2755 ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2756 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2757 if (M_WRITABLE(*m_head) == 0) {
2758 /* Get a writable copy. */
2759 m_new = m_dup(*m_head, M_NOWAIT);
2760 m_freem(*m_head);
2761 if (m_new == NULL) {
2762 *m_head = NULL;
2763 return (ENOBUFS);
2764 }
2765 *m_head = m_new;
2766 }
2767 if ((*m_head)->m_next != NULL ||
2768 M_TRAILINGSPACE(*m_head) < padlen) {
2769 m_new = m_defrag(*m_head, M_NOWAIT);
2770 if (m_new == NULL) {
2771 m_freem(*m_head);
2772 *m_head = NULL;
2773 return (ENOBUFS);
2774 }
2775 } else
2776 m_new = *m_head;
2777
2778 /*
2779 * Manually pad short frames, and zero the pad space
2780 * to avoid leaking data.
2781 */
2782 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2783 m_new->m_pkthdr.len += padlen;
2784 m_new->m_len = m_new->m_pkthdr.len;
2785 *m_head = m_new;
2786 }
2787
2788 prod = sc->rl_ldata.rl_tx_prodidx;
2789 txd = &sc->rl_ldata.rl_tx_desc[prod];
2790 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2791 *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2792 if (error == EFBIG) {
2793 m_new = m_collapse(*m_head, M_NOWAIT, RL_NTXSEGS);
2794 if (m_new == NULL) {
2795 m_freem(*m_head);
2796 *m_head = NULL;
2797 return (ENOBUFS);
2798 }
2799 *m_head = m_new;
2800 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2801 txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2802 if (error != 0) {
2803 m_freem(*m_head);
2804 *m_head = NULL;
2805 return (error);
2806 }
2807 } else if (error != 0)
2808 return (error);
2809 if (nsegs == 0) {
2810 m_freem(*m_head);
2811 *m_head = NULL;
2812 return (EIO);
2813 }
2814
2815 /* Check for number of available descriptors. */
2816 if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2817 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2818 return (ENOBUFS);
2819 }
2820
2821 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2822 BUS_DMASYNC_PREWRITE);
2823
2824 /*
2825 * Set up checksum offload. Note: checksum offload bits must
2826 * appear in all descriptors of a multi-descriptor transmit
2827 * attempt. This is according to testing done with an 8169
2828 * chip. This is a requirement.
2829 */
2830 vlanctl = 0;
2831 csum_flags = 0;
2832 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2833 if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2834 csum_flags |= RL_TDESC_CMD_LGSEND;
2835 vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2836 RL_TDESC_CMD_MSSVALV2_SHIFT);
2837 } else {
2838 csum_flags |= RL_TDESC_CMD_LGSEND |
2839 ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2840 RL_TDESC_CMD_MSSVAL_SHIFT);
2841 }
2842 } else {
2843 /*
2844 * Unconditionally enable IP checksum if TCP or UDP
2845 * checksum is required. Otherwise, TCP/UDP checksum
2846 * doesn't make effects.
2847 */
2848 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2849 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2850 csum_flags |= RL_TDESC_CMD_IPCSUM;
2851 if (((*m_head)->m_pkthdr.csum_flags &
2852 CSUM_TCP) != 0)
2853 csum_flags |= RL_TDESC_CMD_TCPCSUM;
2854 if (((*m_head)->m_pkthdr.csum_flags &
2855 CSUM_UDP) != 0)
2856 csum_flags |= RL_TDESC_CMD_UDPCSUM;
2857 } else {
2858 vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2859 if (((*m_head)->m_pkthdr.csum_flags &
2860 CSUM_TCP) != 0)
2861 vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2862 if (((*m_head)->m_pkthdr.csum_flags &
2863 CSUM_UDP) != 0)
2864 vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2865 }
2866 }
2867 }
2868
2869 /*
2870 * Set up hardware VLAN tagging. Note: vlan tag info must
2871 * appear in all descriptors of a multi-descriptor
2872 * transmission attempt.
2873 */
2874 if ((*m_head)->m_flags & M_VLANTAG)
2875 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2876 RL_TDESC_VLANCTL_TAG;
2877
2878 si = prod;
2879 for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2880 desc = &sc->rl_ldata.rl_tx_list[prod];
2881 desc->rl_vlanctl = htole32(vlanctl);
2882 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2883 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2884 cmdstat = segs[i].ds_len;
2885 if (i != 0)
2886 cmdstat |= RL_TDESC_CMD_OWN;
2887 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2888 cmdstat |= RL_TDESC_CMD_EOR;
2889 desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2890 sc->rl_ldata.rl_tx_free--;
2891 }
2892 /* Update producer index. */
2893 sc->rl_ldata.rl_tx_prodidx = prod;
2894
2895 /* Set EOF on the last descriptor. */
2896 ei = RL_TX_DESC_PRV(sc, prod);
2897 desc = &sc->rl_ldata.rl_tx_list[ei];
2898 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2899
2900 desc = &sc->rl_ldata.rl_tx_list[si];
2901 /* Set SOF and transfer ownership of packet to the chip. */
2902 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2903
2904 /*
2905 * Insure that the map for this transmission
2906 * is placed at the array index of the last descriptor
2907 * in this chain. (Swap last and first dmamaps.)
2908 */
2909 txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2910 map = txd->tx_dmamap;
2911 txd->tx_dmamap = txd_last->tx_dmamap;
2912 txd_last->tx_dmamap = map;
2913 txd_last->tx_m = *m_head;
2914
2915 return (0);
2916 }
2917
2918 static void
re_start(if_t ifp)2919 re_start(if_t ifp)
2920 {
2921 struct rl_softc *sc;
2922
2923 sc = if_getsoftc(ifp);
2924 RL_LOCK(sc);
2925 re_start_locked(ifp);
2926 RL_UNLOCK(sc);
2927 }
2928
2929 /*
2930 * Main transmit routine for C+ and gigE NICs.
2931 */
2932 static void
re_start_locked(if_t ifp)2933 re_start_locked(if_t ifp)
2934 {
2935 struct rl_softc *sc;
2936 struct mbuf *m_head;
2937 int queued;
2938
2939 sc = if_getsoftc(ifp);
2940
2941 #ifdef DEV_NETMAP
2942 /* XXX is this necessary ? */
2943 if (if_getcapenable(ifp) & IFCAP_NETMAP) {
2944 struct netmap_kring *kring = NA(ifp)->tx_rings[0];
2945 if (sc->rl_ldata.rl_tx_prodidx != kring->nr_hwcur) {
2946 /* kick the tx unit */
2947 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2948 #ifdef RE_TX_MODERATION
2949 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2950 #endif
2951 sc->rl_watchdog_timer = 5;
2952 }
2953 return;
2954 }
2955 #endif /* DEV_NETMAP */
2956
2957 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2958 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
2959 return;
2960
2961 for (queued = 0; !if_sendq_empty(ifp) &&
2962 sc->rl_ldata.rl_tx_free > 1;) {
2963 m_head = if_dequeue(ifp);
2964 if (m_head == NULL)
2965 break;
2966
2967 if (re_encap(sc, &m_head) != 0) {
2968 if (m_head == NULL)
2969 break;
2970 if_sendq_prepend(ifp, m_head);
2971 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
2972 break;
2973 }
2974
2975 /*
2976 * If there's a BPF listener, bounce a copy of this frame
2977 * to him.
2978 */
2979 ETHER_BPF_MTAP(ifp, m_head);
2980
2981 queued++;
2982 }
2983
2984 if (queued == 0) {
2985 #ifdef RE_TX_MODERATION
2986 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2987 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2988 #endif
2989 return;
2990 }
2991
2992 re_start_tx(sc);
2993 }
2994
2995 static void
re_start_tx(struct rl_softc * sc)2996 re_start_tx(struct rl_softc *sc)
2997 {
2998
2999 /* Flush the TX descriptors */
3000 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
3001 sc->rl_ldata.rl_tx_list_map,
3002 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
3003
3004 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
3005
3006 #ifdef RE_TX_MODERATION
3007 /*
3008 * Use the countdown timer for interrupt moderation.
3009 * 'TX done' interrupts are disabled. Instead, we reset the
3010 * countdown timer, which will begin counting until it hits
3011 * the value in the TIMERINT register, and then trigger an
3012 * interrupt. Each time we write to the TIMERCNT register,
3013 * the timer count is reset to 0.
3014 */
3015 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
3016 #endif
3017
3018 /*
3019 * Set a timeout in case the chip goes out to lunch.
3020 */
3021 sc->rl_watchdog_timer = 5;
3022 }
3023
3024 static void
re_set_jumbo(struct rl_softc * sc,int jumbo)3025 re_set_jumbo(struct rl_softc *sc, int jumbo)
3026 {
3027
3028 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
3029 pci_set_max_read_req(sc->rl_dev, 4096);
3030 return;
3031 }
3032
3033 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3034 if (jumbo != 0) {
3035 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) |
3036 RL_CFG3_JUMBO_EN0);
3037 switch (sc->rl_hwrev->rl_rev) {
3038 case RL_HWREV_8168DP:
3039 break;
3040 case RL_HWREV_8168E:
3041 CSR_WRITE_1(sc, sc->rl_cfg4,
3042 CSR_READ_1(sc, sc->rl_cfg4) | 0x01);
3043 break;
3044 default:
3045 CSR_WRITE_1(sc, sc->rl_cfg4,
3046 CSR_READ_1(sc, sc->rl_cfg4) | RL_CFG4_JUMBO_EN1);
3047 }
3048 } else {
3049 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) &
3050 ~RL_CFG3_JUMBO_EN0);
3051 switch (sc->rl_hwrev->rl_rev) {
3052 case RL_HWREV_8168DP:
3053 break;
3054 case RL_HWREV_8168E:
3055 CSR_WRITE_1(sc, sc->rl_cfg4,
3056 CSR_READ_1(sc, sc->rl_cfg4) & ~0x01);
3057 break;
3058 default:
3059 CSR_WRITE_1(sc, sc->rl_cfg4,
3060 CSR_READ_1(sc, sc->rl_cfg4) & ~RL_CFG4_JUMBO_EN1);
3061 }
3062 }
3063 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3064
3065 switch (sc->rl_hwrev->rl_rev) {
3066 case RL_HWREV_8168DP:
3067 pci_set_max_read_req(sc->rl_dev, 4096);
3068 break;
3069 default:
3070 if (jumbo != 0)
3071 pci_set_max_read_req(sc->rl_dev, 512);
3072 else
3073 pci_set_max_read_req(sc->rl_dev, 4096);
3074 }
3075 }
3076
3077 static void
re_init(void * xsc)3078 re_init(void *xsc)
3079 {
3080 struct rl_softc *sc = xsc;
3081
3082 RL_LOCK(sc);
3083 re_init_locked(sc);
3084 RL_UNLOCK(sc);
3085 }
3086
3087 static void
re_init_locked(struct rl_softc * sc)3088 re_init_locked(struct rl_softc *sc)
3089 {
3090 if_t ifp = sc->rl_ifp;
3091 struct mii_data *mii;
3092 uint32_t reg;
3093 uint16_t cfg;
3094 uint32_t idr[2];
3095
3096 RL_LOCK_ASSERT(sc);
3097
3098 mii = device_get_softc(sc->rl_miibus);
3099
3100 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
3101 return;
3102
3103 /*
3104 * Cancel pending I/O and free all RX/TX buffers.
3105 */
3106 re_stop(sc);
3107
3108 /* Put controller into known state. */
3109 re_reset(sc);
3110
3111 /*
3112 * For C+ mode, initialize the RX descriptors and mbufs.
3113 */
3114 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3115 if (if_getmtu(ifp) > RL_MTU) {
3116 if (re_jrx_list_init(sc) != 0) {
3117 device_printf(sc->rl_dev,
3118 "no memory for jumbo RX buffers\n");
3119 re_stop(sc);
3120 return;
3121 }
3122 /* Disable checksum offloading for jumbo frames. */
3123 if_setcapenablebit(ifp, 0, (IFCAP_HWCSUM | IFCAP_TSO4));
3124 if_sethwassistbits(ifp, 0, (RE_CSUM_FEATURES | CSUM_TSO));
3125 } else {
3126 if (re_rx_list_init(sc) != 0) {
3127 device_printf(sc->rl_dev,
3128 "no memory for RX buffers\n");
3129 re_stop(sc);
3130 return;
3131 }
3132 }
3133 re_set_jumbo(sc, if_getmtu(ifp) > RL_MTU);
3134 } else {
3135 if (re_rx_list_init(sc) != 0) {
3136 device_printf(sc->rl_dev, "no memory for RX buffers\n");
3137 re_stop(sc);
3138 return;
3139 }
3140 if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3141 pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
3142 if (if_getmtu(ifp) > RL_MTU)
3143 pci_set_max_read_req(sc->rl_dev, 512);
3144 else
3145 pci_set_max_read_req(sc->rl_dev, 4096);
3146 }
3147 }
3148 re_tx_list_init(sc);
3149
3150 /*
3151 * Enable C+ RX and TX mode, as well as VLAN stripping and
3152 * RX checksum offload. We must configure the C+ register
3153 * before all others.
3154 */
3155 cfg = RL_CPLUSCMD_PCI_MRW;
3156 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
3157 cfg |= RL_CPLUSCMD_RXCSUM_ENB;
3158 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3159 cfg |= RL_CPLUSCMD_VLANSTRIP;
3160 if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
3161 cfg |= RL_CPLUSCMD_MACSTAT_DIS;
3162 /* XXX magic. */
3163 cfg |= 0x0001;
3164 } else
3165 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
3166 CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
3167 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
3168 sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
3169 reg = 0x000fff00;
3170 if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_PCI66MHZ) != 0)
3171 reg |= 0x000000ff;
3172 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
3173 reg |= 0x00f00000;
3174 CSR_WRITE_4(sc, 0x7c, reg);
3175 /* Disable interrupt mitigation. */
3176 CSR_WRITE_2(sc, 0xe2, 0);
3177 }
3178 /*
3179 * Disable TSO if interface MTU size is greater than MSS
3180 * allowed in controller.
3181 */
3182 if (if_getmtu(ifp) > RL_TSO_MTU && (if_getcapenable(ifp) & IFCAP_TSO4) != 0) {
3183 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
3184 if_sethwassistbits(ifp, 0, CSUM_TSO);
3185 }
3186
3187 /*
3188 * Init our MAC address. Even though the chipset
3189 * documentation doesn't mention it, we need to enter "Config
3190 * register write enable" mode to modify the ID registers.
3191 */
3192 /* Copy MAC address on stack to align. */
3193 bzero(idr, sizeof(idr));
3194 bcopy(if_getlladdr(ifp), idr, ETHER_ADDR_LEN);
3195 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3196 CSR_WRITE_4(sc, RL_IDR0, htole32(idr[0]));
3197 CSR_WRITE_4(sc, RL_IDR4, htole32(idr[1]));
3198 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3199
3200 /*
3201 * Load the addresses of the RX and TX lists into the chip.
3202 */
3203
3204 CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
3205 RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
3206 CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
3207 RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
3208
3209 CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
3210 RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
3211 CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
3212 RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
3213
3214 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) {
3215 /* Disable RXDV gate. */
3216 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) &
3217 ~0x00080000);
3218 }
3219
3220 /*
3221 * Enable transmit and receive for pre-RTL8168G controllers.
3222 * RX/TX MACs should be enabled before RX/TX configuration.
3223 */
3224 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) == 0)
3225 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB);
3226
3227 /*
3228 * Set the initial TX configuration.
3229 */
3230 if (sc->rl_testmode) {
3231 if (sc->rl_type == RL_8169)
3232 CSR_WRITE_4(sc, RL_TXCFG,
3233 RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
3234 else
3235 CSR_WRITE_4(sc, RL_TXCFG,
3236 RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
3237 } else
3238 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
3239
3240 CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
3241
3242 /*
3243 * Set the initial RX configuration.
3244 */
3245 re_set_rxmode(sc);
3246
3247 /* Configure interrupt moderation. */
3248 if (sc->rl_type == RL_8169) {
3249 /* Magic from vendor. */
3250 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
3251 }
3252
3253 /*
3254 * Enable transmit and receive for RTL8168G and later controllers.
3255 * RX/TX MACs should be enabled after RX/TX configuration.
3256 */
3257 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0)
3258 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB);
3259
3260 #ifdef DEVICE_POLLING
3261 /*
3262 * Disable interrupts if we are polling.
3263 */
3264 if (if_getcapenable(ifp) & IFCAP_POLLING)
3265 CSR_WRITE_2(sc, RL_IMR, 0);
3266 else /* otherwise ... */
3267 #endif
3268
3269 /*
3270 * Enable interrupts.
3271 */
3272 if (sc->rl_testmode)
3273 CSR_WRITE_2(sc, RL_IMR, 0);
3274 else
3275 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3276 CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
3277
3278 /* Set initial TX threshold */
3279 sc->rl_txthresh = RL_TX_THRESH_INIT;
3280
3281 /* Start RX/TX process. */
3282 CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
3283
3284 /*
3285 * Initialize the timer interrupt register so that
3286 * a timer interrupt will be generated once the timer
3287 * reaches a certain number of ticks. The timer is
3288 * reloaded on each transmit.
3289 */
3290 #ifdef RE_TX_MODERATION
3291 /*
3292 * Use timer interrupt register to moderate TX interrupt
3293 * moderation, which dramatically improves TX frame rate.
3294 */
3295 if (sc->rl_type == RL_8169)
3296 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
3297 else
3298 CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
3299 #else
3300 /*
3301 * Use timer interrupt register to moderate RX interrupt
3302 * moderation.
3303 */
3304 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
3305 intr_filter == 0) {
3306 if (sc->rl_type == RL_8169)
3307 CSR_WRITE_4(sc, RL_TIMERINT_8169,
3308 RL_USECS(sc->rl_int_rx_mod));
3309 } else {
3310 if (sc->rl_type == RL_8169)
3311 CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
3312 }
3313 #endif
3314
3315 /*
3316 * For 8169 gigE NICs, set the max allowed RX packet
3317 * size so we can receive jumbo frames.
3318 */
3319 if (sc->rl_type == RL_8169) {
3320 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3321 /*
3322 * For controllers that use new jumbo frame scheme,
3323 * set maximum size of jumbo frame depending on
3324 * controller revisions.
3325 */
3326 if (if_getmtu(ifp) > RL_MTU)
3327 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3328 sc->rl_hwrev->rl_max_mtu +
3329 ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
3330 ETHER_CRC_LEN);
3331 else
3332 CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3333 RE_RX_DESC_BUFLEN);
3334 } else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3335 sc->rl_hwrev->rl_max_mtu == RL_MTU) {
3336 /* RTL810x has no jumbo frame support. */
3337 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
3338 } else
3339 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
3340 }
3341
3342 if (sc->rl_testmode)
3343 return;
3344
3345 CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) |
3346 RL_CFG1_DRVLOAD);
3347
3348 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
3349 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3350
3351 sc->rl_flags &= ~RL_FLAG_LINK;
3352 mii_mediachg(mii);
3353
3354 sc->rl_watchdog_timer = 0;
3355 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
3356
3357 #ifdef DEV_NETMAP
3358 netmap_enable_all_rings(ifp);
3359 #endif /* DEV_NETMAP */
3360 }
3361
3362 /*
3363 * Set media options.
3364 */
3365 static int
re_ifmedia_upd(if_t ifp)3366 re_ifmedia_upd(if_t ifp)
3367 {
3368 struct rl_softc *sc;
3369 struct mii_data *mii;
3370 int error;
3371
3372 sc = if_getsoftc(ifp);
3373 mii = device_get_softc(sc->rl_miibus);
3374 RL_LOCK(sc);
3375 error = mii_mediachg(mii);
3376 RL_UNLOCK(sc);
3377
3378 return (error);
3379 }
3380
3381 /*
3382 * Report current media status.
3383 */
3384 static void
re_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)3385 re_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
3386 {
3387 struct rl_softc *sc;
3388 struct mii_data *mii;
3389
3390 sc = if_getsoftc(ifp);
3391 mii = device_get_softc(sc->rl_miibus);
3392
3393 RL_LOCK(sc);
3394 mii_pollstat(mii);
3395 ifmr->ifm_active = mii->mii_media_active;
3396 ifmr->ifm_status = mii->mii_media_status;
3397 RL_UNLOCK(sc);
3398 }
3399
3400 static int
re_ioctl(if_t ifp,u_long command,caddr_t data)3401 re_ioctl(if_t ifp, u_long command, caddr_t data)
3402 {
3403 struct rl_softc *sc = if_getsoftc(ifp);
3404 struct ifreq *ifr = (struct ifreq *) data;
3405 struct mii_data *mii;
3406 int error = 0;
3407
3408 switch (command) {
3409 case SIOCSIFMTU:
3410 if (ifr->ifr_mtu < ETHERMIN ||
3411 ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu ||
3412 ((sc->rl_flags & RL_FLAG_FASTETHER) != 0 &&
3413 ifr->ifr_mtu > RL_MTU)) {
3414 error = EINVAL;
3415 break;
3416 }
3417 RL_LOCK(sc);
3418 if (if_getmtu(ifp) != ifr->ifr_mtu) {
3419 if_setmtu(ifp, ifr->ifr_mtu);
3420 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3421 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
3422 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3423 re_init_locked(sc);
3424 }
3425 if (if_getmtu(ifp) > RL_TSO_MTU &&
3426 (if_getcapenable(ifp) & IFCAP_TSO4) != 0) {
3427 if_setcapenablebit(ifp, 0,
3428 IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
3429 if_sethwassistbits(ifp, 0, CSUM_TSO);
3430 }
3431 VLAN_CAPABILITIES(ifp);
3432 }
3433 RL_UNLOCK(sc);
3434 break;
3435 case SIOCSIFFLAGS:
3436 RL_LOCK(sc);
3437 if ((if_getflags(ifp) & IFF_UP) != 0) {
3438 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
3439 if (((if_getflags(ifp) ^ sc->rl_if_flags)
3440 & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3441 re_set_rxmode(sc);
3442 } else
3443 re_init_locked(sc);
3444 } else {
3445 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
3446 re_stop(sc);
3447 }
3448 sc->rl_if_flags = if_getflags(ifp);
3449 RL_UNLOCK(sc);
3450 break;
3451 case SIOCADDMULTI:
3452 case SIOCDELMULTI:
3453 RL_LOCK(sc);
3454 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
3455 re_set_rxmode(sc);
3456 RL_UNLOCK(sc);
3457 break;
3458 case SIOCGIFMEDIA:
3459 case SIOCSIFMEDIA:
3460 mii = device_get_softc(sc->rl_miibus);
3461 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3462 break;
3463 case SIOCSIFCAP:
3464 {
3465 int mask, reinit;
3466
3467 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
3468 reinit = 0;
3469 #ifdef DEVICE_POLLING
3470 if (mask & IFCAP_POLLING) {
3471 if (ifr->ifr_reqcap & IFCAP_POLLING) {
3472 error = ether_poll_register(re_poll, ifp);
3473 if (error)
3474 return (error);
3475 RL_LOCK(sc);
3476 /* Disable interrupts */
3477 CSR_WRITE_2(sc, RL_IMR, 0x0000);
3478 if_setcapenablebit(ifp, IFCAP_POLLING, 0);
3479 RL_UNLOCK(sc);
3480 } else {
3481 error = ether_poll_deregister(ifp);
3482 /* Enable interrupts. */
3483 RL_LOCK(sc);
3484 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3485 if_setcapenablebit(ifp, 0, IFCAP_POLLING);
3486 RL_UNLOCK(sc);
3487 }
3488 }
3489 #endif /* DEVICE_POLLING */
3490 RL_LOCK(sc);
3491 if ((mask & IFCAP_TXCSUM) != 0 &&
3492 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
3493 if_togglecapenable(ifp, IFCAP_TXCSUM);
3494 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
3495 if_sethwassistbits(ifp, RE_CSUM_FEATURES, 0);
3496 else
3497 if_sethwassistbits(ifp, 0, RE_CSUM_FEATURES);
3498 reinit = 1;
3499 }
3500 if ((mask & IFCAP_RXCSUM) != 0 &&
3501 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
3502 if_togglecapenable(ifp, IFCAP_RXCSUM);
3503 reinit = 1;
3504 }
3505 if ((mask & IFCAP_TSO4) != 0 &&
3506 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
3507 if_togglecapenable(ifp, IFCAP_TSO4);
3508 if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
3509 if_sethwassistbits(ifp, CSUM_TSO, 0);
3510 else
3511 if_sethwassistbits(ifp, 0, CSUM_TSO);
3512 if (if_getmtu(ifp) > RL_TSO_MTU &&
3513 (if_getcapenable(ifp) & IFCAP_TSO4) != 0) {
3514 if_setcapenablebit(ifp, 0, IFCAP_TSO4);
3515 if_sethwassistbits(ifp, 0, CSUM_TSO);
3516 }
3517 }
3518 if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
3519 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
3520 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
3521 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3522 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
3523 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
3524 /* TSO over VLAN requires VLAN hardware tagging. */
3525 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
3526 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
3527 reinit = 1;
3528 }
3529 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3530 (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
3531 IFCAP_VLAN_HWTSO)) != 0)
3532 reinit = 1;
3533 if ((mask & IFCAP_WOL) != 0 &&
3534 (if_getcapabilities(ifp) & IFCAP_WOL) != 0) {
3535 if ((mask & IFCAP_WOL_UCAST) != 0)
3536 if_togglecapenable(ifp, IFCAP_WOL_UCAST);
3537 if ((mask & IFCAP_WOL_MCAST) != 0)
3538 if_togglecapenable(ifp, IFCAP_WOL_MCAST);
3539 if ((mask & IFCAP_WOL_MAGIC) != 0)
3540 if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
3541 }
3542 if (reinit && if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
3543 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3544 re_init_locked(sc);
3545 }
3546 RL_UNLOCK(sc);
3547 VLAN_CAPABILITIES(ifp);
3548 }
3549 break;
3550 default:
3551 error = ether_ioctl(ifp, command, data);
3552 break;
3553 }
3554
3555 return (error);
3556 }
3557
3558 static void
re_watchdog(struct rl_softc * sc)3559 re_watchdog(struct rl_softc *sc)
3560 {
3561 if_t ifp;
3562
3563 RL_LOCK_ASSERT(sc);
3564
3565 if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
3566 return;
3567
3568 ifp = sc->rl_ifp;
3569 re_txeof(sc);
3570 if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
3571 if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
3572 "-- recovering\n");
3573 if (!if_sendq_empty(ifp))
3574 re_start_locked(ifp);
3575 return;
3576 }
3577
3578 if_printf(ifp, "watchdog timeout\n");
3579 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3580
3581 re_rxeof(sc, NULL);
3582 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
3583 re_init_locked(sc);
3584 if (!if_sendq_empty(ifp))
3585 re_start_locked(ifp);
3586 }
3587
3588 /*
3589 * Stop the adapter and free any mbufs allocated to the
3590 * RX and TX lists.
3591 */
3592 static void
re_stop(struct rl_softc * sc)3593 re_stop(struct rl_softc *sc)
3594 {
3595 int i;
3596 if_t ifp;
3597 struct rl_txdesc *txd;
3598 struct rl_rxdesc *rxd;
3599
3600 RL_LOCK_ASSERT(sc);
3601
3602 ifp = sc->rl_ifp;
3603
3604 sc->rl_watchdog_timer = 0;
3605 callout_stop(&sc->rl_stat_callout);
3606 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
3607
3608 #ifdef DEV_NETMAP
3609 netmap_disable_all_rings(ifp);
3610 #endif /* DEV_NETMAP */
3611
3612 /*
3613 * Disable accepting frames to put RX MAC into idle state.
3614 * Otherwise it's possible to get frames while stop command
3615 * execution is in progress and controller can DMA the frame
3616 * to already freed RX buffer during that period.
3617 */
3618 CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) &
3619 ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI |
3620 RL_RXCFG_RX_BROAD));
3621
3622 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) {
3623 /* Enable RXDV gate. */
3624 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) |
3625 0x00080000);
3626 }
3627
3628 if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) {
3629 for (i = RL_TIMEOUT; i > 0; i--) {
3630 if ((CSR_READ_1(sc, sc->rl_txstart) &
3631 RL_TXSTART_START) == 0)
3632 break;
3633 DELAY(20);
3634 }
3635 if (i == 0)
3636 device_printf(sc->rl_dev,
3637 "stopping TX poll timed out!\n");
3638 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3639 } else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) {
3640 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3641 RL_CMD_RX_ENB);
3642 if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) {
3643 for (i = RL_TIMEOUT; i > 0; i--) {
3644 if ((CSR_READ_4(sc, RL_TXCFG) &
3645 RL_TXCFG_QUEUE_EMPTY) != 0)
3646 break;
3647 DELAY(100);
3648 }
3649 if (i == 0)
3650 device_printf(sc->rl_dev,
3651 "stopping TXQ timed out!\n");
3652 }
3653 } else
3654 CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3655 DELAY(1000);
3656 CSR_WRITE_2(sc, RL_IMR, 0x0000);
3657 CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3658
3659 if (sc->rl_head != NULL) {
3660 m_freem(sc->rl_head);
3661 sc->rl_head = sc->rl_tail = NULL;
3662 }
3663
3664 /* Free the TX list buffers. */
3665 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3666 txd = &sc->rl_ldata.rl_tx_desc[i];
3667 if (txd->tx_m != NULL) {
3668 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3669 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3670 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3671 txd->tx_dmamap);
3672 m_freem(txd->tx_m);
3673 txd->tx_m = NULL;
3674 }
3675 }
3676
3677 /* Free the RX list buffers. */
3678 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3679 rxd = &sc->rl_ldata.rl_rx_desc[i];
3680 if (rxd->rx_m != NULL) {
3681 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
3682 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3683 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3684 rxd->rx_dmamap);
3685 m_freem(rxd->rx_m);
3686 rxd->rx_m = NULL;
3687 }
3688 }
3689
3690 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3691 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3692 rxd = &sc->rl_ldata.rl_jrx_desc[i];
3693 if (rxd->rx_m != NULL) {
3694 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag,
3695 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3696 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag,
3697 rxd->rx_dmamap);
3698 m_freem(rxd->rx_m);
3699 rxd->rx_m = NULL;
3700 }
3701 }
3702 }
3703 }
3704
3705 /*
3706 * Device suspend routine. Stop the interface and save some PCI
3707 * settings in case the BIOS doesn't restore them properly on
3708 * resume.
3709 */
3710 static int
re_suspend(device_t dev)3711 re_suspend(device_t dev)
3712 {
3713 struct rl_softc *sc;
3714
3715 sc = device_get_softc(dev);
3716
3717 RL_LOCK(sc);
3718 re_stop(sc);
3719 re_setwol(sc);
3720 sc->suspended = 1;
3721 RL_UNLOCK(sc);
3722
3723 return (0);
3724 }
3725
3726 /*
3727 * Device resume routine. Restore some PCI settings in case the BIOS
3728 * doesn't, re-enable busmastering, and restart the interface if
3729 * appropriate.
3730 */
3731 static int
re_resume(device_t dev)3732 re_resume(device_t dev)
3733 {
3734 struct rl_softc *sc;
3735 if_t ifp;
3736
3737 sc = device_get_softc(dev);
3738
3739 RL_LOCK(sc);
3740
3741 ifp = sc->rl_ifp;
3742 /* Take controller out of sleep mode. */
3743 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3744 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3745 CSR_WRITE_1(sc, RL_GPIO,
3746 CSR_READ_1(sc, RL_GPIO) | 0x01);
3747 }
3748
3749 /*
3750 * Clear WOL matching such that normal Rx filtering
3751 * wouldn't interfere with WOL patterns.
3752 */
3753 re_clrwol(sc);
3754
3755 /* reinitialize interface if necessary */
3756 if (if_getflags(ifp) & IFF_UP)
3757 re_init_locked(sc);
3758
3759 sc->suspended = 0;
3760 RL_UNLOCK(sc);
3761
3762 return (0);
3763 }
3764
3765 /*
3766 * Stop all chip I/O so that the kernel's probe routines don't
3767 * get confused by errant DMAs when rebooting.
3768 */
3769 static int
re_shutdown(device_t dev)3770 re_shutdown(device_t dev)
3771 {
3772 struct rl_softc *sc;
3773
3774 sc = device_get_softc(dev);
3775
3776 RL_LOCK(sc);
3777 re_stop(sc);
3778 /*
3779 * Mark interface as down since otherwise we will panic if
3780 * interrupt comes in later on, which can happen in some
3781 * cases.
3782 */
3783 if_setflagbits(sc->rl_ifp, 0, IFF_UP);
3784 re_setwol(sc);
3785 RL_UNLOCK(sc);
3786
3787 return (0);
3788 }
3789
3790 static void
re_set_linkspeed(struct rl_softc * sc)3791 re_set_linkspeed(struct rl_softc *sc)
3792 {
3793 struct mii_softc *miisc;
3794 struct mii_data *mii;
3795 int aneg, i, phyno;
3796
3797 RL_LOCK_ASSERT(sc);
3798
3799 mii = device_get_softc(sc->rl_miibus);
3800 mii_pollstat(mii);
3801 aneg = 0;
3802 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3803 (IFM_ACTIVE | IFM_AVALID)) {
3804 switch IFM_SUBTYPE(mii->mii_media_active) {
3805 case IFM_10_T:
3806 case IFM_100_TX:
3807 return;
3808 case IFM_1000_T:
3809 aneg++;
3810 break;
3811 default:
3812 break;
3813 }
3814 }
3815 miisc = LIST_FIRST(&mii->mii_phys);
3816 phyno = miisc->mii_phy;
3817 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3818 PHY_RESET(miisc);
3819 re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0);
3820 re_miibus_writereg(sc->rl_dev, phyno,
3821 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3822 re_miibus_writereg(sc->rl_dev, phyno,
3823 MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
3824 DELAY(1000);
3825 if (aneg != 0) {
3826 /*
3827 * Poll link state until re(4) get a 10/100Mbps link.
3828 */
3829 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3830 mii_pollstat(mii);
3831 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3832 == (IFM_ACTIVE | IFM_AVALID)) {
3833 switch (IFM_SUBTYPE(mii->mii_media_active)) {
3834 case IFM_10_T:
3835 case IFM_100_TX:
3836 return;
3837 default:
3838 break;
3839 }
3840 }
3841 RL_UNLOCK(sc);
3842 pause("relnk", hz);
3843 RL_LOCK(sc);
3844 }
3845 if (i == MII_ANEGTICKS_GIGE)
3846 device_printf(sc->rl_dev,
3847 "establishing a link failed, WOL may not work!");
3848 }
3849 /*
3850 * No link, force MAC to have 100Mbps, full-duplex link.
3851 * MAC does not require reprogramming on resolved speed/duplex,
3852 * so this is just for completeness.
3853 */
3854 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3855 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3856 }
3857
3858 static void
re_setwol(struct rl_softc * sc)3859 re_setwol(struct rl_softc *sc)
3860 {
3861 if_t ifp;
3862 int pmc;
3863 uint16_t pmstat;
3864 uint8_t v;
3865
3866 RL_LOCK_ASSERT(sc);
3867
3868 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3869 return;
3870
3871 ifp = sc->rl_ifp;
3872 /* Put controller into sleep mode. */
3873 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3874 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3875 CSR_WRITE_1(sc, RL_GPIO,
3876 CSR_READ_1(sc, RL_GPIO) & ~0x01);
3877 }
3878 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
3879 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) {
3880 /* Disable RXDV gate. */
3881 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) &
3882 ~0x00080000);
3883 }
3884 re_set_rxmode(sc);
3885 if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0)
3886 re_set_linkspeed(sc);
3887 if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3888 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3889 }
3890 /* Enable config register write. */
3891 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3892
3893 /* Enable PME. */
3894 v = CSR_READ_1(sc, sc->rl_cfg1);
3895 v &= ~RL_CFG1_PME;
3896 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
3897 v |= RL_CFG1_PME;
3898 CSR_WRITE_1(sc, sc->rl_cfg1, v);
3899
3900 v = CSR_READ_1(sc, sc->rl_cfg3);
3901 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3902 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
3903 v |= RL_CFG3_WOL_MAGIC;
3904 CSR_WRITE_1(sc, sc->rl_cfg3, v);
3905
3906 v = CSR_READ_1(sc, sc->rl_cfg5);
3907 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST |
3908 RL_CFG5_WOL_LANWAKE);
3909 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0)
3910 v |= RL_CFG5_WOL_UCAST;
3911 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
3912 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3913 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
3914 v |= RL_CFG5_WOL_LANWAKE;
3915 CSR_WRITE_1(sc, sc->rl_cfg5, v);
3916
3917 /* Config register write done. */
3918 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3919
3920 if ((if_getcapenable(ifp) & IFCAP_WOL) == 0 &&
3921 (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3922 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3923 /*
3924 * It seems that hardware resets its link speed to 100Mbps in
3925 * power down mode so switching to 100Mbps in driver is not
3926 * needed.
3927 */
3928
3929 /* Request PME if WOL is requested. */
3930 pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3931 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3932 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
3933 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3934 pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3935 }
3936
3937 static void
re_clrwol(struct rl_softc * sc)3938 re_clrwol(struct rl_softc *sc)
3939 {
3940 int pmc;
3941 uint8_t v;
3942
3943 RL_LOCK_ASSERT(sc);
3944
3945 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3946 return;
3947
3948 /* Enable config register write. */
3949 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3950
3951 v = CSR_READ_1(sc, sc->rl_cfg3);
3952 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3953 CSR_WRITE_1(sc, sc->rl_cfg3, v);
3954
3955 /* Config register write done. */
3956 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3957
3958 v = CSR_READ_1(sc, sc->rl_cfg5);
3959 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3960 v &= ~RL_CFG5_WOL_LANWAKE;
3961 CSR_WRITE_1(sc, sc->rl_cfg5, v);
3962 }
3963
3964 static void
re_add_sysctls(struct rl_softc * sc)3965 re_add_sysctls(struct rl_softc *sc)
3966 {
3967 struct sysctl_ctx_list *ctx;
3968 struct sysctl_oid_list *children;
3969 int error;
3970
3971 ctx = device_get_sysctl_ctx(sc->rl_dev);
3972 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3973
3974 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3975 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
3976 re_sysctl_stats, "I", "Statistics Information");
3977 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
3978 return;
3979
3980 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
3981 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
3982 &sc->rl_int_rx_mod, 0, sysctl_hw_re_int_mod, "I",
3983 "re RX interrupt moderation");
3984 /* Pull in device tunables. */
3985 sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3986 error = resource_int_value(device_get_name(sc->rl_dev),
3987 device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
3988 if (error == 0) {
3989 if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
3990 sc->rl_int_rx_mod > RL_TIMER_MAX) {
3991 device_printf(sc->rl_dev, "int_rx_mod value out of "
3992 "range; using default: %d\n",
3993 RL_TIMER_DEFAULT);
3994 sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3995 }
3996 }
3997 }
3998
3999 static int
re_sysctl_stats(SYSCTL_HANDLER_ARGS)4000 re_sysctl_stats(SYSCTL_HANDLER_ARGS)
4001 {
4002 struct rl_softc *sc;
4003 struct rl_stats *stats;
4004 int error, i, result;
4005
4006 result = -1;
4007 error = sysctl_handle_int(oidp, &result, 0, req);
4008 if (error || req->newptr == NULL)
4009 return (error);
4010
4011 if (result == 1) {
4012 sc = (struct rl_softc *)arg1;
4013 RL_LOCK(sc);
4014 if ((if_getdrvflags(sc->rl_ifp) & IFF_DRV_RUNNING) == 0) {
4015 RL_UNLOCK(sc);
4016 goto done;
4017 }
4018 bus_dmamap_sync(sc->rl_ldata.rl_stag,
4019 sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
4020 CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
4021 RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
4022 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
4023 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
4024 CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
4025 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
4026 RL_DUMPSTATS_START));
4027 for (i = RL_TIMEOUT; i > 0; i--) {
4028 if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
4029 RL_DUMPSTATS_START) == 0)
4030 break;
4031 DELAY(1000);
4032 }
4033 bus_dmamap_sync(sc->rl_ldata.rl_stag,
4034 sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
4035 RL_UNLOCK(sc);
4036 if (i == 0) {
4037 device_printf(sc->rl_dev,
4038 "DUMP statistics request timed out\n");
4039 return (ETIMEDOUT);
4040 }
4041 done:
4042 stats = sc->rl_ldata.rl_stats;
4043 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
4044 printf("Tx frames : %ju\n",
4045 (uintmax_t)le64toh(stats->rl_tx_pkts));
4046 printf("Rx frames : %ju\n",
4047 (uintmax_t)le64toh(stats->rl_rx_pkts));
4048 printf("Tx errors : %ju\n",
4049 (uintmax_t)le64toh(stats->rl_tx_errs));
4050 printf("Rx errors : %u\n",
4051 le32toh(stats->rl_rx_errs));
4052 printf("Rx missed frames : %u\n",
4053 (uint32_t)le16toh(stats->rl_missed_pkts));
4054 printf("Rx frame alignment errs : %u\n",
4055 (uint32_t)le16toh(stats->rl_rx_framealign_errs));
4056 printf("Tx single collisions : %u\n",
4057 le32toh(stats->rl_tx_onecoll));
4058 printf("Tx multiple collisions : %u\n",
4059 le32toh(stats->rl_tx_multicolls));
4060 printf("Rx unicast frames : %ju\n",
4061 (uintmax_t)le64toh(stats->rl_rx_ucasts));
4062 printf("Rx broadcast frames : %ju\n",
4063 (uintmax_t)le64toh(stats->rl_rx_bcasts));
4064 printf("Rx multicast frames : %u\n",
4065 le32toh(stats->rl_rx_mcasts));
4066 printf("Tx aborts : %u\n",
4067 (uint32_t)le16toh(stats->rl_tx_aborts));
4068 printf("Tx underruns : %u\n",
4069 (uint32_t)le16toh(stats->rl_rx_underruns));
4070 }
4071
4072 return (error);
4073 }
4074
4075 static int
sysctl_int_range(SYSCTL_HANDLER_ARGS,int low,int high)4076 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
4077 {
4078 int error, value;
4079
4080 if (arg1 == NULL)
4081 return (EINVAL);
4082 value = *(int *)arg1;
4083 error = sysctl_handle_int(oidp, &value, 0, req);
4084 if (error || req->newptr == NULL)
4085 return (error);
4086 if (value < low || value > high)
4087 return (EINVAL);
4088 *(int *)arg1 = value;
4089
4090 return (0);
4091 }
4092
4093 static int
sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)4094 sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
4095 {
4096
4097 return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
4098 RL_TIMER_MAX));
4099 }
4100
4101 #ifdef DEBUGNET
4102 static void
re_debugnet_init(if_t ifp,int * nrxr,int * ncl,int * clsize)4103 re_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
4104 {
4105 struct rl_softc *sc;
4106
4107 sc = if_getsoftc(ifp);
4108 RL_LOCK(sc);
4109 *nrxr = sc->rl_ldata.rl_rx_desc_cnt;
4110 *ncl = DEBUGNET_MAX_IN_FLIGHT;
4111 *clsize = (if_getmtu(ifp) > RL_MTU &&
4112 (sc->rl_flags & RL_FLAG_JUMBOV2) != 0) ? MJUM9BYTES : MCLBYTES;
4113 RL_UNLOCK(sc);
4114 }
4115
4116 static void
re_debugnet_event(if_t ifp __unused,enum debugnet_ev event __unused)4117 re_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused)
4118 {
4119 }
4120
4121 static int
re_debugnet_transmit(if_t ifp,struct mbuf * m)4122 re_debugnet_transmit(if_t ifp, struct mbuf *m)
4123 {
4124 struct rl_softc *sc;
4125 int error;
4126
4127 sc = if_getsoftc(ifp);
4128 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
4129 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
4130 return (EBUSY);
4131
4132 error = re_encap(sc, &m);
4133 if (error == 0)
4134 re_start_tx(sc);
4135 return (error);
4136 }
4137
4138 static int
re_debugnet_poll(if_t ifp,int count)4139 re_debugnet_poll(if_t ifp, int count)
4140 {
4141 struct rl_softc *sc;
4142 int error;
4143
4144 sc = if_getsoftc(ifp);
4145 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
4146 (sc->rl_flags & RL_FLAG_LINK) == 0)
4147 return (EBUSY);
4148
4149 re_txeof(sc);
4150 error = re_rxeof(sc, NULL);
4151 if (error != 0 && error != EAGAIN)
4152 return (error);
4153 return (0);
4154 }
4155 #endif /* DEBUGNET */
4156