1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001-2024, Intel Corporation
5 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
6 * Copyright (c) 2024 Kevin Bowling <kbowling@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38 * Driver version:
39 *********************************************************************/
40 static const char em_driver_version[] = "7.7.8-fbsd";
41 static const char igb_driver_version[] = "2.5.28-fbsd";
42
43 /*********************************************************************
44 * PCI Device ID Table
45 *
46 * Used by probe to select devices to load on
47 * Last field stores an index into e1000_strings
48 * Last entry must be all 0s
49 *
50 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
51 *********************************************************************/
52
53 static const pci_vendor_info_t em_vendor_info_array[] =
54 {
55 /* Intel(R) - lem-class legacy devices */
56 PVID(0x8086, E1000_DEV_ID_82540EM,
57 "Intel(R) Legacy PRO/1000 MT 82540EM"),
58 PVID(0x8086, E1000_DEV_ID_82540EM_LOM,
59 "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
60 PVID(0x8086, E1000_DEV_ID_82540EP,
61 "Intel(R) Legacy PRO/1000 MT 82540EP"),
62 PVID(0x8086, E1000_DEV_ID_82540EP_LOM,
63 "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
64 PVID(0x8086, E1000_DEV_ID_82540EP_LP,
65 "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
66
67 PVID(0x8086, E1000_DEV_ID_82541EI,
68 "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
69 PVID(0x8086, E1000_DEV_ID_82541ER,
70 "Intel(R) Legacy PRO/1000 82541ER"),
71 PVID(0x8086, E1000_DEV_ID_82541ER_LOM,
72 "Intel(R) Legacy PRO/1000 MT 82541ER"),
73 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE,
74 "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
75 PVID(0x8086, E1000_DEV_ID_82541GI,
76 "Intel(R) Legacy PRO/1000 MT 82541GI"),
77 PVID(0x8086, E1000_DEV_ID_82541GI_LF,
78 "Intel(R) Legacy PRO/1000 GT 82541PI"),
79 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE,
80 "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
81
82 PVID(0x8086, E1000_DEV_ID_82542,
83 "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
84
85 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER,
86 "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
87 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER,
88 "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
89
90 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER,
91 "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
92 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER,
93 "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
94 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER,
95 "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
96 PVID(0x8086, E1000_DEV_ID_82544GC_LOM,
97 "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
98
99 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER,
100 "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
101 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER,
102 "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
103 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER,
104 "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
105 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER,
106 "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
107 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES,
108 "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
109
110 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER,
111 "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
112 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER,
113 "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
114 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER,
115 "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
116 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER,
117 "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
118 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER,
119 "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
120 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES,
121 "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
122 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE,
123 "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
124 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER,
125 "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
126 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
127 "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
128
129 PVID(0x8086, E1000_DEV_ID_82547EI,
130 "Intel(R) Legacy PRO/1000 CT 82547EI"),
131 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE,
132 "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
133 PVID(0x8086, E1000_DEV_ID_82547GI,
134 "Intel(R) Legacy PRO/1000 CT 82547GI"),
135
136 /* Intel(R) - em-class devices */
137 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER,
138 "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
139 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER,
140 "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
141 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES,
142 "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
143 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL,
144 "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
145 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD,
146 "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
147 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
148 "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
149 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
150 "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
151 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
152 "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
153 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
154 "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
155 PVID(0x8086, E1000_DEV_ID_82572EI,
156 "Intel(R) PRO/1000 PT 82572EI (Copper)"),
157 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER,
158 "Intel(R) PRO/1000 PT 82572EI (Copper)"),
159 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER,
160 "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
161 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES,
162 "Intel(R) PRO/1000 82572EI (SERDES)"),
163 PVID(0x8086, E1000_DEV_ID_82573E,
164 "Intel(R) PRO/1000 82573E (Copper)"),
165 PVID(0x8086, E1000_DEV_ID_82573E_IAMT,
166 "Intel(R) PRO/1000 82573E AMT (Copper)"),
167 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
168 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
169 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
170 "Intel(R) 80003ES2LAN (Copper)"),
171 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
172 "Intel(R) 80003ES2LAN (SERDES)"),
173 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
174 "Intel(R) 80003ES2LAN (Dual Copper)"),
175 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
176 "Intel(R) 80003ES2LAN (Dual SERDES)"),
177 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,
178 "Intel(R) 82566MM ICH8 AMT (Mobile)"),
179 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
180 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
181 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
182 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
183 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
184 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
185 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
186 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT,
187 "Intel(R) 82567LM ICH9 AMT"),
188 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT,
189 "Intel(R) 82566DM-2 ICH9 AMT"),
190 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
191 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
192 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
193 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
194 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
195 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
196 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
197 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
198 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
199 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
200 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
201 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
202 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
203 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
204 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
205 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
206 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
207 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
208 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
209 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
210 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
211 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
212 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
213 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM,
214 "Intel(R) I218-LM LPTLP"),
215 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
216 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
217 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
218 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
219 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
220 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
221 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
222 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2,
223 "Intel(R) I219-LM SPT-H(2)"),
224 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2,
225 "Intel(R) I219-V SPT-H(2)"),
226 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3,
227 "Intel(R) I219-LM LBG(3)"),
228 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4,
229 "Intel(R) I219-LM SPT(4)"),
230 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
231 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5,
232 "Intel(R) I219-LM SPT(5)"),
233 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
234 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6,
235 "Intel(R) I219-LM CNP(6)"),
236 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
237 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7,
238 "Intel(R) I219-LM CNP(7)"),
239 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
240 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8,
241 "Intel(R) I219-LM ICP(8)"),
242 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
243 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9,
244 "Intel(R) I219-LM ICP(9)"),
245 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
246 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10,
247 "Intel(R) I219-LM CMP(10)"),
248 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10,
249 "Intel(R) I219-V CMP(10)"),
250 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11,
251 "Intel(R) I219-LM CMP(11)"),
252 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11,
253 "Intel(R) I219-V CMP(11)"),
254 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12,
255 "Intel(R) I219-LM CMP(12)"),
256 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12,
257 "Intel(R) I219-V CMP(12)"),
258 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13,
259 "Intel(R) I219-LM TGP(13)"),
260 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13,
261 "Intel(R) I219-V TGP(13)"),
262 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14,
263 "Intel(R) I219-LM TGP(14)"),
264 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14,
265 "Intel(R) I219-V GTP(14)"),
266 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15,
267 "Intel(R) I219-LM TGP(15)"),
268 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15,
269 "Intel(R) I219-V TGP(15)"),
270 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16,
271 "Intel(R) I219-LM ADL(16)"),
272 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16,
273 "Intel(R) I219-V ADL(16)"),
274 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17,
275 "Intel(R) I219-LM ADL(17)"),
276 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17,
277 "Intel(R) I219-V ADL(17)"),
278 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18,
279 "Intel(R) I219-LM MTP(18)"),
280 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18,
281 "Intel(R) I219-V MTP(18)"),
282 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM19,
283 "Intel(R) I219-LM ADL(19)"),
284 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V19,
285 "Intel(R) I219-V ADL(19)"),
286 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20,
287 "Intel(R) I219-LM LNL(20)"),
288 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20,
289 "Intel(R) I219-V LNL(20)"),
290 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21,
291 "Intel(R) I219-LM LNL(21)"),
292 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21,
293 "Intel(R) I219-V LNL(21)"),
294 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22,
295 "Intel(R) I219-LM RPL(22)"),
296 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22,
297 "Intel(R) I219-V RPL(22)"),
298 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23,
299 "Intel(R) I219-LM RPL(23)"),
300 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23,
301 "Intel(R) I219-V RPL(23)"),
302 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24,
303 "Intel(R) I219-LM ARL(24)"),
304 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24,
305 "Intel(R) I219-V ARL(24)"),
306 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25,
307 "Intel(R) I219-LM PTP(25)"),
308 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25,
309 "Intel(R) I219-V PTP(25)"),
310 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26,
311 "Intel(R) I219-LM PTP(26)"),
312 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26,
313 "Intel(R) I219-V PTP(26)"),
314 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27,
315 "Intel(R) I219-LM PTP(27)"),
316 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27,
317 "Intel(R) I219-V PTP(27)"),
318 /* required last entry */
319 PVID_END
320 };
321
322 static const pci_vendor_info_t igb_vendor_info_array[] =
323 {
324 /* Intel(R) - igb-class devices */
325 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER,
326 "Intel(R) PRO/1000 82575EB (Copper)"),
327 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
328 "Intel(R) PRO/1000 82575EB (SERDES)"),
329 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
330 "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
331 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
332 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
333 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES,
334 "Intel(R) PRO/1000 82576NS (SERDES)"),
335 PVID(0x8086, E1000_DEV_ID_82576_FIBER,
336 "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
337 PVID(0x8086, E1000_DEV_ID_82576_SERDES,
338 "Intel(R) PRO/1000 82576 (Dual SERDES)"),
339 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD,
340 "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
341 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER,
342 "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
343 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2,
344 "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
345 PVID(0x8086, E1000_DEV_ID_82576_VF,
346 "Intel(R) PRO/1000 82576 Virtual Function"),
347 PVID(0x8086, E1000_DEV_ID_82580_COPPER,
348 "Intel(R) I340 82580 (Copper)"),
349 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
350 PVID(0x8086, E1000_DEV_ID_82580_SERDES,
351 "Intel(R) I340 82580 (SERDES)"),
352 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
353 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL,
354 "Intel(R) I340-T2 82580 (Dual Copper)"),
355 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER,
356 "Intel(R) I340-F4 82580 (Quad Fiber)"),
357 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES,
358 "Intel(R) DH89XXCC (SERDES)"),
359 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII,
360 "Intel(R) I347-AT4 DH89XXCC"),
361 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
362 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE,
363 "Intel(R) DH89XXCC (Backplane)"),
364 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
365 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
366 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
367 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
368 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
369 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
370 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT,
371 "Intel(R) I210 IT (Copper)"),
372 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
373 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS,
374 "Intel(R) I210 Flashless (Copper)"),
375 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS,
376 "Intel(R) I210 Flashless (SERDES)"),
377 PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS,
378 "Intel(R) I210 Flashless (SGMII)"),
379 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
380 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
381 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
382 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
383 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS,
384 "Intel(R) I354 (1.0 GbE Backplane)"),
385 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS,
386 "Intel(R) I354 (2.5 GbE Backplane)"),
387 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
388 /* required last entry */
389 PVID_END
390 };
391
392 /*********************************************************************
393 * Function prototypes
394 *********************************************************************/
395 static void *em_register(device_t);
396 static void *igb_register(device_t);
397 static int em_if_attach_pre(if_ctx_t);
398 static int em_if_attach_post(if_ctx_t);
399 static int em_if_detach(if_ctx_t);
400 static int em_if_shutdown(if_ctx_t);
401 static int em_if_suspend(if_ctx_t);
402 static int em_if_resume(if_ctx_t);
403
404 static int em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
405 int);
406 static int em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
407 int);
408 static void em_if_queues_free(if_ctx_t);
409
410 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
411 static void em_if_init(if_ctx_t);
412 static void em_if_stop(if_ctx_t);
413 static void em_if_media_status(if_ctx_t, struct ifmediareq *);
414 static int em_if_media_change(if_ctx_t);
415 static int em_if_mtu_set(if_ctx_t, uint32_t);
416 static void em_if_timer(if_ctx_t, uint16_t);
417 static void em_if_vlan_register(if_ctx_t, u16);
418 static void em_if_vlan_unregister(if_ctx_t, u16);
419 static void em_if_watchdog_reset(if_ctx_t);
420 static bool em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
421
422 static void em_identify_hardware(if_ctx_t);
423 static int em_allocate_pci_resources(if_ctx_t);
424 static void em_free_pci_resources(if_ctx_t);
425 static void em_reset(if_ctx_t);
426 static int em_setup_interface(if_ctx_t);
427 static int em_setup_msix(if_ctx_t);
428
429 static void em_initialize_transmit_unit(if_ctx_t);
430 static void em_initialize_receive_unit(if_ctx_t);
431
432 static void em_if_intr_enable(if_ctx_t);
433 static void em_if_intr_disable(if_ctx_t);
434 static void igb_if_intr_enable(if_ctx_t);
435 static void igb_if_intr_disable(if_ctx_t);
436 static int em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
437 static int em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
438 static int igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
439 static int igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
440 static void em_if_multi_set(if_ctx_t);
441 static void em_if_update_admin_status(if_ctx_t);
442 static void em_if_debug(if_ctx_t);
443 static void em_update_stats_counters(struct e1000_softc *);
444 static void em_add_hw_stats(struct e1000_softc *);
445 static int em_if_set_promisc(if_ctx_t, int);
446 static bool em_if_vlan_filter_capable(if_ctx_t);
447 static bool em_if_vlan_filter_used(if_ctx_t);
448 static void em_if_vlan_filter_enable(struct e1000_softc *);
449 static void em_if_vlan_filter_disable(struct e1000_softc *);
450 static void em_if_vlan_filter_write(struct e1000_softc *);
451 static void em_setup_vlan_hw_support(if_ctx_t ctx);
452 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
453 static void em_print_nvm_info(struct e1000_softc *);
454 static void em_fw_version_locked(if_ctx_t);
455 static void em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
456 static void em_print_fw_version(struct e1000_softc *);
457 static int em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
458 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
459 static int em_get_rs(SYSCTL_HANDLER_ARGS);
460 static void em_print_debug_info(struct e1000_softc *);
461 static int em_is_valid_ether_addr(u8 *);
462 static void em_newitr(struct e1000_softc *, struct em_rx_queue *,
463 struct tx_ring *, struct rx_ring *);
464 static bool em_automask_tso(if_ctx_t);
465 static int em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS);
466 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
467 static void em_add_int_delay_sysctl(struct e1000_softc *, const char *,
468 const char *, struct em_int_delay_info *, int, int);
469 /* Management and WOL Support */
470 static void em_init_manageability(struct e1000_softc *);
471 static void em_release_manageability(struct e1000_softc *);
472 static void em_get_hw_control(struct e1000_softc *);
473 static void em_release_hw_control(struct e1000_softc *);
474 static void em_get_wakeup(if_ctx_t);
475 static void em_enable_wakeup(if_ctx_t);
476 static int em_enable_phy_wakeup(struct e1000_softc *);
477 static void em_disable_aspm(struct e1000_softc *);
478
479 int em_intr(void *);
480
481 /* MSI-X handlers */
482 static int em_if_msix_intr_assign(if_ctx_t, int);
483 static int em_msix_link(void *);
484 static void em_handle_link(void *);
485
486 static void em_enable_vectors_82574(if_ctx_t);
487
488 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS);
489 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS);
490 static int igb_sysctl_dmac(SYSCTL_HANDLER_ARGS);
491 static void em_if_led_func(if_ctx_t, int);
492
493 static int em_get_regs(SYSCTL_HANDLER_ARGS);
494
495 static void lem_smartspeed(struct e1000_softc *);
496 static void igb_configure_queues(struct e1000_softc *);
497 static void em_flush_desc_rings(struct e1000_softc *);
498
499
500 /*********************************************************************
501 * FreeBSD Device Interface Entry Points
502 *********************************************************************/
503 static device_method_t em_methods[] = {
504 /* Device interface */
505 DEVMETHOD(device_register, em_register),
506 DEVMETHOD(device_probe, iflib_device_probe),
507 DEVMETHOD(device_attach, iflib_device_attach),
508 DEVMETHOD(device_detach, iflib_device_detach),
509 DEVMETHOD(device_shutdown, iflib_device_shutdown),
510 DEVMETHOD(device_suspend, iflib_device_suspend),
511 DEVMETHOD(device_resume, iflib_device_resume),
512 DEVMETHOD_END
513 };
514
515 static device_method_t igb_methods[] = {
516 /* Device interface */
517 DEVMETHOD(device_register, igb_register),
518 DEVMETHOD(device_probe, iflib_device_probe),
519 DEVMETHOD(device_attach, iflib_device_attach),
520 DEVMETHOD(device_detach, iflib_device_detach),
521 DEVMETHOD(device_shutdown, iflib_device_shutdown),
522 DEVMETHOD(device_suspend, iflib_device_suspend),
523 DEVMETHOD(device_resume, iflib_device_resume),
524 DEVMETHOD_END
525 };
526
527
528 static driver_t em_driver = {
529 "em", em_methods, sizeof(struct e1000_softc),
530 };
531
532 DRIVER_MODULE(em, pci, em_driver, 0, 0);
533
534 MODULE_DEPEND(em, pci, 1, 1, 1);
535 MODULE_DEPEND(em, ether, 1, 1, 1);
536 MODULE_DEPEND(em, iflib, 1, 1, 1);
537
538 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
539
540 static driver_t igb_driver = {
541 "igb", igb_methods, sizeof(struct e1000_softc),
542 };
543
544 DRIVER_MODULE(igb, pci, igb_driver, 0, 0);
545
546 MODULE_DEPEND(igb, pci, 1, 1, 1);
547 MODULE_DEPEND(igb, ether, 1, 1, 1);
548 MODULE_DEPEND(igb, iflib, 1, 1, 1);
549
550 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
551
552 static device_method_t em_if_methods[] = {
553 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
554 DEVMETHOD(ifdi_attach_post, em_if_attach_post),
555 DEVMETHOD(ifdi_detach, em_if_detach),
556 DEVMETHOD(ifdi_shutdown, em_if_shutdown),
557 DEVMETHOD(ifdi_suspend, em_if_suspend),
558 DEVMETHOD(ifdi_resume, em_if_resume),
559 DEVMETHOD(ifdi_init, em_if_init),
560 DEVMETHOD(ifdi_stop, em_if_stop),
561 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
562 DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
563 DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
564 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
565 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
566 DEVMETHOD(ifdi_queues_free, em_if_queues_free),
567 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
568 DEVMETHOD(ifdi_multi_set, em_if_multi_set),
569 DEVMETHOD(ifdi_media_status, em_if_media_status),
570 DEVMETHOD(ifdi_media_change, em_if_media_change),
571 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
572 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
573 DEVMETHOD(ifdi_timer, em_if_timer),
574 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
575 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
576 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
577 DEVMETHOD(ifdi_get_counter, em_if_get_counter),
578 DEVMETHOD(ifdi_led_func, em_if_led_func),
579 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
580 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
581 DEVMETHOD(ifdi_debug, em_if_debug),
582 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
583 DEVMETHOD_END
584 };
585
586 static driver_t em_if_driver = {
587 "em_if", em_if_methods, sizeof(struct e1000_softc)
588 };
589
590 static device_method_t igb_if_methods[] = {
591 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
592 DEVMETHOD(ifdi_attach_post, em_if_attach_post),
593 DEVMETHOD(ifdi_detach, em_if_detach),
594 DEVMETHOD(ifdi_shutdown, em_if_shutdown),
595 DEVMETHOD(ifdi_suspend, em_if_suspend),
596 DEVMETHOD(ifdi_resume, em_if_resume),
597 DEVMETHOD(ifdi_init, em_if_init),
598 DEVMETHOD(ifdi_stop, em_if_stop),
599 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
600 DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
601 DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
602 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
603 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
604 DEVMETHOD(ifdi_queues_free, em_if_queues_free),
605 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
606 DEVMETHOD(ifdi_multi_set, em_if_multi_set),
607 DEVMETHOD(ifdi_media_status, em_if_media_status),
608 DEVMETHOD(ifdi_media_change, em_if_media_change),
609 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
610 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
611 DEVMETHOD(ifdi_timer, em_if_timer),
612 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
613 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
614 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
615 DEVMETHOD(ifdi_get_counter, em_if_get_counter),
616 DEVMETHOD(ifdi_led_func, em_if_led_func),
617 DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
618 DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
619 DEVMETHOD(ifdi_debug, em_if_debug),
620 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
621 DEVMETHOD_END
622 };
623
624 static driver_t igb_if_driver = {
625 "igb_if", igb_if_methods, sizeof(struct e1000_softc)
626 };
627
628 /*********************************************************************
629 * Tunable default values.
630 *********************************************************************/
631
632 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
633 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
634
635 /* Allow common code without TSO */
636 #ifndef CSUM_TSO
637 #define CSUM_TSO 0
638 #endif
639
640 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
641 "EM driver parameters");
642
643 static int em_disable_crc_stripping = 0;
644 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
645 &em_disable_crc_stripping, 0, "Disable CRC Stripping");
646
647 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
648 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
649 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN,
650 &em_tx_int_delay_dflt, 0, "Default transmit interrupt delay in usecs");
651 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN,
652 &em_rx_int_delay_dflt, 0, "Default receive interrupt delay in usecs");
653
654 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
655 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
656 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
657 &em_tx_abs_int_delay_dflt, 0,
658 "Default transmit interrupt delay limit in usecs");
659 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
660 &em_rx_abs_int_delay_dflt, 0,
661 "Default receive interrupt delay limit in usecs");
662
663 static int em_smart_pwr_down = false;
664 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN,
665 &em_smart_pwr_down,
666 0, "Set to true to leave smart power down enabled on newer adapters");
667
668 static bool em_unsupported_tso = false;
669 SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN,
670 &em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations");
671
672 /* Controls whether promiscuous also shows bad packets */
673 static int em_debug_sbp = false;
674 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
675 "Show bad packets in promiscuous mode");
676
677 /* Energy efficient ethernet - default to OFF */
678 static int eee_setting = 1;
679 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
680 "Enable Energy Efficient Ethernet");
681
682 /*
683 * AIM: Adaptive Interrupt Moderation
684 * which means that the interrupt rate is varied over time based on the
685 * traffic for that interrupt vector
686 */
687 static int em_enable_aim = 1;
688 SYSCTL_INT(_hw_em, OID_AUTO, enable_aim, CTLFLAG_RWTUN, &em_enable_aim,
689 0, "Enable adaptive interrupt moderation (1=normal, 2=lowlatency)");
690
691 /*
692 ** Tuneable Interrupt rate
693 */
694 static int em_max_interrupt_rate = EM_INTS_DEFAULT;
695 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
696 &em_max_interrupt_rate, 0, "Maximum interrupts per second");
697
698 /* Global used in WOL setup with multiport cards */
699 static int global_quad_port_a = 0;
700
701 extern struct if_txrx igb_txrx;
702 extern struct if_txrx em_txrx;
703 extern struct if_txrx lem_txrx;
704
705 static struct if_shared_ctx em_sctx_init = {
706 .isc_magic = IFLIB_MAGIC,
707 .isc_q_align = PAGE_SIZE,
708 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
709 .isc_tx_maxsegsize = PAGE_SIZE,
710 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
711 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
712 .isc_rx_maxsize = MJUM9BYTES,
713 .isc_rx_nsegments = 1,
714 .isc_rx_maxsegsize = MJUM9BYTES,
715 .isc_nfl = 1,
716 .isc_nrxqs = 1,
717 .isc_ntxqs = 1,
718 .isc_admin_intrcnt = 1,
719 .isc_vendor_info = em_vendor_info_array,
720 .isc_driver_version = em_driver_version,
721 .isc_driver = &em_if_driver,
722 .isc_flags =
723 IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
724
725 .isc_nrxd_min = {EM_MIN_RXD},
726 .isc_ntxd_min = {EM_MIN_TXD},
727 .isc_nrxd_max = {EM_MAX_RXD},
728 .isc_ntxd_max = {EM_MAX_TXD},
729 .isc_nrxd_default = {EM_DEFAULT_RXD},
730 .isc_ntxd_default = {EM_DEFAULT_TXD},
731 };
732
733 static struct if_shared_ctx igb_sctx_init = {
734 .isc_magic = IFLIB_MAGIC,
735 .isc_q_align = PAGE_SIZE,
736 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
737 .isc_tx_maxsegsize = PAGE_SIZE,
738 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
739 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
740 .isc_rx_maxsize = MJUM9BYTES,
741 .isc_rx_nsegments = 1,
742 .isc_rx_maxsegsize = MJUM9BYTES,
743 .isc_nfl = 1,
744 .isc_nrxqs = 1,
745 .isc_ntxqs = 1,
746 .isc_admin_intrcnt = 1,
747 .isc_vendor_info = igb_vendor_info_array,
748 .isc_driver_version = igb_driver_version,
749 .isc_driver = &igb_if_driver,
750 .isc_flags =
751 IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
752
753 .isc_nrxd_min = {EM_MIN_RXD},
754 .isc_ntxd_min = {EM_MIN_TXD},
755 .isc_nrxd_max = {IGB_MAX_RXD},
756 .isc_ntxd_max = {IGB_MAX_TXD},
757 .isc_nrxd_default = {EM_DEFAULT_RXD},
758 .isc_ntxd_default = {EM_DEFAULT_TXD},
759 };
760
761 /*****************************************************************
762 *
763 * Dump Registers
764 *
765 ****************************************************************/
766 #define IGB_REGS_LEN 739
767
em_get_regs(SYSCTL_HANDLER_ARGS)768 static int em_get_regs(SYSCTL_HANDLER_ARGS)
769 {
770 struct e1000_softc *sc = (struct e1000_softc *)arg1;
771 struct e1000_hw *hw = &sc->hw;
772 struct sbuf *sb;
773 u32 *regs_buff;
774 int rc;
775
776 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
777 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
778
779 rc = sysctl_wire_old_buffer(req, 0);
780 MPASS(rc == 0);
781 if (rc != 0) {
782 free(regs_buff, M_DEVBUF);
783 return (rc);
784 }
785
786 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
787 MPASS(sb != NULL);
788 if (sb == NULL) {
789 free(regs_buff, M_DEVBUF);
790 return (ENOMEM);
791 }
792
793 /* General Registers */
794 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
795 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
796 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
797 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
798 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
799 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
800 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
801 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
802 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
803 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
804 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
805 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
806 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
807 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
808 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
809 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
810 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
811 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
812 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
813 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
814 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
815 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
816
817 sbuf_printf(sb, "General Registers\n");
818 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
819 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
820 sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
821
822 sbuf_printf(sb, "Interrupt Registers\n");
823 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
824
825 sbuf_printf(sb, "RX Registers\n");
826 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
827 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
828 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
829 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
830 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
831 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
832 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
833
834 sbuf_printf(sb, "TX Registers\n");
835 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
836 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
837 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
838 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
839 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
840 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
841 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
842 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
843 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
844 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
845 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
846
847 free(regs_buff, M_DEVBUF);
848
849 #ifdef DUMP_DESCS
850 {
851 if_softc_ctx_t scctx = sc->shared;
852 struct rx_ring *rxr = &rx_que->rxr;
853 struct tx_ring *txr = &tx_que->txr;
854 int ntxd = scctx->isc_ntxd[0];
855 int nrxd = scctx->isc_nrxd[0];
856 int j;
857
858 for (j = 0; j < nrxd; j++) {
859 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
860 u32 length = le32toh(rxr->rx_base[j].wb.upper.length);
861 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08"
862 PRIx64 " Error:%d Length:%d\n",
863 j, rxr->rx_base[j].read.buffer_addr, staterr, length);
864 }
865
866 for (j = 0; j < min(ntxd, 256); j++) {
867 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
868
869 sbuf_printf(sb,
870 "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x"
871 " eop: %d DD=%d\n",
872 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
873 buf->eop != -1 ?
874 txr->tx_base[buf->eop].upper.fields.status &
875 E1000_TXD_STAT_DD : 0);
876
877 }
878 }
879 #endif
880
881 rc = sbuf_finish(sb);
882 sbuf_delete(sb);
883 return(rc);
884 }
885
886 static void *
em_register(device_t dev)887 em_register(device_t dev)
888 {
889 return (&em_sctx_init);
890 }
891
892 static void *
igb_register(device_t dev)893 igb_register(device_t dev)
894 {
895 return (&igb_sctx_init);
896 }
897
898 static int
em_set_num_queues(if_ctx_t ctx)899 em_set_num_queues(if_ctx_t ctx)
900 {
901 struct e1000_softc *sc = iflib_get_softc(ctx);
902 int maxqueues;
903
904 /* Sanity check based on HW */
905 switch (sc->hw.mac.type) {
906 case e1000_82576:
907 case e1000_82580:
908 case e1000_i350:
909 case e1000_i354:
910 maxqueues = 8;
911 break;
912 case e1000_i210:
913 case e1000_82575:
914 maxqueues = 4;
915 break;
916 case e1000_i211:
917 case e1000_82574:
918 maxqueues = 2;
919 break;
920 default:
921 maxqueues = 1;
922 break;
923 }
924
925 return (maxqueues);
926 }
927
928 #define LEM_CAPS \
929 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
930 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
931 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6
932
933 #define EM_CAPS \
934 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
935 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
936 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
937 IFCAP_TSO6
938
939 #define IGB_CAPS \
940 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
941 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
942 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
943 IFCAP_TSO6
944
945 /*********************************************************************
946 * Device initialization routine
947 *
948 * The attach entry point is called when the driver is being loaded.
949 * This routine identifies the type of hardware, allocates all resources
950 * and initializes the hardware.
951 *
952 * return 0 on success, positive on failure
953 *********************************************************************/
954 static int
em_if_attach_pre(if_ctx_t ctx)955 em_if_attach_pre(if_ctx_t ctx)
956 {
957 struct e1000_softc *sc;
958 if_softc_ctx_t scctx;
959 device_t dev;
960 struct e1000_hw *hw;
961 struct sysctl_oid_list *child;
962 struct sysctl_ctx_list *ctx_list;
963 int error = 0;
964
965 INIT_DEBUGOUT("em_if_attach_pre: begin");
966 dev = iflib_get_dev(ctx);
967 sc = iflib_get_softc(ctx);
968
969 sc->ctx = sc->osdep.ctx = ctx;
970 sc->dev = sc->osdep.dev = dev;
971 scctx = sc->shared = iflib_get_softc_ctx(ctx);
972 sc->media = iflib_get_media(ctx);
973 hw = &sc->hw;
974
975 /* Determine hardware and mac info */
976 em_identify_hardware(ctx);
977
978 /* SYSCTL stuff */
979 ctx_list = device_get_sysctl_ctx(dev);
980 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
981
982 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
983 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
984 em_sysctl_nvm_info, "I", "NVM Information");
985
986 sc->enable_aim = em_enable_aim;
987 SYSCTL_ADD_INT(ctx_list, child, OID_AUTO, "enable_aim",
988 CTLFLAG_RW, &sc->enable_aim, 0,
989 "Interrupt Moderation (1=normal, 2=lowlatency)");
990
991 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
992 CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
993 em_sysctl_print_fw_version, "A",
994 "Prints FW/NVM Versions");
995
996 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
997 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
998 em_sysctl_debug_info, "I", "Debug Information");
999
1000 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
1001 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1002 em_set_flowcntl, "I", "Flow Control");
1003
1004 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
1005 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
1006 em_get_regs, "A", "Dump Registers");
1007
1008 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
1009 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1010 em_get_rs, "I", "Dump RS indexes");
1011
1012 if (hw->mac.type >= e1000_i350) {
1013 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "dmac",
1014 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
1015 igb_sysctl_dmac, "I", "DMA Coalesce");
1016 }
1017
1018 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1019 "tso_tcp_flags_mask_first_segment",
1020 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1021 sc, 0, em_sysctl_tso_tcp_flags_mask, "IU",
1022 "TSO TCP flags mask for first segment");
1023
1024 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1025 "tso_tcp_flags_mask_middle_segment",
1026 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1027 sc, 1, em_sysctl_tso_tcp_flags_mask, "IU",
1028 "TSO TCP flags mask for middle segment");
1029
1030 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1031 "tso_tcp_flags_mask_last_segment",
1032 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1033 sc, 2, em_sysctl_tso_tcp_flags_mask, "IU",
1034 "TSO TCP flags mask for last segment");
1035
1036 scctx->isc_tx_nsegments = EM_MAX_SCATTER;
1037 scctx->isc_nrxqsets_max =
1038 scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
1039 if (bootverbose)
1040 device_printf(dev, "attach_pre capping queues at %d\n",
1041 scctx->isc_ntxqsets_max);
1042
1043 if (hw->mac.type >= igb_mac_min) {
1044 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
1045 sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
1046 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
1047 sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
1048 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
1049 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
1050 scctx->isc_txrx = &igb_txrx;
1051 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1052 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1053 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1054 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
1055 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
1056 CSUM_IP6_TCP | CSUM_IP6_UDP;
1057 if (hw->mac.type != e1000_82575)
1058 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
1059 /*
1060 ** Some new devices, as with ixgbe, now may
1061 ** use a different BAR, so we need to keep
1062 ** track of which is used.
1063 */
1064 scctx->isc_msix_bar = pci_msix_table_bar(dev);
1065 } else if (hw->mac.type >= em_mac_min) {
1066 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
1067 sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
1068 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
1069 sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
1070 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
1071 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
1072 scctx->isc_txrx = &em_txrx;
1073 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1074 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1075 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1076 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
1077 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
1078 CSUM_IP6_TCP | CSUM_IP6_UDP;
1079
1080 /* Disable TSO on all em(4) until ring stalls are debugged */
1081 scctx->isc_capenable &= ~IFCAP_TSO;
1082
1083 /*
1084 * Disable TSO on SPT due to errata that downclocks DMA
1085 * performance
1086 * i218-i219 Specification Update 1.5.4.5
1087 */
1088 if (hw->mac.type == e1000_pch_spt)
1089 scctx->isc_capenable &= ~IFCAP_TSO;
1090
1091 /*
1092 * We support MSI-X with 82574 only, but indicate to iflib(4)
1093 * that it shall give MSI at least a try with other devices.
1094 */
1095 if (hw->mac.type == e1000_82574) {
1096 scctx->isc_msix_bar = pci_msix_table_bar(dev);
1097 } else {
1098 scctx->isc_msix_bar = -1;
1099 scctx->isc_disable_msix = 1;
1100 }
1101 } else {
1102 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) *
1103 sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
1104 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) *
1105 sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
1106 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
1107 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
1108 scctx->isc_txrx = &lem_txrx;
1109 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1110 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1111 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1112 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
1113 if (em_unsupported_tso)
1114 scctx->isc_capabilities |= IFCAP_TSO6;
1115 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
1116 CSUM_IP6_TCP | CSUM_IP6_UDP;
1117
1118 /* Disable TSO on all lem(4) until ring stalls debugged */
1119 scctx->isc_capenable &= ~IFCAP_TSO;
1120
1121 /* 82541ER doesn't do HW tagging */
1122 if (hw->device_id == E1000_DEV_ID_82541ER ||
1123 hw->device_id == E1000_DEV_ID_82541ER_LOM) {
1124 scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING;
1125 scctx->isc_capenable = scctx->isc_capabilities;
1126 }
1127 /* This is the first e1000 chip and it does not do offloads */
1128 if (hw->mac.type == e1000_82542) {
1129 scctx->isc_capabilities &= ~(IFCAP_HWCSUM |
1130 IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6 |
1131 IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWFILTER |
1132 IFCAP_TSO | IFCAP_VLAN_HWTSO);
1133 scctx->isc_capenable = scctx->isc_capabilities;
1134 }
1135 /* These can't do TSO for various reasons */
1136 if (hw->mac.type < e1000_82544 ||
1137 hw->mac.type == e1000_82547 ||
1138 hw->mac.type == e1000_82547_rev_2) {
1139 scctx->isc_capabilities &=
1140 ~(IFCAP_TSO |IFCAP_VLAN_HWTSO);
1141 scctx->isc_capenable = scctx->isc_capabilities;
1142 }
1143 /* XXXKB: No IPv6 before this? */
1144 if (hw->mac.type < e1000_82545){
1145 scctx->isc_capabilities &= ~IFCAP_HWCSUM_IPV6;
1146 scctx->isc_capenable = scctx->isc_capabilities;
1147 }
1148 /*
1149 * "PCI/PCI-X SDM 4.0" page 33 (b):
1150 * FDX requirement on these chips
1151 */
1152 if (hw->mac.type == e1000_82547 ||
1153 hw->mac.type == e1000_82547_rev_2)
1154 scctx->isc_capenable &= ~(IFCAP_HWCSUM |
1155 IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6);
1156
1157 /* INTx only */
1158 scctx->isc_msix_bar = 0;
1159 }
1160
1161 /* Setup PCI resources */
1162 if (em_allocate_pci_resources(ctx)) {
1163 device_printf(dev, "Allocation of PCI resources failed\n");
1164 error = ENXIO;
1165 goto err_pci;
1166 }
1167
1168 /*
1169 ** For ICH8 and family we need to
1170 ** map the flash memory, and this
1171 ** must happen after the MAC is
1172 ** identified
1173 */
1174 if ((hw->mac.type == e1000_ich8lan) ||
1175 (hw->mac.type == e1000_ich9lan) ||
1176 (hw->mac.type == e1000_ich10lan) ||
1177 (hw->mac.type == e1000_pchlan) ||
1178 (hw->mac.type == e1000_pch2lan) ||
1179 (hw->mac.type == e1000_pch_lpt)) {
1180 int rid = EM_BAR_TYPE_FLASH;
1181 sc->flash = bus_alloc_resource_any(dev,
1182 SYS_RES_MEMORY, &rid, RF_ACTIVE);
1183 if (sc->flash == NULL) {
1184 device_printf(dev, "Mapping of Flash failed\n");
1185 error = ENXIO;
1186 goto err_pci;
1187 }
1188 /* This is used in the shared code */
1189 hw->flash_address = (u8 *)sc->flash;
1190 sc->osdep.flash_bus_space_tag =
1191 rman_get_bustag(sc->flash);
1192 sc->osdep.flash_bus_space_handle =
1193 rman_get_bushandle(sc->flash);
1194 }
1195 /*
1196 ** In the new SPT device flash is not a
1197 ** separate BAR, rather it is also in BAR0,
1198 ** so use the same tag and an offset handle for the
1199 ** FLASH read/write macros in the shared code.
1200 */
1201 else if (hw->mac.type >= e1000_pch_spt) {
1202 sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag;
1203 sc->osdep.flash_bus_space_handle =
1204 sc->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
1205 }
1206
1207 /* Do Shared Code initialization */
1208 error = e1000_setup_init_funcs(hw, true);
1209 if (error) {
1210 device_printf(dev, "Setup of Shared code failed, error %d\n",
1211 error);
1212 error = ENXIO;
1213 goto err_pci;
1214 }
1215
1216 em_setup_msix(ctx);
1217 e1000_get_bus_info(hw);
1218
1219 /* Set up some sysctls for the tunable interrupt delays */
1220 if (hw->mac.type < igb_mac_min) {
1221 em_add_int_delay_sysctl(sc, "rx_int_delay",
1222 "receive interrupt delay in usecs", &sc->rx_int_delay,
1223 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
1224 em_add_int_delay_sysctl(sc, "tx_int_delay",
1225 "transmit interrupt delay in usecs", &sc->tx_int_delay,
1226 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
1227 }
1228 if (hw->mac.type >= e1000_82540 && hw->mac.type < igb_mac_min) {
1229 em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
1230 "receive interrupt delay limit in usecs",
1231 &sc->rx_abs_int_delay,
1232 E1000_REGISTER(hw, E1000_RADV), em_rx_abs_int_delay_dflt);
1233 em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
1234 "transmit interrupt delay limit in usecs",
1235 &sc->tx_abs_int_delay,
1236 E1000_REGISTER(hw, E1000_TADV), em_tx_abs_int_delay_dflt);
1237 }
1238
1239 hw->mac.autoneg = DO_AUTO_NEG;
1240 hw->phy.autoneg_wait_to_complete = false;
1241 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1242
1243 if (hw->mac.type < em_mac_min) {
1244 e1000_init_script_state_82541(hw, true);
1245 e1000_set_tbi_compatibility_82543(hw, true);
1246 }
1247 /* Copper options */
1248 if (hw->phy.media_type == e1000_media_type_copper) {
1249 hw->phy.mdix = AUTO_ALL_MODES;
1250 hw->phy.disable_polarity_correction = false;
1251 hw->phy.ms_type = EM_MASTER_SLAVE;
1252 }
1253
1254 /*
1255 * Set the frame limits assuming
1256 * standard ethernet sized frames.
1257 */
1258 scctx->isc_max_frame_size = hw->mac.max_frame_size =
1259 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1260
1261 /*
1262 * This controls when hardware reports transmit completion
1263 * status.
1264 */
1265 hw->mac.report_tx_early = 1;
1266
1267 /* Allocate multicast array memory. */
1268 sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1269 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1270 if (sc->mta == NULL) {
1271 device_printf(dev,
1272 "Can not allocate multicast setup array\n");
1273 error = ENOMEM;
1274 goto err_late;
1275 }
1276
1277 /* Clear the IFCAP_TSO auto mask */
1278 sc->tso_automasked = 0;
1279
1280 /* Check SOL/IDER usage */
1281 if (e1000_check_reset_block(hw))
1282 device_printf(dev,
1283 "PHY reset is blocked due to SOL/IDER session.\n");
1284
1285 /* Sysctl for setting Energy Efficient Ethernet */
1286 if (hw->mac.type < igb_mac_min)
1287 hw->dev_spec.ich8lan.eee_disable = eee_setting;
1288 else
1289 hw->dev_spec._82575.eee_disable = eee_setting;
1290 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
1291 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1292 em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
1293
1294 /*
1295 ** Start from a known state, this is
1296 ** important in reading the nvm and
1297 ** mac from that.
1298 */
1299 e1000_reset_hw(hw);
1300
1301 /* Make sure we have a good EEPROM before we read from it */
1302 if (e1000_validate_nvm_checksum(hw) < 0) {
1303 /*
1304 ** Some PCI-E parts fail the first check due to
1305 ** the link being in sleep state, call it again,
1306 ** if it fails a second time its a real issue.
1307 */
1308 if (e1000_validate_nvm_checksum(hw) < 0) {
1309 device_printf(dev,
1310 "The EEPROM Checksum Is Not Valid\n");
1311 error = EIO;
1312 goto err_late;
1313 }
1314 }
1315
1316 /* Copy the permanent MAC address out of the EEPROM */
1317 if (e1000_read_mac_addr(hw) < 0) {
1318 device_printf(dev,
1319 "EEPROM read error while reading MAC address\n");
1320 error = EIO;
1321 goto err_late;
1322 }
1323
1324 if (!em_is_valid_ether_addr(hw->mac.addr)) {
1325 if (sc->vf_ifp) {
1326 ether_gen_addr(iflib_get_ifp(ctx),
1327 (struct ether_addr *)hw->mac.addr);
1328 } else {
1329 device_printf(dev, "Invalid MAC address\n");
1330 error = EIO;
1331 goto err_late;
1332 }
1333 }
1334
1335 /* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */
1336 em_fw_version_locked(ctx);
1337
1338 em_print_fw_version(sc);
1339
1340 /*
1341 * Get Wake-on-Lan and Management info for later use
1342 */
1343 em_get_wakeup(ctx);
1344
1345 /* Enable only WOL MAGIC by default */
1346 scctx->isc_capenable &= ~IFCAP_WOL;
1347 if (sc->wol != 0)
1348 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1349
1350 iflib_set_mac(ctx, hw->mac.addr);
1351
1352 return (0);
1353
1354 err_late:
1355 em_release_hw_control(sc);
1356 err_pci:
1357 em_free_pci_resources(ctx);
1358 free(sc->mta, M_DEVBUF);
1359
1360 return (error);
1361 }
1362
1363 static int
em_if_attach_post(if_ctx_t ctx)1364 em_if_attach_post(if_ctx_t ctx)
1365 {
1366 struct e1000_softc *sc = iflib_get_softc(ctx);
1367 struct e1000_hw *hw = &sc->hw;
1368 int error = 0;
1369
1370 /* Setup OS specific network interface */
1371 error = em_setup_interface(ctx);
1372 if (error != 0) {
1373 device_printf(sc->dev, "Interface setup failed: %d\n", error);
1374 goto err_late;
1375 }
1376
1377 em_reset(ctx);
1378
1379 /* Initialize statistics */
1380 em_update_stats_counters(sc);
1381 hw->mac.get_link_status = 1;
1382 em_if_update_admin_status(ctx);
1383 em_add_hw_stats(sc);
1384
1385 /* Non-AMT based hardware can now take control from firmware */
1386 if (sc->has_manage && !sc->has_amt)
1387 em_get_hw_control(sc);
1388
1389 INIT_DEBUGOUT("em_if_attach_post: end");
1390
1391 return (0);
1392
1393 err_late:
1394 /*
1395 * Upon em_if_attach_post() error, iflib calls em_if_detach() to
1396 * free resources
1397 */
1398 return (error);
1399 }
1400
1401 /*********************************************************************
1402 * Device removal routine
1403 *
1404 * The detach entry point is called when the driver is being removed.
1405 * This routine stops the adapter and deallocates all the resources
1406 * that were allocated for driver operation.
1407 *
1408 * return 0 on success, positive on failure
1409 *********************************************************************/
1410 static int
em_if_detach(if_ctx_t ctx)1411 em_if_detach(if_ctx_t ctx)
1412 {
1413 struct e1000_softc *sc = iflib_get_softc(ctx);
1414
1415 INIT_DEBUGOUT("em_if_detach: begin");
1416
1417 e1000_phy_hw_reset(&sc->hw);
1418
1419 em_release_manageability(sc);
1420 em_release_hw_control(sc);
1421 em_free_pci_resources(ctx);
1422 free(sc->mta, M_DEVBUF);
1423 sc->mta = NULL;
1424
1425 return (0);
1426 }
1427
1428 /*********************************************************************
1429 *
1430 * Shutdown entry point
1431 *
1432 **********************************************************************/
1433
1434 static int
em_if_shutdown(if_ctx_t ctx)1435 em_if_shutdown(if_ctx_t ctx)
1436 {
1437 return em_if_suspend(ctx);
1438 }
1439
1440 /*
1441 * Suspend/resume device methods.
1442 */
1443 static int
em_if_suspend(if_ctx_t ctx)1444 em_if_suspend(if_ctx_t ctx)
1445 {
1446 struct e1000_softc *sc = iflib_get_softc(ctx);
1447
1448 em_release_manageability(sc);
1449 em_release_hw_control(sc);
1450 em_enable_wakeup(ctx);
1451 return (0);
1452 }
1453
1454 static int
em_if_resume(if_ctx_t ctx)1455 em_if_resume(if_ctx_t ctx)
1456 {
1457 struct e1000_softc *sc = iflib_get_softc(ctx);
1458
1459 if (sc->hw.mac.type == e1000_pch2lan)
1460 e1000_resume_workarounds_pchlan(&sc->hw);
1461 em_if_init(ctx);
1462 em_init_manageability(sc);
1463
1464 return(0);
1465 }
1466
1467 static int
em_if_mtu_set(if_ctx_t ctx,uint32_t mtu)1468 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1469 {
1470 int max_frame_size;
1471 struct e1000_softc *sc = iflib_get_softc(ctx);
1472 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1473
1474 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1475
1476 switch (sc->hw.mac.type) {
1477 case e1000_82571:
1478 case e1000_82572:
1479 case e1000_ich9lan:
1480 case e1000_ich10lan:
1481 case e1000_pch2lan:
1482 case e1000_pch_lpt:
1483 case e1000_pch_spt:
1484 case e1000_pch_cnp:
1485 case e1000_pch_tgp:
1486 case e1000_pch_adp:
1487 case e1000_pch_mtp:
1488 case e1000_pch_ptp:
1489 case e1000_82574:
1490 case e1000_82583:
1491 case e1000_80003es2lan:
1492 /* 9K Jumbo Frame size */
1493 max_frame_size = 9234;
1494 break;
1495 case e1000_pchlan:
1496 max_frame_size = 4096;
1497 break;
1498 case e1000_82542:
1499 case e1000_ich8lan:
1500 /* Adapters that do not support jumbo frames */
1501 max_frame_size = ETHER_MAX_LEN;
1502 break;
1503 default:
1504 if (sc->hw.mac.type >= igb_mac_min)
1505 max_frame_size = 9234;
1506 else /* lem */
1507 max_frame_size = MAX_JUMBO_FRAME_SIZE;
1508 }
1509 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1510 return (EINVAL);
1511 }
1512
1513 scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
1514 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1515 return (0);
1516 }
1517
1518 /*********************************************************************
1519 * Init entry point
1520 *
1521 * This routine is used in two ways. It is used by the stack as
1522 * init entry point in network interface structure. It is also used
1523 * by the driver as a hw/sw initialization routine to get to a
1524 * consistent state.
1525 *
1526 **********************************************************************/
1527 static void
em_if_init(if_ctx_t ctx)1528 em_if_init(if_ctx_t ctx)
1529 {
1530 struct e1000_softc *sc = iflib_get_softc(ctx);
1531 if_softc_ctx_t scctx = sc->shared;
1532 if_t ifp = iflib_get_ifp(ctx);
1533 struct em_tx_queue *tx_que;
1534 int i;
1535
1536 INIT_DEBUGOUT("em_if_init: begin");
1537
1538 /* Get the latest mac address, User can use a LAA */
1539 bcopy(if_getlladdr(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1540
1541 /* Put the address into the Receive Address Array */
1542 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1543
1544 /*
1545 * With the 82571 adapter, RAR[0] may be overwritten
1546 * when the other port is reset, we make a duplicate
1547 * in RAR[14] for that eventuality, this assures
1548 * the interface continues to function.
1549 */
1550 if (sc->hw.mac.type == e1000_82571) {
1551 e1000_set_laa_state_82571(&sc->hw, true);
1552 e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1553 E1000_RAR_ENTRIES - 1);
1554 }
1555
1556 /* Initialize the hardware */
1557 em_reset(ctx);
1558 em_if_update_admin_status(ctx);
1559
1560 for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues;
1561 i++, tx_que++) {
1562 struct tx_ring *txr = &tx_que->txr;
1563
1564 txr->tx_rs_cidx = txr->tx_rs_pidx;
1565
1566 /* Initialize the last processed descriptor to be the end of
1567 * the ring, rather than the start, so that we avoid an
1568 * off-by-one error when calculating how many descriptors are
1569 * done in the credits_update function.
1570 */
1571 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1572 }
1573
1574 /* Setup VLAN support, basic and offload if available */
1575 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1576
1577 /* Clear bad data from Rx FIFOs */
1578 if (sc->hw.mac.type >= igb_mac_min)
1579 e1000_rx_fifo_flush_base(&sc->hw);
1580
1581 /* Configure for OS presence */
1582 em_init_manageability(sc);
1583
1584 /* Prepare transmit descriptors and buffers */
1585 em_initialize_transmit_unit(ctx);
1586
1587 /* Setup Multicast table */
1588 em_if_multi_set(ctx);
1589
1590 sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1591 em_initialize_receive_unit(ctx);
1592
1593 /* Set up VLAN support and filter */
1594 em_setup_vlan_hw_support(ctx);
1595
1596 /* Don't lose promiscuous settings */
1597 em_if_set_promisc(ctx, if_getflags(ifp));
1598 e1000_clear_hw_cntrs_base_generic(&sc->hw);
1599
1600 /* MSI-X configuration for 82574 */
1601 if (sc->hw.mac.type == e1000_82574) {
1602 int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1603
1604 tmp |= E1000_CTRL_EXT_PBA_CLR;
1605 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1606 /* Set the IVAR - interrupt vector routing. */
1607 E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
1608 } else if (sc->intr_type == IFLIB_INTR_MSIX) {
1609 /* Set up queue routing */
1610 igb_configure_queues(sc);
1611 }
1612
1613 /* this clears any pending interrupts */
1614 E1000_READ_REG(&sc->hw, E1000_ICR);
1615 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1616
1617 /* AMT based hardware can now take control from firmware */
1618 if (sc->has_manage && sc->has_amt)
1619 em_get_hw_control(sc);
1620
1621 /* Set Energy Efficient Ethernet */
1622 if (sc->hw.mac.type >= igb_mac_min &&
1623 sc->hw.phy.media_type == e1000_media_type_copper) {
1624 if (sc->hw.mac.type == e1000_i354)
1625 e1000_set_eee_i354(&sc->hw, true, true);
1626 else
1627 e1000_set_eee_i350(&sc->hw, true, true);
1628 }
1629 }
1630
1631 enum itr_latency_target {
1632 itr_latency_disabled = 0,
1633 itr_latency_lowest = 1,
1634 itr_latency_low = 2,
1635 itr_latency_bulk = 3
1636 };
1637 /*********************************************************************
1638 *
1639 * Helper to calculate next (E)ITR value for AIM
1640 *
1641 *********************************************************************/
1642 static void
em_newitr(struct e1000_softc * sc,struct em_rx_queue * que,struct tx_ring * txr,struct rx_ring * rxr)1643 em_newitr(struct e1000_softc *sc, struct em_rx_queue *que,
1644 struct tx_ring *txr, struct rx_ring *rxr)
1645 {
1646 struct e1000_hw *hw = &sc->hw;
1647 unsigned long bytes, bytes_per_packet, packets;
1648 unsigned long rxbytes, rxpackets, txbytes, txpackets;
1649 u32 newitr;
1650 u8 nextlatency;
1651
1652 rxbytes = atomic_load_long(&rxr->rx_bytes);
1653 txbytes = atomic_load_long(&txr->tx_bytes);
1654
1655 /* Idle, do nothing */
1656 if (txbytes == 0 && rxbytes == 0)
1657 return;
1658
1659 newitr = 0;
1660
1661 if (sc->enable_aim) {
1662 nextlatency = rxr->rx_nextlatency;
1663
1664 /* Use half default (4K) ITR if sub-gig */
1665 if (sc->link_speed != 1000) {
1666 newitr = EM_INTS_4K;
1667 goto em_set_next_itr;
1668 }
1669 /* Want at least enough packet buffer for two frames to AIM */
1670 if (sc->shared->isc_max_frame_size * 2 > (sc->pba << 10)) {
1671 newitr = em_max_interrupt_rate;
1672 sc->enable_aim = 0;
1673 goto em_set_next_itr;
1674 }
1675
1676 bytes = bytes_per_packet = 0;
1677 /* Get largest values from the associated tx and rx ring */
1678 txpackets = atomic_load_long(&txr->tx_packets);
1679 if (txpackets != 0) {
1680 bytes = txbytes;
1681 bytes_per_packet = txbytes / txpackets;
1682 packets = txpackets;
1683 }
1684 rxpackets = atomic_load_long(&rxr->rx_packets);
1685 if (rxpackets != 0) {
1686 bytes = lmax(bytes, rxbytes);
1687 bytes_per_packet =
1688 lmax(bytes_per_packet, rxbytes / rxpackets);
1689 packets = lmax(packets, rxpackets);
1690 }
1691
1692 /* Latency state machine */
1693 switch (nextlatency) {
1694 case itr_latency_disabled: /* Bootstrapping */
1695 nextlatency = itr_latency_low;
1696 break;
1697 case itr_latency_lowest: /* 70k ints/s */
1698 /* TSO and jumbo frames */
1699 if (bytes_per_packet > 8000)
1700 nextlatency = itr_latency_bulk;
1701 else if ((packets < 5) && (bytes > 512))
1702 nextlatency = itr_latency_low;
1703 break;
1704 case itr_latency_low: /* 20k ints/s */
1705 if (bytes > 10000) {
1706 /* Handle TSO */
1707 if (bytes_per_packet > 8000)
1708 nextlatency = itr_latency_bulk;
1709 else if ((packets < 10) ||
1710 (bytes_per_packet > 1200))
1711 nextlatency = itr_latency_bulk;
1712 else if (packets > 35)
1713 nextlatency = itr_latency_lowest;
1714 } else if (bytes_per_packet > 2000) {
1715 nextlatency = itr_latency_bulk;
1716 } else if (packets < 3 && bytes < 512) {
1717 nextlatency = itr_latency_lowest;
1718 }
1719 break;
1720 case itr_latency_bulk: /* 4k ints/s */
1721 if (bytes > 25000) {
1722 if (packets > 35)
1723 nextlatency = itr_latency_low;
1724 } else if (bytes < 1500)
1725 nextlatency = itr_latency_low;
1726 break;
1727 default:
1728 nextlatency = itr_latency_low;
1729 device_printf(sc->dev,
1730 "Unexpected newitr transition %d\n", nextlatency);
1731 break;
1732 }
1733
1734 /* Trim itr_latency_lowest for default AIM setting */
1735 if (sc->enable_aim == 1 && nextlatency == itr_latency_lowest)
1736 nextlatency = itr_latency_low;
1737
1738 /* Request new latency */
1739 rxr->rx_nextlatency = nextlatency;
1740 } else {
1741 /* We may have toggled to AIM disabled */
1742 nextlatency = itr_latency_disabled;
1743 rxr->rx_nextlatency = nextlatency;
1744 }
1745
1746 /* ITR state machine */
1747 switch(nextlatency) {
1748 case itr_latency_lowest:
1749 newitr = EM_INTS_70K;
1750 break;
1751 case itr_latency_low:
1752 newitr = EM_INTS_20K;
1753 break;
1754 case itr_latency_bulk:
1755 newitr = EM_INTS_4K;
1756 break;
1757 case itr_latency_disabled:
1758 default:
1759 newitr = em_max_interrupt_rate;
1760 break;
1761 }
1762
1763 em_set_next_itr:
1764 if (hw->mac.type >= igb_mac_min) {
1765 newitr = IGB_INTS_TO_EITR(newitr);
1766
1767 if (hw->mac.type == e1000_82575)
1768 newitr |= newitr << 16;
1769 else
1770 newitr |= E1000_EITR_CNT_IGNR;
1771
1772 if (newitr != que->itr_setting) {
1773 que->itr_setting = newitr;
1774 E1000_WRITE_REG(hw, E1000_EITR(que->msix),
1775 que->itr_setting);
1776 }
1777 } else {
1778 newitr = EM_INTS_TO_ITR(newitr);
1779
1780 if (newitr != que->itr_setting) {
1781 que->itr_setting = newitr;
1782 if (hw->mac.type == e1000_82574 && que->msix) {
1783 E1000_WRITE_REG(hw,
1784 E1000_EITR_82574(que->msix),
1785 que->itr_setting);
1786 } else {
1787 E1000_WRITE_REG(hw, E1000_ITR,
1788 que->itr_setting);
1789 }
1790 }
1791 }
1792 }
1793
1794 /*********************************************************************
1795 *
1796 * Fast Legacy/MSI Combined Interrupt Service routine
1797 *
1798 *********************************************************************/
1799 int
em_intr(void * arg)1800 em_intr(void *arg)
1801 {
1802 struct e1000_softc *sc = arg;
1803 struct e1000_hw *hw = &sc->hw;
1804 struct em_rx_queue *que = &sc->rx_queues[0];
1805 struct tx_ring *txr = &sc->tx_queues[0].txr;
1806 struct rx_ring *rxr = &que->rxr;
1807 if_ctx_t ctx = sc->ctx;
1808 u32 reg_icr;
1809
1810 reg_icr = E1000_READ_REG(hw, E1000_ICR);
1811
1812 /* Hot eject? */
1813 if (reg_icr == 0xffffffff)
1814 return FILTER_STRAY;
1815
1816 /* Definitely not our interrupt. */
1817 if (reg_icr == 0x0)
1818 return FILTER_STRAY;
1819
1820 /*
1821 * Starting with the 82571 chip, bit 31 should be used to
1822 * determine whether the interrupt belongs to us.
1823 */
1824 if (hw->mac.type >= e1000_82571 &&
1825 (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1826 return FILTER_STRAY;
1827
1828 /*
1829 * Only MSI-X interrupts have one-shot behavior by taking advantage
1830 * of the EIAC register. Thus, explicitly disable interrupts. This
1831 * also works around the MSI message reordering errata on certain
1832 * systems.
1833 */
1834 IFDI_INTR_DISABLE(ctx);
1835
1836 /* Link status change */
1837 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1838 em_handle_link(ctx);
1839
1840 if (reg_icr & E1000_ICR_RXO)
1841 sc->rx_overruns++;
1842
1843 if (hw->mac.type >= e1000_82540)
1844 em_newitr(sc, que, txr, rxr);
1845
1846 /* Reset state */
1847 txr->tx_bytes = 0;
1848 txr->tx_packets = 0;
1849 rxr->rx_bytes = 0;
1850 rxr->rx_packets = 0;
1851
1852 return (FILTER_SCHEDULE_THREAD);
1853 }
1854
1855 static int
em_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1856 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1857 {
1858 struct e1000_softc *sc = iflib_get_softc(ctx);
1859 struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1860
1861 E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
1862 return (0);
1863 }
1864
1865 static int
em_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1866 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1867 {
1868 struct e1000_softc *sc = iflib_get_softc(ctx);
1869 struct em_tx_queue *txq = &sc->tx_queues[txqid];
1870
1871 E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
1872 return (0);
1873 }
1874
1875 static int
igb_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1876 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1877 {
1878 struct e1000_softc *sc = iflib_get_softc(ctx);
1879 struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1880
1881 E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
1882 return (0);
1883 }
1884
1885 static int
igb_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1886 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1887 {
1888 struct e1000_softc *sc = iflib_get_softc(ctx);
1889 struct em_tx_queue *txq = &sc->tx_queues[txqid];
1890
1891 E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
1892 return (0);
1893 }
1894
1895 /*********************************************************************
1896 *
1897 * MSI-X RX Interrupt Service routine
1898 *
1899 **********************************************************************/
1900 static int
em_msix_que(void * arg)1901 em_msix_que(void *arg)
1902 {
1903 struct em_rx_queue *que = arg;
1904 struct e1000_softc *sc = que->sc;
1905 struct tx_ring *txr = &sc->tx_queues[que->msix].txr;
1906 struct rx_ring *rxr = &que->rxr;
1907
1908 ++que->irqs;
1909
1910 em_newitr(sc, que, txr, rxr);
1911
1912 /* Reset state */
1913 txr->tx_bytes = 0;
1914 txr->tx_packets = 0;
1915 rxr->rx_bytes = 0;
1916 rxr->rx_packets = 0;
1917
1918 return (FILTER_SCHEDULE_THREAD);
1919 }
1920
1921 /*********************************************************************
1922 *
1923 * MSI-X Link Fast Interrupt Service routine
1924 *
1925 **********************************************************************/
1926 static int
em_msix_link(void * arg)1927 em_msix_link(void *arg)
1928 {
1929 struct e1000_softc *sc = arg;
1930 u32 reg_icr;
1931
1932 ++sc->link_irq;
1933 MPASS(sc->hw.back != NULL);
1934 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1935
1936 if (reg_icr & E1000_ICR_RXO)
1937 sc->rx_overruns++;
1938
1939 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1940 em_handle_link(sc->ctx);
1941
1942 /* Re-arm unconditionally */
1943 if (sc->hw.mac.type >= igb_mac_min) {
1944 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1945 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
1946 } else if (sc->hw.mac.type == e1000_82574) {
1947 E1000_WRITE_REG(&sc->hw, E1000_IMS,
1948 E1000_IMS_LSC | E1000_IMS_OTHER);
1949 /*
1950 * Because we must read the ICR for this interrupt it may
1951 * clear other causes using autoclear, for this reason we
1952 * simply create a soft interrupt for all these vectors.
1953 */
1954 if (reg_icr)
1955 E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
1956 } else
1957 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1958
1959 return (FILTER_HANDLED);
1960 }
1961
1962 static void
em_handle_link(void * context)1963 em_handle_link(void *context)
1964 {
1965 if_ctx_t ctx = context;
1966 struct e1000_softc *sc = iflib_get_softc(ctx);
1967
1968 sc->hw.mac.get_link_status = 1;
1969 iflib_admin_intr_deferred(ctx);
1970 }
1971
1972 /*********************************************************************
1973 *
1974 * Media Ioctl callback
1975 *
1976 * This routine is called whenever the user queries the status of
1977 * the interface using ifconfig.
1978 *
1979 **********************************************************************/
1980 static void
em_if_media_status(if_ctx_t ctx,struct ifmediareq * ifmr)1981 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1982 {
1983 struct e1000_softc *sc = iflib_get_softc(ctx);
1984 u_char fiber_type = IFM_1000_SX;
1985
1986 INIT_DEBUGOUT("em_if_media_status: begin");
1987
1988 iflib_admin_intr_deferred(ctx);
1989
1990 ifmr->ifm_status = IFM_AVALID;
1991 ifmr->ifm_active = IFM_ETHER;
1992
1993 if (!sc->link_active) {
1994 return;
1995 }
1996
1997 ifmr->ifm_status |= IFM_ACTIVE;
1998
1999 if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
2000 (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
2001 if (sc->hw.mac.type == e1000_82545)
2002 fiber_type = IFM_1000_LX;
2003 switch (sc->link_speed) {
2004 case 10:
2005 ifmr->ifm_active |= IFM_10_FL;
2006 break;
2007 case 100:
2008 ifmr->ifm_active |= IFM_100_FX;
2009 break;
2010 case 1000:
2011 default:
2012 ifmr->ifm_active |= fiber_type | IFM_FDX;
2013 break;
2014 }
2015 } else {
2016 switch (sc->link_speed) {
2017 case 10:
2018 ifmr->ifm_active |= IFM_10_T;
2019 break;
2020 case 100:
2021 ifmr->ifm_active |= IFM_100_TX;
2022 break;
2023 case 1000:
2024 ifmr->ifm_active |= IFM_1000_T;
2025 break;
2026 }
2027 }
2028
2029 if (sc->link_duplex == FULL_DUPLEX)
2030 ifmr->ifm_active |= IFM_FDX;
2031 else
2032 ifmr->ifm_active |= IFM_HDX;
2033 }
2034
2035 /*********************************************************************
2036 *
2037 * Media Ioctl callback
2038 *
2039 * This routine is called when the user changes speed/duplex using
2040 * media/mediopt option with ifconfig.
2041 *
2042 **********************************************************************/
2043 static int
em_if_media_change(if_ctx_t ctx)2044 em_if_media_change(if_ctx_t ctx)
2045 {
2046 struct e1000_softc *sc = iflib_get_softc(ctx);
2047 struct ifmedia *ifm = iflib_get_media(ctx);
2048
2049 INIT_DEBUGOUT("em_if_media_change: begin");
2050
2051 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2052 return (EINVAL);
2053
2054 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2055 case IFM_AUTO:
2056 sc->hw.mac.autoneg = DO_AUTO_NEG;
2057 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2058 break;
2059 case IFM_1000_LX:
2060 case IFM_1000_SX:
2061 case IFM_1000_T:
2062 sc->hw.mac.autoneg = DO_AUTO_NEG;
2063 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2064 break;
2065 case IFM_100_TX:
2066 sc->hw.mac.autoneg = DO_AUTO_NEG;
2067 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2068 sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
2069 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
2070 } else {
2071 sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
2072 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
2073 }
2074 break;
2075 case IFM_10_T:
2076 sc->hw.mac.autoneg = DO_AUTO_NEG;
2077 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2078 sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
2079 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
2080 } else {
2081 sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
2082 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
2083 }
2084 break;
2085 case IFM_100_FX:
2086 sc->hw.mac.autoneg = false;
2087 sc->hw.phy.autoneg_advertised = 0;
2088 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2089 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
2090 else
2091 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
2092 break;
2093 case IFM_10_FL:
2094 sc->hw.mac.autoneg = false;
2095 sc->hw.phy.autoneg_advertised = 0;
2096 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2097 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
2098 else
2099 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
2100 break;
2101 default:
2102 device_printf(sc->dev, "Unsupported media type\n");
2103 }
2104
2105 em_if_init(ctx);
2106
2107 return (0);
2108 }
2109
2110 static int
em_if_set_promisc(if_ctx_t ctx,int flags)2111 em_if_set_promisc(if_ctx_t ctx, int flags)
2112 {
2113 struct e1000_softc *sc = iflib_get_softc(ctx);
2114 if_t ifp = iflib_get_ifp(ctx);
2115 u32 reg_rctl;
2116 int mcnt = 0;
2117
2118 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2119 reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
2120 if (flags & IFF_ALLMULTI)
2121 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
2122 else
2123 mcnt = min(if_llmaddr_count(ifp),
2124 MAX_NUM_MULTICAST_ADDRESSES);
2125
2126 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2127 reg_rctl &= (~E1000_RCTL_MPE);
2128 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2129
2130 if (flags & IFF_PROMISC) {
2131 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2132 em_if_vlan_filter_disable(sc);
2133 /* Turn this on if you want to see bad packets */
2134 if (em_debug_sbp)
2135 reg_rctl |= E1000_RCTL_SBP;
2136 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2137 } else {
2138 if (flags & IFF_ALLMULTI) {
2139 reg_rctl |= E1000_RCTL_MPE;
2140 reg_rctl &= ~E1000_RCTL_UPE;
2141 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2142 }
2143 if (em_if_vlan_filter_used(ctx))
2144 em_if_vlan_filter_enable(sc);
2145 }
2146 return (0);
2147 }
2148
2149 static u_int
em_copy_maddr(void * arg,struct sockaddr_dl * sdl,u_int idx)2150 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
2151 {
2152 u8 *mta = arg;
2153
2154 if (idx == MAX_NUM_MULTICAST_ADDRESSES)
2155 return (0);
2156
2157 bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2158
2159 return (1);
2160 }
2161
2162 /*********************************************************************
2163 * Multicast Update
2164 *
2165 * This routine is called whenever multicast address list is updated.
2166 *
2167 **********************************************************************/
2168 static void
em_if_multi_set(if_ctx_t ctx)2169 em_if_multi_set(if_ctx_t ctx)
2170 {
2171 struct e1000_softc *sc = iflib_get_softc(ctx);
2172 if_t ifp = iflib_get_ifp(ctx);
2173 u8 *mta; /* Multicast array memory */
2174 u32 reg_rctl = 0;
2175 int mcnt = 0;
2176
2177 IOCTL_DEBUGOUT("em_set_multi: begin");
2178
2179 mta = sc->mta;
2180 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2181
2182 if (sc->hw.mac.type == e1000_82542 &&
2183 sc->hw.revision_id == E1000_REVISION_2) {
2184 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2185 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2186 e1000_pci_clear_mwi(&sc->hw);
2187 reg_rctl |= E1000_RCTL_RST;
2188 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2189 msec_delay(5);
2190 }
2191
2192 mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
2193
2194 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2195 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
2196
2197 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2198
2199 if (if_getflags(ifp) & IFF_PROMISC)
2200 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2201 else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
2202 if_getflags(ifp) & IFF_ALLMULTI) {
2203 reg_rctl |= E1000_RCTL_MPE;
2204 reg_rctl &= ~E1000_RCTL_UPE;
2205 } else
2206 reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2207
2208 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2209
2210 if (sc->hw.mac.type == e1000_82542 &&
2211 sc->hw.revision_id == E1000_REVISION_2) {
2212 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2213 reg_rctl &= ~E1000_RCTL_RST;
2214 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2215 msec_delay(5);
2216 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2217 e1000_pci_set_mwi(&sc->hw);
2218 }
2219 }
2220
2221 /*********************************************************************
2222 * Timer routine
2223 *
2224 * This routine schedules em_if_update_admin_status() to check for
2225 * link status and to gather statistics as well as to perform some
2226 * controller-specific hardware patting.
2227 *
2228 **********************************************************************/
2229 static void
em_if_timer(if_ctx_t ctx,uint16_t qid)2230 em_if_timer(if_ctx_t ctx, uint16_t qid)
2231 {
2232 if (qid != 0)
2233 return;
2234
2235 iflib_admin_intr_deferred(ctx);
2236 }
2237
2238 static void
em_if_update_admin_status(if_ctx_t ctx)2239 em_if_update_admin_status(if_ctx_t ctx)
2240 {
2241 struct e1000_softc *sc = iflib_get_softc(ctx);
2242 struct e1000_hw *hw = &sc->hw;
2243 device_t dev = iflib_get_dev(ctx);
2244 u32 link_check, thstat, ctrl;
2245 bool automasked = false;
2246
2247 link_check = thstat = ctrl = 0;
2248 /* Get the cached link value or read phy for real */
2249 switch (hw->phy.media_type) {
2250 case e1000_media_type_copper:
2251 if (hw->mac.get_link_status) {
2252 if (hw->mac.type == e1000_pch_spt)
2253 msec_delay(50);
2254 /* Do the work to read phy */
2255 e1000_check_for_link(hw);
2256 link_check = !hw->mac.get_link_status;
2257 if (link_check) /* ESB2 fix */
2258 e1000_cfg_on_link_up(hw);
2259 } else {
2260 link_check = true;
2261 }
2262 break;
2263 case e1000_media_type_fiber:
2264 e1000_check_for_link(hw);
2265 link_check =
2266 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
2267 break;
2268 case e1000_media_type_internal_serdes:
2269 e1000_check_for_link(hw);
2270 link_check = hw->mac.serdes_has_link;
2271 break;
2272 /* VF device is type_unknown */
2273 case e1000_media_type_unknown:
2274 e1000_check_for_link(hw);
2275 link_check = !hw->mac.get_link_status;
2276 /* FALLTHROUGH */
2277 default:
2278 break;
2279 }
2280
2281 /* Check for thermal downshift or shutdown */
2282 if (hw->mac.type == e1000_i350) {
2283 thstat = E1000_READ_REG(hw, E1000_THSTAT);
2284 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
2285 }
2286
2287 /* Now check for a transition */
2288 if (link_check && (sc->link_active == 0)) {
2289 e1000_get_speed_and_duplex(hw, &sc->link_speed,
2290 &sc->link_duplex);
2291 /* Check if we must disable SPEED_MODE bit on PCI-E */
2292 if ((sc->link_speed != SPEED_1000) &&
2293 ((hw->mac.type == e1000_82571) ||
2294 (hw->mac.type == e1000_82572))) {
2295 int tarc0;
2296 tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2297 tarc0 &= ~TARC_SPEED_MODE_BIT;
2298 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2299 }
2300 if (bootverbose)
2301 device_printf(dev, "Link is up %d Mbps %s\n",
2302 sc->link_speed,
2303 ((sc->link_duplex == FULL_DUPLEX) ?
2304 "Full Duplex" : "Half Duplex"));
2305 sc->link_active = 1;
2306 sc->smartspeed = 0;
2307 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
2308 E1000_CTRL_EXT_LINK_MODE_GMII &&
2309 (thstat & E1000_THSTAT_LINK_THROTTLE))
2310 device_printf(dev, "Link: thermal downshift\n");
2311 /* Delay Link Up for Phy update */
2312 if (((hw->mac.type == e1000_i210) ||
2313 (hw->mac.type == e1000_i211)) &&
2314 (hw->phy.id == I210_I_PHY_ID))
2315 msec_delay(I210_LINK_DELAY);
2316 /* Reset if the media type changed. */
2317 if (hw->dev_spec._82575.media_changed &&
2318 hw->mac.type >= igb_mac_min) {
2319 hw->dev_spec._82575.media_changed = false;
2320 sc->flags |= IGB_MEDIA_RESET;
2321 em_reset(ctx);
2322 }
2323 /* Only do TSO on gigabit for older chips due to errata */
2324 if (hw->mac.type < igb_mac_min)
2325 automasked = em_automask_tso(ctx);
2326
2327 /* Automasking resets the interface so don't mark it up yet */
2328 if (!automasked)
2329 iflib_link_state_change(ctx, LINK_STATE_UP,
2330 IF_Mbps(sc->link_speed));
2331 } else if (!link_check && (sc->link_active == 1)) {
2332 sc->link_speed = 0;
2333 sc->link_duplex = 0;
2334 sc->link_active = 0;
2335 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
2336 }
2337 em_update_stats_counters(sc);
2338
2339 /* Reset LAA into RAR[0] on 82571 */
2340 if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
2341 e1000_rar_set(hw, hw->mac.addr, 0);
2342
2343 if (hw->mac.type < em_mac_min)
2344 lem_smartspeed(sc);
2345 }
2346
2347 static void
em_if_watchdog_reset(if_ctx_t ctx)2348 em_if_watchdog_reset(if_ctx_t ctx)
2349 {
2350 struct e1000_softc *sc = iflib_get_softc(ctx);
2351
2352 /*
2353 * Just count the event; iflib(4) will already trigger a
2354 * sufficient reset of the controller.
2355 */
2356 sc->watchdog_events++;
2357 }
2358
2359 /*********************************************************************
2360 *
2361 * This routine disables all traffic on the adapter by issuing a
2362 * global reset on the MAC.
2363 *
2364 **********************************************************************/
2365 static void
em_if_stop(if_ctx_t ctx)2366 em_if_stop(if_ctx_t ctx)
2367 {
2368 struct e1000_softc *sc = iflib_get_softc(ctx);
2369
2370 INIT_DEBUGOUT("em_if_stop: begin");
2371
2372 /* I219 needs special flushing to avoid hangs */
2373 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
2374 em_flush_desc_rings(sc);
2375
2376 e1000_reset_hw(&sc->hw);
2377 if (sc->hw.mac.type >= e1000_82544)
2378 E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
2379
2380 e1000_led_off(&sc->hw);
2381 e1000_cleanup_led(&sc->hw);
2382 }
2383
2384 /*********************************************************************
2385 *
2386 * Determine hardware revision.
2387 *
2388 **********************************************************************/
2389 static void
em_identify_hardware(if_ctx_t ctx)2390 em_identify_hardware(if_ctx_t ctx)
2391 {
2392 device_t dev = iflib_get_dev(ctx);
2393 struct e1000_softc *sc = iflib_get_softc(ctx);
2394
2395 /* Make sure our PCI config space has the necessary stuff set */
2396 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2397
2398 /* Save off the information about this board */
2399 sc->hw.vendor_id = pci_get_vendor(dev);
2400 sc->hw.device_id = pci_get_device(dev);
2401 sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
2402 sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
2403 sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
2404
2405 /* Do Shared Code Init and Setup */
2406 if (e1000_set_mac_type(&sc->hw)) {
2407 device_printf(dev, "Setup init failure\n");
2408 return;
2409 }
2410
2411 /* Are we a VF device? */
2412 if ((sc->hw.mac.type == e1000_vfadapt) ||
2413 (sc->hw.mac.type == e1000_vfadapt_i350))
2414 sc->vf_ifp = 1;
2415 else
2416 sc->vf_ifp = 0;
2417 }
2418
2419 static int
em_allocate_pci_resources(if_ctx_t ctx)2420 em_allocate_pci_resources(if_ctx_t ctx)
2421 {
2422 struct e1000_softc *sc = iflib_get_softc(ctx);
2423 device_t dev = iflib_get_dev(ctx);
2424 int rid, val;
2425
2426 rid = PCIR_BAR(0);
2427 sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2428 RF_ACTIVE);
2429 if (sc->memory == NULL) {
2430 device_printf(dev,
2431 "Unable to allocate bus resource: memory\n");
2432 return (ENXIO);
2433 }
2434 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
2435 sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
2436 sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
2437
2438 /* Only older adapters use IO mapping */
2439 if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) {
2440 /* Figure our where our IO BAR is ? */
2441 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
2442 val = pci_read_config(dev, rid, 4);
2443 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2444 break;
2445 }
2446 rid += 4;
2447 /* check for 64bit BAR */
2448 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2449 rid += 4;
2450 }
2451 if (rid >= PCIR_CIS) {
2452 device_printf(dev, "Unable to locate IO BAR\n");
2453 return (ENXIO);
2454 }
2455 sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2456 &rid, RF_ACTIVE);
2457 if (sc->ioport == NULL) {
2458 device_printf(dev,
2459 "Unable to allocate bus resource: ioport\n");
2460 return (ENXIO);
2461 }
2462 sc->hw.io_base = 0;
2463 sc->osdep.io_bus_space_tag =
2464 rman_get_bustag(sc->ioport);
2465 sc->osdep.io_bus_space_handle =
2466 rman_get_bushandle(sc->ioport);
2467 }
2468
2469 sc->hw.back = &sc->osdep;
2470
2471 return (0);
2472 }
2473
2474 /*********************************************************************
2475 *
2476 * Set up the MSI-X Interrupt handlers
2477 *
2478 **********************************************************************/
2479 static int
em_if_msix_intr_assign(if_ctx_t ctx,int msix)2480 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2481 {
2482 struct e1000_softc *sc = iflib_get_softc(ctx);
2483 struct em_rx_queue *rx_que = sc->rx_queues;
2484 struct em_tx_queue *tx_que = sc->tx_queues;
2485 int error, rid, i, vector = 0, rx_vectors;
2486 char buf[16];
2487
2488 /* First set up ring resources */
2489 for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
2490 rid = vector + 1;
2491 snprintf(buf, sizeof(buf), "rxq%d", i);
2492 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid,
2493 IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2494 if (error) {
2495 device_printf(iflib_get_dev(ctx),
2496 "Failed to allocate que int %d err: %d",
2497 i, error);
2498 sc->rx_num_queues = i + 1;
2499 goto fail;
2500 }
2501
2502 rx_que->msix = vector;
2503
2504 /*
2505 * Set the bit to enable interrupt
2506 * in E1000_IMS -- bits 20 and 21
2507 * are for RX0 and RX1, note this has
2508 * NOTHING to do with the MSI-X vector
2509 */
2510 if (sc->hw.mac.type == e1000_82574) {
2511 rx_que->eims = 1 << (20 + i);
2512 sc->ims |= rx_que->eims;
2513 sc->ivars |= (8 | rx_que->msix) << (i * 4);
2514 } else if (sc->hw.mac.type == e1000_82575)
2515 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2516 else
2517 rx_que->eims = 1 << vector;
2518 }
2519 rx_vectors = vector;
2520
2521 vector = 0;
2522 for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
2523 snprintf(buf, sizeof(buf), "txq%d", i);
2524 tx_que = &sc->tx_queues[i];
2525 iflib_softirq_alloc_generic(ctx,
2526 &sc->rx_queues[i % sc->rx_num_queues].que_irq,
2527 IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2528
2529 tx_que->msix = (vector % sc->rx_num_queues);
2530
2531 /*
2532 * Set the bit to enable interrupt
2533 * in E1000_IMS -- bits 22 and 23
2534 * are for TX0 and TX1, note this has
2535 * NOTHING to do with the MSI-X vector
2536 */
2537 if (sc->hw.mac.type == e1000_82574) {
2538 tx_que->eims = 1 << (22 + i);
2539 sc->ims |= tx_que->eims;
2540 sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2541 } else if (sc->hw.mac.type == e1000_82575) {
2542 tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2543 } else {
2544 tx_que->eims = 1 << i;
2545 }
2546 }
2547
2548 /* Link interrupt */
2549 rid = rx_vectors + 1;
2550 error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN,
2551 em_msix_link, sc, 0, "aq");
2552
2553 if (error) {
2554 device_printf(iflib_get_dev(ctx),
2555 "Failed to register admin handler");
2556 goto fail;
2557 }
2558 sc->linkvec = rx_vectors;
2559 if (sc->hw.mac.type < igb_mac_min) {
2560 sc->ivars |= (8 | rx_vectors) << 16;
2561 sc->ivars |= 0x80000000;
2562 /* Enable the "Other" interrupt type for link status change */
2563 sc->ims |= E1000_IMS_OTHER;
2564 }
2565
2566 return (0);
2567 fail:
2568 iflib_irq_free(ctx, &sc->irq);
2569 rx_que = sc->rx_queues;
2570 for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
2571 iflib_irq_free(ctx, &rx_que->que_irq);
2572 return (error);
2573 }
2574
2575 static void
igb_configure_queues(struct e1000_softc * sc)2576 igb_configure_queues(struct e1000_softc *sc)
2577 {
2578 struct e1000_hw *hw = &sc->hw;
2579 struct em_rx_queue *rx_que;
2580 struct em_tx_queue *tx_que;
2581 u32 tmp, ivar = 0, newitr = 0;
2582
2583 /* First turn on RSS capability */
2584 if (hw->mac.type != e1000_82575)
2585 E1000_WRITE_REG(hw, E1000_GPIE,
2586 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2587 E1000_GPIE_PBA | E1000_GPIE_NSICR);
2588
2589 /* Turn on MSI-X */
2590 switch (hw->mac.type) {
2591 case e1000_82580:
2592 case e1000_i350:
2593 case e1000_i354:
2594 case e1000_i210:
2595 case e1000_i211:
2596 case e1000_vfadapt:
2597 case e1000_vfadapt_i350:
2598 /* RX entries */
2599 for (int i = 0; i < sc->rx_num_queues; i++) {
2600 u32 index = i >> 1;
2601 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2602 rx_que = &sc->rx_queues[i];
2603 if (i & 1) {
2604 ivar &= 0xFF00FFFF;
2605 ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
2606 16;
2607 } else {
2608 ivar &= 0xFFFFFF00;
2609 ivar |= rx_que->msix | E1000_IVAR_VALID;
2610 }
2611 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2612 }
2613 /* TX entries */
2614 for (int i = 0; i < sc->tx_num_queues; i++) {
2615 u32 index = i >> 1;
2616 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2617 tx_que = &sc->tx_queues[i];
2618 if (i & 1) {
2619 ivar &= 0x00FFFFFF;
2620 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2621 24;
2622 } else {
2623 ivar &= 0xFFFF00FF;
2624 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2625 8;
2626 }
2627 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2628 sc->que_mask |= tx_que->eims;
2629 }
2630
2631 /* And for the link interrupt */
2632 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2633 sc->link_mask = 1 << sc->linkvec;
2634 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2635 break;
2636 case e1000_82576:
2637 /* RX entries */
2638 for (int i = 0; i < sc->rx_num_queues; i++) {
2639 u32 index = i & 0x7; /* Each IVAR has two entries */
2640 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2641 rx_que = &sc->rx_queues[i];
2642 if (i < 8) {
2643 ivar &= 0xFFFFFF00;
2644 ivar |= rx_que->msix | E1000_IVAR_VALID;
2645 } else {
2646 ivar &= 0xFF00FFFF;
2647 ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
2648 16;
2649 }
2650 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2651 sc->que_mask |= rx_que->eims;
2652 }
2653 /* TX entries */
2654 for (int i = 0; i < sc->tx_num_queues; i++) {
2655 u32 index = i & 0x7; /* Each IVAR has two entries */
2656 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2657 tx_que = &sc->tx_queues[i];
2658 if (i < 8) {
2659 ivar &= 0xFFFF00FF;
2660 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2661 8;
2662 } else {
2663 ivar &= 0x00FFFFFF;
2664 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2665 24;
2666 }
2667 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2668 sc->que_mask |= tx_que->eims;
2669 }
2670
2671 /* And for the link interrupt */
2672 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2673 sc->link_mask = 1 << sc->linkvec;
2674 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2675 break;
2676
2677 case e1000_82575:
2678 /* enable MSI-X support*/
2679 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2680 tmp |= E1000_CTRL_EXT_PBA_CLR;
2681 /* Auto-Mask interrupts upon ICR read. */
2682 tmp |= E1000_CTRL_EXT_EIAME;
2683 tmp |= E1000_CTRL_EXT_IRCA;
2684 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2685
2686 /* Queues */
2687 for (int i = 0; i < sc->rx_num_queues; i++) {
2688 rx_que = &sc->rx_queues[i];
2689 tmp = E1000_EICR_RX_QUEUE0 << i;
2690 tmp |= E1000_EICR_TX_QUEUE0 << i;
2691 rx_que->eims = tmp;
2692 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), i,
2693 rx_que->eims);
2694 sc->que_mask |= rx_que->eims;
2695 }
2696
2697 /* Link */
2698 E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
2699 E1000_EIMS_OTHER);
2700 sc->link_mask |= E1000_EIMS_OTHER;
2701 default:
2702 break;
2703 }
2704
2705 /* Set the igb starting interrupt rate */
2706 if (em_max_interrupt_rate > 0) {
2707 newitr = IGB_INTS_TO_EITR(em_max_interrupt_rate);
2708
2709 if (hw->mac.type == e1000_82575)
2710 newitr |= newitr << 16;
2711 else
2712 newitr |= E1000_EITR_CNT_IGNR;
2713
2714 for (int i = 0; i < sc->rx_num_queues; i++) {
2715 rx_que = &sc->rx_queues[i];
2716 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2717 }
2718 }
2719
2720 return;
2721 }
2722
2723 static void
em_free_pci_resources(if_ctx_t ctx)2724 em_free_pci_resources(if_ctx_t ctx)
2725 {
2726 struct e1000_softc *sc = iflib_get_softc(ctx);
2727 struct em_rx_queue *que = sc->rx_queues;
2728 device_t dev = iflib_get_dev(ctx);
2729
2730 /* Release all MSI-X queue resources */
2731 if (sc->intr_type == IFLIB_INTR_MSIX)
2732 iflib_irq_free(ctx, &sc->irq);
2733
2734 if (que != NULL) {
2735 for (int i = 0; i < sc->rx_num_queues; i++, que++) {
2736 iflib_irq_free(ctx, &que->que_irq);
2737 }
2738 }
2739
2740 if (sc->memory != NULL) {
2741 bus_release_resource(dev, SYS_RES_MEMORY,
2742 rman_get_rid(sc->memory), sc->memory);
2743 sc->memory = NULL;
2744 }
2745
2746 if (sc->flash != NULL) {
2747 bus_release_resource(dev, SYS_RES_MEMORY,
2748 rman_get_rid(sc->flash), sc->flash);
2749 sc->flash = NULL;
2750 }
2751
2752 if (sc->ioport != NULL) {
2753 bus_release_resource(dev, SYS_RES_IOPORT,
2754 rman_get_rid(sc->ioport), sc->ioport);
2755 sc->ioport = NULL;
2756 }
2757 }
2758
2759 /* Set up MSI or MSI-X */
2760 static int
em_setup_msix(if_ctx_t ctx)2761 em_setup_msix(if_ctx_t ctx)
2762 {
2763 struct e1000_softc *sc = iflib_get_softc(ctx);
2764
2765 if (sc->hw.mac.type == e1000_82574) {
2766 em_enable_vectors_82574(ctx);
2767 }
2768 return (0);
2769 }
2770
2771 /*********************************************************************
2772 *
2773 * Workaround for SmartSpeed on 82541 and 82547 controllers
2774 *
2775 **********************************************************************/
2776 static void
lem_smartspeed(struct e1000_softc * sc)2777 lem_smartspeed(struct e1000_softc *sc)
2778 {
2779 u16 phy_tmp;
2780
2781 if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
2782 sc->hw.mac.autoneg == 0 ||
2783 (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2784 return;
2785
2786 if (sc->smartspeed == 0) {
2787 /* If Master/Slave config fault is asserted twice,
2788 * we assume back-to-back */
2789 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2790 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2791 return;
2792 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2793 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2794 e1000_read_phy_reg(&sc->hw,
2795 PHY_1000T_CTRL, &phy_tmp);
2796 if(phy_tmp & CR_1000T_MS_ENABLE) {
2797 phy_tmp &= ~CR_1000T_MS_ENABLE;
2798 e1000_write_phy_reg(&sc->hw,
2799 PHY_1000T_CTRL, phy_tmp);
2800 sc->smartspeed++;
2801 if(sc->hw.mac.autoneg &&
2802 !e1000_copper_link_autoneg(&sc->hw) &&
2803 !e1000_read_phy_reg(&sc->hw,
2804 PHY_CONTROL, &phy_tmp)) {
2805 phy_tmp |= (MII_CR_AUTO_NEG_EN |
2806 MII_CR_RESTART_AUTO_NEG);
2807 e1000_write_phy_reg(&sc->hw,
2808 PHY_CONTROL, phy_tmp);
2809 }
2810 }
2811 }
2812 return;
2813 } else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2814 /* If still no link, perhaps using 2/3 pair cable */
2815 e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2816 phy_tmp |= CR_1000T_MS_ENABLE;
2817 e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2818 if(sc->hw.mac.autoneg &&
2819 !e1000_copper_link_autoneg(&sc->hw) &&
2820 !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2821 phy_tmp |= (MII_CR_AUTO_NEG_EN |
2822 MII_CR_RESTART_AUTO_NEG);
2823 e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2824 }
2825 }
2826 /* Restart process after EM_SMARTSPEED_MAX iterations */
2827 if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
2828 sc->smartspeed = 0;
2829 }
2830
2831 /*********************************************************************
2832 *
2833 * Initialize the DMA Coalescing feature
2834 *
2835 **********************************************************************/
2836 static void
igb_init_dmac(struct e1000_softc * sc,u32 pba)2837 igb_init_dmac(struct e1000_softc *sc, u32 pba)
2838 {
2839 device_t dev = sc->dev;
2840 struct e1000_hw *hw = &sc->hw;
2841 u32 dmac, reg = ~E1000_DMACR_DMAC_EN;
2842 u16 hwm;
2843 u16 max_frame_size;
2844
2845 if (hw->mac.type == e1000_i211)
2846 return;
2847
2848 max_frame_size = sc->shared->isc_max_frame_size;
2849 if (hw->mac.type > e1000_82580) {
2850
2851 if (sc->dmac == 0) { /* Disabling it */
2852 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2853 return;
2854 } else
2855 device_printf(dev, "DMA Coalescing enabled\n");
2856
2857 /* Set starting threshold */
2858 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2859
2860 hwm = 64 * pba - max_frame_size / 16;
2861 if (hwm < 64 * (pba - 6))
2862 hwm = 64 * (pba - 6);
2863 reg = E1000_READ_REG(hw, E1000_FCRTC);
2864 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2865 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2866 & E1000_FCRTC_RTH_COAL_MASK);
2867 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2868
2869
2870 dmac = pba - max_frame_size / 512;
2871 if (dmac < pba - 10)
2872 dmac = pba - 10;
2873 reg = E1000_READ_REG(hw, E1000_DMACR);
2874 reg &= ~E1000_DMACR_DMACTHR_MASK;
2875 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2876 & E1000_DMACR_DMACTHR_MASK);
2877
2878 /* transition to L0x or L1 if available..*/
2879 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2880
2881 /* Check if status is 2.5Gb backplane connection
2882 * before configuration of watchdog timer, which is
2883 * in msec values in 12.8usec intervals
2884 * watchdog timer= msec values in 32usec intervals
2885 * for non 2.5Gb connection
2886 */
2887 if (hw->mac.type == e1000_i354) {
2888 int status = E1000_READ_REG(hw, E1000_STATUS);
2889 if ((status & E1000_STATUS_2P5_SKU) &&
2890 (!(status & E1000_STATUS_2P5_SKU_OVER)))
2891 reg |= ((sc->dmac * 5) >> 6);
2892 else
2893 reg |= (sc->dmac >> 5);
2894 } else {
2895 reg |= (sc->dmac >> 5);
2896 }
2897
2898 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2899
2900 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2901
2902 /* Set the interval before transition */
2903 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2904 if (hw->mac.type == e1000_i350)
2905 reg |= IGB_DMCTLX_DCFLUSH_DIS;
2906 /*
2907 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2908 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2909 */
2910 if (hw->mac.type == e1000_i354) {
2911 int status = E1000_READ_REG(hw, E1000_STATUS);
2912 if ((status & E1000_STATUS_2P5_SKU) &&
2913 (!(status & E1000_STATUS_2P5_SKU_OVER)))
2914 reg |= 0xA;
2915 else
2916 reg |= 0x4;
2917 } else {
2918 reg |= 0x4;
2919 }
2920
2921 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2922
2923 /* free space in tx packet buffer to wake from DMA coal */
2924 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2925 (2 * max_frame_size)) >> 6);
2926
2927 /* make low power state decision controlled by DMA coal */
2928 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2929 reg &= ~E1000_PCIEMISC_LX_DECISION;
2930 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2931
2932 } else if (hw->mac.type == e1000_82580) {
2933 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2934 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2935 reg & ~E1000_PCIEMISC_LX_DECISION);
2936 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2937 }
2938 }
2939 /*********************************************************************
2940 * The 3 following flush routines are used as a workaround in the
2941 * I219 client parts and only for them.
2942 *
2943 * em_flush_tx_ring - remove all descriptors from the tx_ring
2944 *
2945 * We want to clear all pending descriptors from the TX ring.
2946 * zeroing happens when the HW reads the regs. We assign the ring itself as
2947 * the data of the next descriptor. We don't care about the data we are about
2948 * to reset the HW.
2949 **********************************************************************/
2950 static void
em_flush_tx_ring(struct e1000_softc * sc)2951 em_flush_tx_ring(struct e1000_softc *sc)
2952 {
2953 struct e1000_hw *hw = &sc->hw;
2954 struct tx_ring *txr = &sc->tx_queues->txr;
2955 struct e1000_tx_desc *txd;
2956 u32 tctl, txd_lower = E1000_TXD_CMD_IFCS;
2957 u16 size = 512;
2958
2959 tctl = E1000_READ_REG(hw, E1000_TCTL);
2960 E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
2961
2962 txd = &txr->tx_base[txr->tx_cidx_processed];
2963
2964 /* Just use the ring as a dummy buffer addr */
2965 txd->buffer_addr = txr->tx_paddr;
2966 txd->lower.data = htole32(txd_lower | size);
2967 txd->upper.data = 0;
2968
2969 /* flush descriptors to memory before notifying the HW */
2970 wmb();
2971
2972 E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed);
2973 mb();
2974 usec_delay(250);
2975 }
2976
2977 /*********************************************************************
2978 * em_flush_rx_ring - remove all descriptors from the rx_ring
2979 *
2980 * Mark all descriptors in the RX ring as consumed and disable the rx ring
2981 **********************************************************************/
2982 static void
em_flush_rx_ring(struct e1000_softc * sc)2983 em_flush_rx_ring(struct e1000_softc *sc)
2984 {
2985 struct e1000_hw *hw = &sc->hw;
2986 u32 rctl, rxdctl;
2987
2988 rctl = E1000_READ_REG(hw, E1000_RCTL);
2989 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2990 E1000_WRITE_FLUSH(hw);
2991 usec_delay(150);
2992
2993 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
2994 /* zero the lower 14 bits (prefetch and host thresholds) */
2995 rxdctl &= 0xffffc000;
2996 /*
2997 * update thresholds: prefetch threshold to 31, host threshold to 1
2998 * and make sure the granularity is "descriptors" and not
2999 * "cache lines"
3000 */
3001 rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3002 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
3003
3004 /* momentarily enable the RX ring for the changes to take effect */
3005 E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
3006 E1000_WRITE_FLUSH(hw);
3007 usec_delay(150);
3008 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3009 }
3010
3011 /*********************************************************************
3012 * em_flush_desc_rings - remove all descriptors from the descriptor rings
3013 *
3014 * In I219, the descriptor rings must be emptied before resetting the HW
3015 * or before changing the device state to D3 during runtime (runtime PM).
3016 *
3017 * Failure to do this will cause the HW to enter a unit hang state which can
3018 * only be released by PCI reset on the device
3019 *
3020 **********************************************************************/
3021 static void
em_flush_desc_rings(struct e1000_softc * sc)3022 em_flush_desc_rings(struct e1000_softc *sc)
3023 {
3024 struct e1000_hw *hw = &sc->hw;
3025 device_t dev = sc->dev;
3026 u16 hang_state;
3027 u32 fext_nvm11, tdlen;
3028
3029 /* First, disable MULR fix in FEXTNVM11 */
3030 fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
3031 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3032 E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
3033
3034 /* do nothing if we're not in faulty state, or the queue is empty */
3035 tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
3036 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
3037 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3038 return;
3039 em_flush_tx_ring(sc);
3040
3041 /* recheck, maybe the fault is caused by the rx ring */
3042 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
3043 if (hang_state & FLUSH_DESC_REQUIRED)
3044 em_flush_rx_ring(sc);
3045 }
3046
3047
3048 /*********************************************************************
3049 *
3050 * Initialize the hardware to a configuration as specified by the
3051 * sc structure.
3052 *
3053 **********************************************************************/
3054 static void
em_reset(if_ctx_t ctx)3055 em_reset(if_ctx_t ctx)
3056 {
3057 device_t dev = iflib_get_dev(ctx);
3058 struct e1000_softc *sc = iflib_get_softc(ctx);
3059 if_t ifp = iflib_get_ifp(ctx);
3060 struct e1000_hw *hw = &sc->hw;
3061 u32 rx_buffer_size;
3062 u32 pba;
3063
3064 INIT_DEBUGOUT("em_reset: begin");
3065 /* Let the firmware know the OS is in control */
3066 em_get_hw_control(sc);
3067
3068 /* Set up smart power down as default off on newer adapters. */
3069 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
3070 hw->mac.type == e1000_82572)) {
3071 u16 phy_tmp = 0;
3072
3073 /* Speed up time to link by disabling smart power down. */
3074 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
3075 phy_tmp &= ~IGP02E1000_PM_SPD;
3076 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
3077 }
3078
3079 /*
3080 * Packet Buffer Allocation (PBA)
3081 * Writing PBA sets the receive portion of the buffer
3082 * the remainder is used for the transmit buffer.
3083 */
3084 switch (hw->mac.type) {
3085 /* 82547: Total Packet Buffer is 40K */
3086 case e1000_82547:
3087 case e1000_82547_rev_2:
3088 if (hw->mac.max_frame_size > 8192)
3089 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
3090 else
3091 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
3092 break;
3093 /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
3094 case e1000_82571:
3095 case e1000_82572:
3096 case e1000_80003es2lan:
3097 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
3098 break;
3099 /* 82573: Total Packet Buffer is 32K */
3100 case e1000_82573:
3101 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
3102 break;
3103 case e1000_82574:
3104 case e1000_82583:
3105 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
3106 break;
3107 case e1000_ich8lan:
3108 pba = E1000_PBA_8K;
3109 break;
3110 case e1000_ich9lan:
3111 case e1000_ich10lan:
3112 /* Boost Receive side for jumbo frames */
3113 if (hw->mac.max_frame_size > 4096)
3114 pba = E1000_PBA_14K;
3115 else
3116 pba = E1000_PBA_10K;
3117 break;
3118 case e1000_pchlan:
3119 case e1000_pch2lan:
3120 case e1000_pch_lpt:
3121 case e1000_pch_spt:
3122 case e1000_pch_cnp:
3123 case e1000_pch_tgp:
3124 case e1000_pch_adp:
3125 case e1000_pch_mtp:
3126 case e1000_pch_ptp:
3127 pba = E1000_PBA_26K;
3128 break;
3129 case e1000_82575:
3130 pba = E1000_PBA_32K;
3131 break;
3132 case e1000_82576:
3133 case e1000_vfadapt:
3134 pba = E1000_READ_REG(hw, E1000_RXPBS);
3135 pba &= E1000_RXPBS_SIZE_MASK_82576;
3136 break;
3137 case e1000_82580:
3138 case e1000_i350:
3139 case e1000_i354:
3140 case e1000_vfadapt_i350:
3141 pba = E1000_READ_REG(hw, E1000_RXPBS);
3142 pba = e1000_rxpbs_adjust_82580(pba);
3143 break;
3144 case e1000_i210:
3145 case e1000_i211:
3146 pba = E1000_PBA_34K;
3147 break;
3148 default:
3149 /* Remaining devices assumed to have Packet Buffer of 64K. */
3150 if (hw->mac.max_frame_size > 8192)
3151 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
3152 else
3153 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
3154 }
3155
3156 /* Special needs in case of Jumbo frames */
3157 if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) {
3158 u32 tx_space, min_tx, min_rx;
3159 pba = E1000_READ_REG(hw, E1000_PBA);
3160 tx_space = pba >> 16;
3161 pba &= 0xffff;
3162 min_tx = (hw->mac.max_frame_size +
3163 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
3164 min_tx = roundup2(min_tx, 1024);
3165 min_tx >>= 10;
3166 min_rx = hw->mac.max_frame_size;
3167 min_rx = roundup2(min_rx, 1024);
3168 min_rx >>= 10;
3169 if (tx_space < min_tx &&
3170 ((min_tx - tx_space) < pba)) {
3171 pba = pba - (min_tx - tx_space);
3172 /*
3173 * if short on rx space, rx wins
3174 * and must trump tx adjustment
3175 */
3176 if (pba < min_rx)
3177 pba = min_rx;
3178 }
3179 E1000_WRITE_REG(hw, E1000_PBA, pba);
3180 }
3181
3182 if (hw->mac.type < igb_mac_min)
3183 E1000_WRITE_REG(hw, E1000_PBA, pba);
3184
3185 INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
3186
3187 /*
3188 * These parameters control the automatic generation (Tx) and
3189 * response (Rx) to Ethernet PAUSE frames.
3190 * - High water mark should allow for at least two frames to be
3191 * received after sending an XOFF.
3192 * - Low water mark works best when it is very near the high water
3193 mark.
3194 * This allows the receiver to restart by sending XON when it has
3195 * drained a bit. Here we use an arbitrary value of 1500 which will
3196 * restart after one full frame is pulled from the buffer. There
3197 * could be several smaller frames in the buffer and if so they will
3198 * not trigger the XON until their total number reduces the buffer
3199 * by 1500.
3200 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
3201 */
3202 rx_buffer_size = (pba & 0xffff) << 10;
3203 hw->fc.high_water = rx_buffer_size -
3204 roundup2(hw->mac.max_frame_size, 1024);
3205 hw->fc.low_water = hw->fc.high_water - 1500;
3206
3207 if (sc->fc) /* locally set flow control value? */
3208 hw->fc.requested_mode = sc->fc;
3209 else
3210 hw->fc.requested_mode = e1000_fc_full;
3211
3212 if (hw->mac.type == e1000_80003es2lan)
3213 hw->fc.pause_time = 0xFFFF;
3214 else
3215 hw->fc.pause_time = EM_FC_PAUSE_TIME;
3216
3217 hw->fc.send_xon = true;
3218
3219 /* Device specific overrides/settings */
3220 switch (hw->mac.type) {
3221 case e1000_pchlan:
3222 /* Workaround: no TX flow ctrl for PCH */
3223 hw->fc.requested_mode = e1000_fc_rx_pause;
3224 hw->fc.pause_time = 0xFFFF; /* override */
3225 if (if_getmtu(ifp) > ETHERMTU) {
3226 hw->fc.high_water = 0x3500;
3227 hw->fc.low_water = 0x1500;
3228 } else {
3229 hw->fc.high_water = 0x5000;
3230 hw->fc.low_water = 0x3000;
3231 }
3232 hw->fc.refresh_time = 0x1000;
3233 break;
3234 case e1000_pch2lan:
3235 case e1000_pch_lpt:
3236 case e1000_pch_spt:
3237 case e1000_pch_cnp:
3238 case e1000_pch_tgp:
3239 case e1000_pch_adp:
3240 case e1000_pch_mtp:
3241 case e1000_pch_ptp:
3242 hw->fc.high_water = 0x5C20;
3243 hw->fc.low_water = 0x5048;
3244 hw->fc.pause_time = 0x0650;
3245 hw->fc.refresh_time = 0x0400;
3246 /* Jumbos need adjusted PBA */
3247 if (if_getmtu(ifp) > ETHERMTU)
3248 E1000_WRITE_REG(hw, E1000_PBA, 12);
3249 else
3250 E1000_WRITE_REG(hw, E1000_PBA, 26);
3251 break;
3252 case e1000_82575:
3253 case e1000_82576:
3254 /* 8-byte granularity */
3255 hw->fc.low_water = hw->fc.high_water - 8;
3256 break;
3257 case e1000_82580:
3258 case e1000_i350:
3259 case e1000_i354:
3260 case e1000_i210:
3261 case e1000_i211:
3262 case e1000_vfadapt:
3263 case e1000_vfadapt_i350:
3264 /* 16-byte granularity */
3265 hw->fc.low_water = hw->fc.high_water - 16;
3266 break;
3267 case e1000_ich9lan:
3268 case e1000_ich10lan:
3269 if (if_getmtu(ifp) > ETHERMTU) {
3270 hw->fc.high_water = 0x2800;
3271 hw->fc.low_water = hw->fc.high_water - 8;
3272 break;
3273 }
3274 /* FALLTHROUGH */
3275 default:
3276 if (hw->mac.type == e1000_80003es2lan)
3277 hw->fc.pause_time = 0xFFFF;
3278 break;
3279 }
3280
3281 /* I219 needs some special flushing to avoid hangs */
3282 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
3283 em_flush_desc_rings(sc);
3284
3285 /* Issue a global reset */
3286 e1000_reset_hw(hw);
3287 if (hw->mac.type >= igb_mac_min) {
3288 E1000_WRITE_REG(hw, E1000_WUC, 0);
3289 } else {
3290 E1000_WRITE_REG(hw, E1000_WUFC, 0);
3291 em_disable_aspm(sc);
3292 }
3293 if (sc->flags & IGB_MEDIA_RESET) {
3294 e1000_setup_init_funcs(hw, true);
3295 e1000_get_bus_info(hw);
3296 sc->flags &= ~IGB_MEDIA_RESET;
3297 }
3298 /* and a re-init */
3299 if (e1000_init_hw(hw) < 0) {
3300 device_printf(dev, "Hardware Initialization Failed\n");
3301 return;
3302 }
3303 if (hw->mac.type >= igb_mac_min)
3304 igb_init_dmac(sc, pba);
3305
3306 /* Save the final PBA off if it needs to be used elsewhere i.e. AIM */
3307 sc->pba = pba;
3308
3309 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
3310 e1000_get_phy_info(hw);
3311 e1000_check_for_link(hw);
3312 }
3313
3314 /*
3315 * Initialise the RSS mapping for NICs that support multiple transmit/
3316 * receive rings.
3317 */
3318
3319 #define RSSKEYLEN 10
3320 static void
em_initialize_rss_mapping(struct e1000_softc * sc)3321 em_initialize_rss_mapping(struct e1000_softc *sc)
3322 {
3323 uint8_t rss_key[4 * RSSKEYLEN];
3324 uint32_t reta = 0;
3325 struct e1000_hw *hw = &sc->hw;
3326 int i;
3327
3328 /*
3329 * Configure RSS key
3330 */
3331 arc4rand(rss_key, sizeof(rss_key), 0);
3332 for (i = 0; i < RSSKEYLEN; ++i) {
3333 uint32_t rssrk = 0;
3334
3335 rssrk = EM_RSSRK_VAL(rss_key, i);
3336 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
3337 }
3338
3339 /*
3340 * Configure RSS redirect table in following fashion:
3341 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3342 */
3343 for (i = 0; i < sizeof(reta); ++i) {
3344 uint32_t q;
3345
3346 q = (i % sc->rx_num_queues) << 7;
3347 reta |= q << (8 * i);
3348 }
3349
3350 for (i = 0; i < 32; ++i)
3351 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
3352
3353 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
3354 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3355 E1000_MRQC_RSS_FIELD_IPV4 |
3356 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
3357 E1000_MRQC_RSS_FIELD_IPV6_EX |
3358 E1000_MRQC_RSS_FIELD_IPV6);
3359 }
3360
3361 static void
igb_initialize_rss_mapping(struct e1000_softc * sc)3362 igb_initialize_rss_mapping(struct e1000_softc *sc)
3363 {
3364 struct e1000_hw *hw = &sc->hw;
3365 int i;
3366 int queue_id;
3367 u32 reta;
3368 u32 rss_key[10], mrqc, shift = 0;
3369
3370 /* XXX? */
3371 if (hw->mac.type == e1000_82575)
3372 shift = 6;
3373
3374 /*
3375 * The redirection table controls which destination
3376 * queue each bucket redirects traffic to.
3377 * Each DWORD represents four queues, with the LSB
3378 * being the first queue in the DWORD.
3379 *
3380 * This just allocates buckets to queues using round-robin
3381 * allocation.
3382 *
3383 * NOTE: It Just Happens to line up with the default
3384 * RSS allocation method.
3385 */
3386
3387 /* Warning FM follows */
3388 reta = 0;
3389 for (i = 0; i < 128; i++) {
3390 #ifdef RSS
3391 queue_id = rss_get_indirection_to_bucket(i);
3392 /*
3393 * If we have more queues than buckets, we'll
3394 * end up mapping buckets to a subset of the
3395 * queues.
3396 *
3397 * If we have more buckets than queues, we'll
3398 * end up instead assigning multiple buckets
3399 * to queues.
3400 *
3401 * Both are suboptimal, but we need to handle
3402 * the case so we don't go out of bounds
3403 * indexing arrays and such.
3404 */
3405 queue_id = queue_id % sc->rx_num_queues;
3406 #else
3407 queue_id = (i % sc->rx_num_queues);
3408 #endif
3409 /* Adjust if required */
3410 queue_id = queue_id << shift;
3411
3412 /*
3413 * The low 8 bits are for hash value (n+0);
3414 * The next 8 bits are for hash value (n+1), etc.
3415 */
3416 reta = reta >> 8;
3417 reta = reta | ( ((uint32_t) queue_id) << 24);
3418 if ((i & 3) == 3) {
3419 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3420 reta = 0;
3421 }
3422 }
3423
3424 /* Now fill in hash table */
3425
3426 /*
3427 * MRQC: Multiple Receive Queues Command
3428 * Set queuing to RSS control, number depends on the device.
3429 */
3430 mrqc = E1000_MRQC_ENABLE_RSS_MQ;
3431
3432 #ifdef RSS
3433 /* XXX ew typecasting */
3434 rss_getkey((uint8_t *) &rss_key);
3435 #else
3436 arc4rand(&rss_key, sizeof(rss_key), 0);
3437 #endif
3438 for (i = 0; i < 10; i++)
3439 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
3440
3441 /*
3442 * Configure the RSS fields to hash upon.
3443 */
3444 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
3445 E1000_MRQC_RSS_FIELD_IPV4_TCP);
3446 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
3447 E1000_MRQC_RSS_FIELD_IPV6_TCP);
3448 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
3449 E1000_MRQC_RSS_FIELD_IPV6_UDP);
3450 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
3451 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3452
3453 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
3454 }
3455
3456 /*********************************************************************
3457 *
3458 * Setup networking device structure and register interface media.
3459 *
3460 **********************************************************************/
3461 static int
em_setup_interface(if_ctx_t ctx)3462 em_setup_interface(if_ctx_t ctx)
3463 {
3464 if_t ifp = iflib_get_ifp(ctx);
3465 struct e1000_softc *sc = iflib_get_softc(ctx);
3466 if_softc_ctx_t scctx = sc->shared;
3467
3468 INIT_DEBUGOUT("em_setup_interface: begin");
3469
3470 /* Single Queue */
3471 if (sc->tx_num_queues == 1) {
3472 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
3473 if_setsendqready(ifp);
3474 }
3475
3476 /*
3477 * Specify the media types supported by this adapter and register
3478 * callbacks to update media and link information
3479 */
3480 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3481 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3482 u_char fiber_type = IFM_1000_SX; /* default type */
3483
3484 if (sc->hw.mac.type == e1000_82545)
3485 fiber_type = IFM_1000_LX;
3486 ifmedia_add(sc->media,
3487 IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
3488 ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
3489 } else {
3490 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
3491 ifmedia_add(sc->media,
3492 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
3493 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
3494 ifmedia_add(sc->media,
3495 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
3496 if (sc->hw.phy.type != e1000_phy_ife) {
3497 ifmedia_add(sc->media,
3498 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
3499 ifmedia_add(sc->media,
3500 IFM_ETHER | IFM_1000_T, 0, NULL);
3501 }
3502 }
3503 ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
3504 ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
3505 return (0);
3506 }
3507
3508 static int
em_if_tx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int ntxqs,int ntxqsets)3509 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
3510 int ntxqs, int ntxqsets)
3511 {
3512 struct e1000_softc *sc = iflib_get_softc(ctx);
3513 if_softc_ctx_t scctx = sc->shared;
3514 int error = E1000_SUCCESS;
3515 struct em_tx_queue *que;
3516 int i, j;
3517
3518 MPASS(sc->tx_num_queues > 0);
3519 MPASS(sc->tx_num_queues == ntxqsets);
3520
3521 /* First allocate the top level queue structs */
3522 if (!(sc->tx_queues =
3523 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
3524 sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3525 device_printf(iflib_get_dev(ctx),
3526 "Unable to allocate queue memory\n");
3527 return(ENOMEM);
3528 }
3529
3530 for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
3531 /* Set up some basics */
3532
3533 struct tx_ring *txr = &que->txr;
3534 txr->sc = que->sc = sc;
3535 que->me = txr->me = i;
3536
3537 /* Allocate report status array */
3538 if (!(txr->tx_rsq =
3539 (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0],
3540 M_DEVBUF, M_NOWAIT | M_ZERO))) {
3541 device_printf(iflib_get_dev(ctx),
3542 "failed to allocate rs_idxs memory\n");
3543 error = ENOMEM;
3544 goto fail;
3545 }
3546 for (j = 0; j < scctx->isc_ntxd[0]; j++)
3547 txr->tx_rsq[j] = QIDX_INVALID;
3548 /* get the virtual and physical address of hardware queues */
3549 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
3550 txr->tx_paddr = paddrs[i*ntxqs];
3551 }
3552
3553 if (bootverbose)
3554 device_printf(iflib_get_dev(ctx),
3555 "allocated for %d tx_queues\n", sc->tx_num_queues);
3556 return (0);
3557 fail:
3558 em_if_queues_free(ctx);
3559 return (error);
3560 }
3561
3562 static int
em_if_rx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int nrxqs,int nrxqsets)3563 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
3564 int nrxqs, int nrxqsets)
3565 {
3566 struct e1000_softc *sc = iflib_get_softc(ctx);
3567 int error = E1000_SUCCESS;
3568 struct em_rx_queue *que;
3569 int i;
3570
3571 MPASS(sc->rx_num_queues > 0);
3572 MPASS(sc->rx_num_queues == nrxqsets);
3573
3574 /* First allocate the top level queue structs */
3575 if (!(sc->rx_queues =
3576 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
3577 sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3578 device_printf(iflib_get_dev(ctx),
3579 "Unable to allocate queue memory\n");
3580 error = ENOMEM;
3581 goto fail;
3582 }
3583
3584 for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
3585 /* Set up some basics */
3586 struct rx_ring *rxr = &que->rxr;
3587 rxr->sc = que->sc = sc;
3588 rxr->que = que;
3589 que->me = rxr->me = i;
3590
3591 /* get the virtual and physical address of hardware queues */
3592 rxr->rx_base =
3593 (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
3594 rxr->rx_paddr = paddrs[i*nrxqs];
3595 }
3596
3597 if (bootverbose)
3598 device_printf(iflib_get_dev(ctx),
3599 "allocated for %d rx_queues\n", sc->rx_num_queues);
3600
3601 return (0);
3602 fail:
3603 em_if_queues_free(ctx);
3604 return (error);
3605 }
3606
3607 static void
em_if_queues_free(if_ctx_t ctx)3608 em_if_queues_free(if_ctx_t ctx)
3609 {
3610 struct e1000_softc *sc = iflib_get_softc(ctx);
3611 struct em_tx_queue *tx_que = sc->tx_queues;
3612 struct em_rx_queue *rx_que = sc->rx_queues;
3613
3614 if (tx_que != NULL) {
3615 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
3616 struct tx_ring *txr = &tx_que->txr;
3617 if (txr->tx_rsq == NULL)
3618 break;
3619
3620 free(txr->tx_rsq, M_DEVBUF);
3621 txr->tx_rsq = NULL;
3622 }
3623 free(sc->tx_queues, M_DEVBUF);
3624 sc->tx_queues = NULL;
3625 }
3626
3627 if (rx_que != NULL) {
3628 free(sc->rx_queues, M_DEVBUF);
3629 sc->rx_queues = NULL;
3630 }
3631 }
3632
3633 /*********************************************************************
3634 *
3635 * Enable transmit unit.
3636 *
3637 **********************************************************************/
3638 static void
em_initialize_transmit_unit(if_ctx_t ctx)3639 em_initialize_transmit_unit(if_ctx_t ctx)
3640 {
3641 struct e1000_softc *sc = iflib_get_softc(ctx);
3642 if_softc_ctx_t scctx = sc->shared;
3643 struct em_tx_queue *que;
3644 struct tx_ring *txr;
3645 struct e1000_hw *hw = &sc->hw;
3646 u32 tctl, txdctl = 0, tarc, tipg = 0;
3647
3648 INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3649
3650 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3651 u64 bus_addr;
3652 caddr_t offp, endp;
3653
3654 que = &sc->tx_queues[i];
3655 txr = &que->txr;
3656 bus_addr = txr->tx_paddr;
3657
3658 /* Clear checksum offload context. */
3659 offp = (caddr_t)&txr->csum_flags;
3660 endp = (caddr_t)(txr + 1);
3661 bzero(offp, endp - offp);
3662
3663 /* Base and Len of TX Ring */
3664 E1000_WRITE_REG(hw, E1000_TDLEN(i),
3665 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3666 E1000_WRITE_REG(hw, E1000_TDBAH(i), (u32)(bus_addr >> 32));
3667 E1000_WRITE_REG(hw, E1000_TDBAL(i), (u32)bus_addr);
3668 /* Init the HEAD/TAIL indices */
3669 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3670 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3671
3672 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3673 E1000_READ_REG(hw, E1000_TDBAL(i)),
3674 E1000_READ_REG(hw, E1000_TDLEN(i)));
3675
3676 txdctl = 0; /* clear txdctl */
3677 txdctl |= 0x1f; /* PTHRESH */
3678 txdctl |= 1 << 8; /* HTHRESH */
3679 txdctl |= 1 << 16;/* WTHRESH */
3680 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3681 txdctl |= E1000_TXDCTL_GRAN;
3682 txdctl |= 1 << 25; /* LWTHRESH */
3683
3684 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3685 }
3686
3687 /* Set the default values for the Tx Inter Packet Gap timer */
3688 switch (hw->mac.type) {
3689 case e1000_80003es2lan:
3690 tipg = DEFAULT_82543_TIPG_IPGR1;
3691 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3692 E1000_TIPG_IPGR2_SHIFT;
3693 break;
3694 case e1000_82542:
3695 tipg = DEFAULT_82542_TIPG_IPGT;
3696 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3697 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3698 break;
3699 default:
3700 if (hw->phy.media_type == e1000_media_type_fiber ||
3701 hw->phy.media_type == e1000_media_type_internal_serdes)
3702 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3703 else
3704 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3705 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3706 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3707 }
3708
3709 if (hw->mac.type < igb_mac_min) {
3710 E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3711 E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
3712
3713 if (sc->tx_int_delay.value > 0)
3714 sc->txd_cmd |= E1000_TXD_CMD_IDE;
3715 }
3716
3717 if (hw->mac.type >= e1000_82540)
3718 E1000_WRITE_REG(hw, E1000_TADV, sc->tx_abs_int_delay.value);
3719
3720 if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3721 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3722 tarc |= TARC_SPEED_MODE_BIT;
3723 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3724 } else if (hw->mac.type == e1000_80003es2lan) {
3725 /* errata: program both queues to unweighted RR */
3726 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3727 tarc |= 1;
3728 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3729 tarc = E1000_READ_REG(hw, E1000_TARC(1));
3730 tarc |= 1;
3731 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3732 } else if (hw->mac.type == e1000_82574) {
3733 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3734 tarc |= TARC_ERRATA_BIT;
3735 if ( sc->tx_num_queues > 1) {
3736 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3737 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3738 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3739 } else
3740 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3741 }
3742
3743 /* Program the Transmit Control Register */
3744 tctl = E1000_READ_REG(hw, E1000_TCTL);
3745 tctl &= ~E1000_TCTL_CT;
3746 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3747 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3748
3749 if (hw->mac.type >= e1000_82571 && hw->mac.type < igb_mac_min)
3750 tctl |= E1000_TCTL_MULR;
3751
3752 /* This write will effectively turn on the transmit unit. */
3753 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3754
3755 /* SPT and KBL errata workarounds */
3756 if (hw->mac.type == e1000_pch_spt) {
3757 u32 reg;
3758 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3759 reg |= E1000_RCTL_RDMTS_HEX;
3760 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3761 /* i218-i219 Specification Update 1.5.4.5 */
3762 reg = E1000_READ_REG(hw, E1000_TARC(0));
3763 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3764 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3765 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3766 }
3767 }
3768
3769 /*********************************************************************
3770 *
3771 * Enable receive unit.
3772 *
3773 **********************************************************************/
3774 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3775
3776 static void
em_initialize_receive_unit(if_ctx_t ctx)3777 em_initialize_receive_unit(if_ctx_t ctx)
3778 {
3779 struct e1000_softc *sc = iflib_get_softc(ctx);
3780 if_softc_ctx_t scctx = sc->shared;
3781 if_t ifp = iflib_get_ifp(ctx);
3782 struct e1000_hw *hw = &sc->hw;
3783 struct em_rx_queue *que;
3784 int i;
3785 uint32_t rctl, rxcsum;
3786
3787 INIT_DEBUGOUT("em_initialize_receive_units: begin");
3788
3789 /*
3790 * Make sure receives are disabled while setting
3791 * up the descriptor ring
3792 */
3793 rctl = E1000_READ_REG(hw, E1000_RCTL);
3794 /* Do not disable if ever enabled on this hardware */
3795 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3796 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3797
3798 /* Setup the Receive Control Register */
3799 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3800 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3801 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3802 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3803
3804 /* Do not store bad packets */
3805 rctl &= ~E1000_RCTL_SBP;
3806
3807 /* Enable Long Packet receive */
3808 if (if_getmtu(ifp) > ETHERMTU)
3809 rctl |= E1000_RCTL_LPE;
3810 else
3811 rctl &= ~E1000_RCTL_LPE;
3812
3813 /* Strip the CRC */
3814 if (!em_disable_crc_stripping)
3815 rctl |= E1000_RCTL_SECRC;
3816
3817 /* lem/em default interrupt moderation */
3818 if (hw->mac.type < igb_mac_min) {
3819 if (hw->mac.type >= e1000_82540) {
3820 E1000_WRITE_REG(hw, E1000_RADV,
3821 sc->rx_abs_int_delay.value);
3822
3823 /* Set the default interrupt throttling rate */
3824 E1000_WRITE_REG(hw, E1000_ITR,
3825 EM_INTS_TO_ITR(em_max_interrupt_rate));
3826 }
3827
3828 /* XXX TEMPORARY WORKAROUND: on some systems with 82573
3829 * long latencies are observed, like Lenovo X60. This
3830 * change eliminates the problem, but since having positive
3831 * values in RDTR is a known source of problems on other
3832 * platforms another solution is being sought.
3833 */
3834 if (hw->mac.type == e1000_82573)
3835 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3836 else
3837 E1000_WRITE_REG(hw, E1000_RDTR,
3838 sc->rx_int_delay.value);
3839 }
3840
3841 if (hw->mac.type >= em_mac_min) {
3842 uint32_t rfctl;
3843 /* Use extended rx descriptor formats */
3844 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3845 rfctl |= E1000_RFCTL_EXTEN;
3846
3847 /*
3848 * When using MSI-X interrupts we need to throttle
3849 * using the EITR register (82574 only)
3850 */
3851 if (hw->mac.type == e1000_82574) {
3852 for (int i = 0; i < 4; i++)
3853 E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3854 EM_INTS_TO_ITR(em_max_interrupt_rate));
3855 /* Disable accelerated acknowledge */
3856 rfctl |= E1000_RFCTL_ACK_DIS;
3857 }
3858 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3859 }
3860
3861 /* Set up L3 and L4 csum Rx descriptor offloads */
3862 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3863 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3864 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3865 if (hw->mac.type > e1000_82575)
3866 rxcsum |= E1000_RXCSUM_CRCOFL;
3867 else if (hw->mac.type < em_mac_min &&
3868 if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6)
3869 rxcsum |= E1000_RXCSUM_IPV6OFL;
3870 } else {
3871 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3872 if (hw->mac.type > e1000_82575)
3873 rxcsum &= ~E1000_RXCSUM_CRCOFL;
3874 else if (hw->mac.type < em_mac_min)
3875 rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3876 }
3877
3878 if (sc->rx_num_queues > 1) {
3879 /* RSS hash needed in the Rx descriptor */
3880 rxcsum |= E1000_RXCSUM_PCSD;
3881
3882 if (hw->mac.type >= igb_mac_min)
3883 igb_initialize_rss_mapping(sc);
3884 else
3885 em_initialize_rss_mapping(sc);
3886 }
3887 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3888
3889 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3890 struct rx_ring *rxr = &que->rxr;
3891 /* Setup the Base and Length of the Rx Descriptor Ring */
3892 u64 bus_addr = rxr->rx_paddr;
3893 #if 0
3894 u32 rdt = sc->rx_num_queues -1; /* default */
3895 #endif
3896
3897 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3898 scctx->isc_nrxd[0] *
3899 sizeof(union e1000_rx_desc_extended));
3900 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3901 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3902 /* Setup the Head and Tail Descriptor Pointers */
3903 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3904 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3905 }
3906
3907 /*
3908 * Set PTHRESH for improved jumbo performance
3909 * According to 10.2.5.11 of Intel 82574 Datasheet,
3910 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3911 * Only write to RXDCTL(1) if there is a need for different
3912 * settings.
3913 */
3914 if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3915 hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3916 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3917 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3918 } else if (hw->mac.type == e1000_82574) {
3919 for (int i = 0; i < sc->rx_num_queues; i++) {
3920 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3921 rxdctl |= 0x20; /* PTHRESH */
3922 rxdctl |= 4 << 8; /* HTHRESH */
3923 rxdctl |= 4 << 16;/* WTHRESH */
3924 rxdctl |= 1 << 24; /* Switch to granularity */
3925 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3926 }
3927 } else if (hw->mac.type >= igb_mac_min) {
3928 u32 psize, srrctl = 0;
3929
3930 if (if_getmtu(ifp) > ETHERMTU) {
3931 psize = scctx->isc_max_frame_size;
3932 /* are we on a vlan? */
3933 if (if_vlantrunkinuse(ifp))
3934 psize += VLAN_TAG_SIZE;
3935
3936 if (sc->vf_ifp)
3937 e1000_rlpml_set_vf(hw, psize);
3938 else
3939 E1000_WRITE_REG(hw, E1000_RLPML, psize);
3940 }
3941
3942 /* Set maximum packet buffer len */
3943 srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3944 E1000_SRRCTL_BSIZEPKT_SHIFT;
3945
3946 /*
3947 * If TX flow control is disabled and there's >1 queue
3948 * defined, enable DROP.
3949 *
3950 * This drops frames rather than hanging the RX MAC for all
3951 * queues.
3952 */
3953 if ((sc->rx_num_queues > 1) &&
3954 (sc->fc == e1000_fc_none ||
3955 sc->fc == e1000_fc_rx_pause)) {
3956 srrctl |= E1000_SRRCTL_DROP_EN;
3957 }
3958 /* Setup the Base and Length of the Rx Descriptor Rings */
3959 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues;
3960 i++, que++) {
3961 struct rx_ring *rxr = &que->rxr;
3962 u64 bus_addr = rxr->rx_paddr;
3963 u32 rxdctl;
3964
3965 #ifdef notyet
3966 /* Configure for header split? -- ignore for now */
3967 rxr->hdr_split = igb_header_split;
3968 #else
3969 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3970 #endif
3971
3972 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3973 scctx->isc_nrxd[0] *
3974 sizeof(struct e1000_rx_desc));
3975 E1000_WRITE_REG(hw, E1000_RDBAH(i),
3976 (uint32_t)(bus_addr >> 32));
3977 E1000_WRITE_REG(hw, E1000_RDBAL(i),
3978 (uint32_t)bus_addr);
3979 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3980 /* Enable this Queue */
3981 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3982 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3983 rxdctl &= 0xFFF00000;
3984 rxdctl |= IGB_RX_PTHRESH;
3985 rxdctl |= IGB_RX_HTHRESH << 8;
3986 rxdctl |= IGB_RX_WTHRESH << 16;
3987 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3988 }
3989 } else if (hw->mac.type >= e1000_pch2lan) {
3990 if (if_getmtu(ifp) > ETHERMTU)
3991 e1000_lv_jumbo_workaround_ich8lan(hw, true);
3992 else
3993 e1000_lv_jumbo_workaround_ich8lan(hw, false);
3994 }
3995
3996 /* Make sure VLAN Filters are off */
3997 rctl &= ~E1000_RCTL_VFE;
3998
3999 /* Set up packet buffer size, overridden by per queue srrctl on igb */
4000 if (hw->mac.type < igb_mac_min) {
4001 if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
4002 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
4003 else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
4004 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
4005 else if (sc->rx_mbuf_sz > 8192)
4006 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
4007 else {
4008 rctl |= E1000_RCTL_SZ_2048;
4009 rctl &= ~E1000_RCTL_BSEX;
4010 }
4011 } else
4012 rctl |= E1000_RCTL_SZ_2048;
4013
4014 /*
4015 * rctl bits 11:10 are as follows
4016 * lem: reserved
4017 * em: DTYPE
4018 * igb: reserved
4019 * and should be 00 on all of the above
4020 */
4021 rctl &= ~0x00000C00;
4022
4023 /* Write out the settings */
4024 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4025
4026 return;
4027 }
4028
4029 static void
em_if_vlan_register(if_ctx_t ctx,u16 vtag)4030 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
4031 {
4032 struct e1000_softc *sc = iflib_get_softc(ctx);
4033 u32 index, bit;
4034
4035 index = (vtag >> 5) & 0x7F;
4036 bit = vtag & 0x1F;
4037 sc->shadow_vfta[index] |= (1 << bit);
4038 ++sc->num_vlans;
4039 em_if_vlan_filter_write(sc);
4040 }
4041
4042 static void
em_if_vlan_unregister(if_ctx_t ctx,u16 vtag)4043 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
4044 {
4045 struct e1000_softc *sc = iflib_get_softc(ctx);
4046 u32 index, bit;
4047
4048 index = (vtag >> 5) & 0x7F;
4049 bit = vtag & 0x1F;
4050 sc->shadow_vfta[index] &= ~(1 << bit);
4051 --sc->num_vlans;
4052 em_if_vlan_filter_write(sc);
4053 }
4054
4055 static bool
em_if_vlan_filter_capable(if_ctx_t ctx)4056 em_if_vlan_filter_capable(if_ctx_t ctx)
4057 {
4058 if_t ifp = iflib_get_ifp(ctx);
4059
4060 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) &&
4061 !em_disable_crc_stripping)
4062 return (true);
4063
4064 return (false);
4065 }
4066
4067 static bool
em_if_vlan_filter_used(if_ctx_t ctx)4068 em_if_vlan_filter_used(if_ctx_t ctx)
4069 {
4070 struct e1000_softc *sc = iflib_get_softc(ctx);
4071
4072 if (!em_if_vlan_filter_capable(ctx))
4073 return (false);
4074
4075 for (int i = 0; i < EM_VFTA_SIZE; i++)
4076 if (sc->shadow_vfta[i] != 0)
4077 return (true);
4078
4079 return (false);
4080 }
4081
4082 static void
em_if_vlan_filter_enable(struct e1000_softc * sc)4083 em_if_vlan_filter_enable(struct e1000_softc *sc)
4084 {
4085 struct e1000_hw *hw = &sc->hw;
4086 u32 reg;
4087
4088 reg = E1000_READ_REG(hw, E1000_RCTL);
4089 reg &= ~E1000_RCTL_CFIEN;
4090 reg |= E1000_RCTL_VFE;
4091 E1000_WRITE_REG(hw, E1000_RCTL, reg);
4092 }
4093
4094 static void
em_if_vlan_filter_disable(struct e1000_softc * sc)4095 em_if_vlan_filter_disable(struct e1000_softc *sc)
4096 {
4097 struct e1000_hw *hw = &sc->hw;
4098 u32 reg;
4099
4100 reg = E1000_READ_REG(hw, E1000_RCTL);
4101 reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
4102 E1000_WRITE_REG(hw, E1000_RCTL, reg);
4103 }
4104
4105 static void
em_if_vlan_filter_write(struct e1000_softc * sc)4106 em_if_vlan_filter_write(struct e1000_softc *sc)
4107 {
4108 struct e1000_hw *hw = &sc->hw;
4109
4110 if (sc->vf_ifp)
4111 return;
4112
4113 /* Disable interrupts for lem(4) devices during the filter change */
4114 if (hw->mac.type < em_mac_min)
4115 em_if_intr_disable(sc->ctx);
4116
4117 for (int i = 0; i < EM_VFTA_SIZE; i++)
4118 if (sc->shadow_vfta[i] != 0) {
4119 /* XXXKB: incomplete VF support, we returned above */
4120 if (sc->vf_ifp)
4121 e1000_vfta_set_vf(hw, sc->shadow_vfta[i],
4122 true);
4123 else
4124 e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
4125 }
4126
4127 /* Re-enable interrupts for lem-class devices */
4128 if (hw->mac.type < em_mac_min)
4129 em_if_intr_enable(sc->ctx);
4130 }
4131
4132 static void
em_setup_vlan_hw_support(if_ctx_t ctx)4133 em_setup_vlan_hw_support(if_ctx_t ctx)
4134 {
4135 struct e1000_softc *sc = iflib_get_softc(ctx);
4136 struct e1000_hw *hw = &sc->hw;
4137 if_t ifp = iflib_get_ifp(ctx);
4138 u32 reg;
4139
4140 /* XXXKB: Return early if we are a VF until VF decap and filter
4141 * management is ready and tested.
4142 */
4143 if (sc->vf_ifp)
4144 return;
4145
4146 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4147 !em_disable_crc_stripping) {
4148 reg = E1000_READ_REG(hw, E1000_CTRL);
4149 reg |= E1000_CTRL_VME;
4150 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4151 } else {
4152 reg = E1000_READ_REG(hw, E1000_CTRL);
4153 reg &= ~E1000_CTRL_VME;
4154 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4155 }
4156
4157 /* If we aren't doing HW filtering, we're done */
4158 if (!em_if_vlan_filter_capable(ctx)) {
4159 em_if_vlan_filter_disable(sc);
4160 return;
4161 }
4162
4163 /*
4164 * A soft reset zero's out the VFTA, so
4165 * we need to repopulate it now.
4166 * We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged
4167 * traffic through. This will write the entire table.
4168 */
4169 em_if_vlan_register(ctx, 0);
4170
4171 /* Enable the Filter Table */
4172 em_if_vlan_filter_enable(sc);
4173 }
4174
4175 static void
em_if_intr_enable(if_ctx_t ctx)4176 em_if_intr_enable(if_ctx_t ctx)
4177 {
4178 struct e1000_softc *sc = iflib_get_softc(ctx);
4179 struct e1000_hw *hw = &sc->hw;
4180 u32 ims_mask = IMS_ENABLE_MASK;
4181
4182 if (sc->intr_type == IFLIB_INTR_MSIX) {
4183 E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
4184 ims_mask |= sc->ims;
4185 }
4186
4187 E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
4188 E1000_WRITE_FLUSH(hw);
4189 }
4190
4191 static void
em_if_intr_disable(if_ctx_t ctx)4192 em_if_intr_disable(if_ctx_t ctx)
4193 {
4194 struct e1000_softc *sc = iflib_get_softc(ctx);
4195 struct e1000_hw *hw = &sc->hw;
4196
4197 if (sc->intr_type == IFLIB_INTR_MSIX)
4198 E1000_WRITE_REG(hw, EM_EIAC, 0);
4199 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4200 E1000_WRITE_FLUSH(hw);
4201 }
4202
4203 static void
igb_if_intr_enable(if_ctx_t ctx)4204 igb_if_intr_enable(if_ctx_t ctx)
4205 {
4206 struct e1000_softc *sc = iflib_get_softc(ctx);
4207 struct e1000_hw *hw = &sc->hw;
4208 u32 mask;
4209
4210 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4211 mask = (sc->que_mask | sc->link_mask);
4212 E1000_WRITE_REG(hw, E1000_EIAC, mask);
4213 E1000_WRITE_REG(hw, E1000_EIAM, mask);
4214 E1000_WRITE_REG(hw, E1000_EIMS, mask);
4215 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
4216 } else
4217 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
4218 E1000_WRITE_FLUSH(hw);
4219 }
4220
4221 static void
igb_if_intr_disable(if_ctx_t ctx)4222 igb_if_intr_disable(if_ctx_t ctx)
4223 {
4224 struct e1000_softc *sc = iflib_get_softc(ctx);
4225 struct e1000_hw *hw = &sc->hw;
4226
4227 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4228 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
4229 E1000_WRITE_REG(hw, E1000_EIAC, 0);
4230 }
4231 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4232 E1000_WRITE_FLUSH(hw);
4233 }
4234
4235 /*
4236 * Bit of a misnomer, what this really means is
4237 * to enable OS management of the system... aka
4238 * to disable special hardware management features
4239 */
4240 static void
em_init_manageability(struct e1000_softc * sc)4241 em_init_manageability(struct e1000_softc *sc)
4242 {
4243 /* A shared code workaround */
4244 #define E1000_82542_MANC2H E1000_MANC2H
4245 if (sc->has_manage) {
4246 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
4247 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4248
4249 /* disable hardware interception of ARP */
4250 manc &= ~(E1000_MANC_ARP_EN);
4251
4252 /* enable receiving management packets to the host */
4253 manc |= E1000_MANC_EN_MNG2HOST;
4254 #define E1000_MNG2HOST_PORT_623 (1 << 5)
4255 #define E1000_MNG2HOST_PORT_664 (1 << 6)
4256 manc2h |= E1000_MNG2HOST_PORT_623;
4257 manc2h |= E1000_MNG2HOST_PORT_664;
4258 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
4259 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4260 }
4261 }
4262
4263 /*
4264 * Give control back to hardware management
4265 * controller if there is one.
4266 */
4267 static void
em_release_manageability(struct e1000_softc * sc)4268 em_release_manageability(struct e1000_softc *sc)
4269 {
4270 if (sc->has_manage) {
4271 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4272
4273 /* re-enable hardware interception of ARP */
4274 manc |= E1000_MANC_ARP_EN;
4275 manc &= ~E1000_MANC_EN_MNG2HOST;
4276
4277 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4278 }
4279 }
4280
4281 /*
4282 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
4283 * For ASF and Pass Through versions of f/w this means
4284 * that the driver is loaded. For AMT version type f/w
4285 * this means that the network i/f is open.
4286 */
4287 static void
em_get_hw_control(struct e1000_softc * sc)4288 em_get_hw_control(struct e1000_softc *sc)
4289 {
4290 u32 ctrl_ext, swsm;
4291
4292 if (sc->vf_ifp)
4293 return;
4294
4295 if (sc->hw.mac.type == e1000_82573) {
4296 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4297 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4298 swsm | E1000_SWSM_DRV_LOAD);
4299 return;
4300 }
4301 /* else */
4302 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4303 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4304 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4305 }
4306
4307 /*
4308 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
4309 * For ASF and Pass Through versions of f/w this means that
4310 * the driver is no longer loaded. For AMT versions of the
4311 * f/w this means that the network i/f is closed.
4312 */
4313 static void
em_release_hw_control(struct e1000_softc * sc)4314 em_release_hw_control(struct e1000_softc *sc)
4315 {
4316 u32 ctrl_ext, swsm;
4317
4318 if (!sc->has_manage)
4319 return;
4320
4321 if (sc->hw.mac.type == e1000_82573) {
4322 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4323 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4324 swsm & ~E1000_SWSM_DRV_LOAD);
4325 return;
4326 }
4327 /* else */
4328 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4329 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4330 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4331 return;
4332 }
4333
4334 static int
em_is_valid_ether_addr(u8 * addr)4335 em_is_valid_ether_addr(u8 *addr)
4336 {
4337 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
4338
4339 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
4340 return (false);
4341 }
4342
4343 return (true);
4344 }
4345
4346 static bool
em_automask_tso(if_ctx_t ctx)4347 em_automask_tso(if_ctx_t ctx)
4348 {
4349 struct e1000_softc *sc = iflib_get_softc(ctx);
4350 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
4351 if_t ifp = iflib_get_ifp(ctx);
4352
4353 if (!em_unsupported_tso && sc->link_speed &&
4354 sc->link_speed != SPEED_1000 &&
4355 scctx->isc_capenable & IFCAP_TSO) {
4356 device_printf(sc->dev,
4357 "Disabling TSO for 10/100 Ethernet.\n");
4358 sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO;
4359 scctx->isc_capenable &= ~IFCAP_TSO;
4360 if_setcapenablebit(ifp, 0, IFCAP_TSO);
4361 /* iflib_init_locked handles ifnet hwassistbits */
4362 iflib_request_reset(ctx);
4363 return true;
4364 } else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) {
4365 device_printf(sc->dev, "Re-enabling TSO for GbE.\n");
4366 scctx->isc_capenable |= sc->tso_automasked;
4367 if_setcapenablebit(ifp, sc->tso_automasked, 0);
4368 sc->tso_automasked = 0;
4369 /* iflib_init_locked handles ifnet hwassistbits */
4370 iflib_request_reset(ctx);
4371 return true;
4372 }
4373
4374 return false;
4375 }
4376
4377 /*
4378 ** Parse the interface capabilities with regard
4379 ** to both system management and wake-on-lan for
4380 ** later use.
4381 */
4382 static void
em_get_wakeup(if_ctx_t ctx)4383 em_get_wakeup(if_ctx_t ctx)
4384 {
4385 struct e1000_softc *sc = iflib_get_softc(ctx);
4386 device_t dev = iflib_get_dev(ctx);
4387 u16 eeprom_data = 0, device_id, apme_mask;
4388
4389 sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
4390 apme_mask = EM_EEPROM_APME;
4391
4392 switch (sc->hw.mac.type) {
4393 case e1000_82542:
4394 case e1000_82543:
4395 break;
4396 case e1000_82544:
4397 e1000_read_nvm(&sc->hw,
4398 NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
4399 apme_mask = EM_82544_APME;
4400 break;
4401 case e1000_82546:
4402 case e1000_82546_rev_3:
4403 if (sc->hw.bus.func == 1) {
4404 e1000_read_nvm(&sc->hw,
4405 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4406 break;
4407 } else
4408 e1000_read_nvm(&sc->hw,
4409 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4410 break;
4411 case e1000_82573:
4412 case e1000_82583:
4413 sc->has_amt = true;
4414 /* FALLTHROUGH */
4415 case e1000_82571:
4416 case e1000_82572:
4417 case e1000_80003es2lan:
4418 if (sc->hw.bus.func == 1) {
4419 e1000_read_nvm(&sc->hw,
4420 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4421 break;
4422 } else
4423 e1000_read_nvm(&sc->hw,
4424 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4425 break;
4426 case e1000_ich8lan:
4427 case e1000_ich9lan:
4428 case e1000_ich10lan:
4429 case e1000_pchlan:
4430 case e1000_pch2lan:
4431 case e1000_pch_lpt:
4432 case e1000_pch_spt:
4433 case e1000_82575: /* listing all igb devices */
4434 case e1000_82576:
4435 case e1000_82580:
4436 case e1000_i350:
4437 case e1000_i354:
4438 case e1000_i210:
4439 case e1000_i211:
4440 case e1000_vfadapt:
4441 case e1000_vfadapt_i350:
4442 apme_mask = E1000_WUC_APME;
4443 sc->has_amt = true;
4444 eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
4445 break;
4446 default:
4447 e1000_read_nvm(&sc->hw,
4448 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4449 break;
4450 }
4451 if (eeprom_data & apme_mask)
4452 sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
4453 /*
4454 * We have the eeprom settings, now apply the special cases
4455 * where the eeprom may be wrong or the board won't support
4456 * wake on lan on a particular port
4457 */
4458 device_id = pci_get_device(dev);
4459 switch (device_id) {
4460 case E1000_DEV_ID_82546GB_PCIE:
4461 sc->wol = 0;
4462 break;
4463 case E1000_DEV_ID_82546EB_FIBER:
4464 case E1000_DEV_ID_82546GB_FIBER:
4465 /* Wake events only supported on port A for dual fiber
4466 * regardless of eeprom setting */
4467 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4468 E1000_STATUS_FUNC_1)
4469 sc->wol = 0;
4470 break;
4471 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
4472 /* if quad port adapter, disable WoL on all but port A */
4473 if (global_quad_port_a != 0)
4474 sc->wol = 0;
4475 /* Reset for multiple quad port adapters */
4476 if (++global_quad_port_a == 4)
4477 global_quad_port_a = 0;
4478 break;
4479 case E1000_DEV_ID_82571EB_FIBER:
4480 /* Wake events only supported on port A for dual fiber
4481 * regardless of eeprom setting */
4482 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4483 E1000_STATUS_FUNC_1)
4484 sc->wol = 0;
4485 break;
4486 case E1000_DEV_ID_82571EB_QUAD_COPPER:
4487 case E1000_DEV_ID_82571EB_QUAD_FIBER:
4488 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
4489 /* if quad port adapter, disable WoL on all but port A */
4490 if (global_quad_port_a != 0)
4491 sc->wol = 0;
4492 /* Reset for multiple quad port adapters */
4493 if (++global_quad_port_a == 4)
4494 global_quad_port_a = 0;
4495 break;
4496 }
4497 return;
4498 }
4499
4500
4501 /*
4502 * Enable PCI Wake On Lan capability
4503 */
4504 static void
em_enable_wakeup(if_ctx_t ctx)4505 em_enable_wakeup(if_ctx_t ctx)
4506 {
4507 struct e1000_softc *sc = iflib_get_softc(ctx);
4508 device_t dev = iflib_get_dev(ctx);
4509 if_t ifp = iflib_get_ifp(ctx);
4510 int error = 0;
4511 u32 ctrl, ctrl_ext, rctl;
4512
4513 if (!pci_has_pm(dev))
4514 return;
4515
4516 /*
4517 * Determine type of Wakeup: note that wol
4518 * is set with all bits on by default.
4519 */
4520 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
4521 sc->wol &= ~E1000_WUFC_MAG;
4522
4523 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
4524 sc->wol &= ~E1000_WUFC_EX;
4525
4526 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
4527 sc->wol &= ~E1000_WUFC_MC;
4528 else {
4529 rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
4530 rctl |= E1000_RCTL_MPE;
4531 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
4532 }
4533
4534 if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
4535 goto pme;
4536
4537 /* Advertise the wakeup capability */
4538 ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
4539 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
4540 E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
4541
4542 /* Keep the laser running on Fiber adapters */
4543 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
4544 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
4545 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4546 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4547 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
4548 }
4549
4550 if ((sc->hw.mac.type == e1000_ich8lan) ||
4551 (sc->hw.mac.type == e1000_pchlan) ||
4552 (sc->hw.mac.type == e1000_ich9lan) ||
4553 (sc->hw.mac.type == e1000_ich10lan))
4554 e1000_suspend_workarounds_ich8lan(&sc->hw);
4555
4556 if ( sc->hw.mac.type >= e1000_pchlan) {
4557 error = em_enable_phy_wakeup(sc);
4558 if (error)
4559 goto pme;
4560 } else {
4561 /* Enable wakeup by the MAC */
4562 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
4563 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
4564 }
4565
4566 if (sc->hw.phy.type == e1000_phy_igp_3)
4567 e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
4568
4569 pme:
4570 if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
4571 pci_enable_pme(dev);
4572
4573 return;
4574 }
4575
4576 /*
4577 * WOL in the newer chipset interfaces (pchlan)
4578 * require thing to be copied into the phy
4579 */
4580 static int
em_enable_phy_wakeup(struct e1000_softc * sc)4581 em_enable_phy_wakeup(struct e1000_softc *sc)
4582 {
4583 struct e1000_hw *hw = &sc->hw;
4584 u32 mreg, ret = 0;
4585 u16 preg;
4586
4587 /* copy MAC RARs to PHY RARs */
4588 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4589
4590 /* copy MAC MTA to PHY MTA */
4591 for (int i = 0; i < hw->mac.mta_reg_count; i++) {
4592 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4593 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
4594 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
4595 (u16)((mreg >> 16) & 0xFFFF));
4596 }
4597
4598 /* configure PHY Rx Control register */
4599 e1000_read_phy_reg(hw, BM_RCTL, &preg);
4600 mreg = E1000_READ_REG(hw, E1000_RCTL);
4601 if (mreg & E1000_RCTL_UPE)
4602 preg |= BM_RCTL_UPE;
4603 if (mreg & E1000_RCTL_MPE)
4604 preg |= BM_RCTL_MPE;
4605 preg &= ~(BM_RCTL_MO_MASK);
4606 if (mreg & E1000_RCTL_MO_3)
4607 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4608 << BM_RCTL_MO_SHIFT);
4609 if (mreg & E1000_RCTL_BAM)
4610 preg |= BM_RCTL_BAM;
4611 if (mreg & E1000_RCTL_PMCF)
4612 preg |= BM_RCTL_PMCF;
4613 mreg = E1000_READ_REG(hw, E1000_CTRL);
4614 if (mreg & E1000_CTRL_RFCE)
4615 preg |= BM_RCTL_RFCE;
4616 e1000_write_phy_reg(hw, BM_RCTL, preg);
4617
4618 /* enable PHY wakeup in MAC register */
4619 E1000_WRITE_REG(hw, E1000_WUC,
4620 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
4621 E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
4622
4623 /* configure and enable PHY wakeup in PHY registers */
4624 e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
4625 e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
4626
4627 /* activate PHY wakeup */
4628 ret = hw->phy.ops.acquire(hw);
4629 if (ret) {
4630 printf("Could not acquire PHY\n");
4631 return ret;
4632 }
4633 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4634 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4635 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
4636 if (ret) {
4637 printf("Could not read PHY page 769\n");
4638 goto out;
4639 }
4640 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4641 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
4642 if (ret)
4643 printf("Could not set PHY Host Wakeup bit\n");
4644 out:
4645 hw->phy.ops.release(hw);
4646
4647 return ret;
4648 }
4649
4650 static void
em_if_led_func(if_ctx_t ctx,int onoff)4651 em_if_led_func(if_ctx_t ctx, int onoff)
4652 {
4653 struct e1000_softc *sc = iflib_get_softc(ctx);
4654
4655 if (onoff) {
4656 e1000_setup_led(&sc->hw);
4657 e1000_led_on(&sc->hw);
4658 } else {
4659 e1000_led_off(&sc->hw);
4660 e1000_cleanup_led(&sc->hw);
4661 }
4662 }
4663
4664 /*
4665 * Disable the L0S and L1 LINK states
4666 */
4667 static void
em_disable_aspm(struct e1000_softc * sc)4668 em_disable_aspm(struct e1000_softc *sc)
4669 {
4670 int base, reg;
4671 u16 link_cap,link_ctrl;
4672 device_t dev = sc->dev;
4673
4674 switch (sc->hw.mac.type) {
4675 case e1000_82573:
4676 case e1000_82574:
4677 case e1000_82583:
4678 break;
4679 default:
4680 return;
4681 }
4682 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4683 return;
4684 reg = base + PCIER_LINK_CAP;
4685 link_cap = pci_read_config(dev, reg, 2);
4686 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4687 return;
4688 reg = base + PCIER_LINK_CTL;
4689 link_ctrl = pci_read_config(dev, reg, 2);
4690 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4691 pci_write_config(dev, reg, link_ctrl, 2);
4692 return;
4693 }
4694
4695 /**********************************************************************
4696 *
4697 * Update the board statistics counters.
4698 *
4699 **********************************************************************/
4700 static void
em_update_stats_counters(struct e1000_softc * sc)4701 em_update_stats_counters(struct e1000_softc *sc)
4702 {
4703 u64 prev_xoffrxc = sc->stats.xoffrxc;
4704
4705 if(sc->hw.phy.media_type == e1000_media_type_copper ||
4706 (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4707 sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
4708 sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
4709 }
4710 sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
4711 sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
4712 sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
4713 sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
4714
4715 sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
4716 sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
4717 sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
4718 sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
4719 sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
4720 sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
4721 sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
4722 sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
4723 /*
4724 ** For watchdog management we need to know if we have been
4725 ** paused during the last interval, so capture that here.
4726 */
4727 if (sc->stats.xoffrxc != prev_xoffrxc)
4728 sc->shared->isc_pause_frames = 1;
4729 sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
4730 sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
4731 sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
4732 sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
4733 sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
4734 sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
4735 sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
4736 sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
4737 sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
4738 sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
4739 sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
4740 sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
4741
4742 /* For the 64-bit byte counters the low dword must be read first. */
4743 /* Both registers clear on the read of the high dword */
4744
4745 sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
4746 ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
4747 sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
4748 ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
4749
4750 sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
4751 sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
4752 sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
4753 sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
4754 sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
4755
4756 sc->stats.mgprc += E1000_READ_REG(&sc->hw, E1000_MGTPRC);
4757 sc->stats.mgpdc += E1000_READ_REG(&sc->hw, E1000_MGTPDC);
4758 sc->stats.mgptc += E1000_READ_REG(&sc->hw, E1000_MGTPTC);
4759
4760 sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
4761 sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
4762
4763 sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
4764 sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
4765 sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
4766 sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
4767 sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
4768 sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
4769 sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
4770 sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
4771 sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
4772 sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
4773
4774 /* Interrupt Counts */
4775
4776 sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC);
4777 sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
4778 sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
4779 sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
4780 sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
4781 sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
4782 sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
4783 sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
4784 sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
4785
4786 if (sc->hw.mac.type >= e1000_82543) {
4787 sc->stats.algnerrc +=
4788 E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
4789 sc->stats.rxerrc +=
4790 E1000_READ_REG(&sc->hw, E1000_RXERRC);
4791 sc->stats.tncrs +=
4792 E1000_READ_REG(&sc->hw, E1000_TNCRS);
4793 sc->stats.cexterr +=
4794 E1000_READ_REG(&sc->hw, E1000_CEXTERR);
4795 sc->stats.tsctc +=
4796 E1000_READ_REG(&sc->hw, E1000_TSCTC);
4797 sc->stats.tsctfc +=
4798 E1000_READ_REG(&sc->hw, E1000_TSCTFC);
4799 }
4800 }
4801
4802 static uint64_t
em_if_get_counter(if_ctx_t ctx,ift_counter cnt)4803 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4804 {
4805 struct e1000_softc *sc = iflib_get_softc(ctx);
4806 if_t ifp = iflib_get_ifp(ctx);
4807
4808 switch (cnt) {
4809 case IFCOUNTER_COLLISIONS:
4810 return (sc->stats.colc);
4811 case IFCOUNTER_IERRORS:
4812 return (sc->dropped_pkts + sc->stats.rxerrc +
4813 sc->stats.crcerrs + sc->stats.algnerrc +
4814 sc->stats.ruc + sc->stats.roc +
4815 sc->stats.mpc + sc->stats.cexterr);
4816 case IFCOUNTER_OERRORS:
4817 return (sc->stats.ecol + sc->stats.latecol +
4818 sc->watchdog_events);
4819 default:
4820 return (if_get_counter_default(ifp, cnt));
4821 }
4822 }
4823
4824 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4825 * @ctx: iflib context
4826 * @event: event code to check
4827 *
4828 * Defaults to returning false for unknown events.
4829 *
4830 * @returns true if iflib needs to reinit the interface
4831 */
4832 static bool
em_if_needs_restart(if_ctx_t ctx __unused,enum iflib_restart_event event)4833 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4834 {
4835 switch (event) {
4836 case IFLIB_RESTART_VLAN_CONFIG:
4837 default:
4838 return (false);
4839 }
4840 }
4841
4842 /* Export a single 32-bit register via a read-only sysctl. */
4843 static int
em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)4844 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4845 {
4846 struct e1000_softc *sc;
4847 u_int val;
4848
4849 sc = oidp->oid_arg1;
4850 val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
4851 return (sysctl_handle_int(oidp, &val, 0, req));
4852 }
4853
4854 /* Per queue holdoff interrupt rate handler */
4855 static int
em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)4856 em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
4857 {
4858 struct em_rx_queue *rque;
4859 struct em_tx_queue *tque;
4860 struct e1000_hw *hw;
4861 int error;
4862 u32 reg, usec, rate;
4863
4864 bool tx = oidp->oid_arg2;
4865
4866 if (tx) {
4867 tque = oidp->oid_arg1;
4868 hw = &tque->sc->hw;
4869 if (hw->mac.type >= igb_mac_min)
4870 reg = E1000_READ_REG(hw, E1000_EITR(tque->me));
4871 else if (hw->mac.type == e1000_82574 && tque->msix)
4872 reg = E1000_READ_REG(hw, E1000_EITR_82574(tque->me));
4873 else
4874 reg = E1000_READ_REG(hw, E1000_ITR);
4875 } else {
4876 rque = oidp->oid_arg1;
4877 hw = &rque->sc->hw;
4878 if (hw->mac.type >= igb_mac_min)
4879 reg = E1000_READ_REG(hw, E1000_EITR(rque->msix));
4880 else if (hw->mac.type == e1000_82574 && rque->msix)
4881 reg = E1000_READ_REG(hw,
4882 E1000_EITR_82574(rque->msix));
4883 else
4884 reg = E1000_READ_REG(hw, E1000_ITR);
4885 }
4886
4887 if (hw->mac.type < igb_mac_min) {
4888 if (reg > 0)
4889 rate = EM_INTS_TO_ITR(reg);
4890 else
4891 rate = 0;
4892 } else {
4893 usec = (reg & IGB_QVECTOR_MASK);
4894 if (usec > 0)
4895 rate = IGB_INTS_TO_EITR(usec);
4896 else
4897 rate = 0;
4898 }
4899
4900 error = sysctl_handle_int(oidp, &rate, 0, req);
4901 if (error || !req->newptr)
4902 return error;
4903 return 0;
4904 }
4905
4906 /*
4907 * Add sysctl variables, one per statistic, to the system.
4908 */
4909 static void
em_add_hw_stats(struct e1000_softc * sc)4910 em_add_hw_stats(struct e1000_softc *sc)
4911 {
4912 device_t dev = iflib_get_dev(sc->ctx);
4913 struct em_tx_queue *tx_que = sc->tx_queues;
4914 struct em_rx_queue *rx_que = sc->rx_queues;
4915
4916 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4917 struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4918 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4919 struct e1000_hw_stats *stats = &sc->stats;
4920
4921 struct sysctl_oid *stat_node, *queue_node, *int_node;
4922 struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4923
4924 #define QUEUE_NAME_LEN 32
4925 char namebuf[QUEUE_NAME_LEN];
4926
4927 /* Driver Statistics */
4928 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4929 CTLFLAG_RD, &sc->dropped_pkts,
4930 "Driver dropped packets");
4931 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4932 CTLFLAG_RD, &sc->link_irq,
4933 "Link MSI-X IRQ Handled");
4934 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4935 CTLFLAG_RD, &sc->rx_overruns,
4936 "RX overruns");
4937 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4938 CTLFLAG_RD, &sc->watchdog_events,
4939 "Watchdog timeouts");
4940 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4941 CTLTYPE_UINT | CTLFLAG_RD,
4942 sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
4943 "Device Control Register");
4944 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4945 CTLTYPE_UINT | CTLFLAG_RD,
4946 sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
4947 "Receiver Control Register");
4948 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4949 CTLFLAG_RD, &sc->hw.fc.high_water, 0,
4950 "Flow Control High Watermark");
4951 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4952 CTLFLAG_RD, &sc->hw.fc.low_water, 0,
4953 "Flow Control Low Watermark");
4954
4955 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
4956 struct tx_ring *txr = &tx_que->txr;
4957 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4958 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4959 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4960 queue_list = SYSCTL_CHILDREN(queue_node);
4961
4962 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
4963 CTLTYPE_UINT | CTLFLAG_RD, tx_que,
4964 true, em_sysctl_interrupt_rate_handler,
4965 "IU", "Interrupt Rate");
4966
4967 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4968 CTLTYPE_UINT | CTLFLAG_RD, sc,
4969 E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4970 "Transmit Descriptor Head");
4971 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4972 CTLTYPE_UINT | CTLFLAG_RD, sc,
4973 E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4974 "Transmit Descriptor Tail");
4975 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4976 CTLFLAG_RD, &txr->tx_irq,
4977 "Queue MSI-X Transmit Interrupts");
4978 }
4979
4980 for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
4981 struct rx_ring *rxr = &rx_que->rxr;
4982 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4983 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4984 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4985 queue_list = SYSCTL_CHILDREN(queue_node);
4986
4987 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
4988 CTLTYPE_UINT | CTLFLAG_RD, rx_que,
4989 false, em_sysctl_interrupt_rate_handler,
4990 "IU", "Interrupt Rate");
4991
4992 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4993 CTLTYPE_UINT | CTLFLAG_RD, sc,
4994 E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4995 "Receive Descriptor Head");
4996 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4997 CTLTYPE_UINT | CTLFLAG_RD, sc,
4998 E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4999 "Receive Descriptor Tail");
5000 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
5001 CTLFLAG_RD, &rxr->rx_irq,
5002 "Queue MSI-X Receive Interrupts");
5003 }
5004
5005 /* MAC stats get their own sub node */
5006 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
5007 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
5008 stat_list = SYSCTL_CHILDREN(stat_node);
5009
5010 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
5011 CTLFLAG_RD, &stats->ecol,
5012 "Excessive collisions");
5013 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
5014 CTLFLAG_RD, &stats->scc,
5015 "Single collisions");
5016 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
5017 CTLFLAG_RD, &stats->mcc,
5018 "Multiple collisions");
5019 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
5020 CTLFLAG_RD, &stats->latecol,
5021 "Late collisions");
5022 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
5023 CTLFLAG_RD, &stats->colc,
5024 "Collision Count");
5025 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
5026 CTLFLAG_RD, &sc->stats.symerrs,
5027 "Symbol Errors");
5028 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
5029 CTLFLAG_RD, &sc->stats.sec,
5030 "Sequence Errors");
5031 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
5032 CTLFLAG_RD, &sc->stats.dc,
5033 "Defer Count");
5034 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
5035 CTLFLAG_RD, &sc->stats.mpc,
5036 "Missed Packets");
5037 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_length_errors",
5038 CTLFLAG_RD, &sc->stats.rlec,
5039 "Receive Length Errors");
5040 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
5041 CTLFLAG_RD, &sc->stats.rnbc,
5042 "Receive No Buffers");
5043 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
5044 CTLFLAG_RD, &sc->stats.ruc,
5045 "Receive Undersize");
5046 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
5047 CTLFLAG_RD, &sc->stats.rfc,
5048 "Fragmented Packets Received ");
5049 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
5050 CTLFLAG_RD, &sc->stats.roc,
5051 "Oversized Packets Received");
5052 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
5053 CTLFLAG_RD, &sc->stats.rjc,
5054 "Recevied Jabber");
5055 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
5056 CTLFLAG_RD, &sc->stats.rxerrc,
5057 "Receive Errors");
5058 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
5059 CTLFLAG_RD, &sc->stats.crcerrs,
5060 "CRC errors");
5061 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
5062 CTLFLAG_RD, &sc->stats.algnerrc,
5063 "Alignment Errors");
5064 /* On 82575 these are collision counts */
5065 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
5066 CTLFLAG_RD, &sc->stats.cexterr,
5067 "Collision/Carrier extension errors");
5068 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
5069 CTLFLAG_RD, &sc->stats.xonrxc,
5070 "XON Received");
5071 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
5072 CTLFLAG_RD, &sc->stats.xontxc,
5073 "XON Transmitted");
5074 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
5075 CTLFLAG_RD, &sc->stats.xoffrxc,
5076 "XOFF Received");
5077 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
5078 CTLFLAG_RD, &sc->stats.xofftxc,
5079 "XOFF Transmitted");
5080 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "unsupported_fc_recvd",
5081 CTLFLAG_RD, &sc->stats.fcruc,
5082 "Unsupported Flow Control Received");
5083 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_recvd",
5084 CTLFLAG_RD, &sc->stats.mgprc,
5085 "Management Packets Received");
5086 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_drop",
5087 CTLFLAG_RD, &sc->stats.mgpdc,
5088 "Management Packets Dropped");
5089 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_txd",
5090 CTLFLAG_RD, &sc->stats.mgptc,
5091 "Management Packets Transmitted");
5092
5093 /* Packet Reception Stats */
5094 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
5095 CTLFLAG_RD, &sc->stats.tpr,
5096 "Total Packets Received ");
5097 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
5098 CTLFLAG_RD, &sc->stats.gprc,
5099 "Good Packets Received");
5100 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
5101 CTLFLAG_RD, &sc->stats.bprc,
5102 "Broadcast Packets Received");
5103 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
5104 CTLFLAG_RD, &sc->stats.mprc,
5105 "Multicast Packets Received");
5106 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
5107 CTLFLAG_RD, &sc->stats.prc64,
5108 "64 byte frames received ");
5109 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
5110 CTLFLAG_RD, &sc->stats.prc127,
5111 "65-127 byte frames received");
5112 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
5113 CTLFLAG_RD, &sc->stats.prc255,
5114 "128-255 byte frames received");
5115 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
5116 CTLFLAG_RD, &sc->stats.prc511,
5117 "256-511 byte frames received");
5118 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
5119 CTLFLAG_RD, &sc->stats.prc1023,
5120 "512-1023 byte frames received");
5121 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
5122 CTLFLAG_RD, &sc->stats.prc1522,
5123 "1023-1522 byte frames received");
5124 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
5125 CTLFLAG_RD, &sc->stats.gorc,
5126 "Good Octets Received");
5127
5128 /* Packet Transmission Stats */
5129 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
5130 CTLFLAG_RD, &sc->stats.gotc,
5131 "Good Octets Transmitted");
5132 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
5133 CTLFLAG_RD, &sc->stats.tpt,
5134 "Total Packets Transmitted");
5135 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
5136 CTLFLAG_RD, &sc->stats.gptc,
5137 "Good Packets Transmitted");
5138 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
5139 CTLFLAG_RD, &sc->stats.bptc,
5140 "Broadcast Packets Transmitted");
5141 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
5142 CTLFLAG_RD, &sc->stats.mptc,
5143 "Multicast Packets Transmitted");
5144 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
5145 CTLFLAG_RD, &sc->stats.ptc64,
5146 "64 byte frames transmitted ");
5147 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
5148 CTLFLAG_RD, &sc->stats.ptc127,
5149 "65-127 byte frames transmitted");
5150 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
5151 CTLFLAG_RD, &sc->stats.ptc255,
5152 "128-255 byte frames transmitted");
5153 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
5154 CTLFLAG_RD, &sc->stats.ptc511,
5155 "256-511 byte frames transmitted");
5156 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
5157 CTLFLAG_RD, &sc->stats.ptc1023,
5158 "512-1023 byte frames transmitted");
5159 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
5160 CTLFLAG_RD, &sc->stats.ptc1522,
5161 "1024-1522 byte frames transmitted");
5162 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
5163 CTLFLAG_RD, &sc->stats.tsctc,
5164 "TSO Contexts Transmitted");
5165 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
5166 CTLFLAG_RD, &sc->stats.tsctfc,
5167 "TSO Contexts Failed");
5168
5169 /* Interrupt Stats */
5170 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
5171 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
5172 int_list = SYSCTL_CHILDREN(int_node);
5173
5174 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
5175 CTLFLAG_RD, &sc->stats.iac,
5176 "Interrupt Assertion Count");
5177
5178 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
5179 CTLFLAG_RD, &sc->stats.icrxptc,
5180 "Interrupt Cause Rx Pkt Timer Expire Count");
5181
5182 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
5183 CTLFLAG_RD, &sc->stats.icrxatc,
5184 "Interrupt Cause Rx Abs Timer Expire Count");
5185
5186 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
5187 CTLFLAG_RD, &sc->stats.ictxptc,
5188 "Interrupt Cause Tx Pkt Timer Expire Count");
5189
5190 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
5191 CTLFLAG_RD, &sc->stats.ictxatc,
5192 "Interrupt Cause Tx Abs Timer Expire Count");
5193
5194 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
5195 CTLFLAG_RD, &sc->stats.ictxqec,
5196 "Interrupt Cause Tx Queue Empty Count");
5197
5198 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
5199 CTLFLAG_RD, &sc->stats.ictxqmtc,
5200 "Interrupt Cause Tx Queue Min Thresh Count");
5201
5202 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
5203 CTLFLAG_RD, &sc->stats.icrxdmtc,
5204 "Interrupt Cause Rx Desc Min Thresh Count");
5205
5206 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
5207 CTLFLAG_RD, &sc->stats.icrxoc,
5208 "Interrupt Cause Receiver Overrun Count");
5209 }
5210
5211 static void
em_fw_version_locked(if_ctx_t ctx)5212 em_fw_version_locked(if_ctx_t ctx)
5213 {
5214 struct e1000_softc *sc = iflib_get_softc(ctx);
5215 struct e1000_hw *hw = &sc->hw;
5216 struct e1000_fw_version *fw_ver = &sc->fw_ver;
5217 uint16_t eep = 0;
5218
5219 /*
5220 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet
5221 * the NVM locking model, so we do it in em_if_attach_pre() and store
5222 * the info in the softc
5223 */
5224 ASSERT_CTX_LOCK_HELD(hw);
5225
5226 *fw_ver = (struct e1000_fw_version){0};
5227
5228 if (hw->mac.type >= igb_mac_min) {
5229 /*
5230 * Use the Shared Code for igb(4)
5231 */
5232 e1000_get_fw_version(hw, fw_ver);
5233 } else {
5234 /*
5235 * Otherwise, EEPROM version should be present on (almost?)
5236 * all devices here
5237 */
5238 if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
5239 INIT_DEBUGOUT("can't get EEPROM version");
5240 return;
5241 }
5242
5243 fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
5244 fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
5245 fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
5246 }
5247 }
5248
5249 static void
em_sbuf_fw_version(struct e1000_fw_version * fw_ver,struct sbuf * buf)5250 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
5251 {
5252 const char *space = "";
5253
5254 if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
5255 sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
5256 fw_ver->eep_minor, fw_ver->eep_build);
5257 space = " ";
5258 }
5259
5260 if (fw_ver->invm_major || fw_ver->invm_minor ||
5261 fw_ver->invm_img_type) {
5262 sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
5263 space, fw_ver->invm_major, fw_ver->invm_minor,
5264 fw_ver->invm_img_type);
5265 space = " ";
5266 }
5267
5268 if (fw_ver->or_valid) {
5269 sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
5270 space, fw_ver->or_major, fw_ver->or_build,
5271 fw_ver->or_patch);
5272 space = " ";
5273 }
5274
5275 if (fw_ver->etrack_id)
5276 sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
5277 }
5278
5279 static void
em_print_fw_version(struct e1000_softc * sc)5280 em_print_fw_version(struct e1000_softc *sc )
5281 {
5282 device_t dev = sc->dev;
5283 struct sbuf *buf;
5284 int error = 0;
5285
5286 buf = sbuf_new_auto();
5287 if (!buf) {
5288 device_printf(dev, "Could not allocate sbuf for output.\n");
5289 return;
5290 }
5291
5292 em_sbuf_fw_version(&sc->fw_ver, buf);
5293
5294 error = sbuf_finish(buf);
5295 if (error)
5296 device_printf(dev, "Error finishing sbuf: %d\n", error);
5297 else if (sbuf_len(buf))
5298 device_printf(dev, "%s\n", sbuf_data(buf));
5299
5300 sbuf_delete(buf);
5301 }
5302
5303 static int
em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)5304 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
5305 {
5306 struct e1000_softc *sc = (struct e1000_softc *)arg1;
5307 device_t dev = sc->dev;
5308 struct sbuf *buf;
5309 int error = 0;
5310
5311 buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5312 if (!buf) {
5313 device_printf(dev, "Could not allocate sbuf for output.\n");
5314 return (ENOMEM);
5315 }
5316
5317 em_sbuf_fw_version(&sc->fw_ver, buf);
5318
5319 error = sbuf_finish(buf);
5320 if (error)
5321 device_printf(dev, "Error finishing sbuf: %d\n", error);
5322
5323 sbuf_delete(buf);
5324
5325 return (0);
5326 }
5327
5328 /**********************************************************************
5329 *
5330 * This routine provides a way to dump out the adapter eeprom,
5331 * often a useful debug/service tool. This only dumps the first
5332 * 32 words, stuff that matters is in that extent.
5333 *
5334 **********************************************************************/
5335 static int
em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)5336 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
5337 {
5338 struct e1000_softc *sc = (struct e1000_softc *)arg1;
5339 int error;
5340 int result;
5341
5342 result = -1;
5343 error = sysctl_handle_int(oidp, &result, 0, req);
5344
5345 if (error || !req->newptr)
5346 return (error);
5347
5348 /*
5349 * This value will cause a hex dump of the
5350 * first 32 16-bit words of the EEPROM to
5351 * the screen.
5352 */
5353 if (result == 1)
5354 em_print_nvm_info(sc);
5355
5356 return (error);
5357 }
5358
5359 static void
em_print_nvm_info(struct e1000_softc * sc)5360 em_print_nvm_info(struct e1000_softc *sc)
5361 {
5362 struct e1000_hw *hw = &sc->hw;
5363 struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
5364 u16 eeprom_data;
5365 int i, j, row = 0;
5366
5367 /* Its a bit crude, but it gets the job done */
5368 printf("\nInterface EEPROM Dump:\n");
5369 printf("Offset\n0x0000 ");
5370
5371 /* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */
5372 sx_xlock(iflib_ctx_lock);
5373 ASSERT_CTX_LOCK_HELD(hw);
5374 for (i = 0, j = 0; i < 32; i++, j++) {
5375 if (j == 8) { /* Make the offset block */
5376 j = 0; ++row;
5377 printf("\n0x00%x0 ",row);
5378 }
5379 e1000_read_nvm(hw, i, 1, &eeprom_data);
5380 printf("%04x ", eeprom_data);
5381 }
5382 sx_xunlock(iflib_ctx_lock);
5383 printf("\n");
5384 }
5385
5386 static int
em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)5387 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
5388 {
5389 struct em_int_delay_info *info;
5390 struct e1000_softc *sc;
5391 u32 regval;
5392 int error, usecs, ticks;
5393
5394 info = (struct em_int_delay_info *) arg1;
5395 usecs = info->value;
5396 error = sysctl_handle_int(oidp, &usecs, 0, req);
5397 if (error != 0 || req->newptr == NULL)
5398 return (error);
5399 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
5400 return (EINVAL);
5401 info->value = usecs;
5402 ticks = EM_USECS_TO_TICKS(usecs);
5403
5404 sc = info->sc;
5405
5406 regval = E1000_READ_OFFSET(&sc->hw, info->offset);
5407 regval = (regval & ~0xffff) | (ticks & 0xffff);
5408 /* Handle a few special cases. */
5409 switch (info->offset) {
5410 case E1000_RDTR:
5411 break;
5412 case E1000_TIDV:
5413 if (ticks == 0) {
5414 sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
5415 /* Don't write 0 into the TIDV register. */
5416 regval++;
5417 } else
5418 sc->txd_cmd |= E1000_TXD_CMD_IDE;
5419 break;
5420 }
5421 E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
5422 return (0);
5423 }
5424
5425 static int
em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)5426 em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)
5427 {
5428 struct e1000_softc *sc;
5429 u32 reg, val, shift;
5430 int error, mask;
5431
5432 sc = oidp->oid_arg1;
5433 switch (oidp->oid_arg2) {
5434 case 0:
5435 reg = E1000_DTXTCPFLGL;
5436 shift = 0;
5437 break;
5438 case 1:
5439 reg = E1000_DTXTCPFLGL;
5440 shift = 16;
5441 break;
5442 case 2:
5443 reg = E1000_DTXTCPFLGH;
5444 shift = 0;
5445 break;
5446 default:
5447 return (EINVAL);
5448 break;
5449 }
5450 val = E1000_READ_REG(&sc->hw, reg);
5451 mask = (val >> shift) & 0xfff;
5452 error = sysctl_handle_int(oidp, &mask, 0, req);
5453 if (error != 0 || req->newptr == NULL)
5454 return (error);
5455 if (mask < 0 || mask > 0xfff)
5456 return (EINVAL);
5457 val = (val & ~(0xfff << shift)) | (mask << shift);
5458 E1000_WRITE_REG(&sc->hw, reg, val);
5459 return (0);
5460 }
5461
5462 static void
em_add_int_delay_sysctl(struct e1000_softc * sc,const char * name,const char * description,struct em_int_delay_info * info,int offset,int value)5463 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
5464 const char *description, struct em_int_delay_info *info, int offset,
5465 int value)
5466 {
5467 info->sc = sc;
5468 info->offset = offset;
5469 info->value = value;
5470 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
5471 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
5472 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
5473 info, 0, em_sysctl_int_delay, "I", description);
5474 }
5475
5476 /*
5477 * Set flow control using sysctl:
5478 * Flow control values:
5479 * 0 - off
5480 * 1 - rx pause
5481 * 2 - tx pause
5482 * 3 - full
5483 */
5484 static int
em_set_flowcntl(SYSCTL_HANDLER_ARGS)5485 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
5486 {
5487 int error;
5488 static int input = 3; /* default is full */
5489 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5490
5491 error = sysctl_handle_int(oidp, &input, 0, req);
5492
5493 if ((error) || (req->newptr == NULL))
5494 return (error);
5495
5496 if (input == sc->fc) /* no change? */
5497 return (error);
5498
5499 switch (input) {
5500 case e1000_fc_rx_pause:
5501 case e1000_fc_tx_pause:
5502 case e1000_fc_full:
5503 case e1000_fc_none:
5504 sc->hw.fc.requested_mode = input;
5505 sc->fc = input;
5506 break;
5507 default:
5508 /* Do nothing */
5509 return (error);
5510 }
5511
5512 sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
5513 e1000_force_mac_fc(&sc->hw);
5514 return (error);
5515 }
5516
5517 /*
5518 * Manage DMA Coalesce:
5519 * Control values:
5520 * 0/1 - off/on
5521 * Legal timer values are:
5522 * 250,500,1000-10000 in thousands
5523 */
5524 static int
igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)5525 igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)
5526 {
5527 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5528 int error;
5529
5530 error = sysctl_handle_int(oidp, &sc->dmac, 0, req);
5531
5532 if ((error) || (req->newptr == NULL))
5533 return (error);
5534
5535 switch (sc->dmac) {
5536 case 0:
5537 /* Disabling */
5538 break;
5539 case 1: /* Just enable and use default */
5540 sc->dmac = 1000;
5541 break;
5542 case 250:
5543 case 500:
5544 case 1000:
5545 case 2000:
5546 case 3000:
5547 case 4000:
5548 case 5000:
5549 case 6000:
5550 case 7000:
5551 case 8000:
5552 case 9000:
5553 case 10000:
5554 /* Legal values - allow */
5555 break;
5556 default:
5557 /* Do nothing, illegal value */
5558 sc->dmac = 0;
5559 return (EINVAL);
5560 }
5561 /* Reinit the interface */
5562 em_if_init(sc->ctx);
5563 return (error);
5564 }
5565
5566 /*
5567 * Manage Energy Efficient Ethernet:
5568 * Control values:
5569 * 0/1 - enabled/disabled
5570 */
5571 static int
em_sysctl_eee(SYSCTL_HANDLER_ARGS)5572 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
5573 {
5574 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5575 int error, value;
5576
5577 if (sc->hw.mac.type < igb_mac_min)
5578 value = sc->hw.dev_spec.ich8lan.eee_disable;
5579 else
5580 value = sc->hw.dev_spec._82575.eee_disable;
5581 error = sysctl_handle_int(oidp, &value, 0, req);
5582 if (error || req->newptr == NULL)
5583 return (error);
5584 if (sc->hw.mac.type < igb_mac_min)
5585 sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
5586 else
5587 sc->hw.dev_spec._82575.eee_disable = (value != 0);
5588 em_if_init(sc->ctx);
5589
5590 return (0);
5591 }
5592
5593 static int
em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)5594 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5595 {
5596 struct e1000_softc *sc;
5597 int error;
5598 int result;
5599
5600 result = -1;
5601 error = sysctl_handle_int(oidp, &result, 0, req);
5602
5603 if (error || !req->newptr)
5604 return (error);
5605
5606 if (result == 1) {
5607 sc = (struct e1000_softc *) arg1;
5608 em_print_debug_info(sc);
5609 }
5610
5611 return (error);
5612 }
5613
5614 static int
em_get_rs(SYSCTL_HANDLER_ARGS)5615 em_get_rs(SYSCTL_HANDLER_ARGS)
5616 {
5617 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5618 int error;
5619 int result;
5620
5621 result = 0;
5622 error = sysctl_handle_int(oidp, &result, 0, req);
5623
5624 if (error || !req->newptr || result != 1)
5625 return (error);
5626 em_dump_rs(sc);
5627
5628 return (error);
5629 }
5630
5631 static void
em_if_debug(if_ctx_t ctx)5632 em_if_debug(if_ctx_t ctx)
5633 {
5634 em_dump_rs(iflib_get_softc(ctx));
5635 }
5636
5637 /*
5638 * This routine is meant to be fluid, add whatever is
5639 * needed for debugging a problem. -jfv
5640 */
5641 static void
em_print_debug_info(struct e1000_softc * sc)5642 em_print_debug_info(struct e1000_softc *sc)
5643 {
5644 device_t dev = iflib_get_dev(sc->ctx);
5645 if_t ifp = iflib_get_ifp(sc->ctx);
5646 struct tx_ring *txr = &sc->tx_queues->txr;
5647 struct rx_ring *rxr = &sc->rx_queues->rxr;
5648
5649 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5650 printf("Interface is RUNNING ");
5651 else
5652 printf("Interface is NOT RUNNING\n");
5653
5654 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
5655 printf("and INACTIVE\n");
5656 else
5657 printf("and ACTIVE\n");
5658
5659 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
5660 device_printf(dev, "TX Queue %d ------\n", i);
5661 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
5662 E1000_READ_REG(&sc->hw, E1000_TDH(i)),
5663 E1000_READ_REG(&sc->hw, E1000_TDT(i)));
5664
5665 }
5666 for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
5667 device_printf(dev, "RX Queue %d ------\n", j);
5668 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
5669 E1000_READ_REG(&sc->hw, E1000_RDH(j)),
5670 E1000_READ_REG(&sc->hw, E1000_RDT(j)));
5671 }
5672 }
5673
5674 /*
5675 * 82574 only:
5676 * Write a new value to the EEPROM increasing the number of MSI-X
5677 * vectors from 3 to 5, for proper multiqueue support.
5678 */
5679 static void
em_enable_vectors_82574(if_ctx_t ctx)5680 em_enable_vectors_82574(if_ctx_t ctx)
5681 {
5682 struct e1000_softc *sc = iflib_get_softc(ctx);
5683 struct e1000_hw *hw = &sc->hw;
5684 device_t dev = iflib_get_dev(ctx);
5685 u16 edata;
5686
5687 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5688 if (bootverbose)
5689 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
5690 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
5691 device_printf(dev, "Writing to eeprom: increasing "
5692 "reported MSI-X vectors from 3 to 5...\n");
5693 edata &= ~(EM_NVM_MSIX_N_MASK);
5694 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
5695 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5696 e1000_update_nvm_checksum(hw);
5697 device_printf(dev, "Writing to eeprom: done\n");
5698 }
5699 }
5700