xref: /freebsd/sys/dev/ath/ath_hal/ar5416/ar5416_xmit.c (revision 95ee2897e98f5d444f26ed2334cc7c439f9c16c6)
1 /*-
2  * SPDX-License-Identifier: ISC
3  *
4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5  * Copyright (c) 2002-2008 Atheros Communications, Inc.
6  *
7  * Permission to use, copy, modify, and/or distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_desc.h"
23 #include "ah_internal.h"
24 
25 #include "ar5416/ar5416.h"
26 #include "ar5416/ar5416reg.h"
27 #include "ar5416/ar5416phy.h"
28 #include "ar5416/ar5416desc.h"
29 
30 /*
31  * Stop transmit on the specified queue
32  */
33 HAL_BOOL
ar5416StopTxDma(struct ath_hal * ah,u_int q)34 ar5416StopTxDma(struct ath_hal *ah, u_int q)
35 {
36 #define	STOP_DMA_TIMEOUT	4000	/* us */
37 #define	STOP_DMA_ITER		100	/* us */
38 	u_int i;
39 
40 	HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
41 
42 	HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
43 
44 	OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
45 	for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
46 		if (ar5212NumTxPending(ah, q) == 0)
47 			break;
48 		OS_DELAY(STOP_DMA_ITER);
49 	}
50 #ifdef AH_DEBUG
51 	if (i == 0) {
52 		HALDEBUG(ah, HAL_DEBUG_ANY,
53 		    "%s: queue %u DMA did not stop in 400 msec\n", __func__, q);
54 		HALDEBUG(ah, HAL_DEBUG_ANY,
55 		    "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__,
56 		    OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE),
57 		    OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q)));
58 		HALDEBUG(ah, HAL_DEBUG_ANY,
59 		    "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
60 		    __func__, OS_REG_READ(ah, AR_QMISC(q)),
61 		    OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
62 		    OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
63 	}
64 #endif /* AH_DEBUG */
65 
66 	/* ar5416 and up can kill packets at the PCU level */
67 	if (ar5212NumTxPending(ah, q)) {
68 		uint32_t j;
69 
70 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
71 		    "%s: Num of pending TX Frames %d on Q %d\n",
72 		    __func__, ar5212NumTxPending(ah, q), q);
73 
74 		/* Kill last PCU Tx Frame */
75 		/* TODO - save off and restore current values of Q1/Q2? */
76 		for (j = 0; j < 2; j++) {
77 			uint32_t tsfLow = OS_REG_READ(ah, AR_TSF_L32);
78 			OS_REG_WRITE(ah, AR_QUIET2,
79 			    SM(10, AR_QUIET2_QUIET_DUR));
80 			OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100);
81 			OS_REG_WRITE(ah, AR_NEXT_QUIET, tsfLow >> 10);
82 			OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
83 
84 			if ((OS_REG_READ(ah, AR_TSF_L32)>>10) == (tsfLow>>10))
85 				break;
86 
87 			HALDEBUG(ah, HAL_DEBUG_ANY,
88 			    "%s: TSF moved while trying to set quiet time "
89 			    "TSF: 0x%08x\n", __func__, tsfLow);
90 			HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */
91 		}
92 
93 		OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
94 
95 		/* Allow the quiet mechanism to do its work */
96 		OS_DELAY(200);
97 		OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
98 
99 		/* Verify the transmit q is empty */
100 		for (i = STOP_DMA_TIMEOUT/STOP_DMA_ITER; i != 0; i--) {
101 			if (ar5212NumTxPending(ah, q) == 0)
102 				break;
103 			OS_DELAY(STOP_DMA_ITER);
104 		}
105 		if (i == 0) {
106 			HALDEBUG(ah, HAL_DEBUG_ANY,
107 			    "%s: Failed to stop Tx DMA in %d msec after killing"
108 			    " last frame\n", __func__, STOP_DMA_TIMEOUT / 1000);
109 		}
110 		OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
111 	}
112 
113 	OS_REG_WRITE(ah, AR_Q_TXD, 0);
114 	return (i != 0);
115 #undef STOP_DMA_ITER
116 #undef STOP_DMA_TIMEOUT
117 }
118 
119 #define VALID_KEY_TYPES \
120         ((1 << HAL_KEY_TYPE_CLEAR) | (1 << HAL_KEY_TYPE_WEP)|\
121          (1 << HAL_KEY_TYPE_AES)   | (1 << HAL_KEY_TYPE_TKIP))
122 #define isValidKeyType(_t)      ((1 << (_t)) & VALID_KEY_TYPES)
123 
124 #define set11nTries(_series, _index) \
125         (SM((_series)[_index].Tries, AR_XmitDataTries##_index))
126 
127 #define set11nRate(_series, _index) \
128         (SM((_series)[_index].Rate, AR_XmitRate##_index))
129 
130 #define set11nPktDurRTSCTS(_series, _index) \
131         (SM((_series)[_index].PktDuration, AR_PacketDur##_index) |\
132          ((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS   ?\
133          AR_RTSCTSQual##_index : 0))
134 
135 #define set11nRateFlags(_series, _index) \
136         ((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? AR_2040_##_index : 0) \
137         |((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? AR_GI##_index : 0) \
138         |((_series)[_index].RateFlags & HAL_RATESERIES_STBC ? AR_STBC##_index : 0) \
139         |SM((_series)[_index].ChSel, AR_ChainSel##_index)
140 
141 /*
142  * Descriptor Access Functions
143  */
144 
145 #define VALID_PKT_TYPES \
146         ((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
147          (1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
148          (1<<HAL_PKT_TYPE_BEACON)|(1<<HAL_PKT_TYPE_AMPDU))
149 #define isValidPktType(_t)      ((1<<(_t)) & VALID_PKT_TYPES)
150 #define VALID_TX_RATES \
151         ((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
152          (1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
153 	 (1<<0x1d)|(1<<0x18)|(1<<0x1c)|(1<<0x01)|(1<<0x02)|(1<<0x03)|\
154 	 (1<<0x04)|(1<<0x05)|(1<<0x06)|(1<<0x07)|(1<<0x00))
155 /* NB: accept HT rates */
156 #define	isValidTxRate(_r)	((1<<((_r) & 0x7f)) & VALID_TX_RATES)
157 
158 static inline int
ar5416RateToRateTable(struct ath_hal * ah,uint8_t rate,HAL_BOOL is_ht40)159 ar5416RateToRateTable(struct ath_hal *ah, uint8_t rate, HAL_BOOL is_ht40)
160 {
161 
162 	/*
163 	 * Handle the non-MCS rates
164 	 */
165 	switch (rate) {
166 	case /*   1 Mb */ 0x1b:
167 	case /*   1 MbS*/ 0x1b | 0x4:
168 		return (AH5416(ah)->ah_ratesArray[rate1l]);
169 	case /*   2 Mb */ 0x1a:
170 		return (AH5416(ah)->ah_ratesArray[rate2l]);
171 	case /*   2 MbS*/ 0x1a | 0x4:
172 		return (AH5416(ah)->ah_ratesArray[rate2s]);
173 	case /* 5.5 Mb */ 0x19:
174 		return (AH5416(ah)->ah_ratesArray[rate5_5l]);
175 	case /* 5.5 MbS*/ 0x19 | 0x4:
176 		return (AH5416(ah)->ah_ratesArray[rate5_5s]);
177 	case /*  11 Mb */ 0x18:
178 		return (AH5416(ah)->ah_ratesArray[rate11l]);
179 	case /*  11 MbS*/ 0x18 | 0x4:
180 		return (AH5416(ah)->ah_ratesArray[rate11s]);
181 	}
182 
183 	/* OFDM rates */
184 	switch (rate) {
185 	case /*   6 Mb */ 0x0b:
186 		return (AH5416(ah)->ah_ratesArray[rate6mb]);
187 	case /*   9 Mb */ 0x0f:
188 		return (AH5416(ah)->ah_ratesArray[rate9mb]);
189 	case /*  12 Mb */ 0x0a:
190 		return (AH5416(ah)->ah_ratesArray[rate12mb]);
191 	case /*  18 Mb */ 0x0e:
192 		return (AH5416(ah)->ah_ratesArray[rate18mb]);
193 	case /*  24 Mb */ 0x09:
194 		return (AH5416(ah)->ah_ratesArray[rate24mb]);
195 	case /*  36 Mb */ 0x0d:
196 		return (AH5416(ah)->ah_ratesArray[rate36mb]);
197 	case /*  48 Mb */ 0x08:
198 		return (AH5416(ah)->ah_ratesArray[rate48mb]);
199 	case /*  54 Mb */ 0x0c:
200 		return (AH5416(ah)->ah_ratesArray[rate54mb]);
201 	}
202 
203 	/*
204 	 * Handle HT20/HT40 - we only have to do MCS0-7;
205 	 * there's no stream differences.
206 	 */
207 	if ((rate & 0x80) && is_ht40) {
208 		return (AH5416(ah)->ah_ratesArray[rateHt40_0 + (rate & 0x7)]);
209 	} else if (rate & 0x80) {
210 		return (AH5416(ah)->ah_ratesArray[rateHt20_0 + (rate & 0x7)]);
211 	}
212 
213 	/* XXX default (eg XR, bad bad person!) */
214 	return (AH5416(ah)->ah_ratesArray[rate6mb]);
215 }
216 
217 /*
218  * Return the TX power to be used for the given rate/chains/TX power.
219  *
220  * There are a bunch of tweaks to make to a given TX power based on
221  * the current configuration, so...
222  */
223 static uint16_t
ar5416GetTxRatePower(struct ath_hal * ah,uint8_t rate,uint8_t tx_chainmask,uint16_t txPower,HAL_BOOL is_ht40)224 ar5416GetTxRatePower(struct ath_hal *ah, uint8_t rate, uint8_t tx_chainmask,
225     uint16_t txPower, HAL_BOOL is_ht40)
226 {
227 	int n_txpower, max_txpower;
228 	const int cck_ofdm_delta = 2;
229 #define	EEP_MINOR(_ah) \
230 	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
231 #define	IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
232 
233 	/* Take a copy ; we may underflow and thus need to clamp things */
234 	n_txpower = txPower;
235 
236 	/* HT40? Need to adjust the TX power by this */
237 	if (is_ht40)
238 		n_txpower += AH5416(ah)->ah_ht40PowerIncForPdadc;
239 
240 	/*
241 	 * Merlin? Offset the target TX power offset - it defaults to
242 	 * starting at -5.0dBm, but that can change!
243 	 *
244 	 * Kiwi/Kite? Always -5.0dBm offset.
245 	 */
246 	if (AR_SREV_KIWI_10_OR_LATER(ah)) {
247 		n_txpower -= (AR5416_PWR_TABLE_OFFSET_DB * 2);
248 	} else if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
249 		int8_t pwr_table_offset = 0;
250 		/* This is in dBm, convert to 1/2 dBm */
251 		(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
252 		    &pwr_table_offset);
253 		n_txpower -= (pwr_table_offset * 2);
254 	}
255 
256 	/*
257 	 * If Open-loop TX power control is used, the CCK rates need
258 	 * to be offset by that.
259 	 *
260 	 * Rates: 2S, 2L, 1S, 1L, 5.5S, 5.5L
261 	 *
262 	 * XXX Odd, we don't have a PHY table entry for long preamble
263 	 * 1mbit CCK?
264 	 */
265 	if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
266 	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
267 		if (rate == 0x19 || rate == 0x1a || rate == 0x1b ||
268 		    rate == (0x19 | 0x04) || rate == (0x1a | 0x04) ||
269 		    rate == (0x1b | 0x04)) {
270 			n_txpower -= cck_ofdm_delta;
271 		}
272 	}
273 
274 	/*
275 	 * We're now offset by the same amount that the static maximum
276 	 * PHY power tables are.  So, clamp the value based on that rate.
277 	 */
278 	max_txpower = ar5416RateToRateTable(ah, rate, is_ht40);
279 #if 0
280 	ath_hal_printf(ah, "%s: n_txpower = %d, max_txpower = %d, "
281 	    "rate = 0x%x , is_ht40 = %d\n",
282 	    __func__,
283 	    n_txpower,
284 	    max_txpower,
285 	    rate,
286 	    is_ht40);
287 #endif
288 	n_txpower = MIN(max_txpower, n_txpower);
289 
290 	/*
291 	 * We don't have to offset the TX power for two or three
292 	 * chain operation here - it's done by the AR_PHY_POWER_TX_SUB
293 	 * register setting via the EEPROM.
294 	 *
295 	 * So for vendors that programmed the maximum target power assuming
296 	 * that 2/3 chains are always on, things will just plain work.
297 	 * (They won't reach that target power if only one chain is on, but
298 	 * that's a different problem.)
299 	 */
300 
301 	/* Over/underflow? Adjust */
302 	if (n_txpower < 0)
303 		n_txpower = 0;
304 	else if (n_txpower > 63)
305 		n_txpower = 63;
306 
307 	/*
308 	 * For some odd reason the AR9160 with txpower=0 results in a
309 	 * much higher (max?) TX power.  So, if it's a chipset before
310 	 * AR9220/AR9280, just clamp the minimum value at 1.
311 	 */
312 	if ((! AR_SREV_MERLIN_10_OR_LATER(ah)) && (n_txpower == 0))
313 		n_txpower = 1;
314 
315 	return (n_txpower);
316 #undef	EEP_MINOR
317 #undef	IS_EEP_MINOR_V2
318 }
319 
320 HAL_BOOL
ar5416SetupTxDesc(struct ath_hal * ah,struct ath_desc * ds,u_int pktLen,u_int hdrLen,HAL_PKT_TYPE type,u_int txPower,u_int txRate0,u_int txTries0,u_int keyIx,u_int antMode,u_int flags,u_int rtsctsRate,u_int rtsctsDuration,u_int compicvLen,u_int compivLen,u_int comp)321 ar5416SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
322 	u_int pktLen,
323 	u_int hdrLen,
324 	HAL_PKT_TYPE type,
325 	u_int txPower,
326 	u_int txRate0, u_int txTries0,
327 	u_int keyIx,
328 	u_int antMode,
329 	u_int flags,
330 	u_int rtsctsRate,
331 	u_int rtsctsDuration,
332 	u_int compicvLen,
333 	u_int compivLen,
334 	u_int comp)
335 {
336 #define	RTSCTS	(HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
337 	struct ar5416_desc *ads = AR5416DESC(ds);
338 	struct ath_hal_5416 *ahp = AH5416(ah);
339 
340 	(void) hdrLen;
341 
342 	HALASSERT(txTries0 != 0);
343 	HALASSERT(isValidPktType(type));
344 	HALASSERT(isValidTxRate(txRate0));
345 	HALASSERT((flags & RTSCTS) != RTSCTS);
346 	/* XXX validate antMode */
347 
348         txPower = (txPower + AH5212(ah)->ah_txPowerIndexOffset);
349         if (txPower > 63)
350 		txPower = 63;
351 
352 	/*
353 	 * XXX For now, just assume that this isn't a HT40 frame.
354 	 * It'll get over-ridden by the multi-rate TX power setup.
355 	 */
356 	if (AH5212(ah)->ah_tpcEnabled) {
357 		txPower = ar5416GetTxRatePower(ah, txRate0,
358 		    ahp->ah_tx_chainmask,
359 		    txPower,
360 		    AH_FALSE);
361 	}
362 
363 	ads->ds_ctl0 = (pktLen & AR_FrameLen)
364 		     | (txPower << AR_XmitPower_S)
365 		     | (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
366 		     | (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
367 		     | (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0)
368 		     ;
369 	ads->ds_ctl1 = (type << AR_FrameType_S)
370 		     | (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0)
371 		     | (flags & HAL_TXDESC_HWTS ? AR_InsertTS : 0)
372                      ;
373 	ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0)
374 		     | (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEn : 0)
375 		     ;
376 	ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S)
377 		     ;
378 	ads->ds_ctl4 = 0;
379 	ads->ds_ctl5 = 0;
380 	ads->ds_ctl6 = 0;
381 	ads->ds_ctl7 = SM(ahp->ah_tx_chainmask, AR_ChainSel0)
382 		     | SM(ahp->ah_tx_chainmask, AR_ChainSel1)
383 		     | SM(ahp->ah_tx_chainmask, AR_ChainSel2)
384 		     | SM(ahp->ah_tx_chainmask, AR_ChainSel3)
385 		     ;
386 	ads->ds_ctl8 = SM(0, AR_AntCtl0);
387 	ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
388 	ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
389 	ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
390 
391 	if (keyIx != HAL_TXKEYIX_INVALID) {
392 		/* XXX validate key index */
393 		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
394 		ads->ds_ctl0 |= AR_DestIdxValid;
395 		ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
396 	}
397 	if (flags & RTSCTS) {
398 		if (!isValidTxRate(rtsctsRate)) {
399 			HALDEBUG(ah, HAL_DEBUG_ANY,
400 			    "%s: invalid rts/cts rate 0x%x\n",
401 			    __func__, rtsctsRate);
402 			return AH_FALSE;
403 		}
404 		/* XXX validate rtsctsDuration */
405 		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
406 			     | (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0)
407 			     ;
408 		ads->ds_ctl7 |= (rtsctsRate << AR_RTSCTSRate_S);
409 	}
410 
411 	/*
412 	 * Set the TX antenna to 0 for Kite
413 	 * To preserve existing behaviour, also set the TPC bits to 0;
414 	 * when TPC is enabled these should be filled in appropriately.
415 	 *
416 	 * XXX TODO: when doing TPC, set the TX power up appropriately?
417 	 */
418 	if (AR_SREV_KITE(ah)) {
419 		ads->ds_ctl8 = SM(0, AR_AntCtl0);
420 		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1);
421 		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2);
422 		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3);
423 	}
424 	return AH_TRUE;
425 #undef RTSCTS
426 }
427 
428 HAL_BOOL
ar5416SetupXTxDesc(struct ath_hal * ah,struct ath_desc * ds,u_int txRate1,u_int txTries1,u_int txRate2,u_int txTries2,u_int txRate3,u_int txTries3)429 ar5416SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
430 	u_int txRate1, u_int txTries1,
431 	u_int txRate2, u_int txTries2,
432 	u_int txRate3, u_int txTries3)
433 {
434 	struct ar5416_desc *ads = AR5416DESC(ds);
435 
436 	if (txTries1) {
437 		HALASSERT(isValidTxRate(txRate1));
438 		ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1);
439 		ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S);
440 	}
441 	if (txTries2) {
442 		HALASSERT(isValidTxRate(txRate2));
443 		ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2);
444 		ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S);
445 	}
446 	if (txTries3) {
447 		HALASSERT(isValidTxRate(txRate3));
448 		ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3);
449 		ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S);
450 	}
451 	return AH_TRUE;
452 }
453 
454 /*
455  * XXX TODO: Figure out if AR_InsertTS is required on all sub-frames
456  * of a TX descriptor.
457  */
458 HAL_BOOL
ar5416FillTxDesc(struct ath_hal * ah,struct ath_desc * ds,HAL_DMA_ADDR * bufAddrList,uint32_t * segLenList,u_int descId,u_int qcuId,HAL_BOOL firstSeg,HAL_BOOL lastSeg,const struct ath_desc * ds0)459 ar5416FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
460 	HAL_DMA_ADDR *bufAddrList, uint32_t *segLenList, u_int descId,
461 	u_int qcuId, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
462 	const struct ath_desc *ds0)
463 {
464 	struct ar5416_desc *ads = AR5416DESC(ds);
465 	uint32_t segLen = segLenList[0];
466 
467 	HALASSERT((segLen &~ AR_BufLen) == 0);
468 
469 	ds->ds_data = bufAddrList[0];
470 
471 	if (firstSeg) {
472 		/*
473 		 * First descriptor, don't clobber xmit control data
474 		 * setup by ar5212SetupTxDesc.
475 		 */
476 		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
477 	} else if (lastSeg) {		/* !firstSeg && lastSeg */
478 		/*
479 		 * Last descriptor in a multi-descriptor frame,
480 		 * copy the multi-rate transmit parameters from
481 		 * the first frame for processing on completion.
482 		 */
483 		ads->ds_ctl1 = segLen;
484 #ifdef AH_NEED_DESC_SWAP
485 		ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0)
486 		    & AR_TxIntrReq;
487 		ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
488 		ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
489 		/* ctl6 - we only need encrtype; the rest are blank */
490 		ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType);
491 #else
492 		ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq;
493 		ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
494 		ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
495 		/* ctl6 - we only need encrtype; the rest are blank */
496 		ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType;
497 #endif
498 	} else {			/* !firstSeg && !lastSeg */
499 		/*
500 		 * Intermediate descriptor in a multi-descriptor frame.
501 		 */
502 #ifdef AH_NEED_DESC_SWAP
503 		ads->ds_ctl0 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl0)
504 		    & AR_TxIntrReq;
505 		ads->ds_ctl6 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType);
506 #else
507 		ads->ds_ctl0 = AR5416DESC_CONST(ds0)->ds_ctl0 & AR_TxIntrReq;
508 		ads->ds_ctl6 = AR5416DESC_CONST(ds0)->ds_ctl6 & AR_EncrType;
509 #endif
510 		ads->ds_ctl1 = segLen | AR_TxMore;
511 		ads->ds_ctl2 = 0;
512 		ads->ds_ctl3 = 0;
513 	}
514 	/* XXX only on last descriptor? */
515 	OS_MEMZERO(ads->u.tx.status, sizeof(ads->u.tx.status));
516 	return AH_TRUE;
517 }
518 
519 /*
520  * NB: cipher is no longer used, it's calculated.
521  */
522 HAL_BOOL
ar5416ChainTxDesc(struct ath_hal * ah,struct ath_desc * ds,HAL_DMA_ADDR * bufAddrList,uint32_t * segLenList,u_int pktLen,u_int hdrLen,HAL_PKT_TYPE type,u_int keyIx,HAL_CIPHER cipher,uint8_t delims,HAL_BOOL firstSeg,HAL_BOOL lastSeg,HAL_BOOL lastAggr)523 ar5416ChainTxDesc(struct ath_hal *ah, struct ath_desc *ds,
524 	HAL_DMA_ADDR *bufAddrList,
525 	uint32_t *segLenList,
526 	u_int pktLen,
527 	u_int hdrLen,
528 	HAL_PKT_TYPE type,
529 	u_int keyIx,
530 	HAL_CIPHER cipher,
531 	uint8_t delims,
532 	HAL_BOOL firstSeg,
533 	HAL_BOOL lastSeg,
534 	HAL_BOOL lastAggr)
535 {
536 	struct ar5416_desc *ads = AR5416DESC(ds);
537 	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
538 	struct ath_hal_5416 *ahp = AH5416(ah);
539 	u_int segLen = segLenList[0];
540 
541 	int isaggr = 0;
542 	uint32_t last_aggr = 0;
543 
544 	(void) hdrLen;
545 	(void) ah;
546 
547 	HALASSERT((segLen &~ AR_BufLen) == 0);
548 	ds->ds_data = bufAddrList[0];
549 
550 	HALASSERT(isValidPktType(type));
551 	if (type == HAL_PKT_TYPE_AMPDU) {
552 		type = HAL_PKT_TYPE_NORMAL;
553 		isaggr = 1;
554 		if (lastAggr == AH_FALSE)
555 			last_aggr = AR_MoreAggr;
556 	}
557 
558 	/*
559 	 * Since this function is called before any of the other
560 	 * descriptor setup functions (at least in this particular
561 	 * 802.11n aggregation implementation), always bzero() the
562 	 * descriptor. Previously this would be done for all but
563 	 * the first segment.
564 	 * XXX TODO: figure out why; perhaps I'm using this slightly
565 	 * XXX incorrectly.
566 	 */
567 	OS_MEMZERO(ds->ds_hw, AR5416_DESC_TX_CTL_SZ);
568 
569 	/*
570 	 * Note: VEOL should only be for the last descriptor in the chain.
571 	 */
572 	ads->ds_ctl0 = (pktLen & AR_FrameLen);
573 
574 	/*
575 	 * For aggregates:
576 	 * + IsAggr must be set for all descriptors of all subframes of
577 	 *   the aggregate
578 	 * + MoreAggr must be set for all descriptors of all subframes
579 	 *   of the aggregate EXCEPT the last subframe;
580 	 * + MoreAggr must be _CLEAR_ for all descrpitors of the last
581 	 *   subframe of the aggregate.
582 	 */
583 	ads->ds_ctl1 = (type << AR_FrameType_S)
584 			| (isaggr ? (AR_IsAggr | last_aggr) : 0);
585 
586 	ads->ds_ctl2 = 0;
587 	ads->ds_ctl3 = 0;
588 	if (keyIx != HAL_TXKEYIX_INVALID) {
589 		/* XXX validate key index */
590 		ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
591 		ads->ds_ctl0 |= AR_DestIdxValid;
592 	}
593 
594 	ads->ds_ctl6 |= SM(ahp->ah_keytype[keyIx], AR_EncrType);
595 	if (isaggr) {
596 		ads->ds_ctl6 |= SM(delims, AR_PadDelim);
597 	}
598 
599 	if (firstSeg) {
600 		ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
601 	} else if (lastSeg) {           /* !firstSeg && lastSeg */
602 		ads->ds_ctl0 = 0;
603 		ads->ds_ctl1 |= segLen;
604 	} else {                        /* !firstSeg && !lastSeg */
605 		/*
606 		 * Intermediate descriptor in a multi-descriptor frame.
607 		 */
608 		ads->ds_ctl0 = 0;
609 		ads->ds_ctl1 |= segLen | AR_TxMore;
610 	}
611 	ds_txstatus[0] = ds_txstatus[1] = 0;
612 	ds_txstatus[9] &= ~AR_TxDone;
613 
614 	return AH_TRUE;
615 }
616 
617 HAL_BOOL
ar5416SetupFirstTxDesc(struct ath_hal * ah,struct ath_desc * ds,u_int aggrLen,u_int flags,u_int txPower,u_int txRate0,u_int txTries0,u_int antMode,u_int rtsctsRate,u_int rtsctsDuration)618 ar5416SetupFirstTxDesc(struct ath_hal *ah, struct ath_desc *ds,
619 	u_int aggrLen, u_int flags, u_int txPower,
620 	u_int txRate0, u_int txTries0, u_int antMode,
621 	u_int rtsctsRate, u_int rtsctsDuration)
622 {
623 #define RTSCTS  (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
624 	struct ar5416_desc *ads = AR5416DESC(ds);
625 	struct ath_hal_5212 *ahp = AH5212(ah);
626 
627 	HALASSERT(txTries0 != 0);
628 	HALASSERT(isValidTxRate(txRate0));
629 	HALASSERT((flags & RTSCTS) != RTSCTS);
630 	/* XXX validate antMode */
631 
632 	txPower = (txPower + ahp->ah_txPowerIndexOffset );
633 	if(txPower > 63)  txPower=63;
634 
635 	ads->ds_ctl0 |= (txPower << AR_XmitPower_S)
636 		| (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
637 		| (flags & HAL_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
638 		| (flags & HAL_TXDESC_INTREQ ? AR_TxIntrReq : 0);
639 	ads->ds_ctl1 |= (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0);
640 	ads->ds_ctl2 |= SM(txTries0, AR_XmitDataTries0);
641 	ads->ds_ctl3 |= (txRate0 << AR_XmitRate0_S);
642 	ads->ds_ctl7 = SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel0)
643 		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel1)
644 		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel2)
645 		| SM(AH5416(ah)->ah_tx_chainmask, AR_ChainSel3);
646 
647 	/* NB: no V1 WAR */
648 	ads->ds_ctl8 = SM(0, AR_AntCtl0);
649 	ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
650 	ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
651 	ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
652 
653 	ads->ds_ctl6 &= ~(0xffff);
654 	ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
655 
656 	if (flags & RTSCTS) {
657 		/* XXX validate rtsctsDuration */
658 		ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
659 			| (flags & HAL_TXDESC_RTSENA ? AR_RTSEnable : 0);
660 	}
661 
662 	/*
663 	 * Set the TX antenna to 0 for Kite
664 	 * To preserve existing behaviour, also set the TPC bits to 0;
665 	 * when TPC is enabled these should be filled in appropriately.
666 	 */
667 	if (AR_SREV_KITE(ah)) {
668 		ads->ds_ctl8 = SM(0, AR_AntCtl0);
669 		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(0, AR_XmitPower1);
670 		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(0, AR_XmitPower2);
671 		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(0, AR_XmitPower3);
672 	}
673 
674 	return AH_TRUE;
675 #undef RTSCTS
676 }
677 
678 HAL_BOOL
ar5416SetupLastTxDesc(struct ath_hal * ah,struct ath_desc * ds,const struct ath_desc * ds0)679 ar5416SetupLastTxDesc(struct ath_hal *ah, struct ath_desc *ds,
680 		const struct ath_desc *ds0)
681 {
682 	struct ar5416_desc *ads = AR5416DESC(ds);
683 
684 	ads->ds_ctl1 &= ~AR_MoreAggr;
685 	ads->ds_ctl6 &= ~AR_PadDelim;
686 
687 	/* hack to copy rate info to last desc for later processing */
688 #ifdef AH_NEED_DESC_SWAP
689 	ads->ds_ctl2 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl2);
690 	ads->ds_ctl3 = __bswap32(AR5416DESC_CONST(ds0)->ds_ctl3);
691 #else
692 	ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
693 	ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
694 #endif
695 	return AH_TRUE;
696 }
697 
698 #ifdef AH_NEED_DESC_SWAP
699 /* Swap transmit descriptor */
700 static __inline void
ar5416SwapTxDesc(struct ath_desc * ds)701 ar5416SwapTxDesc(struct ath_desc *ds)
702 {
703 	ds->ds_data = __bswap32(ds->ds_data);
704 	ds->ds_ctl0 = __bswap32(ds->ds_ctl0);
705 	ds->ds_ctl1 = __bswap32(ds->ds_ctl1);
706 	ds->ds_hw[0] = __bswap32(ds->ds_hw[0]);
707 	ds->ds_hw[1] = __bswap32(ds->ds_hw[1]);
708 	ds->ds_hw[2] = __bswap32(ds->ds_hw[2]);
709 	ds->ds_hw[3] = __bswap32(ds->ds_hw[3]);
710 }
711 #endif
712 
713 /*
714  * Processing of HW TX descriptor.
715  */
716 HAL_STATUS
ar5416ProcTxDesc(struct ath_hal * ah,struct ath_desc * ds,struct ath_tx_status * ts)717 ar5416ProcTxDesc(struct ath_hal *ah,
718 	struct ath_desc *ds, struct ath_tx_status *ts)
719 {
720 	struct ar5416_desc *ads = AR5416DESC(ds);
721 	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
722 
723 #ifdef AH_NEED_DESC_SWAP
724 	if ((ds_txstatus[9] & __bswap32(AR_TxDone)) == 0)
725 		return HAL_EINPROGRESS;
726 	ar5416SwapTxDesc(ds);
727 #else
728 	if ((ds_txstatus[9] & AR_TxDone) == 0)
729 		return HAL_EINPROGRESS;
730 #endif
731 
732 	/* Update software copies of the HW status */
733 	ts->ts_seqnum = MS(ds_txstatus[9], AR_SeqNum);
734 	ts->ts_tstamp = AR_SendTimestamp(ds_txstatus);
735 	ts->ts_tid = MS(ds_txstatus[9], AR_TxTid);
736 
737 	ts->ts_status = 0;
738 	if (ds_txstatus[1] & AR_ExcessiveRetries)
739 		ts->ts_status |= HAL_TXERR_XRETRY;
740 	if (ds_txstatus[1] & AR_Filtered)
741 		ts->ts_status |= HAL_TXERR_FILT;
742 	if (ds_txstatus[1] & AR_FIFOUnderrun)
743 		ts->ts_status |= HAL_TXERR_FIFO;
744 	if (ds_txstatus[9] & AR_TxOpExceeded)
745 		ts->ts_status |= HAL_TXERR_XTXOP;
746 	if (ds_txstatus[1] & AR_TxTimerExpired)
747 		ts->ts_status |= HAL_TXERR_TIMER_EXPIRED;
748 
749 	ts->ts_flags  = 0;
750 	if (ds_txstatus[0] & AR_TxBaStatus) {
751 		ts->ts_flags |= HAL_TX_BA;
752 		ts->ts_ba_low = AR_BaBitmapLow(ds_txstatus);
753 		ts->ts_ba_high = AR_BaBitmapHigh(ds_txstatus);
754 	}
755 	if (ds->ds_ctl1 & AR_IsAggr)
756 		ts->ts_flags |= HAL_TX_AGGR;
757 	if (ds_txstatus[1] & AR_DescCfgErr)
758 		ts->ts_flags |= HAL_TX_DESC_CFG_ERR;
759 	if (ds_txstatus[1] & AR_TxDataUnderrun)
760 		ts->ts_flags |= HAL_TX_DATA_UNDERRUN;
761 	if (ds_txstatus[1] & AR_TxDelimUnderrun)
762 		ts->ts_flags |= HAL_TX_DELIM_UNDERRUN;
763 
764 	/*
765 	 * Extract the transmit rate used and mark the rate as
766 	 * ``alternate'' if it wasn't the series 0 rate.
767 	 */
768 	ts->ts_finaltsi =  MS(ds_txstatus[9], AR_FinalTxIdx);
769 	switch (ts->ts_finaltsi) {
770 	case 0:
771 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0);
772 		break;
773 	case 1:
774 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1);
775 		break;
776 	case 2:
777 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2);
778 		break;
779 	case 3:
780 		ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3);
781 		break;
782 	}
783 
784 	ts->ts_rssi = MS(ds_txstatus[5], AR_TxRSSICombined);
785 	ts->ts_rssi_ctl[0] = MS(ds_txstatus[0], AR_TxRSSIAnt00);
786 	ts->ts_rssi_ctl[1] = MS(ds_txstatus[0], AR_TxRSSIAnt01);
787 	ts->ts_rssi_ctl[2] = MS(ds_txstatus[0], AR_TxRSSIAnt02);
788 	ts->ts_rssi_ext[0] = MS(ds_txstatus[5], AR_TxRSSIAnt10);
789 	ts->ts_rssi_ext[1] = MS(ds_txstatus[5], AR_TxRSSIAnt11);
790 	ts->ts_rssi_ext[2] = MS(ds_txstatus[5], AR_TxRSSIAnt12);
791 	ts->ts_evm0 = AR_TxEVM0(ds_txstatus);
792 	ts->ts_evm1 = AR_TxEVM1(ds_txstatus);
793 	ts->ts_evm2 = AR_TxEVM2(ds_txstatus);
794 
795 	ts->ts_shortretry = MS(ds_txstatus[1], AR_RTSFailCnt);
796 	ts->ts_longretry = MS(ds_txstatus[1], AR_DataFailCnt);
797 	/*
798 	 * The retry count has the number of un-acked tries for the
799 	 * final series used.  When doing multi-rate retry we must
800 	 * fixup the retry count by adding in the try counts for
801 	 * each series that was fully-processed.  Beware that this
802 	 * takes values from the try counts in the final descriptor.
803 	 * These are not required by the hardware.  We assume they
804 	 * are placed there by the driver as otherwise we have no
805 	 * access and the driver can't do the calculation because it
806 	 * doesn't know the descriptor format.
807 	 */
808 	switch (ts->ts_finaltsi) {
809 	case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2);
810 	case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1);
811 	case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0);
812 	}
813 
814 	/*
815 	 * These fields are not used. Zero these to preserve compatibility
816 	 * with existing drivers.
817 	 */
818 	ts->ts_virtcol = MS(ads->ds_ctl1, AR_VirtRetryCnt);
819 	ts->ts_antenna = 0; /* We don't switch antennas on Owl*/
820 
821 	/* handle tx trigger level changes internally */
822 	if ((ts->ts_status & HAL_TXERR_FIFO) ||
823 	    (ts->ts_flags & (HAL_TX_DATA_UNDERRUN | HAL_TX_DELIM_UNDERRUN)))
824 		ar5212UpdateTxTrigLevel(ah, AH_TRUE);
825 
826 	return HAL_OK;
827 }
828 
829 HAL_BOOL
ar5416SetGlobalTxTimeout(struct ath_hal * ah,u_int tu)830 ar5416SetGlobalTxTimeout(struct ath_hal *ah, u_int tu)
831 {
832 	struct ath_hal_5416 *ahp = AH5416(ah);
833 
834 	if (tu > 0xFFFF) {
835 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad global tx timeout %u\n",
836 		    __func__, tu);
837 		/* restore default handling */
838 		ahp->ah_globaltxtimeout = (u_int) -1;
839 		return AH_FALSE;
840 	}
841 	OS_REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
842 	ahp->ah_globaltxtimeout = tu;
843 	return AH_TRUE;
844 }
845 
846 u_int
ar5416GetGlobalTxTimeout(struct ath_hal * ah)847 ar5416GetGlobalTxTimeout(struct ath_hal *ah)
848 {
849 	return MS(OS_REG_READ(ah, AR_GTXTO), AR_GTXTO_TIMEOUT_LIMIT);
850 }
851 
852 #define	HT_RC_2_MCS(_rc)	((_rc) & 0x0f)
853 static const u_int8_t baDurationDelta[] = {
854 	24,	//  0: BPSK
855 	12,	//  1: QPSK 1/2
856 	12,	//  2: QPSK 3/4
857 	4,	//  3: 16-QAM 1/2
858 	4,	//  4: 16-QAM 3/4
859 	4,	//  5: 64-QAM 2/3
860 	4,	//  6: 64-QAM 3/4
861 	4,	//  7: 64-QAM 5/6
862 	24,	//  8: BPSK
863 	12,	//  9: QPSK 1/2
864 	12,	// 10: QPSK 3/4
865 	4,	// 11: 16-QAM 1/2
866 	4,	// 12: 16-QAM 3/4
867 	4,	// 13: 64-QAM 2/3
868 	4,	// 14: 64-QAM 3/4
869 	4,	// 15: 64-QAM 5/6
870 };
871 
872 void
ar5416Set11nRateScenario(struct ath_hal * ah,struct ath_desc * ds,u_int durUpdateEn,u_int rtsctsRate,HAL_11N_RATE_SERIES series[],u_int nseries,u_int flags)873 ar5416Set11nRateScenario(struct ath_hal *ah, struct ath_desc *ds,
874         u_int durUpdateEn, u_int rtsctsRate,
875 	HAL_11N_RATE_SERIES series[], u_int nseries, u_int flags)
876 {
877 	struct ar5416_desc *ads = AR5416DESC(ds);
878 	uint32_t ds_ctl0;
879 
880 	HALASSERT(nseries == 4);
881 	(void)nseries;
882 
883 	/*
884 	 * Only one of RTS and CTS enable must be set.
885 	 * If a frame has both set, just do RTS protection -
886 	 * that's enough to satisfy legacy protection.
887 	 */
888 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
889 		ds_ctl0 = ads->ds_ctl0;
890 
891 		if (flags & HAL_TXDESC_RTSENA) {
892 			ds_ctl0 &= ~AR_CTSEnable;
893 			ds_ctl0 |= AR_RTSEnable;
894 		} else {
895 			ds_ctl0 &= ~AR_RTSEnable;
896 			ds_ctl0 |= AR_CTSEnable;
897 		}
898 
899 		ads->ds_ctl0 = ds_ctl0;
900 	} else {
901 		ads->ds_ctl0 =
902 		    (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable));
903 	}
904 
905 	ads->ds_ctl2 = set11nTries(series, 0)
906 		     | set11nTries(series, 1)
907 		     | set11nTries(series, 2)
908 		     | set11nTries(series, 3)
909 		     | (durUpdateEn ? AR_DurUpdateEn : 0);
910 
911 	ads->ds_ctl3 = set11nRate(series, 0)
912 		     | set11nRate(series, 1)
913 		     | set11nRate(series, 2)
914 		     | set11nRate(series, 3);
915 
916 	ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
917 		     | set11nPktDurRTSCTS(series, 1);
918 
919 	ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
920 		     | set11nPktDurRTSCTS(series, 3);
921 
922 	ads->ds_ctl7 = set11nRateFlags(series, 0)
923 		     | set11nRateFlags(series, 1)
924 		     | set11nRateFlags(series, 2)
925 		     | set11nRateFlags(series, 3)
926 		     | SM(rtsctsRate, AR_RTSCTSRate);
927 
928 	/*
929 	 * Doing per-packet TPC - update the TX power for the first
930 	 * field; program in the other series.
931 	 */
932 	if (AH5212(ah)->ah_tpcEnabled) {
933 		uint32_t ds_ctl0;
934 		uint16_t txPower;
935 
936 		/* Modify the tx power field for rate 0 */
937 		txPower = ar5416GetTxRatePower(ah, series[0].Rate,
938 		    series[0].ChSel,
939 		    series[0].tx_power_cap,
940 		    !! (series[0].RateFlags & HAL_RATESERIES_2040));
941 		ds_ctl0 = ads->ds_ctl0 & ~AR_XmitPower;
942 		ds_ctl0 |= (txPower << AR_XmitPower_S);
943 		ads->ds_ctl0 = ds_ctl0;
944 
945 		/*
946 		 * Override the whole descriptor field for each TX power.
947 		 *
948 		 * This will need changing if we ever support antenna control
949 		 * programming.
950 		 */
951 		txPower = ar5416GetTxRatePower(ah, series[1].Rate,
952 		    series[1].ChSel,
953 		    series[1].tx_power_cap,
954 		    !! (series[1].RateFlags & HAL_RATESERIES_2040));
955 		ads->ds_ctl9 = SM(0, AR_AntCtl1) | SM(txPower, AR_XmitPower1);
956 
957 		txPower = ar5416GetTxRatePower(ah, series[2].Rate,
958 		    series[2].ChSel,
959 		    series[2].tx_power_cap,
960 		    !! (series[2].RateFlags & HAL_RATESERIES_2040));
961 		ads->ds_ctl10 = SM(0, AR_AntCtl2) | SM(txPower, AR_XmitPower2);
962 
963 		txPower = ar5416GetTxRatePower(ah, series[3].Rate,
964 		    series[3].ChSel,
965 		    series[3].tx_power_cap,
966 		    !! (series[3].RateFlags & HAL_RATESERIES_2040));
967 		ads->ds_ctl11 = SM(0, AR_AntCtl3) | SM(txPower, AR_XmitPower3);
968 	}
969 }
970 
971 /*
972  * Note: this should be called before calling ar5416SetBurstDuration()
973  * (if it is indeed called) in order to ensure that the burst duration
974  * is correctly updated with the BA delta workaround.
975  */
976 void
ar5416Set11nAggrFirst(struct ath_hal * ah,struct ath_desc * ds,u_int aggrLen,u_int numDelims)977 ar5416Set11nAggrFirst(struct ath_hal *ah, struct ath_desc *ds, u_int aggrLen,
978     u_int numDelims)
979 {
980 	struct ar5416_desc *ads = AR5416DESC(ds);
981 	uint32_t flags;
982 	uint32_t burstDur;
983 	uint8_t rate;
984 
985 	ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
986 
987 	ads->ds_ctl6 &= ~(AR_AggrLen | AR_PadDelim);
988 	ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
989 	ads->ds_ctl6 |= SM(numDelims, AR_PadDelim);
990 
991 	if (! AR_SREV_MERLIN_10_OR_LATER(ah)) {
992 		/*
993 		 * XXX It'd be nice if I were passed in the rate scenario
994 		 * at this point..
995 		 */
996 		rate = MS(ads->ds_ctl3, AR_XmitRate0);
997 		flags = ads->ds_ctl0 & (AR_CTSEnable | AR_RTSEnable);
998 		/*
999 		 * WAR - MAC assumes normal ACK time instead of
1000 		 * block ACK while computing packet duration.
1001 		 * Add this delta to the burst duration in the descriptor.
1002 		 */
1003 		if (flags && (ads->ds_ctl1 & AR_IsAggr)) {
1004 			burstDur = baDurationDelta[HT_RC_2_MCS(rate)];
1005 			ads->ds_ctl2 &= ~(AR_BurstDur);
1006 			ads->ds_ctl2 |= SM(burstDur, AR_BurstDur);
1007 		}
1008 	}
1009 }
1010 
1011 void
ar5416Set11nAggrMiddle(struct ath_hal * ah,struct ath_desc * ds,u_int numDelims)1012 ar5416Set11nAggrMiddle(struct ath_hal *ah, struct ath_desc *ds, u_int numDelims)
1013 {
1014 	struct ar5416_desc *ads = AR5416DESC(ds);
1015 	uint32_t *ds_txstatus = AR5416_DS_TXSTATUS(ah,ads);
1016 
1017 	ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
1018 
1019 	ads->ds_ctl6 &= ~AR_PadDelim;
1020 	ads->ds_ctl6 |= SM(numDelims, AR_PadDelim);
1021 	ads->ds_ctl6 &= ~AR_AggrLen;
1022 
1023 	/*
1024 	 * Clear the TxDone status here, may need to change
1025 	 * func name to reflect this
1026 	 */
1027 	ds_txstatus[9] &= ~AR_TxDone;
1028 }
1029 
1030 void
ar5416Set11nAggrLast(struct ath_hal * ah,struct ath_desc * ds)1031 ar5416Set11nAggrLast(struct ath_hal *ah, struct ath_desc *ds)
1032 {
1033 	struct ar5416_desc *ads = AR5416DESC(ds);
1034 
1035 	ads->ds_ctl1 |= AR_IsAggr;
1036 	ads->ds_ctl1 &= ~AR_MoreAggr;
1037 	ads->ds_ctl6 &= ~AR_PadDelim;
1038 }
1039 
1040 void
ar5416Clr11nAggr(struct ath_hal * ah,struct ath_desc * ds)1041 ar5416Clr11nAggr(struct ath_hal *ah, struct ath_desc *ds)
1042 {
1043 	struct ar5416_desc *ads = AR5416DESC(ds);
1044 
1045 	ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
1046 	ads->ds_ctl6 &= ~AR_PadDelim;
1047 	ads->ds_ctl6 &= ~AR_AggrLen;
1048 }
1049 
1050 void
ar5416Set11nVirtualMoreFrag(struct ath_hal * ah,struct ath_desc * ds,u_int vmf)1051 ar5416Set11nVirtualMoreFrag(struct ath_hal *ah, struct ath_desc *ds,
1052     u_int vmf)
1053 {
1054 	struct ar5416_desc *ads = AR5416DESC(ds);
1055 	if (vmf)
1056 		ads->ds_ctl0 |= AR_VirtMoreFrag;
1057 	else
1058 		ads->ds_ctl0 &= ~AR_VirtMoreFrag;
1059 }
1060 
1061 /*
1062  * Program the burst duration, with the included BA delta if it's
1063  * applicable.
1064  */
1065 void
ar5416Set11nBurstDuration(struct ath_hal * ah,struct ath_desc * ds,u_int burstDuration)1066 ar5416Set11nBurstDuration(struct ath_hal *ah, struct ath_desc *ds,
1067                                                   u_int burstDuration)
1068 {
1069 	struct ar5416_desc *ads = AR5416DESC(ds);
1070 	uint32_t burstDur = 0;
1071 	uint8_t rate;
1072 
1073 	if (! AR_SREV_MERLIN_10_OR_LATER(ah)) {
1074 		/*
1075 		 * XXX It'd be nice if I were passed in the rate scenario
1076 		 * at this point..
1077 		 */
1078 		rate = MS(ads->ds_ctl3, AR_XmitDataTries0);
1079 		/*
1080 		 * WAR - MAC assumes normal ACK time instead of
1081 		 * block ACK while computing packet duration.
1082 		 * Add this delta to the burst duration in the descriptor.
1083 		 */
1084 		if (ads->ds_ctl1 & AR_IsAggr) {
1085 			burstDur = baDurationDelta[HT_RC_2_MCS(rate)];
1086 		}
1087 	}
1088 
1089 	ads->ds_ctl2 &= ~AR_BurstDur;
1090 	ads->ds_ctl2 |= SM(burstDur + burstDuration, AR_BurstDur);
1091 }
1092 
1093 /*
1094  * Retrieve the rate table from the given TX completion descriptor
1095  */
1096 HAL_BOOL
ar5416GetTxCompletionRates(struct ath_hal * ah,const struct ath_desc * ds0,int * rates,int * tries)1097 ar5416GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries)
1098 {
1099 	const struct ar5416_desc *ads = AR5416DESC_CONST(ds0);
1100 
1101 	rates[0] = MS(ads->ds_ctl3, AR_XmitRate0);
1102 	rates[1] = MS(ads->ds_ctl3, AR_XmitRate1);
1103 	rates[2] = MS(ads->ds_ctl3, AR_XmitRate2);
1104 	rates[3] = MS(ads->ds_ctl3, AR_XmitRate3);
1105 
1106 	tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0);
1107 	tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1);
1108 	tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2);
1109 	tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3);
1110 
1111 	return AH_TRUE;
1112 }
1113 
1114 /*
1115  * TX queue management routines - AR5416 and later chipsets
1116  */
1117 
1118 /*
1119  * Allocate and initialize a tx DCU/QCU combination.
1120  */
1121 int
ar5416SetupTxQueue(struct ath_hal * ah,HAL_TX_QUEUE type,const HAL_TXQ_INFO * qInfo)1122 ar5416SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type,
1123 	const HAL_TXQ_INFO *qInfo)
1124 {
1125 	struct ath_hal_5212 *ahp = AH5212(ah);
1126 	HAL_TX_QUEUE_INFO *qi;
1127 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
1128 	int q, defqflags;
1129 
1130 	/* by default enable OK+ERR+DESC+URN interrupts */
1131 	defqflags = HAL_TXQ_TXOKINT_ENABLE
1132 		  | HAL_TXQ_TXERRINT_ENABLE
1133 		  | HAL_TXQ_TXDESCINT_ENABLE
1134 		  | HAL_TXQ_TXURNINT_ENABLE;
1135 	/* XXX move queue assignment to driver */
1136 	switch (type) {
1137 	case HAL_TX_QUEUE_BEACON:
1138 		q = pCap->halTotalQueues-1;	/* highest priority */
1139 		defqflags |= HAL_TXQ_DBA_GATED
1140 		       | HAL_TXQ_CBR_DIS_QEMPTY
1141 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
1142 		       | HAL_TXQ_BACKOFF_DISABLE;
1143 		break;
1144 	case HAL_TX_QUEUE_CAB:
1145 		q = pCap->halTotalQueues-2;	/* next highest priority */
1146 		defqflags |= HAL_TXQ_DBA_GATED
1147 		       | HAL_TXQ_CBR_DIS_QEMPTY
1148 		       | HAL_TXQ_CBR_DIS_BEMPTY
1149 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
1150 		       | HAL_TXQ_BACKOFF_DISABLE;
1151 		break;
1152 	case HAL_TX_QUEUE_PSPOLL:
1153 		q = 1;				/* lowest priority */
1154 		defqflags |= HAL_TXQ_DBA_GATED
1155 		       | HAL_TXQ_CBR_DIS_QEMPTY
1156 		       | HAL_TXQ_CBR_DIS_BEMPTY
1157 		       | HAL_TXQ_ARB_LOCKOUT_GLOBAL
1158 		       | HAL_TXQ_BACKOFF_DISABLE;
1159 		break;
1160 	case HAL_TX_QUEUE_UAPSD:
1161 		q = pCap->halTotalQueues-3;	/* nextest highest priority */
1162 		if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) {
1163 			HALDEBUG(ah, HAL_DEBUG_ANY,
1164 			    "%s: no available UAPSD tx queue\n", __func__);
1165 			return -1;
1166 		}
1167 		break;
1168 	case HAL_TX_QUEUE_DATA:
1169 		for (q = 0; q < pCap->halTotalQueues; q++)
1170 			if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE)
1171 				break;
1172 		if (q == pCap->halTotalQueues) {
1173 			HALDEBUG(ah, HAL_DEBUG_ANY,
1174 			    "%s: no available tx queue\n", __func__);
1175 			return -1;
1176 		}
1177 		break;
1178 	default:
1179 		HALDEBUG(ah, HAL_DEBUG_ANY,
1180 		    "%s: bad tx queue type %u\n", __func__, type);
1181 		return -1;
1182 	}
1183 
1184 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
1185 
1186 	qi = &ahp->ah_txq[q];
1187 	if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) {
1188 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n",
1189 		    __func__, q);
1190 		return -1;
1191 	}
1192 	OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO));
1193 	qi->tqi_type = type;
1194 	if (qInfo == AH_NULL) {
1195 		qi->tqi_qflags = defqflags;
1196 		qi->tqi_aifs = INIT_AIFS;
1197 		qi->tqi_cwmin = HAL_TXQ_USEDEFAULT;	/* NB: do at reset */
1198 		qi->tqi_cwmax = INIT_CWMAX;
1199 		qi->tqi_shretry = INIT_SH_RETRY;
1200 		qi->tqi_lgretry = INIT_LG_RETRY;
1201 		qi->tqi_physCompBuf = 0;
1202 	} else {
1203 		qi->tqi_physCompBuf = qInfo->tqi_compBuf;
1204 		(void) ar5212SetTxQueueProps(ah, q, qInfo);
1205 	}
1206 	/* NB: must be followed by ar5212ResetTxQueue */
1207 	return q;
1208 }
1209 
1210 /*
1211  * Update the h/w interrupt registers to reflect a tx q's configuration.
1212  */
1213 static void
setTxQInterrupts(struct ath_hal * ah,HAL_TX_QUEUE_INFO * qi)1214 setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi)
1215 {
1216 	struct ath_hal_5212 *ahp = AH5212(ah);
1217 
1218 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1219 	    "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__,
1220 	    ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask,
1221 	    ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask,
1222 	    ahp->ah_txUrnInterruptMask);
1223 
1224 	OS_REG_WRITE(ah, AR_IMR_S0,
1225 		  SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
1226 		| SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC)
1227 	);
1228 	OS_REG_WRITE(ah, AR_IMR_S1,
1229 		  SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
1230 		| SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL)
1231 	);
1232 	OS_REG_RMW_FIELD(ah, AR_IMR_S2,
1233 		AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
1234 }
1235 
1236 /*
1237  * Set the retry, aifs, cwmin/max, readyTime regs for specified queue
1238  * Assumes:
1239  *  phwChannel has been set to point to the current channel
1240  */
1241 #define	TU_TO_USEC(_tu)		((_tu) << 10)
1242 HAL_BOOL
ar5416ResetTxQueue(struct ath_hal * ah,u_int q)1243 ar5416ResetTxQueue(struct ath_hal *ah, u_int q)
1244 {
1245 	struct ath_hal_5212 *ahp = AH5212(ah);
1246 	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
1247 	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1248 	HAL_TX_QUEUE_INFO *qi;
1249 	uint32_t cwMin, chanCwMin, qmisc, dmisc;
1250 
1251 	if (q >= pCap->halTotalQueues) {
1252 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
1253 		    __func__, q);
1254 		return AH_FALSE;
1255 	}
1256 	qi = &ahp->ah_txq[q];
1257 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
1258 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
1259 		    __func__, q);
1260 		return AH_TRUE;		/* XXX??? */
1261 	}
1262 
1263 	HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q);
1264 
1265 	if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) {
1266 		/*
1267 		 * Select cwmin according to channel type.
1268 		 * NB: chan can be NULL during attach
1269 		 */
1270 		if (chan && IEEE80211_IS_CHAN_B(chan))
1271 			chanCwMin = INIT_CWMIN_11B;
1272 		else
1273 			chanCwMin = INIT_CWMIN;
1274 		/* make sure that the CWmin is of the form (2^n - 1) */
1275 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1)
1276 			;
1277 	} else
1278 		cwMin = qi->tqi_cwmin;
1279 
1280 	/* set cwMin/Max and AIFS values */
1281 	OS_REG_WRITE(ah, AR_DLCL_IFS(q),
1282 		  SM(cwMin, AR_D_LCL_IFS_CWMIN)
1283 		| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
1284 		| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
1285 
1286 	/* Set retry limit values */
1287 	OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q),
1288 		   SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
1289 		 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
1290 		 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG)
1291 		 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
1292 	);
1293 
1294 	/* NB: always enable early termination on the QCU */
1295 	qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ
1296 	      | SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP);
1297 
1298 	/* NB: always enable DCU to wait for next fragment from QCU */
1299 	dmisc = AR_D_MISC_FRAG_WAIT_EN;
1300 
1301 	/* Enable exponential backoff window */
1302 	dmisc |= AR_D_MISC_BKOFF_PERSISTENCE;
1303 
1304 	/*
1305 	 * The chip reset default is to use a DCU backoff threshold of 0x2.
1306 	 * Restore this when programming the DCU MISC register.
1307 	 */
1308 	dmisc |= 0x2;
1309 
1310 	/* multiqueue support */
1311 	if (qi->tqi_cbrPeriod) {
1312 		OS_REG_WRITE(ah, AR_QCBRCFG(q),
1313 			  SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL)
1314 			| SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH));
1315 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR;
1316 		if (qi->tqi_cbrOverflowLimit)
1317 			qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT;
1318 	}
1319 
1320 	if (qi->tqi_readyTime && (qi->tqi_type != HAL_TX_QUEUE_CAB)) {
1321 		OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
1322 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT)
1323 			| AR_Q_RDYTIMECFG_ENA);
1324 	}
1325 
1326 	OS_REG_WRITE(ah, AR_DCHNTIME(q),
1327 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR)
1328 		| (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
1329 
1330 	if (qi->tqi_readyTime &&
1331 	    (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE))
1332 		qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY;
1333 	if (qi->tqi_qflags & HAL_TXQ_DBA_GATED)
1334 		qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED;
1335 	if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) {
1336 		/*
1337 		 * These are meangingful only when not scheduled asap.
1338 		 */
1339 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY)
1340 			qmisc |= AR_Q_MISC_CBR_INCR_DIS0;
1341 		else
1342 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0;
1343 		if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY)
1344 			qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
1345 		else
1346 			qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1;
1347 	}
1348 
1349 	if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE)
1350 		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
1351 	if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE)
1352 		dmisc |= AR_D_MISC_FRAG_BKOFF_EN;
1353 	if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL)
1354 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1355 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1356 	else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA)
1357 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR,
1358 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1359 	if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL)
1360 		dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE,
1361 			    AR_D_MISC_VIR_COL_HANDLING);
1362 	if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS)
1363 		dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS;
1364 
1365 	/*
1366 	 * Fillin type-dependent bits.  Most of this can be
1367 	 * removed by specifying the queue parameters in the
1368 	 * driver; it's here for backwards compatibility.
1369 	 */
1370 	switch (qi->tqi_type) {
1371 	case HAL_TX_QUEUE_BEACON:		/* beacon frames */
1372 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
1373 		      |  AR_Q_MISC_BEACON_USE
1374 		      |  AR_Q_MISC_CBR_INCR_DIS1;
1375 
1376 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1377 			    AR_D_MISC_ARB_LOCKOUT_CNTRL)
1378 		      |  AR_D_MISC_BEACON_USE
1379 		      |  AR_D_MISC_POST_FR_BKOFF_DIS;
1380 		break;
1381 	case HAL_TX_QUEUE_CAB:			/* CAB  frames */
1382 		/*
1383 		 * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY,
1384 		 * There is an issue with the CAB Queue
1385 		 * not properly refreshing the Tx descriptor if
1386 		 * the TXE clear setting is used.
1387 		 */
1388 		qmisc |= AR_Q_MISC_FSP_DBA_GATED
1389 		      |  AR_Q_MISC_CBR_INCR_DIS1
1390 		      |  AR_Q_MISC_CBR_INCR_DIS0;
1391 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: CAB: tqi_readyTime = %d\n",
1392 		    __func__, qi->tqi_readyTime);
1393 		if (qi->tqi_readyTime) {
1394 			HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1395 			    "%s: using tqi_readyTime\n", __func__);
1396 			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
1397 			    SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) |
1398 			    AR_Q_RDYTIMECFG_ENA);
1399 		} else {
1400 			int value;
1401 			/*
1402 			 * NB: don't set default ready time if driver
1403 			 * has explicitly specified something.  This is
1404 			 * here solely for backwards compatibility.
1405 			 */
1406 			/*
1407 			 * XXX for now, hard-code a CAB interval of 70%
1408 			 * XXX of the total beacon interval.
1409 			 *
1410 			 * XXX This keeps Merlin and later based MACs
1411 			 * XXX quite a bit happier (stops stuck beacons,
1412 			 * XXX which I gather is because of such a long
1413 			 * XXX cabq time.)
1414 			 */
1415 			value = (ahp->ah_beaconInterval * 50 / 100)
1416 				- ah->ah_config.ah_additional_swba_backoff
1417 				- ah->ah_config.ah_sw_beacon_response_time
1418 				+ ah->ah_config.ah_dma_beacon_response_time;
1419 			/*
1420 			 * XXX Ensure it isn't too low - nothing lower
1421 			 * XXX than 10 TU
1422 			 */
1423 			if (value < 10)
1424 				value = 10;
1425 			HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1426 			    "%s: defaulting to rdytime = %d uS\n",
1427 			    __func__, value);
1428 			OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
1429 			    SM(TU_TO_USEC(value), AR_Q_RDYTIMECFG_INT) |
1430 			    AR_Q_RDYTIMECFG_ENA);
1431 		}
1432 		dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
1433 			    AR_D_MISC_ARB_LOCKOUT_CNTRL);
1434 		break;
1435 	case HAL_TX_QUEUE_PSPOLL:
1436 		qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
1437 		break;
1438 	case HAL_TX_QUEUE_UAPSD:
1439 		dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
1440 		break;
1441 	default:			/* NB: silence compiler */
1442 		break;
1443 	}
1444 
1445 	OS_REG_WRITE(ah, AR_QMISC(q), qmisc);
1446 	OS_REG_WRITE(ah, AR_DMISC(q), dmisc);
1447 
1448 	/* Setup compression scratchpad buffer */
1449 	/*
1450 	 * XXX: calling this asynchronously to queue operation can
1451 	 *      cause unexpected behavior!!!
1452 	 */
1453 	if (qi->tqi_physCompBuf) {
1454 		HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA ||
1455 			  qi->tqi_type == HAL_TX_QUEUE_UAPSD);
1456 		OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q));
1457 		OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf);
1458 		OS_REG_WRITE(ah, AR_Q_CBC,  HAL_COMP_BUF_MAX_SIZE/1024);
1459 		OS_REG_WRITE(ah, AR_Q0_MISC + 4*q,
1460 			     OS_REG_READ(ah, AR_Q0_MISC + 4*q)
1461 			     | AR_Q_MISC_QCU_COMP_EN);
1462 	}
1463 
1464 	/*
1465 	 * Always update the secondary interrupt mask registers - this
1466 	 * could be a new queue getting enabled in a running system or
1467 	 * hw getting re-initialized during a reset!
1468 	 *
1469 	 * Since we don't differentiate between tx interrupts corresponding
1470 	 * to individual queues - secondary tx mask regs are always unmasked;
1471 	 * tx interrupts are enabled/disabled for all queues collectively
1472 	 * using the primary mask reg
1473 	 */
1474 	if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE)
1475 		ahp->ah_txOkInterruptMask |= 1 << q;
1476 	else
1477 		ahp->ah_txOkInterruptMask &= ~(1 << q);
1478 	if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE)
1479 		ahp->ah_txErrInterruptMask |= 1 << q;
1480 	else
1481 		ahp->ah_txErrInterruptMask &= ~(1 << q);
1482 	if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE)
1483 		ahp->ah_txDescInterruptMask |= 1 << q;
1484 	else
1485 		ahp->ah_txDescInterruptMask &= ~(1 << q);
1486 	if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE)
1487 		ahp->ah_txEolInterruptMask |= 1 << q;
1488 	else
1489 		ahp->ah_txEolInterruptMask &= ~(1 << q);
1490 	if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE)
1491 		ahp->ah_txUrnInterruptMask |= 1 << q;
1492 	else
1493 		ahp->ah_txUrnInterruptMask &= ~(1 << q);
1494 	setTxQInterrupts(ah, qi);
1495 
1496 	return AH_TRUE;
1497 }
1498 #undef	TU_TO_USEC
1499