1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27
28 #include "ah_eeprom_v3.h"
29
30 #define AH_5212_2317
31 #include "ar5212/ar5212.ini"
32
33 #define N(a) (sizeof(a)/sizeof(a[0]))
34
35 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
36 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
37 #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
38
39 struct ar2317State {
40 RF_HAL_FUNCS base; /* public state, must be first */
41 uint16_t pcdacTable[PWR_TABLE_SIZE_2317];
42
43 uint32_t Bank1Data[N(ar5212Bank1_2317)];
44 uint32_t Bank2Data[N(ar5212Bank2_2317)];
45 uint32_t Bank3Data[N(ar5212Bank3_2317)];
46 uint32_t Bank6Data[N(ar5212Bank6_2317)];
47 uint32_t Bank7Data[N(ar5212Bank7_2317)];
48
49 /*
50 * Private state for reduced stack usage.
51 */
52 /* filled out Vpd table for all pdGains (chanL) */
53 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
54 [MAX_PWR_RANGE_IN_HALF_DB];
55 /* filled out Vpd table for all pdGains (chanR) */
56 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
57 [MAX_PWR_RANGE_IN_HALF_DB];
58 /* filled out Vpd table for all pdGains (interpolated) */
59 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
60 [MAX_PWR_RANGE_IN_HALF_DB];
61 };
62 #define AR2317(ah) ((struct ar2317State *) AH5212(ah)->ah_rfHal)
63
64 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
65 uint32_t numBits, uint32_t firstBit, uint32_t column);
66
67 static void
ar2317WriteRegs(struct ath_hal * ah,u_int modesIndex,u_int freqIndex,int writes)68 ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
69 int writes)
70 {
71 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
72 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
73 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
74 }
75
76 /*
77 * Take the MHz channel value and set the Channel value
78 *
79 * ASSUMES: Writes enabled to analog bus
80 */
81 static HAL_BOOL
ar2317SetChannel(struct ath_hal * ah,const struct ieee80211_channel * chan)82 ar2317SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
83 {
84 uint16_t freq = ath_hal_gethwchannel(ah, chan);
85 uint32_t channelSel = 0;
86 uint32_t bModeSynth = 0;
87 uint32_t aModeRefSel = 0;
88 uint32_t reg32 = 0;
89
90 OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
91
92 if (freq < 4800) {
93 uint32_t txctl;
94 channelSel = freq - 2272 ;
95 channelSel = ath_hal_reverseBits(channelSel, 8);
96
97 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
98 if (freq == 2484) {
99 /* Enable channel spreading for channel 14 */
100 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
101 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
102 } else {
103 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
104 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
105 }
106 } else if ((freq % 20) == 0 && freq >= 5120) {
107 channelSel = ath_hal_reverseBits(
108 ((freq - 4800) / 20 << 2), 8);
109 aModeRefSel = ath_hal_reverseBits(3, 2);
110 } else if ((freq % 10) == 0) {
111 channelSel = ath_hal_reverseBits(
112 ((freq - 4800) / 10 << 1), 8);
113 aModeRefSel = ath_hal_reverseBits(2, 2);
114 } else if ((freq % 5) == 0) {
115 channelSel = ath_hal_reverseBits(
116 (freq - 4800) / 5, 8);
117 aModeRefSel = ath_hal_reverseBits(1, 2);
118 } else {
119 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
120 __func__, freq);
121 return AH_FALSE;
122 }
123
124 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
125 (1 << 12) | 0x1;
126 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
127
128 reg32 >>= 8;
129 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
130
131 AH_PRIVATE(ah)->ah_curchan = chan;
132 return AH_TRUE;
133 }
134
135 /*
136 * Reads EEPROM header info from device structure and programs
137 * all rf registers
138 *
139 * REQUIRES: Access to the analog rf device
140 */
141 static HAL_BOOL
ar2317SetRfRegs(struct ath_hal * ah,const struct ieee80211_channel * chan,uint16_t modesIndex,uint16_t * rfXpdGain)142 ar2317SetRfRegs(struct ath_hal *ah,
143 const struct ieee80211_channel *chan,
144 uint16_t modesIndex, uint16_t *rfXpdGain)
145 {
146 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
147 int i; \
148 for (i = 0; i < N(ar5212Bank##_ix##_2317); i++) \
149 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
150 } while (0)
151 struct ath_hal_5212 *ahp = AH5212(ah);
152 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
153 uint16_t ob2GHz = 0, db2GHz = 0;
154 struct ar2317State *priv = AR2317(ah);
155 int regWrites = 0;
156
157 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
158 __func__, chan->ic_freq, chan->ic_flags, modesIndex);
159
160 HALASSERT(priv);
161
162 /* Setup rf parameters */
163 if (IEEE80211_IS_CHAN_B(chan)) {
164 ob2GHz = ee->ee_obFor24;
165 db2GHz = ee->ee_dbFor24;
166 } else {
167 ob2GHz = ee->ee_obFor24g;
168 db2GHz = ee->ee_dbFor24g;
169 }
170
171 /* Bank 1 Write */
172 RF_BANK_SETUP(priv, 1, 1);
173
174 /* Bank 2 Write */
175 RF_BANK_SETUP(priv, 2, modesIndex);
176
177 /* Bank 3 Write */
178 RF_BANK_SETUP(priv, 3, modesIndex);
179
180 /* Bank 6 Write */
181 RF_BANK_SETUP(priv, 6, modesIndex);
182
183 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
184 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
185
186 /* Bank 7 Setup */
187 RF_BANK_SETUP(priv, 7, modesIndex);
188
189 /* Write Analog registers */
190 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
191 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
192 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
193 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
194 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);
195 /* Now that we have reprogrammed rfgain value, clear the flag. */
196 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
197
198 return AH_TRUE;
199 #undef RF_BANK_SETUP
200 }
201
202 /*
203 * Return a reference to the requested RF Bank.
204 */
205 static uint32_t *
ar2317GetRfBank(struct ath_hal * ah,int bank)206 ar2317GetRfBank(struct ath_hal *ah, int bank)
207 {
208 struct ar2317State *priv = AR2317(ah);
209
210 HALASSERT(priv != AH_NULL);
211 switch (bank) {
212 case 1: return priv->Bank1Data;
213 case 2: return priv->Bank2Data;
214 case 3: return priv->Bank3Data;
215 case 6: return priv->Bank6Data;
216 case 7: return priv->Bank7Data;
217 }
218 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
219 __func__, bank);
220 return AH_NULL;
221 }
222
223 /*
224 * Return indices surrounding the value in sorted integer lists.
225 *
226 * NB: the input list is assumed to be sorted in ascending order
227 */
228 static void
GetLowerUpperIndex(int16_t v,const uint16_t * lp,uint16_t listSize,uint32_t * vlo,uint32_t * vhi)229 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
230 uint32_t *vlo, uint32_t *vhi)
231 {
232 int16_t target = v;
233 const int16_t *ep = lp+listSize;
234 const int16_t *tp;
235
236 /*
237 * Check first and last elements for out-of-bounds conditions.
238 */
239 if (target < lp[0]) {
240 *vlo = *vhi = 0;
241 return;
242 }
243 if (target >= ep[-1]) {
244 *vlo = *vhi = listSize - 1;
245 return;
246 }
247
248 /* look for value being near or between 2 values in list */
249 for (tp = lp; tp < ep; tp++) {
250 /*
251 * If value is close to the current value of the list
252 * then target is not between values, it is one of the values
253 */
254 if (*tp == target) {
255 *vlo = *vhi = tp - (const int16_t *) lp;
256 return;
257 }
258 /*
259 * Look for value being between current value and next value
260 * if so return these 2 values
261 */
262 if (target < tp[1]) {
263 *vlo = tp - (const int16_t *) lp;
264 *vhi = *vlo + 1;
265 return;
266 }
267 }
268 }
269
270 /*
271 * Fill the Vpdlist for indices Pmax-Pmin
272 */
273 static HAL_BOOL
ar2317FillVpdTable(uint32_t pdGainIdx,int16_t Pmin,int16_t Pmax,const int16_t * pwrList,const int16_t * VpdList,uint16_t numIntercepts,uint16_t retVpdList[][64])274 ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
275 const int16_t *pwrList, const int16_t *VpdList,
276 uint16_t numIntercepts, uint16_t retVpdList[][64])
277 {
278 uint16_t ii, jj, kk;
279 int16_t currPwr = (int16_t)(2*Pmin);
280 /* since Pmin is pwr*2 and pwrList is 4*pwr */
281 uint32_t idxL, idxR;
282
283 ii = 0;
284 jj = 0;
285
286 if (numIntercepts < 2)
287 return AH_FALSE;
288
289 while (ii <= (uint16_t)(Pmax - Pmin)) {
290 GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
291 &(idxL), &(idxR));
292 if (idxR < 1)
293 idxR = 1; /* extrapolate below */
294 if (idxL == (uint32_t)(numIntercepts - 1))
295 idxL = numIntercepts - 2; /* extrapolate above */
296 if (pwrList[idxL] == pwrList[idxR])
297 kk = VpdList[idxL];
298 else
299 kk = (uint16_t)
300 (((currPwr - pwrList[idxL])*VpdList[idxR]+
301 (pwrList[idxR] - currPwr)*VpdList[idxL])/
302 (pwrList[idxR] - pwrList[idxL]));
303 retVpdList[pdGainIdx][ii] = kk;
304 ii++;
305 currPwr += 2; /* half dB steps */
306 }
307
308 return AH_TRUE;
309 }
310
311 /*
312 * Returns interpolated or the scaled up interpolated value
313 */
314 static int16_t
interpolate_signed(uint16_t target,uint16_t srcLeft,uint16_t srcRight,int16_t targetLeft,int16_t targetRight)315 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
316 int16_t targetLeft, int16_t targetRight)
317 {
318 int16_t rv;
319
320 if (srcRight != srcLeft) {
321 rv = ((target - srcLeft)*targetRight +
322 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
323 } else {
324 rv = targetLeft;
325 }
326 return rv;
327 }
328
329 /*
330 * Uses the data points read from EEPROM to reconstruct the pdadc power table
331 * Called by ar2317SetPowerTable()
332 */
333 static int
ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal * ah,uint16_t channel,const RAW_DATA_STRUCT_2317 * pRawDataset,uint16_t pdGainOverlap_t2,int16_t * pMinCalPower,uint16_t pPdGainBoundaries[],uint16_t pPdGainValues[],uint16_t pPDADCValues[])334 ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
335 const RAW_DATA_STRUCT_2317 *pRawDataset,
336 uint16_t pdGainOverlap_t2,
337 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
338 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
339 {
340 struct ar2317State *priv = AR2317(ah);
341 #define VpdTable_L priv->vpdTable_L
342 #define VpdTable_R priv->vpdTable_R
343 #define VpdTable_I priv->vpdTable_I
344 /* XXX excessive stack usage? */
345 uint32_t ii, jj, kk;
346 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
347 uint32_t idxL, idxR;
348 uint32_t numPdGainsUsed = 0;
349 /*
350 * If desired to support -ve power levels in future, just
351 * change pwr_I_0 to signed 5-bits.
352 */
353 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
354 /* to accommodate -ve power levels later on. */
355 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
356 /* to accommodate -ve power levels later on */
357 uint16_t numVpd = 0;
358 uint16_t Vpd_step;
359 int16_t tmpVal ;
360 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
361
362 /* Get upper lower index */
363 GetLowerUpperIndex(channel, pRawDataset->pChannels,
364 pRawDataset->numChannels, &(idxL), &(idxR));
365
366 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
367 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
368 /* work backwards 'cause highest pdGain for lowest power */
369 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
370 if (numVpd > 0) {
371 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
372 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
373 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
374 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
375 }
376 Pmin_t2[numPdGainsUsed] = (int16_t)
377 (Pmin_t2[numPdGainsUsed] / 2);
378 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
379 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
380 Pmax_t2[numPdGainsUsed] =
381 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
382 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
383 ar2317FillVpdTable(
384 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
385 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
386 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
387 );
388 ar2317FillVpdTable(
389 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
390 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
391 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
392 );
393 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
394 VpdTable_I[numPdGainsUsed][kk] =
395 interpolate_signed(
396 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
397 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
398 }
399 /* fill VpdTable_I for this pdGain */
400 numPdGainsUsed++;
401 }
402 /* if this pdGain is used */
403 }
404
405 *pMinCalPower = Pmin_t2[0];
406 kk = 0; /* index for the final table */
407 for (ii = 0; ii < numPdGainsUsed; ii++) {
408 if (ii == (numPdGainsUsed - 1))
409 pPdGainBoundaries[ii] = Pmax_t2[ii] +
410 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
411 else
412 pPdGainBoundaries[ii] = (uint16_t)
413 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
414 if (pPdGainBoundaries[ii] > 63) {
415 HALDEBUG(ah, HAL_DEBUG_ANY,
416 "%s: clamp pPdGainBoundaries[%d] %d\n",
417 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
418 pPdGainBoundaries[ii] = 63;
419 }
420
421 /* Find starting index for this pdGain */
422 if (ii == 0)
423 ss = 0; /* for the first pdGain, start from index 0 */
424 else
425 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
426 pdGainOverlap_t2;
427 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
428 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
429 /*
430 *-ve ss indicates need to extrapolate data below for this pdGain
431 */
432 while (ss < 0) {
433 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
434 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
435 ss++;
436 }
437
438 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
439 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
440 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
441
442 while (ss < (int16_t)maxIndex)
443 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
444
445 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
446 VpdTable_I[ii][sizeCurrVpdTable-2]);
447 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
448 /*
449 * for last gain, pdGainBoundary == Pmax_t2, so will
450 * have to extrapolate
451 */
452 if (tgtIndex > maxIndex) { /* need to extrapolate above */
453 while(ss < (int16_t)tgtIndex) {
454 tmpVal = (uint16_t)
455 (VpdTable_I[ii][sizeCurrVpdTable-1] +
456 (ss-maxIndex)*Vpd_step);
457 pPDADCValues[kk++] = (tmpVal > 127) ?
458 127 : tmpVal;
459 ss++;
460 }
461 } /* extrapolated above */
462 } /* for all pdGainUsed */
463
464 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
465 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
466 ii++;
467 }
468 while (kk < 128) {
469 pPDADCValues[kk] = pPDADCValues[kk-1];
470 kk++;
471 }
472
473 return numPdGainsUsed;
474 #undef VpdTable_L
475 #undef VpdTable_R
476 #undef VpdTable_I
477 }
478
479 static HAL_BOOL
ar2317SetPowerTable(struct ath_hal * ah,int16_t * minPower,int16_t * maxPower,const struct ieee80211_channel * chan,uint16_t * rfXpdGain)480 ar2317SetPowerTable(struct ath_hal *ah,
481 int16_t *minPower, int16_t *maxPower,
482 const struct ieee80211_channel *chan,
483 uint16_t *rfXpdGain)
484 {
485 struct ath_hal_5212 *ahp = AH5212(ah);
486 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
487 const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
488 uint16_t pdGainOverlap_t2;
489 int16_t minCalPower2317_t2;
490 uint16_t *pdadcValues = ahp->ah_pcdacTable;
491 uint16_t gainBoundaries[4];
492 uint32_t reg32, regoffset;
493 int i, numPdGainsUsed;
494 #ifndef AH_USE_INIPDGAIN
495 uint32_t tpcrg1;
496 #endif
497
498 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
499 __func__, chan->ic_freq, chan->ic_flags);
500
501 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
502 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
503 else if (IEEE80211_IS_CHAN_B(chan))
504 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
505 else {
506 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
507 return AH_FALSE;
508 }
509
510 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
511 AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
512
513 numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
514 chan->channel, pRawDataset, pdGainOverlap_t2,
515 &minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
516 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
517
518 #ifdef AH_USE_INIPDGAIN
519 /*
520 * Use pd_gains curve from eeprom; Atheros always uses
521 * the default curve from the ini file but some vendors
522 * (e.g. Zcomax) want to override this curve and not
523 * honoring their settings results in tx power 5dBm low.
524 */
525 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
526 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
527 #else
528 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
529 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
530 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
531 switch (numPdGainsUsed) {
532 case 3:
533 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
534 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
535 /* fall thru... */
536 case 2:
537 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
538 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
539 /* fall thru... */
540 case 1:
541 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
542 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
543 break;
544 }
545 #ifdef AH_DEBUG
546 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
547 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
548 "pd_gains (default 0x%x, calculated 0x%x)\n",
549 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
550 #endif
551 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
552 #endif
553
554 /*
555 * Note the pdadc table may not start at 0 dBm power, could be
556 * negative or greater than 0. Need to offset the power
557 * values by the amount of minPower for griffin
558 */
559 if (minCalPower2317_t2 != 0)
560 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
561 else
562 ahp->ah_txPowerIndexOffset = 0;
563
564 /* Finally, write the power values into the baseband power table */
565 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
566 for (i = 0; i < 32; i++) {
567 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
568 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
569 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
570 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
571 OS_REG_WRITE(ah, regoffset, reg32);
572 regoffset += 4;
573 }
574
575 OS_REG_WRITE(ah, AR_PHY_TPCRG5,
576 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
577 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
578 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
579 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
580 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
581
582 return AH_TRUE;
583 }
584
585 static int16_t
ar2317GetMinPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2317 * data)586 ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
587 {
588 uint32_t ii,jj;
589 uint16_t Pmin=0,numVpd;
590
591 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
592 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
593 /* work backwards 'cause highest pdGain for lowest power */
594 numVpd = data->pDataPerPDGain[jj].numVpd;
595 if (numVpd > 0) {
596 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
597 return(Pmin);
598 }
599 }
600 return(Pmin);
601 }
602
603 static int16_t
ar2317GetMaxPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2317 * data)604 ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
605 {
606 uint32_t ii;
607 uint16_t Pmax=0,numVpd;
608 uint16_t vpdmax;
609
610 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
611 /* work forwards cuase lowest pdGain for highest power */
612 numVpd = data->pDataPerPDGain[ii].numVpd;
613 if (numVpd > 0) {
614 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
615 vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1];
616 return(Pmax);
617 }
618 }
619 return(Pmax);
620 }
621
622 static HAL_BOOL
ar2317GetChannelMaxMinPower(struct ath_hal * ah,const struct ieee80211_channel * chan,int16_t * maxPow,int16_t * minPow)623 ar2317GetChannelMaxMinPower(struct ath_hal *ah,
624 const struct ieee80211_channel *chan,
625 int16_t *maxPow, int16_t *minPow)
626 {
627 uint16_t freq = chan->ic_freq; /* NB: never mapped */
628 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
629 const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
630 const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
631 uint16_t numChannels;
632 int totalD,totalF, totalMin,last, i;
633
634 *maxPow = 0;
635
636 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
637 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
638 else if (IEEE80211_IS_CHAN_B(chan))
639 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
640 else
641 return(AH_FALSE);
642
643 numChannels = pRawDataset->numChannels;
644 data = pRawDataset->pDataPerChannel;
645
646 /* Make sure the channel is in the range of the TP values
647 * (freq piers)
648 */
649 if (numChannels < 1)
650 return(AH_FALSE);
651
652 if ((freq < data[0].channelValue) ||
653 (freq > data[numChannels-1].channelValue)) {
654 if (freq < data[0].channelValue) {
655 *maxPow = ar2317GetMaxPower(ah, &data[0]);
656 *minPow = ar2317GetMinPower(ah, &data[0]);
657 return(AH_TRUE);
658 } else {
659 *maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
660 *minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
661 return(AH_TRUE);
662 }
663 }
664
665 /* Linearly interpolate the power value now */
666 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
667 last = i++);
668 totalD = data[i].channelValue - data[last].channelValue;
669 if (totalD > 0) {
670 totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
671 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
672 ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
673 totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
674 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
675 ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
676 return(AH_TRUE);
677 } else {
678 if (freq == data[i].channelValue) {
679 *maxPow = ar2317GetMaxPower(ah, &data[i]);
680 *minPow = ar2317GetMinPower(ah, &data[i]);
681 return(AH_TRUE);
682 } else
683 return(AH_FALSE);
684 }
685 }
686
687 /*
688 * Free memory for analog bank scratch buffers
689 */
690 static void
ar2317RfDetach(struct ath_hal * ah)691 ar2317RfDetach(struct ath_hal *ah)
692 {
693 struct ath_hal_5212 *ahp = AH5212(ah);
694
695 HALASSERT(ahp->ah_rfHal != AH_NULL);
696 ath_hal_free(ahp->ah_rfHal);
697 ahp->ah_rfHal = AH_NULL;
698 }
699
700 /*
701 * Allocate memory for analog bank scratch buffers
702 * Scratch Buffer will be reinitialized every reset so no need to zero now
703 */
704 static HAL_BOOL
ar2317RfAttach(struct ath_hal * ah,HAL_STATUS * status)705 ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
706 {
707 struct ath_hal_5212 *ahp = AH5212(ah);
708 struct ar2317State *priv;
709
710 HALASSERT(ah->ah_magic == AR5212_MAGIC);
711
712 HALASSERT(ahp->ah_rfHal == AH_NULL);
713 priv = ath_hal_malloc(sizeof(struct ar2317State));
714 if (priv == AH_NULL) {
715 HALDEBUG(ah, HAL_DEBUG_ANY,
716 "%s: cannot allocate private state\n", __func__);
717 *status = HAL_ENOMEM; /* XXX */
718 return AH_FALSE;
719 }
720 priv->base.rfDetach = ar2317RfDetach;
721 priv->base.writeRegs = ar2317WriteRegs;
722 priv->base.getRfBank = ar2317GetRfBank;
723 priv->base.setChannel = ar2317SetChannel;
724 priv->base.setRfRegs = ar2317SetRfRegs;
725 priv->base.setPowerTable = ar2317SetPowerTable;
726 priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
727 priv->base.getNfAdjust = ar5212GetNfAdjust;
728
729 ahp->ah_pcdacTable = priv->pcdacTable;
730 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
731 ahp->ah_rfHal = &priv->base;
732
733 return AH_TRUE;
734 }
735
736 static HAL_BOOL
ar2317Probe(struct ath_hal * ah)737 ar2317Probe(struct ath_hal *ah)
738 {
739 return IS_2317(ah);
740 }
741 AH_RF(RF2317, ar2317Probe, ar2317RfAttach);
742