xref: /freebsd/sys/dev/acpica/acpi_cpu.c (revision 53880f09fb1b485cf5c4af2b81081112e0c7cea3)
1 /*-
2  * Copyright (c) 2003-2005 Nate Lawson (SDG)
3  * Copyright (c) 2001 Michael Smith
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 #include "opt_acpi.h"
30 #include <sys/param.h>
31 #include <sys/bus.h>
32 #include <sys/cpu.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/module.h>
36 #include <sys/pcpu.h>
37 #include <sys/power.h>
38 #include <sys/proc.h>
39 #include <sys/sched.h>
40 #include <sys/sbuf.h>
41 #include <sys/smp.h>
42 
43 #include <dev/pci/pcivar.h>
44 #include <machine/atomic.h>
45 #include <machine/bus.h>
46 #if defined(__amd64__) || defined(__i386__)
47 #include <machine/clock.h>
48 #include <machine/specialreg.h>
49 #include <machine/md_var.h>
50 #endif
51 #include <sys/rman.h>
52 
53 #include <contrib/dev/acpica/include/acpi.h>
54 #include <contrib/dev/acpica/include/accommon.h>
55 
56 #include <dev/acpica/acpivar.h>
57 
58 /*
59  * Support for ACPI Processor devices, including C[1-3] sleep states.
60  */
61 
62 /* Hooks for the ACPI CA debugging infrastructure */
63 #define _COMPONENT	ACPI_PROCESSOR
64 ACPI_MODULE_NAME("PROCESSOR")
65 
66 struct acpi_cx {
67     struct resource	*p_lvlx;	/* Register to read to enter state. */
68     uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
69     uint32_t		 trans_lat;	/* Transition latency (usec). */
70     uint32_t		 power;		/* Power consumed (mW). */
71     int			 res_type;	/* Resource type for p_lvlx. */
72     int			 res_rid;	/* Resource ID for p_lvlx. */
73     bool		 do_mwait;
74     uint32_t		 mwait_hint;
75     bool		 mwait_hw_coord;
76     bool		 mwait_bm_avoidance;
77 };
78 #define MAX_CX_STATES	 8
79 
80 struct acpi_cpu_softc {
81     device_t		 cpu_dev;
82     ACPI_HANDLE		 cpu_handle;
83     struct pcpu		*cpu_pcpu;
84     uint32_t		 cpu_acpi_id;	/* ACPI processor id */
85     uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
86     uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
87     struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
88     int			 cpu_cx_count;	/* Number of valid Cx states. */
89     int			 cpu_prev_sleep;/* Last idle sleep duration. */
90     int			 cpu_features;	/* Child driver supported features. */
91     /* Runtime state. */
92     int			 cpu_non_c2;	/* Index of lowest non-C2 state. */
93     int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
94     u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
95     uint64_t		 cpu_cx_duration[MAX_CX_STATES];/* Cx cumulative sleep */
96     /* Values for sysctl. */
97     struct sysctl_ctx_list cpu_sysctl_ctx;
98     struct sysctl_oid	*cpu_sysctl_tree;
99     int			 cpu_cx_lowest;
100     int			 cpu_cx_lowest_lim;
101     int			 cpu_disable_idle; /* Disable entry to idle function */
102     char 		 cpu_cx_supported[64];
103 };
104 
105 struct acpi_cpu_device {
106     struct resource_list	ad_rl;
107 };
108 
109 #define CPU_GET_REG(reg, width) 					\
110     (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
111 		      rman_get_bushandle((reg)), 0))
112 #define CPU_SET_REG(reg, width, val)					\
113     (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
114 		       rman_get_bushandle((reg)), 0, (val)))
115 
116 #define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
117 
118 #define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
119 #define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
120 
121 #define PCI_VENDOR_INTEL	0x8086
122 #define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
123 #define PCI_REVISION_A_STEP	0
124 #define PCI_REVISION_B_STEP	1
125 #define PCI_REVISION_4E		2
126 #define PCI_REVISION_4M		3
127 #define PIIX4_DEVACTB_REG	0x58
128 #define PIIX4_BRLD_EN_IRQ0	(1<<0)
129 #define PIIX4_BRLD_EN_IRQ	(1<<1)
130 #define PIIX4_BRLD_EN_IRQ8	(1<<5)
131 #define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
132 #define PIIX4_PCNTRL_BST_EN	(1<<10)
133 
134 #define	CST_FFH_VENDOR_INTEL	1
135 #define	CST_FFH_VENDOR_AMD	2
136 #define	CST_FFH_INTEL_CL_C1IO	1
137 #define	CST_FFH_INTEL_CL_MWAIT	2
138 #define	CST_FFH_MWAIT_HW_COORD	0x0001
139 #define	CST_FFH_MWAIT_BM_AVOID	0x0002
140 
141 #define	CPUDEV_DEVICE_ID	"ACPI0007"
142 
143 /* Knob to disable acpi_cpu devices */
144 bool acpi_cpu_disabled = false;
145 
146 /* Platform hardware resource information. */
147 static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
148 static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
149 static int		 cpu_quirks;	/* Indicate any hardware bugs. */
150 
151 /* Values for sysctl. */
152 static struct sysctl_ctx_list cpu_sysctl_ctx;
153 static struct sysctl_oid *cpu_sysctl_tree;
154 static int		 cpu_cx_generic;
155 static int		 cpu_cx_lowest_lim;
156 #if defined(__i386__) || defined(__amd64__)
157 static bool		 cppc_notify;
158 #endif
159 
160 static struct acpi_cpu_softc **cpu_softc;
161 ACPI_SERIAL_DECL(cpu, "ACPI CPU");
162 
163 static int	acpi_cpu_probe(device_t dev);
164 static int	acpi_cpu_attach(device_t dev);
165 static int	acpi_cpu_suspend(device_t dev);
166 static int	acpi_cpu_resume(device_t dev);
167 static int	acpi_pcpu_get_id(device_t dev, uint32_t acpi_id,
168 		    u_int *cpu_id);
169 static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
170 static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
171 		    int unit);
172 static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
173 		    uintptr_t *result);
174 static int	acpi_cpu_shutdown(device_t dev);
175 static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
176 static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
177 static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
178 static void	acpi_cpu_startup(void *arg);
179 static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
180 static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
181 #if defined(__i386__) || defined(__amd64__)
182 static void	acpi_cpu_idle(sbintime_t sbt);
183 #endif
184 static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
185 static void	acpi_cpu_quirks(void);
186 static void	acpi_cpu_quirks_piix4(void);
187 static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
188 static int	acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS);
189 static int	acpi_cpu_duration_counters_sysctl(SYSCTL_HANDLER_ARGS);
190 static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
191 static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
192 static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
193 #if defined(__i386__) || defined(__amd64__)
194 static int	acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS);
195 #endif
196 
197 static device_method_t acpi_cpu_methods[] = {
198     /* Device interface */
199     DEVMETHOD(device_probe,	acpi_cpu_probe),
200     DEVMETHOD(device_attach,	acpi_cpu_attach),
201     DEVMETHOD(device_detach,	bus_generic_detach),
202     DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
203     DEVMETHOD(device_suspend,	acpi_cpu_suspend),
204     DEVMETHOD(device_resume,	acpi_cpu_resume),
205 
206     /* Bus interface */
207     DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
208     DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
209     DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
210     DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
211     DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
212     DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
213     DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
214     DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
215     DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
216     DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
217     DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
218 
219     DEVMETHOD_END
220 };
221 
222 static driver_t acpi_cpu_driver = {
223     "cpu",
224     acpi_cpu_methods,
225     sizeof(struct acpi_cpu_softc),
226 };
227 
228 DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, 0, 0);
229 MODULE_DEPEND(cpu, acpi, 1, 1, 1);
230 
231 static int
acpi_cpu_probe(device_t dev)232 acpi_cpu_probe(device_t dev)
233 {
234     static char		   *cpudev_ids[] = { CPUDEV_DEVICE_ID, NULL };
235     int			   acpi_id, cpu_id;
236     ACPI_BUFFER		   buf;
237     ACPI_HANDLE		   handle;
238     ACPI_OBJECT		   *obj;
239     ACPI_STATUS		   status;
240     ACPI_OBJECT_TYPE	   type;
241 
242     if (acpi_disabled("cpu") || acpi_cpu_disabled)
243 	return (ENXIO);
244     type = acpi_get_type(dev);
245     if (type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_DEVICE)
246 	return (ENXIO);
247     if (type == ACPI_TYPE_DEVICE &&
248 	ACPI_ID_PROBE(device_get_parent(dev), dev, cpudev_ids, NULL) >= 0)
249 	return (ENXIO);
250 
251     handle = acpi_get_handle(dev);
252     if (cpu_softc == NULL)
253 	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
254 	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
255 
256     if (type == ACPI_TYPE_PROCESSOR) {
257 	/* Get our Processor object. */
258 	buf.Pointer = NULL;
259 	buf.Length = ACPI_ALLOCATE_BUFFER;
260 	status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
261 	if (ACPI_FAILURE(status)) {
262 	    device_printf(dev, "probe failed to get Processor obj - %s\n",
263 		AcpiFormatException(status));
264 	    return (ENXIO);
265 	}
266 	obj = (ACPI_OBJECT *)buf.Pointer;
267 	if (obj->Type != ACPI_TYPE_PROCESSOR) {
268 	    device_printf(dev, "Processor object has bad type %d\n",
269 		obj->Type);
270 	    AcpiOsFree(obj);
271 	    return (ENXIO);
272 	}
273 
274 	/*
275 	 * Find the processor associated with our unit.  We could use the
276 	 * ProcId as a key, however, some boxes do not have the same values
277 	 * in their Processor object as the ProcId values in the MADT.
278 	 */
279 	acpi_id = obj->Processor.ProcId;
280 	AcpiOsFree(obj);
281     } else {
282 	status = acpi_GetInteger(handle, "_UID", &acpi_id);
283 	if (ACPI_FAILURE(status)) {
284 	    device_printf(dev, "Device object has bad value - %s\n",
285 		AcpiFormatException(status));
286 	    return (ENXIO);
287 	}
288     }
289     if (acpi_pcpu_get_id(dev, acpi_id, &cpu_id) != 0) {
290 	if (bootverbose && (type != ACPI_TYPE_PROCESSOR || acpi_id != 255))
291 	    printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
292 		acpi_name(acpi_get_handle(dev)), acpi_id);
293 	return (ENXIO);
294     }
295 
296     if (device_set_unit(dev, cpu_id) != 0)
297 	return (ENXIO);
298 
299     device_set_desc(dev, "ACPI CPU");
300 
301     if (!bootverbose && device_get_unit(dev) != 0) {
302 	    device_quiet(dev);
303 	    device_quiet_children(dev);
304     }
305 
306     return (BUS_PROBE_DEFAULT);
307 }
308 
309 static int
acpi_cpu_attach(device_t dev)310 acpi_cpu_attach(device_t dev)
311 {
312     ACPI_BUFFER		   buf;
313     ACPI_OBJECT		   arg, *obj;
314     ACPI_OBJECT_LIST	   arglist;
315     struct pcpu		   *pcpu_data;
316     struct acpi_cpu_softc *sc;
317     struct acpi_softc	  *acpi_sc;
318     ACPI_STATUS		   status;
319     u_int		   features;
320     int			   cpu_id, drv_count, i;
321     driver_t 		  **drivers;
322     uint32_t		   cap_set[3];
323 
324     /* UUID needed by _OSC evaluation */
325     static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
326 				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
327 				       0x58, 0x71, 0x39, 0x53 };
328 
329     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
330 
331     sc = device_get_softc(dev);
332     sc->cpu_dev = dev;
333     sc->cpu_handle = acpi_get_handle(dev);
334     cpu_id = device_get_unit(dev);
335     cpu_softc[cpu_id] = sc;
336     pcpu_data = pcpu_find(cpu_id);
337     pcpu_data->pc_device = dev;
338     sc->cpu_pcpu = pcpu_data;
339     cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
340     cpu_cst_cnt = AcpiGbl_FADT.CstControl;
341 
342     if (acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) {
343 	buf.Pointer = NULL;
344 	buf.Length = ACPI_ALLOCATE_BUFFER;
345 	status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
346 	if (ACPI_FAILURE(status)) {
347 	    device_printf(dev, "attach failed to get Processor obj - %s\n",
348 		AcpiFormatException(status));
349 	    return (ENXIO);
350 	}
351 	obj = (ACPI_OBJECT *)buf.Pointer;
352 	sc->cpu_p_blk = obj->Processor.PblkAddress;
353 	sc->cpu_p_blk_len = obj->Processor.PblkLength;
354 	sc->cpu_acpi_id = obj->Processor.ProcId;
355 	AcpiOsFree(obj);
356     } else {
357 	KASSERT(acpi_get_type(dev) == ACPI_TYPE_DEVICE,
358 	    ("Unexpected ACPI object"));
359 	status = acpi_GetInteger(sc->cpu_handle, "_UID", &sc->cpu_acpi_id);
360 	if (ACPI_FAILURE(status)) {
361 	    device_printf(dev, "Device object has bad value - %s\n",
362 		AcpiFormatException(status));
363 	    return (ENXIO);
364 	}
365 	sc->cpu_p_blk = 0;
366 	sc->cpu_p_blk_len = 0;
367     }
368     ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
369 		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
370 
371     /*
372      * If this is the first cpu we attach, create and initialize the generic
373      * resources that will be used by all acpi cpu devices.
374      */
375     if (device_get_unit(dev) == 0) {
376 	/* Assume we won't be using generic Cx mode by default */
377 	cpu_cx_generic = FALSE;
378 
379 	/* Install hw.acpi.cpu sysctl tree */
380 	acpi_sc = acpi_device_get_parent_softc(dev);
381 	sysctl_ctx_init(&cpu_sysctl_ctx);
382 	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
383 	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
384 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "node for CPU children");
385 
386 #if defined(__i386__) || defined(__amd64__)
387 	/* Add sysctl handler to control registering for CPPC notifications */
388 	cppc_notify = 1;
389 	SYSCTL_ADD_BOOL(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
390 	    OID_AUTO, "cppc_notify", CTLFLAG_RDTUN | CTLFLAG_MPSAFE,
391 	    &cppc_notify, 0, "Register for CPPC Notifications");
392 #endif
393     }
394 
395     /*
396      * Before calling any CPU methods, collect child driver feature hints
397      * and notify ACPI of them.  We support unified SMP power control
398      * so advertise this ourselves.  Note this is not the same as independent
399      * SMP control where each CPU can have different settings.
400      */
401     sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 |
402       ACPI_CAP_C1_IO_HALT;
403 
404 #if defined(__i386__) || defined(__amd64__)
405     /*
406      * Ask for MWAIT modes if not disabled and interrupts work
407      * reasonable with MWAIT.
408      */
409     if (!acpi_disabled("mwait") && cpu_mwait_usable())
410 	sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE;
411 
412     /*
413      * Work around a lingering SMM bug which leads to freezes when handling
414      * CPPC notifications. Tell the SMM we will handle any CPPC notifications.
415      */
416     if ((cpu_power_eax & CPUTPM1_HWP_NOTIFICATION) && cppc_notify)
417 	    sc->cpu_features |= ACPI_CAP_INTR_CPPC;
418 #endif
419 
420     if (devclass_get_drivers(device_get_devclass(dev), &drivers,
421 	&drv_count) == 0) {
422 	for (i = 0; i < drv_count; i++) {
423 	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
424 		sc->cpu_features |= features;
425 	}
426 	free(drivers, M_TEMP);
427     }
428 
429     /*
430      * CPU capabilities are specified in
431      * Intel Processor Vendor-Specific ACPI Interface Specification.
432      */
433     if (sc->cpu_features) {
434 	cap_set[1] = sc->cpu_features;
435 	status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set,
436 	    cap_set, false);
437 	if (ACPI_SUCCESS(status)) {
438 	    if (cap_set[0] != 0)
439 		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
440 	}
441 	else {
442 	    arglist.Pointer = &arg;
443 	    arglist.Count = 1;
444 	    arg.Type = ACPI_TYPE_BUFFER;
445 	    arg.Buffer.Length = sizeof(cap_set);
446 	    arg.Buffer.Pointer = (uint8_t *)cap_set;
447 	    cap_set[0] = 1; /* revision */
448 	    cap_set[1] = 1; /* number of capabilities integers */
449 	    cap_set[2] = sc->cpu_features;
450 	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
451 	}
452     }
453 
454     /* Probe for Cx state support. */
455     acpi_cpu_cx_probe(sc);
456 
457     return (0);
458 }
459 
460 static void
acpi_cpu_postattach(void * unused __unused)461 acpi_cpu_postattach(void *unused __unused)
462 {
463     struct acpi_cpu_softc *sc;
464     int attached = 0, i;
465 
466     if (cpu_softc == NULL)
467 	return;
468 
469     bus_topo_lock();
470     CPU_FOREACH(i) {
471 	if ((sc = cpu_softc[i]) != NULL)
472 		bus_identify_children(sc->cpu_dev);
473     }
474     CPU_FOREACH(i) {
475 	if ((sc = cpu_softc[i]) != NULL) {
476 		bus_attach_children(sc->cpu_dev);
477 		attached = 1;
478 	}
479     }
480     bus_topo_unlock();
481 
482     if (attached) {
483 #ifdef EARLY_AP_STARTUP
484 	acpi_cpu_startup(NULL);
485 #else
486 	/* Queue post cpu-probing task handler */
487 	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
488 #endif
489     }
490 }
491 
492 SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
493     acpi_cpu_postattach, NULL);
494 
495 static void
disable_idle(struct acpi_cpu_softc * sc)496 disable_idle(struct acpi_cpu_softc *sc)
497 {
498     cpuset_t cpuset;
499 
500     CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
501     sc->cpu_disable_idle = TRUE;
502 
503     /*
504      * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
505      * Note that this code depends on the fact that the rendezvous IPI
506      * can not penetrate context where interrupts are disabled and acpi_cpu_idle
507      * is called and executed in such a context with interrupts being re-enabled
508      * right before return.
509      */
510     smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL,
511 	smp_no_rendezvous_barrier, NULL);
512 }
513 
514 static void
enable_idle(struct acpi_cpu_softc * sc)515 enable_idle(struct acpi_cpu_softc *sc)
516 {
517 
518     if (sc->cpu_cx_count > sc->cpu_non_c3 + 1 &&
519 	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0)
520 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
521     sc->cpu_disable_idle = FALSE;
522 }
523 
524 #if defined(__i386__) || defined(__amd64__)
525 static int
is_idle_disabled(struct acpi_cpu_softc * sc)526 is_idle_disabled(struct acpi_cpu_softc *sc)
527 {
528 
529     return (sc->cpu_disable_idle);
530 }
531 #endif
532 
533 /*
534  * Disable any entry to the idle function during suspend and re-enable it
535  * during resume.
536  */
537 static int
acpi_cpu_suspend(device_t dev)538 acpi_cpu_suspend(device_t dev)
539 {
540     int error;
541 
542     error = bus_generic_suspend(dev);
543     if (error)
544 	return (error);
545     disable_idle(device_get_softc(dev));
546     return (0);
547 }
548 
549 static int
acpi_cpu_resume(device_t dev)550 acpi_cpu_resume(device_t dev)
551 {
552 
553     enable_idle(device_get_softc(dev));
554     return (bus_generic_resume(dev));
555 }
556 
557 /*
558  * Find the processor associated with a given ACPI ID.
559  */
560 static int
acpi_pcpu_get_id(device_t dev,uint32_t acpi_id,u_int * cpu_id)561 acpi_pcpu_get_id(device_t dev, uint32_t acpi_id, u_int *cpu_id)
562 {
563     struct pcpu	*pc;
564     u_int	 i;
565 
566     CPU_FOREACH(i) {
567 	pc = pcpu_find(i);
568 	if (pc->pc_acpi_id == acpi_id) {
569 	    *cpu_id = pc->pc_cpuid;
570 	    return (0);
571 	}
572     }
573 
574     /*
575      * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
576      * UP box) use the ACPI ID from the first processor we find.
577      */
578     if (mp_ncpus == 1) {
579 	pc = pcpu_find(0);
580 	if (pc->pc_acpi_id == 0xffffffff)
581 	    pc->pc_acpi_id = acpi_id;
582 	*cpu_id = 0;
583 	return (0);
584     }
585 
586     return (ESRCH);
587 }
588 
589 static struct resource_list *
acpi_cpu_get_rlist(device_t dev,device_t child)590 acpi_cpu_get_rlist(device_t dev, device_t child)
591 {
592     struct acpi_cpu_device *ad;
593 
594     ad = device_get_ivars(child);
595     if (ad == NULL)
596 	return (NULL);
597     return (&ad->ad_rl);
598 }
599 
600 static device_t
acpi_cpu_add_child(device_t dev,u_int order,const char * name,int unit)601 acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
602 {
603     struct acpi_cpu_device *ad;
604     device_t child;
605 
606     if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
607 	return (NULL);
608 
609     resource_list_init(&ad->ad_rl);
610 
611     child = device_add_child_ordered(dev, order, name, unit);
612     if (child != NULL)
613 	device_set_ivars(child, ad);
614     else
615 	free(ad, M_TEMP);
616     return (child);
617 }
618 
619 static int
acpi_cpu_read_ivar(device_t dev,device_t child,int index,uintptr_t * result)620 acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
621 {
622     struct acpi_cpu_softc *sc;
623 
624     sc = device_get_softc(dev);
625     switch (index) {
626     case ACPI_IVAR_HANDLE:
627 	*result = (uintptr_t)sc->cpu_handle;
628 	break;
629     case CPU_IVAR_PCPU:
630 	*result = (uintptr_t)sc->cpu_pcpu;
631 	break;
632 #if defined(__amd64__) || defined(__i386__)
633     case CPU_IVAR_NOMINAL_MHZ:
634 	if (tsc_is_invariant) {
635 	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
636 	    break;
637 	}
638 	/* FALLTHROUGH */
639 #endif
640     default:
641 	return (ENOENT);
642     }
643     return (0);
644 }
645 
646 static int
acpi_cpu_shutdown(device_t dev)647 acpi_cpu_shutdown(device_t dev)
648 {
649     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
650 
651     /* Allow children to shutdown first. */
652     bus_generic_shutdown(dev);
653 
654     /*
655      * Disable any entry to the idle function.
656      */
657     disable_idle(device_get_softc(dev));
658 
659     /*
660      * CPU devices are not truly detached and remain referenced,
661      * so their resources are not freed.
662      */
663 
664     return_VALUE (0);
665 }
666 
667 static void
acpi_cpu_cx_probe(struct acpi_cpu_softc * sc)668 acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
669 {
670     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
671 
672     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
673     sc->cpu_prev_sleep = 1000000;
674     sc->cpu_cx_lowest = 0;
675     sc->cpu_cx_lowest_lim = 0;
676 
677     /*
678      * Check for the ACPI 2.0 _CST sleep states object. If we can't find
679      * any, we'll revert to generic FADT/P_BLK Cx control method which will
680      * be handled by acpi_cpu_startup. We need to defer to after having
681      * probed all the cpus in the system before probing for generic Cx
682      * states as we may already have found cpus with valid _CST packages
683      */
684     if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
685 	/*
686 	 * We were unable to find a _CST package for this cpu or there
687 	 * was an error parsing it. Switch back to generic mode.
688 	 */
689 	cpu_cx_generic = TRUE;
690 	if (bootverbose)
691 	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
692     }
693 
694     /*
695      * TODO: _CSD Package should be checked here.
696      */
697 }
698 
699 static void
acpi_cpu_generic_cx_probe(struct acpi_cpu_softc * sc)700 acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
701 {
702     ACPI_GENERIC_ADDRESS	 gas;
703     struct acpi_cx		*cx_ptr;
704 
705     sc->cpu_cx_count = 0;
706     cx_ptr = sc->cpu_cx_states;
707 
708     /* Use initial sleep value of 1 sec. to start with lowest idle state. */
709     sc->cpu_prev_sleep = 1000000;
710 
711     /* C1 has been required since just after ACPI 1.0 */
712     cx_ptr->type = ACPI_STATE_C1;
713     cx_ptr->trans_lat = 0;
714     cx_ptr++;
715     sc->cpu_non_c2 = sc->cpu_cx_count;
716     sc->cpu_non_c3 = sc->cpu_cx_count;
717     sc->cpu_cx_count++;
718 
719     /*
720      * The spec says P_BLK must be 6 bytes long.  However, some systems
721      * use it to indicate a fractional set of features present so we
722      * take 5 as C2.  Some may also have a value of 7 to indicate
723      * another C3 but most use _CST for this (as required) and having
724      * "only" C1-C3 is not a hardship.
725      */
726     if (sc->cpu_p_blk_len < 5)
727 	return;
728 
729     /* Validate and allocate resources for C2 (P_LVL2). */
730     gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
731     gas.BitWidth = 8;
732     if (AcpiGbl_FADT.C2Latency <= 100) {
733 	gas.Address = sc->cpu_p_blk + 4;
734 	cx_ptr->res_rid = 0;
735 	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
736 	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
737 	if (cx_ptr->p_lvlx != NULL) {
738 	    cx_ptr->type = ACPI_STATE_C2;
739 	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
740 	    cx_ptr++;
741 	    sc->cpu_non_c3 = sc->cpu_cx_count;
742 	    sc->cpu_cx_count++;
743 	}
744     }
745     if (sc->cpu_p_blk_len < 6)
746 	return;
747 
748     /* Validate and allocate resources for C3 (P_LVL3). */
749     if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
750 	gas.Address = sc->cpu_p_blk + 5;
751 	cx_ptr->res_rid = 1;
752 	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
753 	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
754 	if (cx_ptr->p_lvlx != NULL) {
755 	    cx_ptr->type = ACPI_STATE_C3;
756 	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
757 	    cx_ptr++;
758 	    sc->cpu_cx_count++;
759 	}
760     }
761 }
762 
763 #if defined(__i386__) || defined(__amd64__)
764 static void
acpi_cpu_cx_cst_mwait(struct acpi_cx * cx_ptr,uint64_t address,int accsize)765 acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize)
766 {
767 
768 	cx_ptr->do_mwait = true;
769 	cx_ptr->mwait_hint = address & 0xffffffff;
770 	cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0;
771 	cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0;
772 }
773 #endif
774 
775 static void
acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev,struct acpi_cx * cx_ptr)776 acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr)
777 {
778 
779 	if (cx_ptr->p_lvlx == NULL)
780 		return;
781 	bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
782 	    cx_ptr->p_lvlx);
783 	cx_ptr->p_lvlx = NULL;
784 }
785 
786 /*
787  * Parse a _CST package and set up its Cx states.  Since the _CST object
788  * can change dynamically, our notify handler may call this function
789  * to clean up and probe the new _CST package.
790  */
791 static int
acpi_cpu_cx_cst(struct acpi_cpu_softc * sc)792 acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
793 {
794     struct	 acpi_cx *cx_ptr;
795     ACPI_STATUS	 status;
796     ACPI_BUFFER	 buf;
797     ACPI_OBJECT	*top;
798     ACPI_OBJECT	*pkg;
799     uint32_t	 count;
800     int		 i;
801 #if defined(__i386__) || defined(__amd64__)
802     uint64_t	 address;
803     int		 vendor, class, accsize;
804 #endif
805 
806     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
807 
808     buf.Pointer = NULL;
809     buf.Length = ACPI_ALLOCATE_BUFFER;
810     status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
811     if (ACPI_FAILURE(status))
812 	return (ENXIO);
813 
814     /* _CST is a package with a count and at least one Cx package. */
815     top = (ACPI_OBJECT *)buf.Pointer;
816     if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
817 	device_printf(sc->cpu_dev, "invalid _CST package\n");
818 	AcpiOsFree(buf.Pointer);
819 	return (ENXIO);
820     }
821     if (count != top->Package.Count - 1) {
822 	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
823 	       count, top->Package.Count - 1);
824 	count = top->Package.Count - 1;
825     }
826     if (count > MAX_CX_STATES) {
827 	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
828 	count = MAX_CX_STATES;
829     }
830 
831     sc->cpu_non_c2 = 0;
832     sc->cpu_non_c3 = 0;
833     sc->cpu_cx_count = 0;
834     cx_ptr = sc->cpu_cx_states;
835 
836     /*
837      * C1 has been required since just after ACPI 1.0.
838      * Reserve the first slot for it.
839      */
840     cx_ptr->type = ACPI_STATE_C0;
841     cx_ptr++;
842     sc->cpu_cx_count++;
843 
844     /* Set up all valid states. */
845     for (i = 0; i < count; i++) {
846 	pkg = &top->Package.Elements[i + 1];
847 	if (!ACPI_PKG_VALID(pkg, 4) ||
848 	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
849 	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
850 	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
851 	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
852 	    continue;
853 	}
854 
855 	/* Validate the state to see if we should use it. */
856 	switch (cx_ptr->type) {
857 	case ACPI_STATE_C1:
858 	    acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
859 #if defined(__i386__) || defined(__amd64__)
860 	    if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
861 	      &accsize) == 0 &&
862 		(vendor == CST_FFH_VENDOR_INTEL || vendor == CST_FFH_VENDOR_AMD)) {
863 		if (class == CST_FFH_INTEL_CL_C1IO) {
864 		    /* C1 I/O then Halt */
865 		    cx_ptr->res_rid = sc->cpu_cx_count;
866 		    bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT,
867 		      cx_ptr->res_rid, address, 1);
868 		    cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev,
869 		      SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE |
870 		      RF_SHAREABLE);
871 		    if (cx_ptr->p_lvlx == NULL) {
872 			bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT,
873 			  cx_ptr->res_rid);
874 			device_printf(sc->cpu_dev,
875 			  "C1 I/O failed to allocate port %d, "
876 			  "degrading to C1 Halt", (int)address);
877 		    }
878 		} else if (class == CST_FFH_INTEL_CL_MWAIT) {
879 		    if (vendor == CST_FFH_VENDOR_INTEL ||
880 			(vendor == CST_FFH_VENDOR_AMD && cpu_mon_mwait_edx != 0))
881 		        acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
882 		}
883 	    }
884 #endif
885 	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
886 		/* This is the first C1 state.  Use the reserved slot. */
887 		sc->cpu_cx_states[0] = *cx_ptr;
888 	    } else {
889 		sc->cpu_non_c2 = sc->cpu_cx_count;
890 		sc->cpu_non_c3 = sc->cpu_cx_count;
891 		cx_ptr++;
892 		sc->cpu_cx_count++;
893 	    }
894 	    continue;
895 	case ACPI_STATE_C2:
896 	    sc->cpu_non_c3 = sc->cpu_cx_count;
897 	    break;
898 	case ACPI_STATE_C3:
899 	default:
900 	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
901 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
902 				 "acpi_cpu%d: C3[%d] not available.\n",
903 				 device_get_unit(sc->cpu_dev), i));
904 		continue;
905 	    }
906 	    break;
907 	}
908 
909 	/* Free up any previous register. */
910 	acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
911 
912 	/* Allocate the control register for C2 or C3. */
913 #if defined(__i386__) || defined(__amd64__)
914 	if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
915 	  &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL &&
916 	  class == CST_FFH_INTEL_CL_MWAIT) {
917 	    /* Native C State Instruction use (mwait) */
918 	    acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
919 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
920 	      "acpi_cpu%d: Got C%d/mwait - %d latency\n",
921 	      device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat));
922 	    cx_ptr++;
923 	    sc->cpu_cx_count++;
924 	} else
925 #endif
926 	{
927 	    cx_ptr->res_rid = sc->cpu_cx_count;
928 	    acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type,
929 		&cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE);
930 	    if (cx_ptr->p_lvlx) {
931 		cx_ptr->do_mwait = false;
932 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
933 		     "acpi_cpu%d: Got C%d - %d latency\n",
934 		     device_get_unit(sc->cpu_dev), cx_ptr->type,
935 		     cx_ptr->trans_lat));
936 		cx_ptr++;
937 		sc->cpu_cx_count++;
938 	    }
939 	}
940     }
941     AcpiOsFree(buf.Pointer);
942 
943     /* If C1 state was not found, we need one now. */
944     cx_ptr = sc->cpu_cx_states;
945     if (cx_ptr->type == ACPI_STATE_C0) {
946 	cx_ptr->type = ACPI_STATE_C1;
947 	cx_ptr->trans_lat = 0;
948     }
949 
950     return (0);
951 }
952 
953 /*
954  * Call this *after* all CPUs have been attached.
955  */
956 static void
acpi_cpu_startup(void * arg)957 acpi_cpu_startup(void *arg)
958 {
959     struct acpi_cpu_softc *sc;
960     int i;
961 
962     /*
963      * Setup any quirks that might necessary now that we have probed
964      * all the CPUs
965      */
966     acpi_cpu_quirks();
967 
968     if (cpu_cx_generic) {
969 	/*
970 	 * We are using generic Cx mode, probe for available Cx states
971 	 * for all processors.
972 	 */
973 	CPU_FOREACH(i) {
974 	    if ((sc = cpu_softc[i]) != NULL)
975 		acpi_cpu_generic_cx_probe(sc);
976 	}
977     } else {
978 	/*
979 	 * We are using _CST mode, remove C3 state if necessary.
980 	 * As we now know for sure that we will be using _CST mode
981 	 * install our notify handler.
982 	 */
983 	CPU_FOREACH(i) {
984 	    if ((sc = cpu_softc[i]) == NULL)
985 		continue;
986 	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
987 		sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
988 	    }
989 	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
990 		acpi_cpu_notify, sc);
991 	}
992     }
993 
994     /* Perform Cx final initialization. */
995     CPU_FOREACH(i) {
996 	if ((sc = cpu_softc[i]) != NULL)
997 	    acpi_cpu_startup_cx(sc);
998     }
999 
1000     /* Add a sysctl handler to handle global Cx lowest setting */
1001     SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
1002 	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1003 	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
1004 	"Global lowest Cx sleep state to use");
1005 
1006     /* Take over idling from cpu_idle_default(). */
1007     cpu_cx_lowest_lim = 0;
1008     CPU_FOREACH(i) {
1009 	if ((sc = cpu_softc[i]) != NULL)
1010 	    enable_idle(sc);
1011     }
1012 #if defined(__i386__) || defined(__amd64__)
1013     cpu_idle_hook = acpi_cpu_idle;
1014 #endif
1015 }
1016 
1017 static void
acpi_cpu_cx_list(struct acpi_cpu_softc * sc)1018 acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
1019 {
1020     struct sbuf sb;
1021     int i;
1022 
1023     /*
1024      * Set up the list of Cx states
1025      */
1026     sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
1027 	SBUF_FIXEDLEN);
1028     for (i = 0; i < sc->cpu_cx_count; i++)
1029 	sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
1030 	    sc->cpu_cx_states[i].trans_lat);
1031     sbuf_trim(&sb);
1032     sbuf_finish(&sb);
1033 }
1034 
1035 static void
acpi_cpu_startup_cx(struct acpi_cpu_softc * sc)1036 acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
1037 {
1038     acpi_cpu_cx_list(sc);
1039 
1040     SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
1041 		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1042 		      OID_AUTO, "cx_supported", CTLFLAG_RD,
1043 		      sc->cpu_cx_supported, 0,
1044 		      "Cx/microsecond values for supported Cx states");
1045     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1046         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1047 	"cx_lowest", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
1048 	(void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
1049 	"lowest Cx sleep state to use");
1050     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1051         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1052 	"cx_usage", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1053 	(void *)sc, 0, acpi_cpu_usage_sysctl, "A",
1054 	"percent usage for each Cx state");
1055     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1056         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1057 	"cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1058 	(void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A",
1059 	"Cx sleep state counters");
1060     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1061         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1062 	"cx_duration_counters", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1063 	(void *)sc, 0, acpi_cpu_duration_counters_sysctl, "A",
1064 	"Cx sleep duration cumulative time");
1065 
1066 #if defined(__i386__) || defined(__amd64__)
1067     SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1068         SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)), OID_AUTO,
1069 	"cx_method", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
1070 	(void *)sc, 0, acpi_cpu_method_sysctl, "A", "Cx entrance methods");
1071 #endif
1072 
1073     /* Signal platform that we can handle _CST notification. */
1074     if (!cpu_cx_generic && cpu_cst_cnt != 0) {
1075 	ACPI_LOCK(acpi);
1076 	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
1077 	ACPI_UNLOCK(acpi);
1078     }
1079 }
1080 
1081 #if defined(__i386__) || defined(__amd64__)
1082 /*
1083  * Idle the CPU in the lowest state possible.  This function is called with
1084  * interrupts disabled.  Note that once it re-enables interrupts, a task
1085  * switch can occur so do not access shared data (i.e. the softc) after
1086  * interrupts are re-enabled.
1087  */
1088 static void
acpi_cpu_idle(sbintime_t sbt)1089 acpi_cpu_idle(sbintime_t sbt)
1090 {
1091     struct	acpi_cpu_softc *sc;
1092     struct	acpi_cx *cx_next;
1093     uint64_t	start_ticks, end_ticks;
1094     uint32_t	start_time, end_time;
1095     ACPI_STATUS	status;
1096     int		bm_active, cx_next_idx, i, us;
1097 
1098     /*
1099      * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
1100      * since there is no ACPI processor object for this CPU.  This occurs
1101      * for logical CPUs in the HTT case.
1102      */
1103     sc = cpu_softc[PCPU_GET(cpuid)];
1104     if (sc == NULL) {
1105 	acpi_cpu_c1();
1106 	return;
1107     }
1108 
1109     /* If disabled, take the safe path. */
1110     if (is_idle_disabled(sc)) {
1111 	acpi_cpu_c1();
1112 	return;
1113     }
1114 
1115     /* Find the lowest state that has small enough latency. */
1116     us = sc->cpu_prev_sleep;
1117     if (sbt >= 0 && us > (sbt >> 12))
1118 	us = (sbt >> 12);
1119     cx_next_idx = 0;
1120     if (cpu_disable_c2_sleep)
1121 	i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
1122     else if (cpu_disable_c3_sleep)
1123 	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
1124     else
1125 	i = sc->cpu_cx_lowest;
1126     for (; i >= 0; i--) {
1127 	if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
1128 	    cx_next_idx = i;
1129 	    break;
1130 	}
1131     }
1132 
1133     /*
1134      * Check for bus master activity.  If there was activity, clear
1135      * the bit and use the lowest non-C3 state.  Note that the USB
1136      * driver polling for new devices keeps this bit set all the
1137      * time if USB is loaded.
1138      */
1139     cx_next = &sc->cpu_cx_states[cx_next_idx];
1140     if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
1141 	cx_next_idx > sc->cpu_non_c3 &&
1142 	(!cx_next->do_mwait || cx_next->mwait_bm_avoidance)) {
1143 	status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
1144 	if (ACPI_SUCCESS(status) && bm_active != 0) {
1145 	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1146 	    cx_next_idx = sc->cpu_non_c3;
1147 	    cx_next = &sc->cpu_cx_states[cx_next_idx];
1148 	}
1149     }
1150 
1151     /* Select the next state and update statistics. */
1152     sc->cpu_cx_stats[cx_next_idx]++;
1153     KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
1154 
1155     /*
1156      * Execute HLT (or equivalent) and wait for an interrupt.  We can't
1157      * precisely calculate the time spent in C1 since the place we wake up
1158      * is an ISR.  Assume we slept no more then half of quantum, unless
1159      * we are called inside critical section, delaying context switch.
1160      */
1161     if (cx_next->type == ACPI_STATE_C1) {
1162 	start_ticks = cpu_ticks();
1163 	if (cx_next->p_lvlx != NULL) {
1164 	    /* C1 I/O then Halt */
1165 	    CPU_GET_REG(cx_next->p_lvlx, 1);
1166 	}
1167 	if (cx_next->do_mwait)
1168 	    acpi_cpu_idle_mwait(cx_next->mwait_hint);
1169 	else
1170 	    acpi_cpu_c1();
1171 	end_ticks = cpu_ticks();
1172 	/* acpi_cpu_c1() returns with interrupts enabled. */
1173 	if (cx_next->do_mwait)
1174 	    ACPI_ENABLE_IRQS();
1175 	end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
1176 	if (!cx_next->do_mwait && curthread->td_critnest == 0)
1177 		end_time = min(end_time, 500000 / hz);
1178 	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1179 	sc->cpu_cx_duration[cx_next_idx] += end_time;
1180 	return;
1181     }
1182 
1183     /*
1184      * For C3, disable bus master arbitration if BM control is available.
1185      * CPU may have to wake up to handle it. Otherwise flush the CPU cache.
1186      */
1187     if (cx_next->type == ACPI_STATE_C3) {
1188 	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0)
1189 	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
1190 	else
1191 	    ACPI_FLUSH_CPU_CACHE();
1192     }
1193 
1194     /*
1195      * Read from P_LVLx to enter C2(+), checking time spent asleep.
1196      * Use the ACPI timer for measuring sleep time.  Since we need to
1197      * get the time very close to the CPU start/stop clock logic, this
1198      * is the only reliable time source.
1199      */
1200     if (cx_next->type == ACPI_STATE_C3) {
1201 	AcpiGetTimer(&start_time);
1202 	start_ticks = 0;
1203     } else {
1204 	start_time = 0;
1205 	start_ticks = cpu_ticks();
1206     }
1207     if (cx_next->do_mwait) {
1208 	acpi_cpu_idle_mwait(cx_next->mwait_hint);
1209     } else {
1210 	CPU_GET_REG(cx_next->p_lvlx, 1);
1211 	/*
1212 	 * Read the end time twice.  Since it may take an arbitrary time
1213 	 * to enter the idle state, the first read may be executed before
1214 	 * the processor has stopped.  Doing it again provides enough
1215 	 * margin that we are certain to have a correct value.
1216 	 */
1217 	AcpiGetTimer(&end_time);
1218     }
1219 
1220     if (cx_next->type == ACPI_STATE_C3)
1221 	AcpiGetTimer(&end_time);
1222     else
1223 	end_ticks = cpu_ticks();
1224 
1225     /* Enable bus master arbitration. */
1226     if (cx_next->type == ACPI_STATE_C3 &&
1227       (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0)
1228 	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1229     ACPI_ENABLE_IRQS();
1230 
1231     if (cx_next->type == ACPI_STATE_C3)
1232 	AcpiGetTimerDuration(start_time, end_time, &end_time);
1233     else
1234 	end_time = ((end_ticks - start_ticks) << 20) / cpu_tickrate();
1235     sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1236     sc->cpu_cx_duration[cx_next_idx] += end_time;
1237 }
1238 #endif
1239 
1240 /*
1241  * Re-evaluate the _CST object when we are notified that it changed.
1242  */
1243 static void
acpi_cpu_notify(ACPI_HANDLE h,UINT32 notify,void * context)1244 acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1245 {
1246     struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1247 
1248     if (notify != ACPI_NOTIFY_CX_STATES)
1249 	return;
1250 
1251     /*
1252      * C-state data for target CPU is going to be in flux while we execute
1253      * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
1254      * Also, it may happen that multiple ACPI taskqueues may concurrently
1255      * execute notifications for the same CPU.  ACPI_SERIAL is used to
1256      * protect against that.
1257      */
1258     ACPI_SERIAL_BEGIN(cpu);
1259     disable_idle(sc);
1260 
1261     /* Update the list of Cx states. */
1262     acpi_cpu_cx_cst(sc);
1263     acpi_cpu_cx_list(sc);
1264     acpi_cpu_set_cx_lowest(sc);
1265 
1266     enable_idle(sc);
1267     ACPI_SERIAL_END(cpu);
1268 
1269     acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
1270 }
1271 
1272 static void
acpi_cpu_quirks(void)1273 acpi_cpu_quirks(void)
1274 {
1275     ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1276 
1277     /*
1278      * Bus mastering arbitration control is needed to keep caches coherent
1279      * while sleeping in C3.  If it's not present but a working flush cache
1280      * instruction is present, flush the caches before entering C3 instead.
1281      * Otherwise, just disable C3 completely.
1282      */
1283     if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1284 	AcpiGbl_FADT.Pm2ControlLength == 0) {
1285 	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1286 	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1287 	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1288 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1289 		"acpi_cpu: no BM control, using flush cache method\n"));
1290 	} else {
1291 	    cpu_quirks |= CPU_QUIRK_NO_C3;
1292 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1293 		"acpi_cpu: no BM control, C3 not available\n"));
1294 	}
1295     }
1296 
1297     /*
1298      * If we are using generic Cx mode, C3 on multiple CPUs requires using
1299      * the expensive flush cache instruction.
1300      */
1301     if (cpu_cx_generic && mp_ncpus > 1) {
1302 	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1303 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1304 	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1305     }
1306 
1307     /* Look for various quirks of the PIIX4 part. */
1308     acpi_cpu_quirks_piix4();
1309 }
1310 
1311 static void
acpi_cpu_quirks_piix4(void)1312 acpi_cpu_quirks_piix4(void)
1313 {
1314 #ifdef __i386__
1315     device_t acpi_dev;
1316     uint32_t val;
1317     ACPI_STATUS status;
1318 
1319     acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1320     if (acpi_dev != NULL) {
1321 	switch (pci_get_revid(acpi_dev)) {
1322 	/*
1323 	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1324 	 * do not report the BMIDE status to the BM status register and
1325 	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1326 	 * works around the BMIDE bug by reading the BM status directly
1327 	 * but we take the simpler approach of disabling C3 for these
1328 	 * parts.
1329 	 *
1330 	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1331 	 * Livelock") from the January 2002 PIIX4 specification update.
1332 	 * Applies to all PIIX4 models.
1333 	 *
1334 	 * Also, make sure that all interrupts cause a "Stop Break"
1335 	 * event to exit from C2 state.
1336 	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1337 	 * should be set to zero, otherwise it causes C2 to short-sleep.
1338 	 * PIIX4 doesn't properly support C3 and bus master activity
1339 	 * need not break out of C2.
1340 	 */
1341 	case PCI_REVISION_A_STEP:
1342 	case PCI_REVISION_B_STEP:
1343 	case PCI_REVISION_4E:
1344 	case PCI_REVISION_4M:
1345 	    cpu_quirks |= CPU_QUIRK_NO_C3;
1346 	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1347 		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1348 
1349 	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1350 	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1351 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1352 		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1353 	    	val |= PIIX4_STOP_BREAK_MASK;
1354 		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1355 	    }
1356 	    status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1357 	    if (ACPI_SUCCESS(status) && val != 0) {
1358 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1359 		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1360 		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1361 	    }
1362 	    break;
1363 	default:
1364 	    break;
1365 	}
1366     }
1367 #endif
1368 }
1369 
1370 static int
acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)1371 acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1372 {
1373 	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1374 	struct sbuf	 sb;
1375 	char		 buf[128];
1376 	int		 error, i;
1377 	uintmax_t	 fract, sum, whole;
1378 
1379 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1380 	sum = 0;
1381 	for (i = 0; i < sc->cpu_cx_count; i++)
1382 		sum += sc->cpu_cx_stats[i];
1383 	for (i = 0; i < sc->cpu_cx_count; i++) {
1384 		if (sum > 0) {
1385 			whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1386 			fract = (whole % sum) * 100;
1387 			sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1388 			    (u_int)(fract / sum));
1389 		} else
1390 			sbuf_printf(&sb, "0.00%% ");
1391 	}
1392 	sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1393 	error = sbuf_finish(&sb);
1394 	sbuf_delete(&sb);
1395 	return (error);
1396 }
1397 
1398 /*
1399  * XXX TODO: actually add support to count each entry/exit
1400  * from the Cx states.
1401  */
1402 static int
acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)1403 acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)
1404 {
1405 	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1406 	struct sbuf	 sb;
1407 	char		 buf[128];
1408 	int		 error, i;
1409 
1410 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1411 	for (i = 0; i < sc->cpu_cx_count; i++) {
1412 		if (i > 0)
1413 			sbuf_putc(&sb, ' ');
1414 		sbuf_printf(&sb, "%u", sc->cpu_cx_stats[i]);
1415 	}
1416 	error = sbuf_finish(&sb);
1417 	sbuf_delete(&sb);
1418 	return (error);
1419 }
1420 
1421 static int
acpi_cpu_duration_counters_sysctl(SYSCTL_HANDLER_ARGS)1422 acpi_cpu_duration_counters_sysctl(SYSCTL_HANDLER_ARGS)
1423 {
1424 	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1425 	struct sbuf	 sb;
1426 	char		 buf[128];
1427 	int		 error, i;
1428 
1429 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1430 	for (i = 0; i < sc->cpu_cx_count; i++) {
1431 		if (i > 0)
1432 			sbuf_putc(&sb, ' ');
1433 		sbuf_printf(&sb, "%ju", (uintmax_t) sc->cpu_cx_duration[i]);
1434 	}
1435 	error = sbuf_finish(&sb);
1436 	sbuf_delete(&sb);
1437 	return (error);
1438 }
1439 
1440 
1441 #if defined(__i386__) || defined(__amd64__)
1442 static int
acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS)1443 acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS)
1444 {
1445 	struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)arg1;
1446 	struct acpi_cx *cx;
1447 	struct sbuf sb;
1448 	char buf[128];
1449 	int error, i;
1450 
1451 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1452 	for (i = 0; i < sc->cpu_cx_count; i++) {
1453 		cx = &sc->cpu_cx_states[i];
1454 		if (i > 0)
1455 			sbuf_putc(&sb, ' ');
1456 		sbuf_printf(&sb, "C%d/", i + 1);
1457 		if (cx->do_mwait) {
1458 			sbuf_cat(&sb, "mwait");
1459 			if (cx->mwait_hw_coord)
1460 				sbuf_cat(&sb, "/hwc");
1461 			if (cx->mwait_bm_avoidance)
1462 				sbuf_cat(&sb, "/bma");
1463 		} else if (cx->type == ACPI_STATE_C1) {
1464 			sbuf_cat(&sb, "hlt");
1465 		} else {
1466 			sbuf_cat(&sb, "io");
1467 		}
1468 		if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL)
1469 			sbuf_cat(&sb, "/iohlt");
1470 	}
1471 	error = sbuf_finish(&sb);
1472 	sbuf_delete(&sb);
1473 	return (error);
1474 }
1475 #endif
1476 
1477 static int
acpi_cpu_set_cx_lowest(struct acpi_cpu_softc * sc)1478 acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
1479 {
1480     int i;
1481 
1482     ACPI_SERIAL_ASSERT(cpu);
1483     sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
1484 
1485     /* If not disabling, cache the new lowest non-C3 state. */
1486     sc->cpu_non_c3 = 0;
1487     for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1488 	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1489 	    sc->cpu_non_c3 = i;
1490 	    break;
1491 	}
1492     }
1493 
1494     /* Reset the statistics counters. */
1495     bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1496     return (0);
1497 }
1498 
1499 static int
acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)1500 acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1501 {
1502     struct	 acpi_cpu_softc *sc;
1503     char	 state[8];
1504     int		 val, error;
1505 
1506     sc = (struct acpi_cpu_softc *) arg1;
1507     snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
1508     error = sysctl_handle_string(oidp, state, sizeof(state), req);
1509     if (error != 0 || req->newptr == NULL)
1510 	return (error);
1511     if (strlen(state) < 2 || toupper(state[0]) != 'C')
1512 	return (EINVAL);
1513     if (strcasecmp(state, "Cmax") == 0)
1514 	val = MAX_CX_STATES;
1515     else {
1516 	val = (int) strtol(state + 1, NULL, 10);
1517 	if (val < 1 || val > MAX_CX_STATES)
1518 	    return (EINVAL);
1519     }
1520 
1521     ACPI_SERIAL_BEGIN(cpu);
1522     sc->cpu_cx_lowest_lim = val - 1;
1523     acpi_cpu_set_cx_lowest(sc);
1524     ACPI_SERIAL_END(cpu);
1525 
1526     return (0);
1527 }
1528 
1529 static int
acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)1530 acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1531 {
1532     struct	acpi_cpu_softc *sc;
1533     char	state[8];
1534     int		val, error, i;
1535 
1536     snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
1537     error = sysctl_handle_string(oidp, state, sizeof(state), req);
1538     if (error != 0 || req->newptr == NULL)
1539 	return (error);
1540     if (strlen(state) < 2 || toupper(state[0]) != 'C')
1541 	return (EINVAL);
1542     if (strcasecmp(state, "Cmax") == 0)
1543 	val = MAX_CX_STATES;
1544     else {
1545 	val = (int) strtol(state + 1, NULL, 10);
1546 	if (val < 1 || val > MAX_CX_STATES)
1547 	    return (EINVAL);
1548     }
1549 
1550     /* Update the new lowest useable Cx state for all CPUs. */
1551     ACPI_SERIAL_BEGIN(cpu);
1552     cpu_cx_lowest_lim = val - 1;
1553     CPU_FOREACH(i) {
1554 	if ((sc = cpu_softc[i]) == NULL)
1555 	    continue;
1556 	sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
1557 	acpi_cpu_set_cx_lowest(sc);
1558     }
1559     ACPI_SERIAL_END(cpu);
1560 
1561     return (0);
1562 }
1563