xref: /linux/drivers/gpu/drm/amd/display/dc/resource/dcn32/dcn32_resource.c (revision 85502b2214d50ba0ddf2a5fb454e4d28a160d175)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include "dc_types.h"
28 #include "dm_services.h"
29 #include "dc.h"
30 
31 #include "dcn32/dcn32_init.h"
32 
33 #include "resource.h"
34 #include "include/irq_service_interface.h"
35 #include "dcn32_resource.h"
36 
37 #include "dcn20/dcn20_resource.h"
38 #include "dcn30/dcn30_resource.h"
39 
40 #include "dcn10/dcn10_ipp.h"
41 #include "dcn30/dcn30_hubbub.h"
42 #include "dcn31/dcn31_hubbub.h"
43 #include "dcn32/dcn32_hubbub.h"
44 #include "dcn32/dcn32_mpc.h"
45 #include "dcn32/dcn32_hubp.h"
46 #include "irq/dcn32/irq_service_dcn32.h"
47 #include "dcn32/dcn32_dpp.h"
48 #include "dcn32/dcn32_optc.h"
49 #include "dcn20/dcn20_hwseq.h"
50 #include "dcn30/dcn30_hwseq.h"
51 #include "dce110/dce110_hwseq.h"
52 #include "dcn30/dcn30_opp.h"
53 #include "dcn20/dcn20_dsc.h"
54 #include "dcn30/dcn30_vpg.h"
55 #include "dcn30/dcn30_afmt.h"
56 #include "dcn30/dcn30_dio_stream_encoder.h"
57 #include "dcn32/dcn32_dio_stream_encoder.h"
58 #include "dcn31/dcn31_hpo_dp_stream_encoder.h"
59 #include "dcn31/dcn31_hpo_dp_link_encoder.h"
60 #include "dcn32/dcn32_hpo_dp_link_encoder.h"
61 #include "dcn31/dcn31_apg.h"
62 #include "dcn31/dcn31_dio_link_encoder.h"
63 #include "dcn32/dcn32_dio_link_encoder.h"
64 #include "dce/dce_clock_source.h"
65 #include "dce/dce_audio.h"
66 #include "dce/dce_hwseq.h"
67 #include "clk_mgr.h"
68 #include "virtual/virtual_stream_encoder.h"
69 #include "dml/display_mode_vba.h"
70 #include "dcn32/dcn32_dccg.h"
71 #include "dcn10/dcn10_resource.h"
72 #include "link.h"
73 #include "dcn31/dcn31_panel_cntl.h"
74 
75 #include "dcn30/dcn30_dwb.h"
76 #include "dcn32/dcn32_mmhubbub.h"
77 
78 #include "dcn/dcn_3_2_0_offset.h"
79 #include "dcn/dcn_3_2_0_sh_mask.h"
80 #include "nbio/nbio_4_3_0_offset.h"
81 
82 #include "reg_helper.h"
83 #include "dce/dmub_abm.h"
84 #include "dce/dmub_psr.h"
85 #include "dce/dce_aux.h"
86 #include "dce/dce_i2c.h"
87 
88 #include "dml/dcn30/display_mode_vba_30.h"
89 #include "vm_helper.h"
90 #include "dcn20/dcn20_vmid.h"
91 #include "dml/dcn32/dcn32_fpu.h"
92 
93 #include "dc_state_priv.h"
94 
95 #include "dml2/dml2_wrapper.h"
96 
97 #define DC_LOGGER_INIT(logger)
98 
99 enum dcn32_clk_src_array_id {
100 	DCN32_CLK_SRC_PLL0,
101 	DCN32_CLK_SRC_PLL1,
102 	DCN32_CLK_SRC_PLL2,
103 	DCN32_CLK_SRC_PLL3,
104 	DCN32_CLK_SRC_PLL4,
105 	DCN32_CLK_SRC_TOTAL
106 };
107 
108 /* begin *********************
109  * macros to expend register list macro defined in HW object header file
110  */
111 
112 /* DCN */
113 #define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
114 
115 #define BASE(seg) BASE_INNER(seg)
116 
117 #define SR(reg_name)\
118 		REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
119 					reg ## reg_name
120 #define SR_ARR(reg_name, id) \
121 	REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
122 
123 #define SR_ARR_INIT(reg_name, id, value) \
124 	REG_STRUCT[id].reg_name = value
125 
126 #define SRI(reg_name, block, id)\
127 	REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
128 		reg ## block ## id ## _ ## reg_name
129 
130 #define SRI_ARR(reg_name, block, id)\
131 	REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
132 		reg ## block ## id ## _ ## reg_name
133 
134 #define SR_ARR_I2C(reg_name, id) \
135 	REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
136 
137 #define SRI_ARR_I2C(reg_name, block, id)\
138 	REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
139 		reg ## block ## id ## _ ## reg_name
140 
141 #define SRI_ARR_ALPHABET(reg_name, block, index, id)\
142 	REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
143 		reg ## block ## id ## _ ## reg_name
144 
145 #define SRI2(reg_name, block, id)\
146 	.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
147 		reg ## reg_name
148 #define SRI2_ARR(reg_name, block, id)\
149 	REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
150 		reg ## reg_name
151 
152 #define SRIR(var_name, reg_name, block, id)\
153 	.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
154 		reg ## block ## id ## _ ## reg_name
155 
156 #define SRII(reg_name, block, id)\
157 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
158 					reg ## block ## id ## _ ## reg_name
159 
160 #define SRII_ARR_2(reg_name, block, id, inst)\
161 	REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
162 		reg ## block ## id ## _ ## reg_name
163 
164 #define SRII_MPC_RMU(reg_name, block, id)\
165 	.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
166 		reg ## block ## id ## _ ## reg_name
167 
168 #define SRII_DWB(reg_name, temp_name, block, id)\
169 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
170 		reg ## block ## id ## _ ## temp_name
171 
172 #define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
173 	.field_name = reg_name ## __ ## field_name ## post_fix
174 
175 #define DCCG_SRII(reg_name, block, id)\
176 	REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
177 		reg ## block ## id ## _ ## reg_name
178 
179 #define VUPDATE_SRII(reg_name, block, id)\
180 	REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
181 		reg ## reg_name ## _ ## block ## id
182 
183 /* NBIO */
184 #define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
185 
186 #define NBIO_BASE(seg) \
187 	NBIO_BASE_INNER(seg)
188 
189 #define NBIO_SR(reg_name)\
190 	REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
191 			regBIF_BX0_ ## reg_name
192 #define NBIO_SR_ARR(reg_name, id)\
193 	REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
194 		regBIF_BX0_ ## reg_name
195 
196 #undef CTX
197 #define CTX ctx
198 #define REG(reg_name) \
199 	(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
200 
201 static struct bios_registers bios_regs;
202 
203 #define bios_regs_init() \
204 		( \
205 		NBIO_SR(BIOS_SCRATCH_3),\
206 		NBIO_SR(BIOS_SCRATCH_6)\
207 		)
208 
209 #define clk_src_regs_init(index, pllid)\
210 	CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
211 
212 static struct dce110_clk_src_regs clk_src_regs[5];
213 
214 static const struct dce110_clk_src_shift cs_shift = {
215 		CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
216 };
217 
218 static const struct dce110_clk_src_mask cs_mask = {
219 		CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
220 };
221 
222 #define abm_regs_init(id)\
223 		ABM_DCN32_REG_LIST_RI(id)
224 
225 static struct dce_abm_registers abm_regs[4];
226 
227 static const struct dce_abm_shift abm_shift = {
228 		ABM_MASK_SH_LIST_DCN32(__SHIFT)
229 };
230 
231 static const struct dce_abm_mask abm_mask = {
232 		ABM_MASK_SH_LIST_DCN32(_MASK)
233 };
234 
235 #define audio_regs_init(id)\
236 		AUD_COMMON_REG_LIST_RI(id)
237 
238 static struct dce_audio_registers audio_regs[5];
239 
240 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
241 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
242 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
243 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
244 
245 static const struct dce_audio_shift audio_shift = {
246 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
247 };
248 
249 static const struct dce_audio_mask audio_mask = {
250 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
251 };
252 
253 #define vpg_regs_init(id)\
254 	VPG_DCN3_REG_LIST_RI(id)
255 
256 static struct dcn30_vpg_registers vpg_regs[10];
257 
258 static const struct dcn30_vpg_shift vpg_shift = {
259 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
260 };
261 
262 static const struct dcn30_vpg_mask vpg_mask = {
263 	DCN3_VPG_MASK_SH_LIST(_MASK)
264 };
265 
266 #define afmt_regs_init(id)\
267 	AFMT_DCN3_REG_LIST_RI(id)
268 
269 static struct dcn30_afmt_registers afmt_regs[6];
270 
271 static const struct dcn30_afmt_shift afmt_shift = {
272 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
273 };
274 
275 static const struct dcn30_afmt_mask afmt_mask = {
276 	DCN3_AFMT_MASK_SH_LIST(_MASK)
277 };
278 
279 #define apg_regs_init(id)\
280 	APG_DCN31_REG_LIST_RI(id)
281 
282 static struct dcn31_apg_registers apg_regs[4];
283 
284 static const struct dcn31_apg_shift apg_shift = {
285 	DCN31_APG_MASK_SH_LIST(__SHIFT)
286 };
287 
288 static const struct dcn31_apg_mask apg_mask = {
289 		DCN31_APG_MASK_SH_LIST(_MASK)
290 };
291 
292 #define stream_enc_regs_init(id)\
293 	SE_DCN32_REG_LIST_RI(id)
294 
295 static struct dcn10_stream_enc_registers stream_enc_regs[5];
296 
297 static const struct dcn10_stream_encoder_shift se_shift = {
298 		SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
299 };
300 
301 static const struct dcn10_stream_encoder_mask se_mask = {
302 		SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
303 };
304 
305 
306 #define aux_regs_init(id)\
307 	DCN2_AUX_REG_LIST_RI(id)
308 
309 static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
310 
311 #define hpd_regs_init(id)\
312 	HPD_REG_LIST_RI(id)
313 
314 static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
315 
316 #define link_regs_init(id, phyid)\
317 	( \
318 	LE_DCN31_REG_LIST_RI(id), \
319 	UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
320 	)
321 	/*DPCS_DCN31_REG_LIST(id),*/ \
322 
323 static struct dcn10_link_enc_registers link_enc_regs[5];
324 
325 static const struct dcn10_link_enc_shift le_shift = {
326 	LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
327 	//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
328 };
329 
330 static const struct dcn10_link_enc_mask le_mask = {
331 	LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
332 	//DPCS_DCN31_MASK_SH_LIST(_MASK)
333 };
334 
335 #define hpo_dp_stream_encoder_reg_init(id)\
336 	DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
337 
338 static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
339 
340 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
341 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
342 };
343 
344 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
345 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
346 };
347 
348 
349 #define hpo_dp_link_encoder_reg_init(id)\
350 	DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
351 	/*DCN3_1_RDPCSTX_REG_LIST(0),*/
352 	/*DCN3_1_RDPCSTX_REG_LIST(1),*/
353 	/*DCN3_1_RDPCSTX_REG_LIST(2),*/
354 	/*DCN3_1_RDPCSTX_REG_LIST(3),*/
355 
356 static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
357 
358 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
359 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
360 };
361 
362 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
363 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
364 };
365 
366 #define dpp_regs_init(id)\
367 	DPP_REG_LIST_DCN30_COMMON_RI(id)
368 
369 static struct dcn3_dpp_registers dpp_regs[4];
370 
371 static const struct dcn3_dpp_shift tf_shift = {
372 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
373 };
374 
375 static const struct dcn3_dpp_mask tf_mask = {
376 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
377 };
378 
379 
380 #define opp_regs_init(id)\
381 	OPP_REG_LIST_DCN30_RI(id)
382 
383 static struct dcn20_opp_registers opp_regs[4];
384 
385 static const struct dcn20_opp_shift opp_shift = {
386 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
387 };
388 
389 static const struct dcn20_opp_mask opp_mask = {
390 	OPP_MASK_SH_LIST_DCN20(_MASK)
391 };
392 
393 #define aux_engine_regs_init(id)\
394 	( \
395 	AUX_COMMON_REG_LIST0_RI(id), \
396 	SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
397 	SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
398 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
399 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
400 	)
401 
402 static struct dce110_aux_registers aux_engine_regs[5];
403 
404 static const struct dce110_aux_registers_shift aux_shift = {
405 	DCN_AUX_MASK_SH_LIST(__SHIFT)
406 };
407 
408 static const struct dce110_aux_registers_mask aux_mask = {
409 	DCN_AUX_MASK_SH_LIST(_MASK)
410 };
411 
412 #define dwbc_regs_dcn3_init(id)\
413 	DWBC_COMMON_REG_LIST_DCN30_RI(id)
414 
415 static struct dcn30_dwbc_registers dwbc30_regs[1];
416 
417 static const struct dcn30_dwbc_shift dwbc30_shift = {
418 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
419 };
420 
421 static const struct dcn30_dwbc_mask dwbc30_mask = {
422 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
423 };
424 
425 #define mcif_wb_regs_dcn3_init(id)\
426 	MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
427 
428 static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
429 
430 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
431 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
432 };
433 
434 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
435 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
436 };
437 
438 #define dsc_regsDCN20_init(id)\
439 	DSC_REG_LIST_DCN20_RI(id)
440 
441 static struct dcn20_dsc_registers dsc_regs[4];
442 
443 static const struct dcn20_dsc_shift dsc_shift = {
444 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
445 };
446 
447 static const struct dcn20_dsc_mask dsc_mask = {
448 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
449 };
450 
451 static struct dcn30_mpc_registers mpc_regs;
452 
453 #define dcn_mpc_regs_init() \
454 	MPC_REG_LIST_DCN3_2_RI(0),\
455 	MPC_REG_LIST_DCN3_2_RI(1),\
456 	MPC_REG_LIST_DCN3_2_RI(2),\
457 	MPC_REG_LIST_DCN3_2_RI(3),\
458 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
459 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
460 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
461 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
462 	MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
463 
464 static const struct dcn30_mpc_shift mpc_shift = {
465 	MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
466 };
467 
468 static const struct dcn30_mpc_mask mpc_mask = {
469 	MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
470 };
471 
472 #define optc_regs_init(id)\
473 	OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
474 
475 static struct dcn_optc_registers optc_regs[4];
476 
477 static const struct dcn_optc_shift optc_shift = {
478 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
479 };
480 
481 static const struct dcn_optc_mask optc_mask = {
482 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
483 };
484 
485 #define hubp_regs_init(id)\
486 	HUBP_REG_LIST_DCN32_RI(id)
487 
488 static struct dcn_hubp2_registers hubp_regs[4];
489 
490 
491 static const struct dcn_hubp2_shift hubp_shift = {
492 		HUBP_MASK_SH_LIST_DCN32(__SHIFT)
493 };
494 
495 static const struct dcn_hubp2_mask hubp_mask = {
496 		HUBP_MASK_SH_LIST_DCN32(_MASK)
497 };
498 
499 static struct dcn_hubbub_registers hubbub_reg;
500 #define hubbub_reg_init()\
501 		HUBBUB_REG_LIST_DCN32_RI(0)
502 
503 static const struct dcn_hubbub_shift hubbub_shift = {
504 		HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
505 };
506 
507 static const struct dcn_hubbub_mask hubbub_mask = {
508 		HUBBUB_MASK_SH_LIST_DCN32(_MASK)
509 };
510 
511 static struct dccg_registers dccg_regs;
512 
513 #define dccg_regs_init()\
514 	DCCG_REG_LIST_DCN32_RI()
515 
516 static const struct dccg_shift dccg_shift = {
517 		DCCG_MASK_SH_LIST_DCN32(__SHIFT)
518 };
519 
520 static const struct dccg_mask dccg_mask = {
521 		DCCG_MASK_SH_LIST_DCN32(_MASK)
522 };
523 
524 
525 #define SRII2(reg_name_pre, reg_name_post, id)\
526 	.reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
527 			## id ## _ ## reg_name_post ## _BASE_IDX) + \
528 			reg ## reg_name_pre ## id ## _ ## reg_name_post
529 
530 
531 #define HWSEQ_DCN32_REG_LIST()\
532 	SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
533 	SR(DIO_MEM_PWR_CTRL), \
534 	SR(ODM_MEM_PWR_CTRL3), \
535 	SR(MMHUBBUB_MEM_PWR_CNTL), \
536 	SR(DCCG_GATE_DISABLE_CNTL), \
537 	SR(DCCG_GATE_DISABLE_CNTL2), \
538 	SR(DCFCLK_CNTL),\
539 	SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
540 	SRII(PIXEL_RATE_CNTL, OTG, 0), \
541 	SRII(PIXEL_RATE_CNTL, OTG, 1),\
542 	SRII(PIXEL_RATE_CNTL, OTG, 2),\
543 	SRII(PIXEL_RATE_CNTL, OTG, 3),\
544 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
545 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
546 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
547 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
548 	SR(MICROSECOND_TIME_BASE_DIV), \
549 	SR(MILLISECOND_TIME_BASE_DIV), \
550 	SR(DISPCLK_FREQ_CHANGE_CNTL), \
551 	SR(RBBMIF_TIMEOUT_DIS), \
552 	SR(RBBMIF_TIMEOUT_DIS_2), \
553 	SR(DCHUBBUB_CRC_CTRL), \
554 	SR(DPP_TOP0_DPP_CRC_CTRL), \
555 	SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
556 	SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
557 	SR(MPC_CRC_CTRL), \
558 	SR(MPC_CRC_RESULT_GB), \
559 	SR(MPC_CRC_RESULT_C), \
560 	SR(MPC_CRC_RESULT_AR), \
561 	SR(DOMAIN0_PG_CONFIG), \
562 	SR(DOMAIN1_PG_CONFIG), \
563 	SR(DOMAIN2_PG_CONFIG), \
564 	SR(DOMAIN3_PG_CONFIG), \
565 	SR(DOMAIN16_PG_CONFIG), \
566 	SR(DOMAIN17_PG_CONFIG), \
567 	SR(DOMAIN18_PG_CONFIG), \
568 	SR(DOMAIN19_PG_CONFIG), \
569 	SR(DOMAIN0_PG_STATUS), \
570 	SR(DOMAIN1_PG_STATUS), \
571 	SR(DOMAIN2_PG_STATUS), \
572 	SR(DOMAIN3_PG_STATUS), \
573 	SR(DOMAIN16_PG_STATUS), \
574 	SR(DOMAIN17_PG_STATUS), \
575 	SR(DOMAIN18_PG_STATUS), \
576 	SR(DOMAIN19_PG_STATUS), \
577 	SR(D1VGA_CONTROL), \
578 	SR(D2VGA_CONTROL), \
579 	SR(D3VGA_CONTROL), \
580 	SR(D4VGA_CONTROL), \
581 	SR(D5VGA_CONTROL), \
582 	SR(D6VGA_CONTROL), \
583 	SR(DC_IP_REQUEST_CNTL), \
584 	SR(AZALIA_AUDIO_DTO), \
585 	SR(AZALIA_CONTROLLER_CLOCK_GATING)
586 
587 static struct dce_hwseq_registers hwseq_reg;
588 
589 #define hwseq_reg_init()\
590 	HWSEQ_DCN32_REG_LIST()
591 
592 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
593 	HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
594 	HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
595 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
596 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
597 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
598 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
599 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
600 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
601 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
602 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
603 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
604 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
605 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
606 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
607 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
608 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
609 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
610 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
611 	HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
612 	HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
613 	HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
614 	HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
615 	HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
616 	HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
617 	HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
618 	HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
619 	HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
620 	HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
621 	HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
622 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
623 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
624 	HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
625 
626 static const struct dce_hwseq_shift hwseq_shift = {
627 		HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
628 };
629 
630 static const struct dce_hwseq_mask hwseq_mask = {
631 		HWSEQ_DCN32_MASK_SH_LIST(_MASK)
632 };
633 #define vmid_regs_init(id)\
634 		DCN20_VMID_REG_LIST_RI(id)
635 
636 static struct dcn_vmid_registers vmid_regs[16];
637 
638 static const struct dcn20_vmid_shift vmid_shifts = {
639 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
640 };
641 
642 static const struct dcn20_vmid_mask vmid_masks = {
643 		DCN20_VMID_MASK_SH_LIST(_MASK)
644 };
645 
646 static const struct resource_caps res_cap_dcn32 = {
647 	.num_timing_generator = 4,
648 	.num_opp = 4,
649 	.num_video_plane = 4,
650 	.num_audio = 5,
651 	.num_stream_encoder = 5,
652 	.num_hpo_dp_stream_encoder = 4,
653 	.num_hpo_dp_link_encoder = 2,
654 	.num_pll = 5,
655 	.num_dwb = 1,
656 	.num_ddc = 5,
657 	.num_vmid = 16,
658 	.num_mpc_3dlut = 4,
659 	.num_dsc = 4,
660 };
661 
662 static const struct dc_plane_cap plane_cap = {
663 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
664 	.per_pixel_alpha = true,
665 
666 	.pixel_format_support = {
667 			.argb8888 = true,
668 			.nv12 = true,
669 			.fp16 = true,
670 			.p010 = true,
671 			.ayuv = false,
672 	},
673 
674 	.max_upscale_factor = {
675 			.argb8888 = 16000,
676 			.nv12 = 16000,
677 			.fp16 = 16000
678 	},
679 
680 	// 6:1 downscaling ratio: 1000/6 = 166.666
681 	.max_downscale_factor = {
682 			.argb8888 = 167,
683 			.nv12 = 167,
684 			.fp16 = 167
685 	},
686 	64,
687 	64
688 };
689 
690 static const struct dc_debug_options debug_defaults_drv = {
691 	.disable_dmcu = true,
692 	.force_abm_enable = false,
693 	.clock_trace = true,
694 	.disable_pplib_clock_request = false,
695 	.pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
696 	.force_single_disp_pipe_split = false,
697 	.disable_dcc = DCC_ENABLE,
698 	.vsr_support = true,
699 	.performance_trace = false,
700 	.max_downscale_src_width = 7680,/*upto 8K*/
701 	.disable_pplib_wm_range = false,
702 	.scl_reset_length10 = true,
703 	.sanity_checks = false,
704 	.underflow_assert_delay_us = 0xFFFFFFFF,
705 	.dwb_fi_phase = -1, // -1 = disable,
706 	.dmub_command_table = true,
707 	.enable_mem_low_power = {
708 		.bits = {
709 			.vga = false,
710 			.i2c = false,
711 			.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
712 			.dscl = false,
713 			.cm = false,
714 			.mpc = false,
715 			.optc = true,
716 		}
717 	},
718 	.use_max_lb = true,
719 	.force_disable_subvp = false,
720 	.exit_idle_opt_for_cursor_updates = true,
721 	.using_dml2 = false,
722 	.using_dml21 = false, // TODO : Temporary for N-1 validation. Remove after N-1 is done.
723 	.enable_single_display_2to1_odm_policy = true,
724 
725 	/* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
726 	.enable_double_buffered_dsc_pg_support = true,
727 	.enable_dp_dig_pixel_rate_div_policy = 1,
728 	.allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
729 	.alloc_extra_way_for_cursor = true,
730 	.min_prefetch_in_strobe_ns = 60000, // 60us
731 	.disable_unbounded_requesting = false,
732 	.override_dispclk_programming = true,
733 	.disable_fpo_optimizations = false,
734 	.fpo_vactive_margin_us = 2000, // 2000us
735 	.disable_fpo_vactive = false,
736 	.disable_boot_optimizations = false,
737 	.disable_subvp_high_refresh = false,
738 	.disable_dp_plus_plus_wa = true,
739 	.fpo_vactive_min_active_margin_us = 200,
740 	.fpo_vactive_max_blank_us = 1000,
741 	.enable_legacy_fast_update = false,
742 };
743 
dcn32_aux_engine_create(struct dc_context * ctx,uint32_t inst)744 static struct dce_aux *dcn32_aux_engine_create(
745 	struct dc_context *ctx,
746 	uint32_t inst)
747 {
748 	struct aux_engine_dce110 *aux_engine =
749 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
750 
751 	if (!aux_engine)
752 		return NULL;
753 
754 #undef REG_STRUCT
755 #define REG_STRUCT aux_engine_regs
756 	aux_engine_regs_init(0),
757 	aux_engine_regs_init(1),
758 	aux_engine_regs_init(2),
759 	aux_engine_regs_init(3),
760 	aux_engine_regs_init(4);
761 
762 	dce110_aux_engine_construct(aux_engine, ctx, inst,
763 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
764 				    &aux_engine_regs[inst],
765 					&aux_mask,
766 					&aux_shift,
767 					ctx->dc->caps.extended_aux_timeout_support);
768 
769 	return &aux_engine->base;
770 }
771 #define i2c_inst_regs_init(id)\
772 	I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
773 
774 static struct dce_i2c_registers i2c_hw_regs[5];
775 
776 static const struct dce_i2c_shift i2c_shifts = {
777 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
778 };
779 
780 static const struct dce_i2c_mask i2c_masks = {
781 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
782 };
783 
dcn32_i2c_hw_create(struct dc_context * ctx,uint32_t inst)784 static struct dce_i2c_hw *dcn32_i2c_hw_create(
785 	struct dc_context *ctx,
786 	uint32_t inst)
787 {
788 	struct dce_i2c_hw *dce_i2c_hw =
789 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
790 
791 	if (!dce_i2c_hw)
792 		return NULL;
793 
794 #undef REG_STRUCT
795 #define REG_STRUCT i2c_hw_regs
796 	i2c_inst_regs_init(1),
797 	i2c_inst_regs_init(2),
798 	i2c_inst_regs_init(3),
799 	i2c_inst_regs_init(4),
800 	i2c_inst_regs_init(5);
801 
802 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
803 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
804 
805 	return dce_i2c_hw;
806 }
807 
dcn32_clock_source_create(struct dc_context * ctx,struct dc_bios * bios,enum clock_source_id id,const struct dce110_clk_src_regs * regs,bool dp_clk_src)808 static struct clock_source *dcn32_clock_source_create(
809 		struct dc_context *ctx,
810 		struct dc_bios *bios,
811 		enum clock_source_id id,
812 		const struct dce110_clk_src_regs *regs,
813 		bool dp_clk_src)
814 {
815 	struct dce110_clk_src *clk_src =
816 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
817 
818 	if (!clk_src)
819 		return NULL;
820 
821 	if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
822 			regs, &cs_shift, &cs_mask)) {
823 		clk_src->base.dp_clk_src = dp_clk_src;
824 		return &clk_src->base;
825 	}
826 
827 	kfree(clk_src);
828 	BREAK_TO_DEBUGGER();
829 	return NULL;
830 }
831 
dcn32_hubbub_create(struct dc_context * ctx)832 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
833 {
834 	int i;
835 
836 	struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
837 					  GFP_KERNEL);
838 
839 	if (!hubbub2)
840 		return NULL;
841 
842 #undef REG_STRUCT
843 #define REG_STRUCT hubbub_reg
844 	hubbub_reg_init();
845 
846 #undef REG_STRUCT
847 #define REG_STRUCT vmid_regs
848 	vmid_regs_init(0),
849 	vmid_regs_init(1),
850 	vmid_regs_init(2),
851 	vmid_regs_init(3),
852 	vmid_regs_init(4),
853 	vmid_regs_init(5),
854 	vmid_regs_init(6),
855 	vmid_regs_init(7),
856 	vmid_regs_init(8),
857 	vmid_regs_init(9),
858 	vmid_regs_init(10),
859 	vmid_regs_init(11),
860 	vmid_regs_init(12),
861 	vmid_regs_init(13),
862 	vmid_regs_init(14),
863 	vmid_regs_init(15);
864 
865 	hubbub32_construct(hubbub2, ctx,
866 			&hubbub_reg,
867 			&hubbub_shift,
868 			&hubbub_mask,
869 			ctx->dc->dml.ip.det_buffer_size_kbytes,
870 			ctx->dc->dml.ip.pixel_chunk_size_kbytes,
871 			ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
872 
873 
874 	for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
875 		struct dcn20_vmid *vmid = &hubbub2->vmid[i];
876 
877 		vmid->ctx = ctx;
878 
879 		vmid->regs = &vmid_regs[i];
880 		vmid->shifts = &vmid_shifts;
881 		vmid->masks = &vmid_masks;
882 	}
883 
884 	return &hubbub2->base;
885 }
886 
dcn32_hubp_create(struct dc_context * ctx,uint32_t inst)887 static struct hubp *dcn32_hubp_create(
888 	struct dc_context *ctx,
889 	uint32_t inst)
890 {
891 	struct dcn20_hubp *hubp2 =
892 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
893 
894 	if (!hubp2)
895 		return NULL;
896 
897 #undef REG_STRUCT
898 #define REG_STRUCT hubp_regs
899 	hubp_regs_init(0),
900 	hubp_regs_init(1),
901 	hubp_regs_init(2),
902 	hubp_regs_init(3);
903 
904 	if (hubp32_construct(hubp2, ctx, inst,
905 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
906 		return &hubp2->base;
907 
908 	BREAK_TO_DEBUGGER();
909 	kfree(hubp2);
910 	return NULL;
911 }
912 
dcn32_dpp_destroy(struct dpp ** dpp)913 static void dcn32_dpp_destroy(struct dpp **dpp)
914 {
915 	kfree(TO_DCN30_DPP(*dpp));
916 	*dpp = NULL;
917 }
918 
dcn32_dpp_create(struct dc_context * ctx,uint32_t inst)919 static struct dpp *dcn32_dpp_create(
920 	struct dc_context *ctx,
921 	uint32_t inst)
922 {
923 	struct dcn3_dpp *dpp3 =
924 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
925 
926 	if (!dpp3)
927 		return NULL;
928 
929 #undef REG_STRUCT
930 #define REG_STRUCT dpp_regs
931 	dpp_regs_init(0),
932 	dpp_regs_init(1),
933 	dpp_regs_init(2),
934 	dpp_regs_init(3);
935 
936 	if (dpp32_construct(dpp3, ctx, inst,
937 			&dpp_regs[inst], &tf_shift, &tf_mask))
938 		return &dpp3->base;
939 
940 	BREAK_TO_DEBUGGER();
941 	kfree(dpp3);
942 	return NULL;
943 }
944 
dcn32_mpc_create(struct dc_context * ctx,int num_mpcc,int num_rmu)945 static struct mpc *dcn32_mpc_create(
946 		struct dc_context *ctx,
947 		int num_mpcc,
948 		int num_rmu)
949 {
950 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
951 					  GFP_KERNEL);
952 
953 	if (!mpc30)
954 		return NULL;
955 
956 #undef REG_STRUCT
957 #define REG_STRUCT mpc_regs
958 	dcn_mpc_regs_init();
959 
960 	dcn32_mpc_construct(mpc30, ctx,
961 			&mpc_regs,
962 			&mpc_shift,
963 			&mpc_mask,
964 			num_mpcc,
965 			num_rmu);
966 
967 	return &mpc30->base;
968 }
969 
dcn32_opp_create(struct dc_context * ctx,uint32_t inst)970 static struct output_pixel_processor *dcn32_opp_create(
971 	struct dc_context *ctx, uint32_t inst)
972 {
973 	struct dcn20_opp *opp2 =
974 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
975 
976 	if (!opp2) {
977 		BREAK_TO_DEBUGGER();
978 		return NULL;
979 	}
980 
981 #undef REG_STRUCT
982 #define REG_STRUCT opp_regs
983 	opp_regs_init(0),
984 	opp_regs_init(1),
985 	opp_regs_init(2),
986 	opp_regs_init(3);
987 
988 	dcn20_opp_construct(opp2, ctx, inst,
989 			&opp_regs[inst], &opp_shift, &opp_mask);
990 	return &opp2->base;
991 }
992 
993 
dcn32_timing_generator_create(struct dc_context * ctx,uint32_t instance)994 static struct timing_generator *dcn32_timing_generator_create(
995 		struct dc_context *ctx,
996 		uint32_t instance)
997 {
998 	struct optc *tgn10 =
999 		kzalloc(sizeof(struct optc), GFP_KERNEL);
1000 
1001 	if (!tgn10)
1002 		return NULL;
1003 
1004 #undef REG_STRUCT
1005 #define REG_STRUCT optc_regs
1006 	optc_regs_init(0),
1007 	optc_regs_init(1),
1008 	optc_regs_init(2),
1009 	optc_regs_init(3);
1010 
1011 	tgn10->base.inst = instance;
1012 	tgn10->base.ctx = ctx;
1013 
1014 	tgn10->tg_regs = &optc_regs[instance];
1015 	tgn10->tg_shift = &optc_shift;
1016 	tgn10->tg_mask = &optc_mask;
1017 
1018 	dcn32_timing_generator_init(tgn10);
1019 
1020 	return &tgn10->base;
1021 }
1022 
1023 static const struct encoder_feature_support link_enc_feature = {
1024 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
1025 		.max_hdmi_pixel_clock = 600000,
1026 		.hdmi_ycbcr420_supported = true,
1027 		.dp_ycbcr420_supported = true,
1028 		.fec_supported = true,
1029 		.flags.bits.IS_HBR2_CAPABLE = true,
1030 		.flags.bits.IS_HBR3_CAPABLE = true,
1031 		.flags.bits.IS_TPS3_CAPABLE = true,
1032 		.flags.bits.IS_TPS4_CAPABLE = true
1033 };
1034 
dcn32_link_encoder_create(struct dc_context * ctx,const struct encoder_init_data * enc_init_data)1035 static struct link_encoder *dcn32_link_encoder_create(
1036 	struct dc_context *ctx,
1037 	const struct encoder_init_data *enc_init_data)
1038 {
1039 	struct dcn20_link_encoder *enc20 =
1040 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1041 
1042 	if (!enc20 || enc_init_data->hpd_source >= ARRAY_SIZE(link_enc_hpd_regs))
1043 		return NULL;
1044 
1045 #undef REG_STRUCT
1046 #define REG_STRUCT link_enc_aux_regs
1047 	aux_regs_init(0),
1048 	aux_regs_init(1),
1049 	aux_regs_init(2),
1050 	aux_regs_init(3),
1051 	aux_regs_init(4);
1052 
1053 #undef REG_STRUCT
1054 #define REG_STRUCT link_enc_hpd_regs
1055 	hpd_regs_init(0),
1056 	hpd_regs_init(1),
1057 	hpd_regs_init(2),
1058 	hpd_regs_init(3),
1059 	hpd_regs_init(4);
1060 
1061 #undef REG_STRUCT
1062 #define REG_STRUCT link_enc_regs
1063 	link_regs_init(0, A),
1064 	link_regs_init(1, B),
1065 	link_regs_init(2, C),
1066 	link_regs_init(3, D),
1067 	link_regs_init(4, E);
1068 
1069 	dcn32_link_encoder_construct(enc20,
1070 			enc_init_data,
1071 			&link_enc_feature,
1072 			&link_enc_regs[enc_init_data->transmitter],
1073 			&link_enc_aux_regs[enc_init_data->channel - 1],
1074 			&link_enc_hpd_regs[enc_init_data->hpd_source],
1075 			&le_shift,
1076 			&le_mask);
1077 
1078 	return &enc20->enc10.base;
1079 }
1080 
dcn32_panel_cntl_create(const struct panel_cntl_init_data * init_data)1081 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1082 {
1083 	struct dcn31_panel_cntl *panel_cntl =
1084 		kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
1085 
1086 	if (!panel_cntl)
1087 		return NULL;
1088 
1089 	dcn31_panel_cntl_construct(panel_cntl, init_data);
1090 
1091 	return &panel_cntl->base;
1092 }
1093 
read_dce_straps(struct dc_context * ctx,struct resource_straps * straps)1094 static void read_dce_straps(
1095 	struct dc_context *ctx,
1096 	struct resource_straps *straps)
1097 {
1098 	generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
1099 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1100 
1101 }
1102 
dcn32_create_audio(struct dc_context * ctx,unsigned int inst)1103 static struct audio *dcn32_create_audio(
1104 		struct dc_context *ctx, unsigned int inst)
1105 {
1106 
1107 #undef REG_STRUCT
1108 #define REG_STRUCT audio_regs
1109 	audio_regs_init(0),
1110 	audio_regs_init(1),
1111 	audio_regs_init(2),
1112 	audio_regs_init(3),
1113 	audio_regs_init(4);
1114 
1115 	return dce_audio_create(ctx, inst,
1116 			&audio_regs[inst], &audio_shift, &audio_mask);
1117 }
1118 
dcn32_vpg_create(struct dc_context * ctx,uint32_t inst)1119 static struct vpg *dcn32_vpg_create(
1120 	struct dc_context *ctx,
1121 	uint32_t inst)
1122 {
1123 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1124 
1125 	if (!vpg3)
1126 		return NULL;
1127 
1128 #undef REG_STRUCT
1129 #define REG_STRUCT vpg_regs
1130 	vpg_regs_init(0),
1131 	vpg_regs_init(1),
1132 	vpg_regs_init(2),
1133 	vpg_regs_init(3),
1134 	vpg_regs_init(4),
1135 	vpg_regs_init(5),
1136 	vpg_regs_init(6),
1137 	vpg_regs_init(7),
1138 	vpg_regs_init(8),
1139 	vpg_regs_init(9);
1140 
1141 	vpg3_construct(vpg3, ctx, inst,
1142 			&vpg_regs[inst],
1143 			&vpg_shift,
1144 			&vpg_mask);
1145 
1146 	return &vpg3->base;
1147 }
1148 
dcn32_afmt_create(struct dc_context * ctx,uint32_t inst)1149 static struct afmt *dcn32_afmt_create(
1150 	struct dc_context *ctx,
1151 	uint32_t inst)
1152 {
1153 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1154 
1155 	if (!afmt3)
1156 		return NULL;
1157 
1158 #undef REG_STRUCT
1159 #define REG_STRUCT afmt_regs
1160 	afmt_regs_init(0),
1161 	afmt_regs_init(1),
1162 	afmt_regs_init(2),
1163 	afmt_regs_init(3),
1164 	afmt_regs_init(4),
1165 	afmt_regs_init(5);
1166 
1167 	afmt3_construct(afmt3, ctx, inst,
1168 			&afmt_regs[inst],
1169 			&afmt_shift,
1170 			&afmt_mask);
1171 
1172 	return &afmt3->base;
1173 }
1174 
dcn31_apg_create(struct dc_context * ctx,uint32_t inst)1175 static struct apg *dcn31_apg_create(
1176 	struct dc_context *ctx,
1177 	uint32_t inst)
1178 {
1179 	struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
1180 
1181 	if (!apg31)
1182 		return NULL;
1183 
1184 #undef REG_STRUCT
1185 #define REG_STRUCT apg_regs
1186 	apg_regs_init(0),
1187 	apg_regs_init(1),
1188 	apg_regs_init(2),
1189 	apg_regs_init(3);
1190 
1191 	apg31_construct(apg31, ctx, inst,
1192 			&apg_regs[inst],
1193 			&apg_shift,
1194 			&apg_mask);
1195 
1196 	return &apg31->base;
1197 }
1198 
dcn32_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)1199 static struct stream_encoder *dcn32_stream_encoder_create(
1200 	enum engine_id eng_id,
1201 	struct dc_context *ctx)
1202 {
1203 	struct dcn10_stream_encoder *enc1;
1204 	struct vpg *vpg;
1205 	struct afmt *afmt;
1206 	int vpg_inst;
1207 	int afmt_inst;
1208 
1209 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1210 	if (eng_id <= ENGINE_ID_DIGF) {
1211 		vpg_inst = eng_id;
1212 		afmt_inst = eng_id;
1213 	} else
1214 		return NULL;
1215 
1216 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1217 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1218 	afmt = dcn32_afmt_create(ctx, afmt_inst);
1219 
1220 	if (!enc1 || !vpg || !afmt) {
1221 		kfree(enc1);
1222 		kfree(vpg);
1223 		kfree(afmt);
1224 		return NULL;
1225 	}
1226 
1227 #undef REG_STRUCT
1228 #define REG_STRUCT stream_enc_regs
1229 	stream_enc_regs_init(0),
1230 	stream_enc_regs_init(1),
1231 	stream_enc_regs_init(2),
1232 	stream_enc_regs_init(3),
1233 	stream_enc_regs_init(4);
1234 
1235 	dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1236 					eng_id, vpg, afmt,
1237 					&stream_enc_regs[eng_id],
1238 					&se_shift, &se_mask);
1239 
1240 	return &enc1->base;
1241 }
1242 
dcn32_hpo_dp_stream_encoder_create(enum engine_id eng_id,struct dc_context * ctx)1243 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
1244 	enum engine_id eng_id,
1245 	struct dc_context *ctx)
1246 {
1247 	struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
1248 	struct vpg *vpg;
1249 	struct apg *apg;
1250 	uint32_t hpo_dp_inst;
1251 	uint32_t vpg_inst;
1252 	uint32_t apg_inst;
1253 
1254 	ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
1255 	hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
1256 
1257 	/* Mapping of VPG register blocks to HPO DP block instance:
1258 	 * VPG[6] -> HPO_DP[0]
1259 	 * VPG[7] -> HPO_DP[1]
1260 	 * VPG[8] -> HPO_DP[2]
1261 	 * VPG[9] -> HPO_DP[3]
1262 	 */
1263 	vpg_inst = hpo_dp_inst + 6;
1264 
1265 	/* Mapping of APG register blocks to HPO DP block instance:
1266 	 * APG[0] -> HPO_DP[0]
1267 	 * APG[1] -> HPO_DP[1]
1268 	 * APG[2] -> HPO_DP[2]
1269 	 * APG[3] -> HPO_DP[3]
1270 	 */
1271 	apg_inst = hpo_dp_inst;
1272 
1273 	/* allocate HPO stream encoder and create VPG sub-block */
1274 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
1275 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1276 	apg = dcn31_apg_create(ctx, apg_inst);
1277 
1278 	if (!hpo_dp_enc31 || !vpg || !apg) {
1279 		kfree(hpo_dp_enc31);
1280 		kfree(vpg);
1281 		kfree(apg);
1282 		return NULL;
1283 	}
1284 
1285 #undef REG_STRUCT
1286 #define REG_STRUCT hpo_dp_stream_enc_regs
1287 	hpo_dp_stream_encoder_reg_init(0),
1288 	hpo_dp_stream_encoder_reg_init(1),
1289 	hpo_dp_stream_encoder_reg_init(2),
1290 	hpo_dp_stream_encoder_reg_init(3);
1291 
1292 	dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
1293 					hpo_dp_inst, eng_id, vpg, apg,
1294 					&hpo_dp_stream_enc_regs[hpo_dp_inst],
1295 					&hpo_dp_se_shift, &hpo_dp_se_mask);
1296 
1297 	return &hpo_dp_enc31->base;
1298 }
1299 
dcn32_hpo_dp_link_encoder_create(uint8_t inst,struct dc_context * ctx)1300 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
1301 	uint8_t inst,
1302 	struct dc_context *ctx)
1303 {
1304 	struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
1305 
1306 	/* allocate HPO link encoder */
1307 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
1308 	if (!hpo_dp_enc31)
1309 		return NULL; /* out of memory */
1310 
1311 #undef REG_STRUCT
1312 #define REG_STRUCT hpo_dp_link_enc_regs
1313 	hpo_dp_link_encoder_reg_init(0),
1314 	hpo_dp_link_encoder_reg_init(1);
1315 
1316 	hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
1317 					&hpo_dp_link_enc_regs[inst],
1318 					&hpo_dp_le_shift, &hpo_dp_le_mask);
1319 
1320 	return &hpo_dp_enc31->base;
1321 }
1322 
dcn32_hwseq_create(struct dc_context * ctx)1323 static struct dce_hwseq *dcn32_hwseq_create(
1324 	struct dc_context *ctx)
1325 {
1326 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1327 
1328 #undef REG_STRUCT
1329 #define REG_STRUCT hwseq_reg
1330 	hwseq_reg_init();
1331 
1332 	if (hws) {
1333 		hws->ctx = ctx;
1334 		hws->regs = &hwseq_reg;
1335 		hws->shifts = &hwseq_shift;
1336 		hws->masks = &hwseq_mask;
1337 	}
1338 	return hws;
1339 }
1340 static const struct resource_create_funcs res_create_funcs = {
1341 	.read_dce_straps = read_dce_straps,
1342 	.create_audio = dcn32_create_audio,
1343 	.create_stream_encoder = dcn32_stream_encoder_create,
1344 	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1345 	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1346 	.create_hwseq = dcn32_hwseq_create,
1347 };
1348 
dcn32_resource_destruct(struct dcn32_resource_pool * pool)1349 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
1350 {
1351 	unsigned int i;
1352 
1353 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1354 		if (pool->base.stream_enc[i] != NULL) {
1355 			if (pool->base.stream_enc[i]->vpg != NULL) {
1356 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1357 				pool->base.stream_enc[i]->vpg = NULL;
1358 			}
1359 			if (pool->base.stream_enc[i]->afmt != NULL) {
1360 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1361 				pool->base.stream_enc[i]->afmt = NULL;
1362 			}
1363 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1364 			pool->base.stream_enc[i] = NULL;
1365 		}
1366 	}
1367 
1368 	for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
1369 		if (pool->base.hpo_dp_stream_enc[i] != NULL) {
1370 			if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
1371 				kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
1372 				pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
1373 			}
1374 			if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
1375 				kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
1376 				pool->base.hpo_dp_stream_enc[i]->apg = NULL;
1377 			}
1378 			kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
1379 			pool->base.hpo_dp_stream_enc[i] = NULL;
1380 		}
1381 	}
1382 
1383 	for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
1384 		if (pool->base.hpo_dp_link_enc[i] != NULL) {
1385 			kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
1386 			pool->base.hpo_dp_link_enc[i] = NULL;
1387 		}
1388 	}
1389 
1390 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1391 		if (pool->base.dscs[i] != NULL)
1392 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1393 	}
1394 
1395 	if (pool->base.mpc != NULL) {
1396 		kfree(TO_DCN20_MPC(pool->base.mpc));
1397 		pool->base.mpc = NULL;
1398 	}
1399 	if (pool->base.hubbub != NULL) {
1400 		kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
1401 		pool->base.hubbub = NULL;
1402 	}
1403 	for (i = 0; i < pool->base.pipe_count; i++) {
1404 		if (pool->base.dpps[i] != NULL)
1405 			dcn32_dpp_destroy(&pool->base.dpps[i]);
1406 
1407 		if (pool->base.ipps[i] != NULL)
1408 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1409 
1410 		if (pool->base.hubps[i] != NULL) {
1411 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1412 			pool->base.hubps[i] = NULL;
1413 		}
1414 
1415 		if (pool->base.irqs != NULL) {
1416 			dal_irq_service_destroy(&pool->base.irqs);
1417 		}
1418 	}
1419 
1420 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1421 		if (pool->base.engines[i] != NULL)
1422 			dce110_engine_destroy(&pool->base.engines[i]);
1423 		if (pool->base.hw_i2cs[i] != NULL) {
1424 			kfree(pool->base.hw_i2cs[i]);
1425 			pool->base.hw_i2cs[i] = NULL;
1426 		}
1427 		if (pool->base.sw_i2cs[i] != NULL) {
1428 			kfree(pool->base.sw_i2cs[i]);
1429 			pool->base.sw_i2cs[i] = NULL;
1430 		}
1431 	}
1432 
1433 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1434 		if (pool->base.opps[i] != NULL)
1435 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1436 	}
1437 
1438 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1439 		if (pool->base.timing_generators[i] != NULL)	{
1440 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1441 			pool->base.timing_generators[i] = NULL;
1442 		}
1443 	}
1444 
1445 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1446 		if (pool->base.dwbc[i] != NULL) {
1447 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1448 			pool->base.dwbc[i] = NULL;
1449 		}
1450 		if (pool->base.mcif_wb[i] != NULL) {
1451 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1452 			pool->base.mcif_wb[i] = NULL;
1453 		}
1454 	}
1455 
1456 	for (i = 0; i < pool->base.audio_count; i++) {
1457 		if (pool->base.audios[i])
1458 			dce_aud_destroy(&pool->base.audios[i]);
1459 	}
1460 
1461 	for (i = 0; i < pool->base.clk_src_count; i++) {
1462 		if (pool->base.clock_sources[i] != NULL) {
1463 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1464 			pool->base.clock_sources[i] = NULL;
1465 		}
1466 	}
1467 
1468 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1469 		if (pool->base.mpc_lut[i] != NULL) {
1470 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1471 			pool->base.mpc_lut[i] = NULL;
1472 		}
1473 		if (pool->base.mpc_shaper[i] != NULL) {
1474 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1475 			pool->base.mpc_shaper[i] = NULL;
1476 		}
1477 	}
1478 
1479 	if (pool->base.dp_clock_source != NULL) {
1480 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1481 		pool->base.dp_clock_source = NULL;
1482 	}
1483 
1484 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1485 		if (pool->base.multiple_abms[i] != NULL)
1486 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1487 	}
1488 
1489 	if (pool->base.psr != NULL)
1490 		dmub_psr_destroy(&pool->base.psr);
1491 
1492 	if (pool->base.dccg != NULL)
1493 		dcn_dccg_destroy(&pool->base.dccg);
1494 
1495 	if (pool->base.oem_device != NULL) {
1496 		struct dc *dc = pool->base.oem_device->ctx->dc;
1497 
1498 		dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1499 	}
1500 }
1501 
1502 
dcn32_dwbc_create(struct dc_context * ctx,struct resource_pool * pool)1503 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1504 {
1505 	int i;
1506 	uint32_t dwb_count = pool->res_cap->num_dwb;
1507 
1508 	for (i = 0; i < dwb_count; i++) {
1509 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1510 						    GFP_KERNEL);
1511 
1512 		if (!dwbc30) {
1513 			dm_error("DC: failed to create dwbc30!\n");
1514 			return false;
1515 		}
1516 
1517 #undef REG_STRUCT
1518 #define REG_STRUCT dwbc30_regs
1519 		dwbc_regs_dcn3_init(0);
1520 
1521 		dcn30_dwbc_construct(dwbc30, ctx,
1522 				&dwbc30_regs[i],
1523 				&dwbc30_shift,
1524 				&dwbc30_mask,
1525 				i);
1526 
1527 		pool->dwbc[i] = &dwbc30->base;
1528 	}
1529 	return true;
1530 }
1531 
dcn32_mmhubbub_create(struct dc_context * ctx,struct resource_pool * pool)1532 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1533 {
1534 	int i;
1535 	uint32_t dwb_count = pool->res_cap->num_dwb;
1536 
1537 	for (i = 0; i < dwb_count; i++) {
1538 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1539 						    GFP_KERNEL);
1540 
1541 		if (!mcif_wb30) {
1542 			dm_error("DC: failed to create mcif_wb30!\n");
1543 			return false;
1544 		}
1545 
1546 #undef REG_STRUCT
1547 #define REG_STRUCT mcif_wb30_regs
1548 		mcif_wb_regs_dcn3_init(0);
1549 
1550 		dcn32_mmhubbub_construct(mcif_wb30, ctx,
1551 				&mcif_wb30_regs[i],
1552 				&mcif_wb30_shift,
1553 				&mcif_wb30_mask,
1554 				i);
1555 
1556 		pool->mcif_wb[i] = &mcif_wb30->base;
1557 	}
1558 	return true;
1559 }
1560 
dcn32_dsc_create(struct dc_context * ctx,uint32_t inst)1561 static struct display_stream_compressor *dcn32_dsc_create(
1562 	struct dc_context *ctx, uint32_t inst)
1563 {
1564 	struct dcn20_dsc *dsc =
1565 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1566 
1567 	if (!dsc) {
1568 		BREAK_TO_DEBUGGER();
1569 		return NULL;
1570 	}
1571 
1572 #undef REG_STRUCT
1573 #define REG_STRUCT dsc_regs
1574 	dsc_regsDCN20_init(0),
1575 	dsc_regsDCN20_init(1),
1576 	dsc_regsDCN20_init(2),
1577 	dsc_regsDCN20_init(3);
1578 
1579 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1580 
1581 	dsc->max_image_width = 6016;
1582 
1583 	return &dsc->base;
1584 }
1585 
dcn32_destroy_resource_pool(struct resource_pool ** pool)1586 static void dcn32_destroy_resource_pool(struct resource_pool **pool)
1587 {
1588 	struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
1589 
1590 	dcn32_resource_destruct(dcn32_pool);
1591 	kfree(dcn32_pool);
1592 	*pool = NULL;
1593 }
1594 
dcn32_acquire_post_bldn_3dlut(struct resource_context * res_ctx,const struct resource_pool * pool,int mpcc_id,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1595 bool dcn32_acquire_post_bldn_3dlut(
1596 		struct resource_context *res_ctx,
1597 		const struct resource_pool *pool,
1598 		int mpcc_id,
1599 		struct dc_3dlut **lut,
1600 		struct dc_transfer_func **shaper)
1601 {
1602 	bool ret = false;
1603 
1604 	ASSERT(*lut == NULL && *shaper == NULL);
1605 	*lut = NULL;
1606 	*shaper = NULL;
1607 
1608 	if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
1609 		*lut = pool->mpc_lut[mpcc_id];
1610 		*shaper = pool->mpc_shaper[mpcc_id];
1611 		res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
1612 		ret = true;
1613 	}
1614 	return ret;
1615 }
1616 
dcn32_release_post_bldn_3dlut(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)1617 bool dcn32_release_post_bldn_3dlut(
1618 		struct resource_context *res_ctx,
1619 		const struct resource_pool *pool,
1620 		struct dc_3dlut **lut,
1621 		struct dc_transfer_func **shaper)
1622 {
1623 	int i;
1624 	bool ret = false;
1625 
1626 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1627 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1628 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1629 			pool->mpc_lut[i]->state.raw = 0;
1630 			*lut = NULL;
1631 			*shaper = NULL;
1632 			ret = true;
1633 			break;
1634 		}
1635 	}
1636 	return ret;
1637 }
1638 
dcn32_enable_phantom_plane(struct dc * dc,struct dc_state * context,struct dc_stream_state * phantom_stream,unsigned int dc_pipe_idx)1639 static void dcn32_enable_phantom_plane(struct dc *dc,
1640 		struct dc_state *context,
1641 		struct dc_stream_state *phantom_stream,
1642 		unsigned int dc_pipe_idx)
1643 {
1644 	struct dc_plane_state *phantom_plane = NULL;
1645 	struct dc_plane_state *prev_phantom_plane = NULL;
1646 	struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1647 
1648 	while (curr_pipe) {
1649 		if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
1650 			phantom_plane = prev_phantom_plane;
1651 		else
1652 			phantom_plane = dc_state_create_phantom_plane(dc, context, curr_pipe->plane_state);
1653 
1654 		if (!phantom_plane)
1655 			continue;
1656 
1657 		memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
1658 		memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
1659 				sizeof(phantom_plane->scaling_quality));
1660 		memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
1661 		memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
1662 		memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
1663 		memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
1664 				sizeof(phantom_plane->plane_size));
1665 		memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
1666 				sizeof(phantom_plane->tiling_info));
1667 		memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
1668 		phantom_plane->format = curr_pipe->plane_state->format;
1669 		phantom_plane->rotation = curr_pipe->plane_state->rotation;
1670 		phantom_plane->visible = curr_pipe->plane_state->visible;
1671 
1672 		/* Shadow pipe has small viewport. */
1673 		phantom_plane->clip_rect.y = 0;
1674 		phantom_plane->clip_rect.height = phantom_stream->src.height;
1675 
1676 		dc_state_add_phantom_plane(dc, phantom_stream, phantom_plane, context);
1677 
1678 		curr_pipe = curr_pipe->bottom_pipe;
1679 		prev_phantom_plane = phantom_plane;
1680 	}
1681 }
1682 
dcn32_enable_phantom_stream(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,unsigned int pipe_cnt,unsigned int dc_pipe_idx)1683 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
1684 		struct dc_state *context,
1685 		display_e2e_pipe_params_st *pipes,
1686 		unsigned int pipe_cnt,
1687 		unsigned int dc_pipe_idx)
1688 {
1689 	struct dc_stream_state *phantom_stream = NULL;
1690 	struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1691 
1692 	phantom_stream = dc_state_create_phantom_stream(dc, context, ref_pipe->stream);
1693 	if (!phantom_stream)
1694 		return phantom_stream;
1695 
1696 	/* stream has limited viewport and small timing */
1697 	memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
1698 	memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
1699 	memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
1700 	DC_FP_START();
1701 	dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
1702 	DC_FP_END();
1703 
1704 	dc_state_add_phantom_stream(dc, context, phantom_stream, ref_pipe->stream);
1705 	return phantom_stream;
1706 }
1707 
1708 /* TODO: Input to this function should indicate which pipe indexes (or streams)
1709  * require a phantom pipe / stream
1710  */
dcn32_add_phantom_pipes(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,unsigned int pipe_cnt,unsigned int index)1711 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
1712 		display_e2e_pipe_params_st *pipes,
1713 		unsigned int pipe_cnt,
1714 		unsigned int index)
1715 {
1716 	struct dc_stream_state *phantom_stream = NULL;
1717 	unsigned int i;
1718 
1719 	// The index of the DC pipe passed into this function is guarenteed to
1720 	// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
1721 	// already have phantom pipe assigned, etc.) by previous checks.
1722 	phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
1723 	if (!phantom_stream)
1724 		return;
1725 
1726 	dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
1727 
1728 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1729 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1730 
1731 		// Build scaling params for phantom pipes which were newly added.
1732 		// We determine which phantom pipes were added by comparing with
1733 		// the phantom stream.
1734 		if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
1735 				dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
1736 			pipe->stream->use_dynamic_meta = false;
1737 			pipe->plane_state->flip_immediate = false;
1738 			if (!resource_build_scaling_params(pipe)) {
1739 				// Log / remove phantom pipes since failed to build scaling params
1740 			}
1741 		}
1742 	}
1743 }
1744 
dml1_validate(struct dc * dc,struct dc_state * context,bool fast_validate)1745 static bool dml1_validate(struct dc *dc, struct dc_state *context, bool fast_validate)
1746 {
1747 	bool out = false;
1748 
1749 	BW_VAL_TRACE_SETUP();
1750 
1751 	int vlevel = 0;
1752 	int pipe_cnt = 0;
1753 	display_e2e_pipe_params_st *pipes = kcalloc(dc->res_pool->pipe_count,
1754 			sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
1755 
1756 	/* To handle Freesync properly, setting FreeSync DML parameters
1757 	 * to its default state for the first stage of validation
1758 	 */
1759 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1760 	context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1761 
1762 	DC_LOGGER_INIT(dc->ctx->logger);
1763 
1764 	BW_VAL_TRACE_COUNT();
1765 
1766 	if (!pipes)
1767 		goto validate_fail;
1768 
1769 	DC_FP_START();
1770 	out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
1771 	DC_FP_END();
1772 
1773 	if (pipe_cnt == 0)
1774 		goto validate_out;
1775 
1776 	if (!out)
1777 		goto validate_fail;
1778 
1779 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
1780 
1781 	if (fast_validate) {
1782 		BW_VAL_TRACE_SKIP(fast);
1783 		goto validate_out;
1784 	}
1785 
1786 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
1787 
1788 	dcn32_override_min_req_memclk(dc, context);
1789 	dcn32_override_min_req_dcfclk(dc, context);
1790 
1791 	BW_VAL_TRACE_END_WATERMARKS();
1792 
1793 	goto validate_out;
1794 
1795 validate_fail:
1796 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
1797 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
1798 
1799 	BW_VAL_TRACE_SKIP(fail);
1800 	out = false;
1801 
1802 validate_out:
1803 	kfree(pipes);
1804 
1805 	BW_VAL_TRACE_FINISH();
1806 
1807 	return out;
1808 }
1809 
dcn32_validate_bandwidth(struct dc * dc,struct dc_state * context,bool fast_validate)1810 enum dc_status dcn32_validate_bandwidth(struct dc *dc,
1811 		struct dc_state *context,
1812 		bool fast_validate)
1813 {
1814 	unsigned int i;
1815 	enum dc_status status;
1816 	const struct dc_stream_state *stream;
1817 
1818 	/* reset cursor limitations on subvp */
1819 	for (i = 0; i < context->stream_count; i++) {
1820 		stream = context->streams[i];
1821 
1822 		if (dc_state_can_clear_stream_cursor_subvp_limit(stream, context)) {
1823 			dc_state_set_stream_cursor_subvp_limit(stream, context, false);
1824 		}
1825 	}
1826 
1827 	if (dc->debug.using_dml2)
1828 		status = dml2_validate(dc, context,
1829 				context->power_source == DC_POWER_SOURCE_DC ? context->bw_ctx.dml2_dc_power_source : context->bw_ctx.dml2,
1830 				fast_validate) ? DC_OK : DC_FAIL_BANDWIDTH_VALIDATE;
1831 	else
1832 		status = dml1_validate(dc, context, fast_validate) ? DC_OK : DC_FAIL_BANDWIDTH_VALIDATE;
1833 
1834 	if (!fast_validate && status == DC_OK && dc_state_is_subvp_in_use(context)) {
1835 		/* check new stream configuration still supports cursor if subvp used */
1836 		for (i = 0; i < context->stream_count; i++) {
1837 			stream = context->streams[i];
1838 
1839 			if (dc_state_get_stream_subvp_type(context, stream) != SUBVP_PHANTOM &&
1840 					stream->cursor_position.enable &&
1841 					!dc_stream_check_cursor_attributes(stream, context, &stream->cursor_attributes)) {
1842 				/* hw cursor cannot be supported with subvp active, so disable subvp for now */
1843 				dc_state_set_stream_cursor_subvp_limit(stream, context, true);
1844 				status = DC_FAIL_HW_CURSOR_SUPPORT;
1845 			}
1846 		};
1847 	}
1848 
1849 	if (!fast_validate && status == DC_FAIL_HW_CURSOR_SUPPORT) {
1850 		/* attempt to validate again with subvp disabled due to cursor */
1851 		if (dc->debug.using_dml2)
1852 			status = dml2_validate(dc, context,
1853 					context->power_source == DC_POWER_SOURCE_DC ? context->bw_ctx.dml2_dc_power_source : context->bw_ctx.dml2,
1854 					fast_validate) ? DC_OK : DC_FAIL_BANDWIDTH_VALIDATE;
1855 		else
1856 			status = dml1_validate(dc, context, fast_validate) ? DC_OK : DC_FAIL_BANDWIDTH_VALIDATE;
1857 	}
1858 
1859 	return status;
1860 }
1861 
dcn32_populate_dml_pipes_from_context(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,bool fast_validate)1862 int dcn32_populate_dml_pipes_from_context(
1863 	struct dc *dc, struct dc_state *context,
1864 	display_e2e_pipe_params_st *pipes,
1865 	bool fast_validate)
1866 {
1867 	int i, pipe_cnt;
1868 	struct resource_context *res_ctx = &context->res_ctx;
1869 	struct pipe_ctx *pipe = NULL;
1870 	bool subvp_in_use = false;
1871 	struct dc_crtc_timing *timing;
1872 	int subvp_main_pipe_index = -1;
1873 	enum mall_stream_type mall_type;
1874 	bool single_display_subvp = false;
1875 	struct dc_stream_state *stream = NULL;
1876 	int num_subvp_main = 0;
1877 	int num_subvp_phantom = 0;
1878 	int num_subvp_none = 0;
1879 	int odm_slice_count;
1880 
1881 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1882 
1883 	/* For single display subvp, look for subvp main so if we have phantom
1884 	 *  pipe, we can set odm policy to match main pipe
1885 	 */
1886 	for (i = 0; i < context->stream_count; i++) {
1887 		stream = context->streams[i];
1888 		mall_type = dc_state_get_stream_subvp_type(context, stream);
1889 		if (mall_type == SUBVP_MAIN)
1890 			num_subvp_main++;
1891 		else if (mall_type == SUBVP_PHANTOM)
1892 			num_subvp_phantom++;
1893 		else
1894 			num_subvp_none++;
1895 	}
1896 	if (num_subvp_main == 1 && num_subvp_phantom == 1 && num_subvp_none == 0)
1897 		single_display_subvp = true;
1898 
1899 	if (single_display_subvp) {
1900 		for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1901 			pipe = &res_ctx->pipe_ctx[i];
1902 			if (!res_ctx->pipe_ctx[i].stream)
1903 				continue;
1904 
1905 			mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1906 			if (mall_type == SUBVP_MAIN) {
1907 				if (resource_is_pipe_type(pipe, OTG_MASTER))
1908 					subvp_main_pipe_index = i;
1909 			}
1910 			pipe_cnt++;
1911 		}
1912 	}
1913 
1914 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1915 
1916 		if (!res_ctx->pipe_ctx[i].stream)
1917 			continue;
1918 		pipe = &res_ctx->pipe_ctx[i];
1919 		timing = &pipe->stream->timing;
1920 
1921 		pipes[pipe_cnt].pipe.src.gpuvm = true;
1922 		DC_FP_START();
1923 		dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
1924 		DC_FP_END();
1925 		pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
1926 		if (dc->config.enable_windowed_mpo_odm &&
1927 				dc->debug.enable_single_display_2to1_odm_policy) {
1928 			/* For single display subvp, if pipe is phantom pipe,
1929 			 *  then copy odm policy from subvp main pipe
1930 			 */
1931 			mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1932 			if (single_display_subvp && (mall_type == SUBVP_PHANTOM)) {
1933 				if (subvp_main_pipe_index < 0) {
1934 					odm_slice_count = -1;
1935 					ASSERT(0);
1936 				} else {
1937 					odm_slice_count = resource_get_odm_slice_count(&res_ctx->pipe_ctx[subvp_main_pipe_index]);
1938 				}
1939 			} else {
1940 				odm_slice_count = resource_get_odm_slice_count(pipe);
1941 			}
1942 			switch (odm_slice_count) {
1943 			case 2:
1944 				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1945 				break;
1946 			case 4:
1947 				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_4to1;
1948 				break;
1949 			default:
1950 				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1951 			}
1952 		} else {
1953 			pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1954 		}
1955 
1956 		pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
1957 		pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1958 		pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
1959 
1960 		/* Only populate DML input with subvp info for full updates.
1961 		 * This is just a workaround -- needs a proper fix.
1962 		 */
1963 		if (!fast_validate) {
1964 			switch (dc_state_get_pipe_subvp_type(context, pipe)) {
1965 			case SUBVP_MAIN:
1966 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
1967 				subvp_in_use = true;
1968 				break;
1969 			case SUBVP_PHANTOM:
1970 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
1971 				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1972 				// Disallow unbounded req for SubVP according to DCHUB programming guide
1973 				pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1974 				break;
1975 			case SUBVP_NONE:
1976 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
1977 				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1978 				break;
1979 			default:
1980 				break;
1981 			}
1982 		}
1983 
1984 		pipes[pipe_cnt].dout.dsc_input_bpc = 0;
1985 		if (pipes[pipe_cnt].dout.dsc_enable) {
1986 			switch (timing->display_color_depth) {
1987 			case COLOR_DEPTH_888:
1988 				pipes[pipe_cnt].dout.dsc_input_bpc = 8;
1989 				break;
1990 			case COLOR_DEPTH_101010:
1991 				pipes[pipe_cnt].dout.dsc_input_bpc = 10;
1992 				break;
1993 			case COLOR_DEPTH_121212:
1994 				pipes[pipe_cnt].dout.dsc_input_bpc = 12;
1995 				break;
1996 			default:
1997 				ASSERT(0);
1998 				break;
1999 			}
2000 		}
2001 
2002 
2003 		pipe_cnt++;
2004 	}
2005 
2006 	/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
2007 	 * the DET available for each pipe). Use the DET override input to maintain our driver
2008 	 * policy.
2009 	 */
2010 	dcn32_set_det_allocations(dc, context, pipes);
2011 
2012 	// In general cases we want to keep the dram clock change requirement
2013 	// (prefer configs that support MCLK switch). Only override to false
2014 	// for SubVP
2015 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use)
2016 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
2017 	else
2018 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
2019 
2020 	return pipe_cnt;
2021 }
2022 
dcn32_calculate_mall_ways_from_bytes(const struct dc * dc,unsigned int total_size_in_mall_bytes)2023 unsigned int dcn32_calculate_mall_ways_from_bytes(const struct dc *dc, unsigned int total_size_in_mall_bytes)
2024 {
2025 	uint32_t cache_lines_used, lines_per_way, total_cache_lines, num_ways;
2026 
2027 	if (total_size_in_mall_bytes == 0) {
2028 		return 0;
2029 	}
2030 
2031 	if (dc->caps.max_cab_allocation_bytes == 0) {
2032 		return 0xffffffff;
2033 	}
2034 
2035 	/* add 2 lines for worst case alignment */
2036 	cache_lines_used = total_size_in_mall_bytes / dc->caps.cache_line_size + 2;
2037 
2038 	total_cache_lines = dc->caps.max_cab_allocation_bytes / dc->caps.cache_line_size;
2039 	lines_per_way = total_cache_lines / dc->caps.cache_num_ways;
2040 	num_ways = cache_lines_used / lines_per_way;
2041 	if (cache_lines_used % lines_per_way > 0)
2042 		num_ways++;
2043 
2044 	return num_ways;
2045 }
2046 
2047 static struct dc_cap_funcs cap_funcs = {
2048 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap,
2049 	.get_subvp_en = dcn32_subvp_in_use,
2050 };
2051 
dcn32_calculate_wm_and_dlg(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)2052 void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
2053 				display_e2e_pipe_params_st *pipes,
2054 				int pipe_cnt,
2055 				int vlevel)
2056 {
2057     DC_FP_START();
2058     dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
2059     DC_FP_END();
2060 }
2061 
dcn32_update_bw_bounding_box(struct dc * dc,struct clk_bw_params * bw_params)2062 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2063 {
2064 	struct dml2_configuration_options *dml2_opt = &dc->dml2_tmp;
2065 
2066 	memcpy(dml2_opt, &dc->dml2_options, sizeof(dc->dml2_options));
2067 
2068 	DC_FP_START();
2069 
2070 	dcn32_update_bw_bounding_box_fpu(dc, bw_params);
2071 
2072 	dml2_opt->use_clock_dc_limits = false;
2073 	if (dc->debug.using_dml2 && dc->current_state && dc->current_state->bw_ctx.dml2)
2074 		dml2_reinit(dc, dml2_opt, &dc->current_state->bw_ctx.dml2);
2075 
2076 	dml2_opt->use_clock_dc_limits = true;
2077 	if (dc->debug.using_dml2 && dc->current_state && dc->current_state->bw_ctx.dml2_dc_power_source)
2078 		dml2_reinit(dc, dml2_opt, &dc->current_state->bw_ctx.dml2_dc_power_source);
2079 
2080 	DC_FP_END();
2081 }
2082 
dcn32_get_max_hw_cursor_size(const struct dc * dc,struct dc_state * state,const struct dc_stream_state * stream)2083 unsigned int dcn32_get_max_hw_cursor_size(const struct dc *dc,
2084 			struct dc_state *state,
2085 			const struct dc_stream_state *stream)
2086 {
2087 	bool limit_cur_to_buf;
2088 
2089 	limit_cur_to_buf = dc_state_get_stream_subvp_cursor_limit(stream, state) &&
2090 			!stream->hw_cursor_req;
2091 
2092 	return limit_cur_to_buf ? dc->caps.max_buffered_cursor_size : dc->caps.max_cursor_size;
2093 }
2094 
2095 static struct resource_funcs dcn32_res_pool_funcs = {
2096 	.destroy = dcn32_destroy_resource_pool,
2097 	.link_enc_create = dcn32_link_encoder_create,
2098 	.link_enc_create_minimal = NULL,
2099 	.panel_cntl_create = dcn32_panel_cntl_create,
2100 	.validate_bandwidth = dcn32_validate_bandwidth,
2101 	.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
2102 	.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
2103 	.acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe,
2104 	.acquire_free_pipe_as_secondary_opp_head = dcn32_acquire_free_pipe_as_secondary_opp_head,
2105 	.release_pipe = dcn20_release_pipe,
2106 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
2107 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2108 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2109 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2110 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
2111 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2112 	.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
2113 	.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
2114 	.update_bw_bounding_box = dcn32_update_bw_bounding_box,
2115 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2116 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2117 	.add_phantom_pipes = dcn32_add_phantom_pipes,
2118 	.build_pipe_pix_clk_params = dcn20_build_pipe_pix_clk_params,
2119 	.calculate_mall_ways_from_bytes = dcn32_calculate_mall_ways_from_bytes,
2120 	.get_vstartup_for_pipe = dcn10_get_vstartup_for_pipe,
2121 	.get_max_hw_cursor_size = dcn32_get_max_hw_cursor_size,
2122 };
2123 
read_pipe_fuses(struct dc_context * ctx)2124 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2125 {
2126 	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2127 	/* DCN32 support max 4 pipes */
2128 	value = value & 0xf;
2129 	return value;
2130 }
2131 
2132 
dcn32_resource_construct(uint8_t num_virtual_links,struct dc * dc,struct dcn32_resource_pool * pool)2133 static bool dcn32_resource_construct(
2134 	uint8_t num_virtual_links,
2135 	struct dc *dc,
2136 	struct dcn32_resource_pool *pool)
2137 {
2138 	int i, j;
2139 	struct dc_context *ctx = dc->ctx;
2140 	struct irq_service_init_data init_data;
2141 	struct ddc_service_init_data ddc_init_data = {0};
2142 	uint32_t pipe_fuses = 0;
2143 	uint32_t num_pipes  = 4;
2144 
2145 #undef REG_STRUCT
2146 #define REG_STRUCT bios_regs
2147 	bios_regs_init();
2148 
2149 #undef REG_STRUCT
2150 #define REG_STRUCT clk_src_regs
2151 	clk_src_regs_init(0, A),
2152 	clk_src_regs_init(1, B),
2153 	clk_src_regs_init(2, C),
2154 	clk_src_regs_init(3, D),
2155 	clk_src_regs_init(4, E);
2156 
2157 #undef REG_STRUCT
2158 #define REG_STRUCT abm_regs
2159 	abm_regs_init(0),
2160 	abm_regs_init(1),
2161 	abm_regs_init(2),
2162 	abm_regs_init(3);
2163 
2164 #undef REG_STRUCT
2165 #define REG_STRUCT dccg_regs
2166 	dccg_regs_init();
2167 
2168 	ctx->dc_bios->regs = &bios_regs;
2169 
2170 	pool->base.res_cap = &res_cap_dcn32;
2171 	/* max number of pipes for ASIC before checking for pipe fuses */
2172 	num_pipes  = pool->base.res_cap->num_timing_generator;
2173 	pipe_fuses = read_pipe_fuses(ctx);
2174 
2175 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
2176 		if (pipe_fuses & 1 << i)
2177 			num_pipes--;
2178 
2179 	if (pipe_fuses & 1)
2180 		ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
2181 
2182 	if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
2183 		ASSERT(0); //Entire DCN is harvested!
2184 
2185 	/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
2186 	 * value will be changed, update max_num_dpp and max_num_otg for dml.
2187 	 */
2188 	dcn3_2_ip.max_num_dpp = num_pipes;
2189 	dcn3_2_ip.max_num_otg = num_pipes;
2190 
2191 	pool->base.funcs = &dcn32_res_pool_funcs;
2192 
2193 	/*************************************************
2194 	 *  Resource + asic cap harcoding                *
2195 	 *************************************************/
2196 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2197 	pool->base.timing_generator_count = num_pipes;
2198 	pool->base.pipe_count = num_pipes;
2199 	pool->base.mpcc_count = num_pipes;
2200 	dc->caps.max_downscale_ratio = 600;
2201 	dc->caps.i2c_speed_in_khz = 100;
2202 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
2203 	/* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
2204 	dc->caps.max_cursor_size = 64;
2205 	dc->caps.max_buffered_cursor_size = 64; // sqrt(16 * 1024 / 4)
2206 	dc->caps.min_horizontal_blanking_period = 80;
2207 	dc->caps.dmdata_alloc_size = 2048;
2208 	dc->caps.mall_size_per_mem_channel = 4;
2209 	/* total size = mall per channel * num channels * 1024 * 1024 */
2210 	dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576;
2211 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2212 
2213 	dc->caps.cache_line_size = 64;
2214 	dc->caps.cache_num_ways = 16;
2215 
2216 	/* Calculate the available MALL space */
2217 	dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
2218 		dc, dc->ctx->dc_bios->vram_info.num_chans) *
2219 		dc->caps.mall_size_per_mem_channel * 1024 * 1024;
2220 	dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;
2221 
2222 	dc->caps.subvp_fw_processing_delay_us = 15;
2223 	dc->caps.subvp_drr_max_vblank_margin_us = 40;
2224 	dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
2225 	dc->caps.subvp_swath_height_margin_lines = 16;
2226 	dc->caps.subvp_pstate_allow_width_us = 20;
2227 	dc->caps.subvp_vertical_int_margin_us = 30;
2228 	dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
2229 
2230 	dc->caps.max_slave_planes = 2;
2231 	dc->caps.max_slave_yuv_planes = 2;
2232 	dc->caps.max_slave_rgb_planes = 2;
2233 	dc->caps.post_blend_color_processing = true;
2234 	dc->caps.force_dp_tps4_for_cp2520 = true;
2235 	if (dc->config.forceHBR2CP2520)
2236 		dc->caps.force_dp_tps4_for_cp2520 = false;
2237 	dc->caps.dp_hpo = true;
2238 	dc->caps.dp_hdmi21_pcon_support = true;
2239 	dc->caps.edp_dsc_support = true;
2240 	dc->caps.extended_aux_timeout_support = true;
2241 	dc->caps.dmcub_support = true;
2242 	dc->caps.seamless_odm = true;
2243 	dc->caps.max_v_total = (1 << 15) - 1;
2244 	dc->caps.vtotal_limited_by_fp2 = true;
2245 
2246 	/* Color pipeline capabilities */
2247 	dc->caps.color.dpp.dcn_arch = 1;
2248 	dc->caps.color.dpp.input_lut_shared = 0;
2249 	dc->caps.color.dpp.icsc = 1;
2250 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2251 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2252 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2253 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2254 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2255 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2256 	dc->caps.color.dpp.post_csc = 1;
2257 	dc->caps.color.dpp.gamma_corr = 1;
2258 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2259 
2260 	dc->caps.color.dpp.hw_3d_lut = 1;
2261 	dc->caps.color.dpp.ogam_ram = 0;  // no OGAM in DPP since DCN1
2262 	// no OGAM ROM on DCN2 and later ASICs
2263 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2264 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2265 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2266 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2267 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2268 	dc->caps.color.dpp.ocsc = 0;
2269 
2270 	dc->caps.color.mpc.gamut_remap = 1;
2271 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
2272 	dc->caps.color.mpc.ogam_ram = 1;
2273 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2274 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2275 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2276 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2277 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2278 	dc->caps.color.mpc.ocsc = 1;
2279 
2280 	/* Use pipe context based otg sync logic */
2281 	dc->config.use_pipe_ctx_sync_logic = true;
2282 
2283 	dc->config.dc_mode_clk_limit_support = true;
2284 	dc->config.enable_windowed_mpo_odm = true;
2285 	dc->config.disable_hbr_audio_dp2 = true;
2286 	/* read VBIOS LTTPR caps */
2287 	{
2288 		if (ctx->dc_bios->funcs->get_lttpr_caps) {
2289 			enum bp_result bp_query_result;
2290 			uint8_t is_vbios_lttpr_enable = 0;
2291 
2292 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2293 			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2294 		}
2295 
2296 		/* interop bit is implicit */
2297 		{
2298 			dc->caps.vbios_lttpr_aware = true;
2299 		}
2300 	}
2301 
2302 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2303 		dc->debug = debug_defaults_drv;
2304 
2305 	// Init the vm_helper
2306 	if (dc->vm_helper)
2307 		vm_helper_init(dc->vm_helper, 16);
2308 
2309 	/*************************************************
2310 	 *  Create resources                             *
2311 	 *************************************************/
2312 
2313 	/* Clock Sources for Pixel Clock*/
2314 	pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
2315 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2316 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2317 				&clk_src_regs[0], false);
2318 	pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
2319 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2320 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2321 				&clk_src_regs[1], false);
2322 	pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
2323 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2324 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2325 				&clk_src_regs[2], false);
2326 	pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
2327 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2328 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2329 				&clk_src_regs[3], false);
2330 	pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
2331 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2332 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2333 				&clk_src_regs[4], false);
2334 
2335 	pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
2336 
2337 	/* todo: not reuse phy_pll registers */
2338 	pool->base.dp_clock_source =
2339 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2340 				CLOCK_SOURCE_ID_DP_DTO,
2341 				&clk_src_regs[0], true);
2342 
2343 	for (i = 0; i < pool->base.clk_src_count; i++) {
2344 		if (pool->base.clock_sources[i] == NULL) {
2345 			dm_error("DC: failed to create clock sources!\n");
2346 			BREAK_TO_DEBUGGER();
2347 			goto create_fail;
2348 		}
2349 	}
2350 
2351 	/* DCCG */
2352 	pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2353 	if (pool->base.dccg == NULL) {
2354 		dm_error("DC: failed to create dccg!\n");
2355 		BREAK_TO_DEBUGGER();
2356 		goto create_fail;
2357 	}
2358 
2359 	/* DML */
2360 	dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2361 
2362 	/* IRQ Service */
2363 	init_data.ctx = dc->ctx;
2364 	pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
2365 	if (!pool->base.irqs)
2366 		goto create_fail;
2367 
2368 	/* HUBBUB */
2369 	pool->base.hubbub = dcn32_hubbub_create(ctx);
2370 	if (pool->base.hubbub == NULL) {
2371 		BREAK_TO_DEBUGGER();
2372 		dm_error("DC: failed to create hubbub!\n");
2373 		goto create_fail;
2374 	}
2375 
2376 	/* HUBPs, DPPs, OPPs, TGs, ABMs */
2377 	for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2378 
2379 		/* if pipe is disabled, skip instance of HW pipe,
2380 		 * i.e, skip ASIC register instance
2381 		 */
2382 		if (pipe_fuses & 1 << i)
2383 			continue;
2384 
2385 		/* HUBPs */
2386 		pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
2387 		if (pool->base.hubps[j] == NULL) {
2388 			BREAK_TO_DEBUGGER();
2389 			dm_error(
2390 				"DC: failed to create hubps!\n");
2391 			goto create_fail;
2392 		}
2393 
2394 		/* DPPs */
2395 		pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
2396 		if (pool->base.dpps[j] == NULL) {
2397 			BREAK_TO_DEBUGGER();
2398 			dm_error(
2399 				"DC: failed to create dpps!\n");
2400 			goto create_fail;
2401 		}
2402 
2403 		/* OPPs */
2404 		pool->base.opps[j] = dcn32_opp_create(ctx, i);
2405 		if (pool->base.opps[j] == NULL) {
2406 			BREAK_TO_DEBUGGER();
2407 			dm_error(
2408 				"DC: failed to create output pixel processor!\n");
2409 			goto create_fail;
2410 		}
2411 
2412 		/* TGs */
2413 		pool->base.timing_generators[j] = dcn32_timing_generator_create(
2414 				ctx, i);
2415 		if (pool->base.timing_generators[j] == NULL) {
2416 			BREAK_TO_DEBUGGER();
2417 			dm_error("DC: failed to create tg!\n");
2418 			goto create_fail;
2419 		}
2420 
2421 		/* ABMs */
2422 		pool->base.multiple_abms[j] = dmub_abm_create(ctx,
2423 				&abm_regs[i],
2424 				&abm_shift,
2425 				&abm_mask);
2426 		if (pool->base.multiple_abms[j] == NULL) {
2427 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2428 			BREAK_TO_DEBUGGER();
2429 			goto create_fail;
2430 		}
2431 
2432 		/* index for resource pool arrays for next valid pipe */
2433 		j++;
2434 	}
2435 
2436 	/* PSR */
2437 	pool->base.psr = dmub_psr_create(ctx);
2438 	if (pool->base.psr == NULL) {
2439 		dm_error("DC: failed to create psr obj!\n");
2440 		BREAK_TO_DEBUGGER();
2441 		goto create_fail;
2442 	}
2443 
2444 	/* MPCCs */
2445 	pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
2446 	if (pool->base.mpc == NULL) {
2447 		BREAK_TO_DEBUGGER();
2448 		dm_error("DC: failed to create mpc!\n");
2449 		goto create_fail;
2450 	}
2451 
2452 	/* DSCs */
2453 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2454 		pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
2455 		if (pool->base.dscs[i] == NULL) {
2456 			BREAK_TO_DEBUGGER();
2457 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2458 			goto create_fail;
2459 		}
2460 	}
2461 
2462 	/* DWB */
2463 	if (!dcn32_dwbc_create(ctx, &pool->base)) {
2464 		BREAK_TO_DEBUGGER();
2465 		dm_error("DC: failed to create dwbc!\n");
2466 		goto create_fail;
2467 	}
2468 
2469 	/* MMHUBBUB */
2470 	if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
2471 		BREAK_TO_DEBUGGER();
2472 		dm_error("DC: failed to create mcif_wb!\n");
2473 		goto create_fail;
2474 	}
2475 
2476 	/* AUX and I2C */
2477 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2478 		pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
2479 		if (pool->base.engines[i] == NULL) {
2480 			BREAK_TO_DEBUGGER();
2481 			dm_error(
2482 				"DC:failed to create aux engine!!\n");
2483 			goto create_fail;
2484 		}
2485 		pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
2486 		if (pool->base.hw_i2cs[i] == NULL) {
2487 			BREAK_TO_DEBUGGER();
2488 			dm_error(
2489 				"DC:failed to create hw i2c!!\n");
2490 			goto create_fail;
2491 		}
2492 		pool->base.sw_i2cs[i] = NULL;
2493 	}
2494 
2495 	/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
2496 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2497 			&res_create_funcs))
2498 		goto create_fail;
2499 
2500 	/* HW Sequencer init functions and Plane caps */
2501 	dcn32_hw_sequencer_init_functions(dc);
2502 
2503 	dc->caps.max_planes =  pool->base.pipe_count;
2504 
2505 	for (i = 0; i < dc->caps.max_planes; ++i)
2506 		dc->caps.planes[i] = plane_cap;
2507 
2508 	dc->cap_funcs = cap_funcs;
2509 
2510 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2511 		ddc_init_data.ctx = dc->ctx;
2512 		ddc_init_data.link = NULL;
2513 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2514 		ddc_init_data.id.enum_id = 0;
2515 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2516 		pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2517 	} else {
2518 		pool->base.oem_device = NULL;
2519 	}
2520 
2521 	dc->dml2_options.dcn_pipe_count = pool->base.pipe_count;
2522 	dc->dml2_options.use_native_pstate_optimization = false;
2523 	dc->dml2_options.use_native_soc_bb_construction = true;
2524 	dc->dml2_options.minimize_dispclk_using_odm = true;
2525 
2526 	resource_init_common_dml2_callbacks(dc, &dc->dml2_options);
2527 	dc->dml2_options.callbacks.can_support_mclk_switch_using_fw_based_vblank_stretch = &dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch;
2528 	dc->dml2_options.svp_pstate.callbacks.release_dsc = &dcn20_release_dsc;
2529 	dc->dml2_options.svp_pstate.callbacks.calculate_mall_ways_from_bytes = pool->base.funcs->calculate_mall_ways_from_bytes;
2530 
2531 	dc->dml2_options.svp_pstate.subvp_fw_processing_delay_us = dc->caps.subvp_fw_processing_delay_us;
2532 	dc->dml2_options.svp_pstate.subvp_prefetch_end_to_mall_start_us = dc->caps.subvp_prefetch_end_to_mall_start_us;
2533 	dc->dml2_options.svp_pstate.subvp_pstate_allow_width_us = dc->caps.subvp_pstate_allow_width_us;
2534 	dc->dml2_options.svp_pstate.subvp_swath_height_margin_lines = dc->caps.subvp_swath_height_margin_lines;
2535 
2536 	dc->dml2_options.svp_pstate.force_disable_subvp = dc->debug.force_disable_subvp;
2537 	dc->dml2_options.svp_pstate.force_enable_subvp = dc->debug.force_subvp_mclk_switch;
2538 
2539 	dc->dml2_options.mall_cfg.cache_line_size_bytes = dc->caps.cache_line_size;
2540 	dc->dml2_options.mall_cfg.cache_num_ways = dc->caps.cache_num_ways;
2541 	dc->dml2_options.mall_cfg.max_cab_allocation_bytes = dc->caps.max_cab_allocation_bytes;
2542 	dc->dml2_options.mall_cfg.mblk_height_4bpe_pixels = DCN3_2_MBLK_HEIGHT_4BPE;
2543 	dc->dml2_options.mall_cfg.mblk_height_8bpe_pixels = DCN3_2_MBLK_HEIGHT_8BPE;
2544 	dc->dml2_options.mall_cfg.mblk_size_bytes = DCN3_2_MALL_MBLK_SIZE_BYTES;
2545 	dc->dml2_options.mall_cfg.mblk_width_pixels = DCN3_2_MBLK_WIDTH;
2546 
2547 	dc->dml2_options.max_segments_per_hubp = 18;
2548 	dc->dml2_options.det_segment_size = DCN3_2_DET_SEG_SIZE;
2549 	dc->dml2_options.map_dc_pipes_with_callbacks = true;
2550 
2551 	if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
2552 		dc->config.sdpif_request_limit_words_per_umc = 16;
2553 
2554 	return true;
2555 
2556 create_fail:
2557 
2558 	dcn32_resource_destruct(pool);
2559 
2560 	return false;
2561 }
2562 
dcn32_create_resource_pool(const struct dc_init_data * init_data,struct dc * dc)2563 struct resource_pool *dcn32_create_resource_pool(
2564 		const struct dc_init_data *init_data,
2565 		struct dc *dc)
2566 {
2567 	struct dcn32_resource_pool *pool =
2568 		kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
2569 
2570 	if (!pool)
2571 		return NULL;
2572 
2573 	if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
2574 		return &pool->base;
2575 
2576 	BREAK_TO_DEBUGGER();
2577 	kfree(pool);
2578 	return NULL;
2579 }
2580 
2581 /*
2582  * Find the most optimal free pipe from res_ctx, which could be used as a
2583  * secondary dpp pipe for input opp head pipe.
2584  *
2585  * a free pipe - a pipe in input res_ctx not yet used for any streams or
2586  * planes.
2587  * secondary dpp pipe - a pipe gets inserted to a head OPP pipe's MPC blending
2588  * tree. This is typical used for rendering MPO planes or additional offset
2589  * areas in MPCC combine.
2590  *
2591  * Hardware Transition Minimization Algorithm for Finding a Secondary DPP Pipe
2592  * -------------------------------------------------------------------------
2593  *
2594  * PROBLEM:
2595  *
2596  * 1. There is a hardware limitation that a secondary DPP pipe cannot be
2597  * transferred from one MPC blending tree to the other in a single frame.
2598  * Otherwise it could cause glitches on the screen.
2599  *
2600  * For instance, we cannot transition from state 1 to state 2 in one frame. This
2601  * is because PIPE1 is transferred from PIPE0's MPC blending tree over to
2602  * PIPE2's MPC blending tree, which is not supported by hardware.
2603  * To support this transition we need to first remove PIPE1 from PIPE0's MPC
2604  * blending tree in one frame and then insert PIPE1 to PIPE2's MPC blending tree
2605  * in the next frame. This is not optimal as it will delay the flip for two
2606  * frames.
2607  *
2608  *	State 1:
2609  *	PIPE0 -- secondary DPP pipe --> (PIPE1)
2610  *	PIPE2 -- secondary DPP pipe --> NONE
2611  *
2612  *	State 2:
2613  *	PIPE0 -- secondary DPP pipe --> NONE
2614  *	PIPE2 -- secondary DPP pipe --> (PIPE1)
2615  *
2616  * 2. We want to in general minimize the unnecessary changes in pipe topology.
2617  * If a pipe is already added in current blending tree and there are no changes
2618  * to plane topology, we don't want to swap it with another free pipe
2619  * unnecessarily in every update. Powering up and down a pipe would require a
2620  * full update which delays the flip for 1 frame. If we use the original pipe
2621  * we don't have to toggle its power. So we can flip faster.
2622  */
dcn32_find_optimal_free_pipe_as_secondary_dpp_pipe(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool,const struct pipe_ctx * new_opp_head)2623 int dcn32_find_optimal_free_pipe_as_secondary_dpp_pipe(
2624 		const struct resource_context *cur_res_ctx,
2625 		struct resource_context *new_res_ctx,
2626 		const struct resource_pool *pool,
2627 		const struct pipe_ctx *new_opp_head)
2628 {
2629 	const struct pipe_ctx *cur_opp_head;
2630 	int free_pipe_idx;
2631 
2632 	cur_opp_head = &cur_res_ctx->pipe_ctx[new_opp_head->pipe_idx];
2633 	free_pipe_idx = resource_find_free_pipe_used_in_cur_mpc_blending_tree(
2634 			cur_res_ctx, new_res_ctx, cur_opp_head);
2635 
2636 	/* Up until here if we have not found a free secondary pipe, we will
2637 	 * need to wait for at least one frame to complete the transition
2638 	 * sequence.
2639 	 */
2640 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2641 		free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
2642 				cur_res_ctx, new_res_ctx, pool);
2643 
2644 	/* Up until here if we have not found a free secondary pipe, we will
2645 	 * need to wait for at least two frames to complete the transition
2646 	 * sequence. It really doesn't matter which pipe we decide take from
2647 	 * current enabled pipes. It won't save our frame time when we swap only
2648 	 * one pipe or more pipes.
2649 	 */
2650 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2651 		free_pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
2652 				cur_res_ctx, new_res_ctx, pool);
2653 
2654 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2655 		free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
2656 
2657 	return free_pipe_idx;
2658 }
2659 
find_idle_secondary_pipe_check_mpo(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)2660 static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
2661 		struct resource_context *res_ctx,
2662 		const struct resource_pool *pool,
2663 		const struct pipe_ctx *primary_pipe)
2664 {
2665 	int i;
2666 	struct pipe_ctx *secondary_pipe = NULL;
2667 	struct pipe_ctx *next_odm_mpo_pipe = NULL;
2668 	int primary_index, preferred_pipe_idx;
2669 	struct pipe_ctx *old_primary_pipe = NULL;
2670 
2671 	/*
2672 	 * Modified from find_idle_secondary_pipe
2673 	 * With windowed MPO and ODM, we want to avoid the case where we want a
2674 	 *  free pipe for the left side but the free pipe is being used on the
2675 	 *  right side.
2676 	 * Add check on current_state if the primary_pipe is the left side,
2677 	 *  to check the right side ( primary_pipe->next_odm_pipe ) to see if
2678 	 *  it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
2679 	 * - If so, then don't use this pipe
2680 	 * EXCEPTION - 3 plane ( 2 MPO plane ) case
2681 	 * - in this case, the primary pipe has already gotten a free pipe for the
2682 	 *  MPO window in the left
2683 	 * - when it tries to get a free pipe for the MPO window on the right,
2684 	 *  it will see that it is already assigned to the right side
2685 	 *  ( primary_pipe->next_odm_pipe ).  But in this case, we want this
2686 	 *  free pipe, since it will be for the right side.  So add an
2687 	 *  additional condition, that skipping the free pipe on the right only
2688 	 *  applies if the primary pipe has no bottom pipe currently assigned
2689 	 */
2690 	if (primary_pipe) {
2691 		primary_index = primary_pipe->pipe_idx;
2692 		old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
2693 		if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
2694 			&& (!primary_pipe->bottom_pipe))
2695 			next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;
2696 
2697 		preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
2698 		if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
2699 			!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
2700 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
2701 			secondary_pipe->pipe_idx = preferred_pipe_idx;
2702 		}
2703 	}
2704 
2705 	/*
2706 	 * search backwards for the second pipe to keep pipe
2707 	 * assignment more consistent
2708 	 */
2709 	if (!secondary_pipe)
2710 		for (i = pool->pipe_count - 1; i >= 0; i--) {
2711 			if ((res_ctx->pipe_ctx[i].stream == NULL) &&
2712 				!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
2713 				secondary_pipe = &res_ctx->pipe_ctx[i];
2714 				secondary_pipe->pipe_idx = i;
2715 				break;
2716 			}
2717 		}
2718 
2719 	return secondary_pipe;
2720 }
2721 
dcn32_acquire_idle_pipe_for_head_pipe_in_layer(struct dc_state * state,const struct resource_pool * pool,struct dc_stream_state * stream,const struct pipe_ctx * head_pipe)2722 static struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2723 		struct dc_state *state,
2724 		const struct resource_pool *pool,
2725 		struct dc_stream_state *stream,
2726 		const struct pipe_ctx *head_pipe)
2727 {
2728 	struct resource_context *res_ctx = &state->res_ctx;
2729 	struct pipe_ctx *idle_pipe, *pipe;
2730 	struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
2731 	int head_index;
2732 
2733 	if (!head_pipe) {
2734 		ASSERT(0);
2735 		return NULL;
2736 	}
2737 
2738 	/*
2739 	 * Modified from dcn20_acquire_idle_pipe_for_layer
2740 	 * Check if head_pipe in old_context already has bottom_pipe allocated.
2741 	 * - If so, check if that pipe is available in the current context.
2742 	 * --  If so, reuse pipe from old_context
2743 	 */
2744 	head_index = head_pipe->pipe_idx;
2745 	pipe = &old_ctx->pipe_ctx[head_index];
2746 	if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
2747 		idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
2748 		idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
2749 	} else {
2750 		idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
2751 		if (!idle_pipe)
2752 			return NULL;
2753 	}
2754 
2755 	idle_pipe->stream = head_pipe->stream;
2756 	idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2757 	idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2758 
2759 	idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2760 	idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2761 	idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2762 	idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2763 
2764 	return idle_pipe;
2765 }
2766 
find_optimal_free_pipe_as_secondary_opp_head(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool,const struct pipe_ctx * new_otg_master)2767 static int find_optimal_free_pipe_as_secondary_opp_head(
2768 		const struct resource_context *cur_res_ctx,
2769 		struct resource_context *new_res_ctx,
2770 		const struct resource_pool *pool,
2771 		const struct pipe_ctx *new_otg_master)
2772 {
2773 	const struct pipe_ctx *cur_otg_master;
2774 	int free_pipe_idx;
2775 
2776 	cur_otg_master =  &cur_res_ctx->pipe_ctx[new_otg_master->pipe_idx];
2777 	free_pipe_idx = resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
2778 			cur_res_ctx, new_res_ctx, cur_otg_master);
2779 
2780 	/* Up until here if we have not found a free secondary pipe, we will
2781 	 * need to wait for at least one frame to complete the transition
2782 	 * sequence.
2783 	 */
2784 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2785 		free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
2786 				cur_res_ctx, new_res_ctx, pool);
2787 
2788 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2789 		free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
2790 
2791 	return free_pipe_idx;
2792 }
2793 
dcn32_acquire_free_pipe_as_secondary_dpp_pipe(const struct dc_state * cur_ctx,struct dc_state * new_ctx,const struct resource_pool * pool,const struct pipe_ctx * opp_head_pipe)2794 struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_dpp_pipe(
2795 		const struct dc_state *cur_ctx,
2796 		struct dc_state *new_ctx,
2797 		const struct resource_pool *pool,
2798 		const struct pipe_ctx *opp_head_pipe)
2799 {
2800 
2801 	int free_pipe_idx;
2802 	struct pipe_ctx *free_pipe;
2803 
2804 	if (!opp_head_pipe->stream->ctx->dc->config.enable_windowed_mpo_odm)
2805 		return dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2806 				new_ctx, pool, opp_head_pipe->stream, opp_head_pipe);
2807 
2808 	free_pipe_idx = dcn32_find_optimal_free_pipe_as_secondary_dpp_pipe(
2809 					&cur_ctx->res_ctx, &new_ctx->res_ctx,
2810 					pool, opp_head_pipe);
2811 	if (free_pipe_idx >= 0) {
2812 		free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
2813 		free_pipe->pipe_idx = free_pipe_idx;
2814 		free_pipe->stream = opp_head_pipe->stream;
2815 		free_pipe->stream_res.tg = opp_head_pipe->stream_res.tg;
2816 		free_pipe->stream_res.opp = opp_head_pipe->stream_res.opp;
2817 
2818 		free_pipe->plane_res.hubp = pool->hubps[free_pipe->pipe_idx];
2819 		free_pipe->plane_res.ipp = pool->ipps[free_pipe->pipe_idx];
2820 		free_pipe->plane_res.dpp = pool->dpps[free_pipe->pipe_idx];
2821 		free_pipe->plane_res.mpcc_inst =
2822 				pool->dpps[free_pipe->pipe_idx]->inst;
2823 	} else {
2824 		ASSERT(opp_head_pipe);
2825 		free_pipe = NULL;
2826 	}
2827 
2828 	return free_pipe;
2829 }
2830 
dcn32_acquire_free_pipe_as_secondary_opp_head(const struct dc_state * cur_ctx,struct dc_state * new_ctx,const struct resource_pool * pool,const struct pipe_ctx * otg_master)2831 struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_opp_head(
2832 		const struct dc_state *cur_ctx,
2833 		struct dc_state *new_ctx,
2834 		const struct resource_pool *pool,
2835 		const struct pipe_ctx *otg_master)
2836 {
2837 	int free_pipe_idx = find_optimal_free_pipe_as_secondary_opp_head(
2838 			&cur_ctx->res_ctx, &new_ctx->res_ctx,
2839 			pool, otg_master);
2840 	struct pipe_ctx *free_pipe;
2841 
2842 	if (free_pipe_idx >= 0) {
2843 		free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
2844 		free_pipe->pipe_idx = free_pipe_idx;
2845 		free_pipe->stream = otg_master->stream;
2846 		free_pipe->stream_res.tg = otg_master->stream_res.tg;
2847 		free_pipe->stream_res.dsc = NULL;
2848 		free_pipe->stream_res.opp = pool->opps[free_pipe_idx];
2849 		free_pipe->plane_res.mi = pool->mis[free_pipe_idx];
2850 		free_pipe->plane_res.hubp = pool->hubps[free_pipe_idx];
2851 		free_pipe->plane_res.ipp = pool->ipps[free_pipe_idx];
2852 		free_pipe->plane_res.xfm = pool->transforms[free_pipe_idx];
2853 		free_pipe->plane_res.dpp = pool->dpps[free_pipe_idx];
2854 		free_pipe->plane_res.mpcc_inst = pool->dpps[free_pipe_idx]->inst;
2855 		free_pipe->hblank_borrow = otg_master->hblank_borrow;
2856 		if (free_pipe->stream->timing.flags.DSC == 1) {
2857 			dcn20_acquire_dsc(free_pipe->stream->ctx->dc,
2858 					&new_ctx->res_ctx,
2859 					&free_pipe->stream_res.dsc,
2860 					free_pipe_idx);
2861 			ASSERT(free_pipe->stream_res.dsc);
2862 			if (free_pipe->stream_res.dsc == NULL) {
2863 				memset(free_pipe, 0, sizeof(*free_pipe));
2864 				free_pipe = NULL;
2865 			}
2866 		}
2867 	} else {
2868 		ASSERT(otg_master);
2869 		free_pipe = NULL;
2870 	}
2871 
2872 	return free_pipe;
2873 }
2874 
dcn32_calc_num_avail_chans_for_mall(struct dc * dc,int num_chans)2875 unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans)
2876 {
2877 	/*
2878 	 * DCN32 and DCN321 SKUs may have different sizes for MALL
2879 	 *  but we may not be able to access all the MALL space.
2880 	 *  If the num_chans is power of 2, then we can access all
2881 	 *  of the available MALL space.  Otherwise, we can only
2882 	 *  access:
2883 	 *
2884 	 *  max_cab_size_in_bytes = total_cache_size_in_bytes *
2885 	 *    ((2^floor(log2(num_chans)))/num_chans)
2886 	 *
2887 	 * Calculating the MALL sizes for all available SKUs, we
2888 	 *  have come up with the follow simplified check.
2889 	 * - we have max_chans which provides the max MALL size.
2890 	 *  Each chans supports 4MB of MALL so:
2891 	 *
2892 	 *  total_cache_size_in_bytes = max_chans * 4 MB
2893 	 *
2894 	 * - we have avail_chans which shows the number of channels
2895 	 *  we can use if we can't access the entire MALL space.
2896 	 *  It is generally half of max_chans
2897 	 * - so we use the following checks:
2898 	 *
2899 	 *   if (num_chans == max_chans), return max_chans
2900 	 *   if (num_chans < max_chans), return avail_chans
2901 	 *
2902 	 * - exception is GC_11_0_0 where we can't access max_chans,
2903 	 *  so we define max_avail_chans as the maximum available
2904 	 *  MALL space
2905 	 *
2906 	 */
2907 	int gc_11_0_0_max_chans = 48;
2908 	int gc_11_0_0_max_avail_chans = 32;
2909 	int gc_11_0_0_avail_chans = 16;
2910 	int gc_11_0_3_max_chans = 16;
2911 	int gc_11_0_3_avail_chans = 8;
2912 	int gc_11_0_2_max_chans = 8;
2913 	int gc_11_0_2_avail_chans = 4;
2914 
2915 	if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) {
2916 		return (num_chans == gc_11_0_0_max_chans) ?
2917 			gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans;
2918 	} else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) {
2919 		return (num_chans == gc_11_0_2_max_chans) ?
2920 			gc_11_0_2_max_chans : gc_11_0_2_avail_chans;
2921 	} else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) {
2922 		return (num_chans == gc_11_0_3_max_chans) ?
2923 			gc_11_0_3_max_chans : gc_11_0_3_avail_chans;
2924 	}
2925 }
2926