xref: /freebsd/crypto/openssl/crypto/threads_pthread.c (revision f25b8c9fb4f58cf61adb47d7570abe7caa6d385d)
1 /*
2  * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /* We need to use the OPENSSL_fork_*() deprecated APIs */
11 #define OPENSSL_SUPPRESS_DEPRECATED
12 
13 #include <openssl/crypto.h>
14 #include <crypto/cryptlib.h>
15 #include "internal/cryptlib.h"
16 #include "internal/rcu.h"
17 #include "rcu_internal.h"
18 
19 #if defined(__clang__) && defined(__has_feature)
20 #if __has_feature(thread_sanitizer)
21 #define __SANITIZE_THREAD__
22 #endif
23 #endif
24 
25 #if defined(__SANITIZE_THREAD__)
26 #include <sanitizer/tsan_interface.h>
27 #define TSAN_FAKE_UNLOCK(x)          \
28     __tsan_mutex_pre_unlock((x), 0); \
29     __tsan_mutex_post_unlock((x), 0)
30 
31 #define TSAN_FAKE_LOCK(x)          \
32     __tsan_mutex_pre_lock((x), 0); \
33     __tsan_mutex_post_lock((x), 0, 0)
34 #else
35 #define TSAN_FAKE_UNLOCK(x)
36 #define TSAN_FAKE_LOCK(x)
37 #endif
38 
39 #if defined(__sun)
40 #include <atomic.h>
41 #endif
42 
43 #if defined(__apple_build_version__) && __apple_build_version__ < 6000000
44 /*
45  * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
46  * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
47  * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
48  * All of this makes impossible to use __atomic_is_lock_free here.
49  *
50  * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
51  */
52 #define BROKEN_CLANG_ATOMICS
53 #endif
54 
55 #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
56 
57 #if defined(OPENSSL_SYS_UNIX)
58 #include <sys/types.h>
59 #include <unistd.h>
60 #endif
61 
62 #include <assert.h>
63 
64 /*
65  * The Non-Stop KLT thread model currently seems broken in its rwlock
66  * implementation
67  * Likewise is there a problem with the glibc implementation on riscv.
68  */
69 #if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_) \
70     && !defined(__riscv)
71 #define USE_RWLOCK
72 #endif
73 
74 /*
75  * For all GNU/clang atomic builtins, we also need fallbacks, to cover all
76  * other compilers.
77 
78  * Unfortunately, we can't do that with some "generic type", because there's no
79  * guarantee that the chosen generic type is large enough to cover all cases.
80  * Therefore, we implement fallbacks for each applicable type, with composed
81  * names that include the type they handle.
82  *
83  * (an anecdote: we previously tried to use |void *| as the generic type, with
84  * the thought that the pointer itself is the largest type.  However, this is
85  * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
86  *
87  * All applicable ATOMIC_ macros take the intended type as first parameter, so
88  * they can map to the correct fallback function.  In the GNU/clang case, that
89  * parameter is simply ignored.
90  */
91 
92 /*
93  * Internal types used with the ATOMIC_ macros, to make it possible to compose
94  * fallback function names.
95  */
96 typedef void *pvoid;
97 
98 #if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
99     && !defined(USE_ATOMIC_FALLBACKS)
100 #define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
101 #define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
102 #define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
103 #define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
104 #define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
105 #else
106 static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
107 
108 #define IMPL_fallback_atomic_load_n(t)                    \
109     static ossl_inline t fallback_atomic_load_n_##t(t *p) \
110     {                                                     \
111         t ret;                                            \
112                                                           \
113         pthread_mutex_lock(&atomic_sim_lock);             \
114         ret = *p;                                         \
115         pthread_mutex_unlock(&atomic_sim_lock);           \
116         return ret;                                       \
117     }
118 IMPL_fallback_atomic_load_n(uint32_t)
IMPL_fallback_atomic_load_n(uint64_t)119     IMPL_fallback_atomic_load_n(uint64_t)
120         IMPL_fallback_atomic_load_n(pvoid)
121 
122 #define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
123 
124 #define IMPL_fallback_atomic_store_n(t)                         \
125     static ossl_inline t fallback_atomic_store_n_##t(t *p, t v) \
126     {                                                           \
127         t ret;                                                  \
128                                                                 \
129         pthread_mutex_lock(&atomic_sim_lock);                   \
130         ret = *p;                                               \
131         *p = v;                                                 \
132         pthread_mutex_unlock(&atomic_sim_lock);                 \
133         return ret;                                             \
134     }
135             IMPL_fallback_atomic_store_n(uint32_t)
136 
137 #define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
138 
139 #define IMPL_fallback_atomic_store(t)                             \
140     static ossl_inline void fallback_atomic_store_##t(t *p, t *v) \
141     {                                                             \
142         pthread_mutex_lock(&atomic_sim_lock);                     \
143         *p = *v;                                                  \
144         pthread_mutex_unlock(&atomic_sim_lock);                   \
145     }
146                 IMPL_fallback_atomic_store(pvoid)
147 
148 #define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
149 
150     /*
151      * The fallbacks that follow don't need any per type implementation, as
152      * they are designed for uint64_t only.  If there comes a time when multiple
153      * types need to be covered, it's relatively easy to refactor them the same
154      * way as the fallbacks above.
155      */
156 
157     static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
158 {
159     uint64_t ret;
160 
161     pthread_mutex_lock(&atomic_sim_lock);
162     *p += v;
163     ret = *p;
164     pthread_mutex_unlock(&atomic_sim_lock);
165     return ret;
166 }
167 
168 #define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
169 
fallback_atomic_sub_fetch(uint64_t * p,uint64_t v)170 static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
171 {
172     uint64_t ret;
173 
174     pthread_mutex_lock(&atomic_sim_lock);
175     *p -= v;
176     ret = *p;
177     pthread_mutex_unlock(&atomic_sim_lock);
178     return ret;
179 }
180 
181 #define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
182 #endif
183 
184 /*
185  * This is the core of an rcu lock. It tracks the readers and writers for the
186  * current quiescence point for a given lock. Users is the 64 bit value that
187  * stores the READERS/ID as defined above
188  *
189  */
190 struct rcu_qp {
191     uint64_t users;
192 };
193 
194 struct thread_qp {
195     struct rcu_qp *qp;
196     unsigned int depth;
197     CRYPTO_RCU_LOCK *lock;
198 };
199 
200 #define MAX_QPS 10
201 /*
202  * This is the per thread tracking data
203  * that is assigned to each thread participating
204  * in an rcu qp
205  *
206  * qp points to the qp that it last acquired
207  *
208  */
209 struct rcu_thr_data {
210     struct thread_qp thread_qps[MAX_QPS];
211 };
212 
213 /*
214  * This is the internal version of a CRYPTO_RCU_LOCK
215  * it is cast from CRYPTO_RCU_LOCK
216  */
217 struct rcu_lock_st {
218     /* Callbacks to call for next ossl_synchronize_rcu */
219     struct rcu_cb_item *cb_items;
220 
221     /* The context we are being created against */
222     OSSL_LIB_CTX *ctx;
223 
224     /* Array of quiescent points for synchronization */
225     struct rcu_qp *qp_group;
226 
227     /* rcu generation counter for in-order retirement */
228     uint32_t id_ctr;
229 
230     /* Number of elements in qp_group array */
231     uint32_t group_count;
232 
233     /* Index of the current qp in the qp_group array */
234     uint32_t reader_idx;
235 
236     /* value of the next id_ctr value to be retired */
237     uint32_t next_to_retire;
238 
239     /* index of the next free rcu_qp in the qp_group */
240     uint32_t current_alloc_idx;
241 
242     /* number of qp's in qp_group array currently being retired */
243     uint32_t writers_alloced;
244 
245     /* lock protecting write side operations */
246     pthread_mutex_t write_lock;
247 
248     /* lock protecting updates to writers_alloced/current_alloc_idx */
249     pthread_mutex_t alloc_lock;
250 
251     /* signal to wake threads waiting on alloc_lock */
252     pthread_cond_t alloc_signal;
253 
254     /* lock to enforce in-order retirement */
255     pthread_mutex_t prior_lock;
256 
257     /* signal to wake threads waiting on prior_lock */
258     pthread_cond_t prior_signal;
259 };
260 
261 /* Read side acquisition of the current qp */
get_hold_current_qp(struct rcu_lock_st * lock)262 static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
263 {
264     uint32_t qp_idx;
265 
266     /* get the current qp index */
267     for (;;) {
268         qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_RELAXED);
269 
270         /*
271          * Notes on use of __ATOMIC_ACQUIRE
272          * We need to ensure the following:
273          * 1) That subsequent operations aren't optimized by hoisting them above
274          * this operation.  Specifically, we don't want the below re-load of
275          * qp_idx to get optimized away
276          * 2) We want to ensure that any updating of reader_idx on the write side
277          * of the lock is flushed from a local cpu cache so that we see any
278          * updates prior to the load.  This is a non-issue on cache coherent
279          * systems like x86, but is relevant on other arches
280          */
281         ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
282             __ATOMIC_ACQUIRE);
283 
284         /* if the idx hasn't changed, we're good, else try again */
285         if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_ACQUIRE))
286             break;
287 
288         ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
289             __ATOMIC_RELAXED);
290     }
291 
292     return &lock->qp_group[qp_idx];
293 }
294 
ossl_rcu_free_local_data(void * arg)295 static void ossl_rcu_free_local_data(void *arg)
296 {
297     OSSL_LIB_CTX *ctx = arg;
298     CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
299     struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
300 
301     OPENSSL_free(data);
302     CRYPTO_THREAD_set_local(lkey, NULL);
303 }
304 
ossl_rcu_read_lock(CRYPTO_RCU_LOCK * lock)305 void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
306 {
307     struct rcu_thr_data *data;
308     int i, available_qp = -1;
309     CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
310 
311     /*
312      * we're going to access current_qp here so ask the
313      * processor to fetch it
314      */
315     data = CRYPTO_THREAD_get_local(lkey);
316 
317     if (data == NULL) {
318         data = OPENSSL_zalloc(sizeof(*data));
319         OPENSSL_assert(data != NULL);
320         CRYPTO_THREAD_set_local(lkey, data);
321         ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
322     }
323 
324     for (i = 0; i < MAX_QPS; i++) {
325         if (data->thread_qps[i].qp == NULL && available_qp == -1)
326             available_qp = i;
327         /* If we have a hold on this lock already, we're good */
328         if (data->thread_qps[i].lock == lock) {
329             data->thread_qps[i].depth++;
330             return;
331         }
332     }
333 
334     /*
335      * if we get here, then we don't have a hold on this lock yet
336      */
337     assert(available_qp != -1);
338 
339     data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
340     data->thread_qps[available_qp].depth = 1;
341     data->thread_qps[available_qp].lock = lock;
342 }
343 
ossl_rcu_read_unlock(CRYPTO_RCU_LOCK * lock)344 void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
345 {
346     int i;
347     CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
348     struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
349     uint64_t ret;
350 
351     assert(data != NULL);
352 
353     for (i = 0; i < MAX_QPS; i++) {
354         if (data->thread_qps[i].lock == lock) {
355             /*
356              * we have to use __ATOMIC_RELEASE here
357              * to ensure that all preceding read instructions complete
358              * before the decrement is visible to ossl_synchronize_rcu
359              */
360             data->thread_qps[i].depth--;
361             if (data->thread_qps[i].depth == 0) {
362                 ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users,
363                     (uint64_t)1, __ATOMIC_RELEASE);
364                 OPENSSL_assert(ret != UINT64_MAX);
365                 data->thread_qps[i].qp = NULL;
366                 data->thread_qps[i].lock = NULL;
367             }
368             return;
369         }
370     }
371     /*
372      * If we get here, we're trying to unlock a lock that we never acquired -
373      * that's fatal.
374      */
375     assert(0);
376 }
377 
378 /*
379  * Write side allocation routine to get the current qp
380  * and replace it with a new one
381  */
update_qp(CRYPTO_RCU_LOCK * lock,uint32_t * curr_id)382 static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id)
383 {
384     uint32_t current_idx;
385 
386     pthread_mutex_lock(&lock->alloc_lock);
387 
388     /*
389      * we need at least one qp to be available with one
390      * left over, so that readers can start working on
391      * one that isn't yet being waited on
392      */
393     while (lock->group_count - lock->writers_alloced < 2)
394         /* we have to wait for one to be free */
395         pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
396 
397     current_idx = lock->current_alloc_idx;
398 
399     /* Allocate the qp */
400     lock->writers_alloced++;
401 
402     /* increment the allocation index */
403     lock->current_alloc_idx = (lock->current_alloc_idx + 1) % lock->group_count;
404 
405     *curr_id = lock->id_ctr;
406     lock->id_ctr++;
407 
408     /*
409      * make the current state of everything visible by this release
410      * when get_hold_current_qp acquires the next qp
411      */
412     ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx,
413         __ATOMIC_RELEASE);
414 
415     /*
416      * this should make sure that the new value of reader_idx is visible in
417      * get_hold_current_qp, directly after incrementing the users count
418      */
419     ATOMIC_ADD_FETCH(&lock->qp_group[current_idx].users, (uint64_t)0,
420         __ATOMIC_RELEASE);
421 
422     /* wake up any waiters */
423     pthread_cond_signal(&lock->alloc_signal);
424     pthread_mutex_unlock(&lock->alloc_lock);
425     return &lock->qp_group[current_idx];
426 }
427 
retire_qp(CRYPTO_RCU_LOCK * lock,struct rcu_qp * qp)428 static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
429 {
430     pthread_mutex_lock(&lock->alloc_lock);
431     lock->writers_alloced--;
432     pthread_cond_signal(&lock->alloc_signal);
433     pthread_mutex_unlock(&lock->alloc_lock);
434 }
435 
allocate_new_qp_group(CRYPTO_RCU_LOCK * lock,uint32_t count)436 static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
437     uint32_t count)
438 {
439     struct rcu_qp *new = OPENSSL_zalloc(sizeof(*new) * count);
440 
441     lock->group_count = count;
442     return new;
443 }
444 
ossl_rcu_write_lock(CRYPTO_RCU_LOCK * lock)445 void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
446 {
447     pthread_mutex_lock(&lock->write_lock);
448     TSAN_FAKE_UNLOCK(&lock->write_lock);
449 }
450 
ossl_rcu_write_unlock(CRYPTO_RCU_LOCK * lock)451 void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
452 {
453     TSAN_FAKE_LOCK(&lock->write_lock);
454     pthread_mutex_unlock(&lock->write_lock);
455 }
456 
ossl_synchronize_rcu(CRYPTO_RCU_LOCK * lock)457 void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
458 {
459     struct rcu_qp *qp;
460     uint64_t count;
461     uint32_t curr_id;
462     struct rcu_cb_item *cb_items, *tmpcb;
463 
464     pthread_mutex_lock(&lock->write_lock);
465     cb_items = lock->cb_items;
466     lock->cb_items = NULL;
467     pthread_mutex_unlock(&lock->write_lock);
468 
469     qp = update_qp(lock, &curr_id);
470 
471     /* retire in order */
472     pthread_mutex_lock(&lock->prior_lock);
473     while (lock->next_to_retire != curr_id)
474         pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
475 
476     /*
477      * wait for the reader count to reach zero
478      * Note the use of __ATOMIC_ACQUIRE here to ensure that any
479      * prior __ATOMIC_RELEASE write operation in ossl_rcu_read_unlock
480      * is visible prior to our read
481      * however this is likely just necessary to silence a tsan warning
482      * because the read side should not do any write operation
483      * outside the atomic itself
484      */
485     do {
486         count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
487     } while (count != (uint64_t)0);
488 
489     lock->next_to_retire++;
490     pthread_cond_broadcast(&lock->prior_signal);
491     pthread_mutex_unlock(&lock->prior_lock);
492 
493     retire_qp(lock, qp);
494 
495     /* handle any callbacks that we have */
496     while (cb_items != NULL) {
497         tmpcb = cb_items;
498         cb_items = cb_items->next;
499         tmpcb->fn(tmpcb->data);
500         OPENSSL_free(tmpcb);
501     }
502 }
503 
504 /*
505  * Note: This call assumes its made under the protection of
506  * ossl_rcu_write_lock
507  */
ossl_rcu_call(CRYPTO_RCU_LOCK * lock,rcu_cb_fn cb,void * data)508 int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
509 {
510     struct rcu_cb_item *new = OPENSSL_zalloc(sizeof(*new));
511 
512     if (new == NULL)
513         return 0;
514 
515     new->data = data;
516     new->fn = cb;
517 
518     new->next = lock->cb_items;
519     lock->cb_items = new;
520 
521     return 1;
522 }
523 
ossl_rcu_uptr_deref(void ** p)524 void *ossl_rcu_uptr_deref(void **p)
525 {
526     return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
527 }
528 
ossl_rcu_assign_uptr(void ** p,void ** v)529 void ossl_rcu_assign_uptr(void **p, void **v)
530 {
531     ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
532 }
533 
ossl_rcu_lock_new(int num_writers,OSSL_LIB_CTX * ctx)534 CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
535 {
536     struct rcu_lock_st *new;
537 
538     /*
539      * We need a minimum of 2 qp's
540      */
541     if (num_writers < 2)
542         num_writers = 2;
543 
544     ctx = ossl_lib_ctx_get_concrete(ctx);
545     if (ctx == NULL)
546         return 0;
547 
548     new = OPENSSL_zalloc(sizeof(*new));
549     if (new == NULL)
550         return NULL;
551 
552     new->ctx = ctx;
553     pthread_mutex_init(&new->write_lock, NULL);
554     pthread_mutex_init(&new->prior_lock, NULL);
555     pthread_mutex_init(&new->alloc_lock, NULL);
556     pthread_cond_init(&new->prior_signal, NULL);
557     pthread_cond_init(&new->alloc_signal, NULL);
558 
559     new->qp_group = allocate_new_qp_group(new, num_writers);
560     if (new->qp_group == NULL) {
561         OPENSSL_free(new);
562         new = NULL;
563     }
564 
565     return new;
566 }
567 
ossl_rcu_lock_free(CRYPTO_RCU_LOCK * lock)568 void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
569 {
570     struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
571 
572     if (lock == NULL)
573         return;
574 
575     /* make sure we're synchronized */
576     ossl_synchronize_rcu(rlock);
577 
578     OPENSSL_free(rlock->qp_group);
579     /* There should only be a single qp left now */
580     OPENSSL_free(rlock);
581 }
582 
CRYPTO_THREAD_lock_new(void)583 CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
584 {
585 #ifdef USE_RWLOCK
586     CRYPTO_RWLOCK *lock;
587 
588     if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
589         /* Don't set error, to avoid recursion blowup. */
590         return NULL;
591 
592     if (pthread_rwlock_init(lock, NULL) != 0) {
593         OPENSSL_free(lock);
594         return NULL;
595     }
596 #else
597     pthread_mutexattr_t attr;
598     CRYPTO_RWLOCK *lock;
599 
600     if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
601         /* Don't set error, to avoid recursion blowup. */
602         return NULL;
603 
604     /*
605      * We don't use recursive mutexes, but try to catch errors if we do.
606      */
607     pthread_mutexattr_init(&attr);
608 #if !defined(__TANDEM) && !defined(_SPT_MODEL_)
609 #if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
610     pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
611 #endif
612 #else
613     /* The SPT Thread Library does not define MUTEX attributes. */
614 #endif
615 
616     if (pthread_mutex_init(lock, &attr) != 0) {
617         pthread_mutexattr_destroy(&attr);
618         OPENSSL_free(lock);
619         return NULL;
620     }
621 
622     pthread_mutexattr_destroy(&attr);
623 #endif
624 
625     return lock;
626 }
627 
CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK * lock)628 __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
629 {
630 #ifdef USE_RWLOCK
631     if (!ossl_assert(pthread_rwlock_rdlock(lock) == 0))
632         return 0;
633 #else
634     if (pthread_mutex_lock(lock) != 0) {
635         assert(errno != EDEADLK && errno != EBUSY);
636         return 0;
637     }
638 #endif
639 
640     return 1;
641 }
642 
CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK * lock)643 __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
644 {
645 #ifdef USE_RWLOCK
646     if (!ossl_assert(pthread_rwlock_wrlock(lock) == 0))
647         return 0;
648 #else
649     if (pthread_mutex_lock(lock) != 0) {
650         assert(errno != EDEADLK && errno != EBUSY);
651         return 0;
652     }
653 #endif
654 
655     return 1;
656 }
657 
CRYPTO_THREAD_unlock(CRYPTO_RWLOCK * lock)658 int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
659 {
660 #ifdef USE_RWLOCK
661     if (pthread_rwlock_unlock(lock) != 0)
662         return 0;
663 #else
664     if (pthread_mutex_unlock(lock) != 0) {
665         assert(errno != EPERM);
666         return 0;
667     }
668 #endif
669 
670     return 1;
671 }
672 
CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK * lock)673 void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
674 {
675     if (lock == NULL)
676         return;
677 
678 #ifdef USE_RWLOCK
679     pthread_rwlock_destroy(lock);
680 #else
681     pthread_mutex_destroy(lock);
682 #endif
683     OPENSSL_free(lock);
684 
685     return;
686 }
687 
CRYPTO_THREAD_run_once(CRYPTO_ONCE * once,void (* init)(void))688 int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
689 {
690     if (pthread_once(once, init) != 0)
691         return 0;
692 
693     return 1;
694 }
695 
CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL * key,void (* cleanup)(void *))696 int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
697 {
698 
699 #ifndef FIPS_MODULE
700     if (!ossl_init_thread())
701         return 0;
702 #endif
703 
704     if (pthread_key_create(key, cleanup) != 0)
705         return 0;
706 
707     return 1;
708 }
709 
CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL * key)710 void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
711 {
712     return pthread_getspecific(*key);
713 }
714 
CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL * key,void * val)715 int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
716 {
717     if (pthread_setspecific(*key, val) != 0)
718         return 0;
719 
720     return 1;
721 }
722 
CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL * key)723 int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
724 {
725     if (pthread_key_delete(*key) != 0)
726         return 0;
727 
728     return 1;
729 }
730 
CRYPTO_THREAD_get_current_id(void)731 CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
732 {
733     return pthread_self();
734 }
735 
CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a,CRYPTO_THREAD_ID b)736 int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
737 {
738     return pthread_equal(a, b);
739 }
740 
CRYPTO_atomic_add(int * val,int amount,int * ret,CRYPTO_RWLOCK * lock)741 int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
742 {
743 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
744     if (__atomic_is_lock_free(sizeof(*val), val)) {
745         *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
746         return 1;
747     }
748 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
749     /* This will work for all future Solaris versions. */
750     if (ret != NULL) {
751         *ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
752         return 1;
753     }
754 #endif
755     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
756         return 0;
757 
758     *val += amount;
759     *ret = *val;
760 
761     if (!CRYPTO_THREAD_unlock(lock))
762         return 0;
763 
764     return 1;
765 }
766 
CRYPTO_atomic_add64(uint64_t * val,uint64_t op,uint64_t * ret,CRYPTO_RWLOCK * lock)767 int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
768     CRYPTO_RWLOCK *lock)
769 {
770 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
771     if (__atomic_is_lock_free(sizeof(*val), val)) {
772         *ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL);
773         return 1;
774     }
775 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
776     /* This will work for all future Solaris versions. */
777     if (ret != NULL) {
778         *ret = atomic_add_64_nv(val, op);
779         return 1;
780     }
781 #endif
782     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
783         return 0;
784     *val += op;
785     *ret = *val;
786 
787     if (!CRYPTO_THREAD_unlock(lock))
788         return 0;
789 
790     return 1;
791 }
792 
CRYPTO_atomic_and(uint64_t * val,uint64_t op,uint64_t * ret,CRYPTO_RWLOCK * lock)793 int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
794     CRYPTO_RWLOCK *lock)
795 {
796 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
797     if (__atomic_is_lock_free(sizeof(*val), val)) {
798         *ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL);
799         return 1;
800     }
801 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
802     /* This will work for all future Solaris versions. */
803     if (ret != NULL) {
804         *ret = atomic_and_64_nv(val, op);
805         return 1;
806     }
807 #endif
808     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
809         return 0;
810     *val &= op;
811     *ret = *val;
812 
813     if (!CRYPTO_THREAD_unlock(lock))
814         return 0;
815 
816     return 1;
817 }
818 
CRYPTO_atomic_or(uint64_t * val,uint64_t op,uint64_t * ret,CRYPTO_RWLOCK * lock)819 int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
820     CRYPTO_RWLOCK *lock)
821 {
822 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
823     if (__atomic_is_lock_free(sizeof(*val), val)) {
824         *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
825         return 1;
826     }
827 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
828     /* This will work for all future Solaris versions. */
829     if (ret != NULL) {
830         *ret = atomic_or_64_nv(val, op);
831         return 1;
832     }
833 #endif
834     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
835         return 0;
836     *val |= op;
837     *ret = *val;
838 
839     if (!CRYPTO_THREAD_unlock(lock))
840         return 0;
841 
842     return 1;
843 }
844 
CRYPTO_atomic_load(uint64_t * val,uint64_t * ret,CRYPTO_RWLOCK * lock)845 int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
846 {
847 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
848     if (__atomic_is_lock_free(sizeof(*val), val)) {
849         __atomic_load(val, ret, __ATOMIC_ACQUIRE);
850         return 1;
851     }
852 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
853     /* This will work for all future Solaris versions. */
854     if (ret != NULL) {
855         *ret = atomic_or_64_nv(val, 0);
856         return 1;
857     }
858 #endif
859     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
860         return 0;
861     *ret = *val;
862     if (!CRYPTO_THREAD_unlock(lock))
863         return 0;
864 
865     return 1;
866 }
867 
CRYPTO_atomic_store(uint64_t * dst,uint64_t val,CRYPTO_RWLOCK * lock)868 int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
869 {
870 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
871     if (__atomic_is_lock_free(sizeof(*dst), dst)) {
872         __atomic_store(dst, &val, __ATOMIC_RELEASE);
873         return 1;
874     }
875 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
876     /* This will work for all future Solaris versions. */
877     if (dst != NULL) {
878         atomic_swap_64(dst, val);
879         return 1;
880     }
881 #endif
882     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
883         return 0;
884     *dst = val;
885     if (!CRYPTO_THREAD_unlock(lock))
886         return 0;
887 
888     return 1;
889 }
890 
CRYPTO_atomic_load_int(int * val,int * ret,CRYPTO_RWLOCK * lock)891 int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
892 {
893 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
894     if (__atomic_is_lock_free(sizeof(*val), val)) {
895         __atomic_load(val, ret, __ATOMIC_ACQUIRE);
896         return 1;
897     }
898 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
899     /* This will work for all future Solaris versions. */
900     if (ret != NULL) {
901         *ret = (int)atomic_or_uint_nv((unsigned int *)val, 0);
902         return 1;
903     }
904 #endif
905     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
906         return 0;
907     *ret = *val;
908     if (!CRYPTO_THREAD_unlock(lock))
909         return 0;
910 
911     return 1;
912 }
913 
914 #ifndef FIPS_MODULE
openssl_init_fork_handlers(void)915 int openssl_init_fork_handlers(void)
916 {
917     return 1;
918 }
919 #endif /* FIPS_MODULE */
920 
openssl_get_fork_id(void)921 int openssl_get_fork_id(void)
922 {
923     return getpid();
924 }
925 #endif
926