1 /*
2 * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* We need to use the OPENSSL_fork_*() deprecated APIs */
11 #define OPENSSL_SUPPRESS_DEPRECATED
12
13 #include <openssl/crypto.h>
14 #include <crypto/cryptlib.h>
15 #include "internal/cryptlib.h"
16 #include "internal/rcu.h"
17 #include "rcu_internal.h"
18
19 #if defined(__clang__) && defined(__has_feature)
20 # if __has_feature(thread_sanitizer)
21 # define __SANITIZE_THREAD__
22 # endif
23 #endif
24
25 #if defined(__SANITIZE_THREAD__)
26 # include <sanitizer/tsan_interface.h>
27 # define TSAN_FAKE_UNLOCK(x) __tsan_mutex_pre_unlock((x), 0); \
28 __tsan_mutex_post_unlock((x), 0)
29
30 # define TSAN_FAKE_LOCK(x) __tsan_mutex_pre_lock((x), 0); \
31 __tsan_mutex_post_lock((x), 0, 0)
32 #else
33 # define TSAN_FAKE_UNLOCK(x)
34 # define TSAN_FAKE_LOCK(x)
35 #endif
36
37 #if defined(__sun)
38 # include <atomic.h>
39 #endif
40
41 #if defined(__apple_build_version__) && __apple_build_version__ < 6000000
42 /*
43 * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
44 * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
45 * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
46 * All of this makes impossible to use __atomic_is_lock_free here.
47 *
48 * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
49 */
50 # define BROKEN_CLANG_ATOMICS
51 #endif
52
53 #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
54
55 # if defined(OPENSSL_SYS_UNIX)
56 # include <sys/types.h>
57 # include <unistd.h>
58 # endif
59
60 # include <assert.h>
61
62 /*
63 * The Non-Stop KLT thread model currently seems broken in its rwlock
64 * implementation
65 * Likewise is there a problem with the glibc implementation on riscv.
66 */
67 # if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_) \
68 && !defined(__riscv)
69 # define USE_RWLOCK
70 # endif
71
72 /*
73 * For all GNU/clang atomic builtins, we also need fallbacks, to cover all
74 * other compilers.
75
76 * Unfortunately, we can't do that with some "generic type", because there's no
77 * guarantee that the chosen generic type is large enough to cover all cases.
78 * Therefore, we implement fallbacks for each applicable type, with composed
79 * names that include the type they handle.
80 *
81 * (an anecdote: we previously tried to use |void *| as the generic type, with
82 * the thought that the pointer itself is the largest type. However, this is
83 * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
84 *
85 * All applicable ATOMIC_ macros take the intended type as first parameter, so
86 * they can map to the correct fallback function. In the GNU/clang case, that
87 * parameter is simply ignored.
88 */
89
90 /*
91 * Internal types used with the ATOMIC_ macros, to make it possible to compose
92 * fallback function names.
93 */
94 typedef void *pvoid;
95
96 # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
97 && !defined(USE_ATOMIC_FALLBACKS)
98 # define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
99 # define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
100 # define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
101 # define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
102 # define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
103 # else
104 static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
105
106 # define IMPL_fallback_atomic_load_n(t) \
107 static ossl_inline t fallback_atomic_load_n_##t(t *p) \
108 { \
109 t ret; \
110 \
111 pthread_mutex_lock(&atomic_sim_lock); \
112 ret = *p; \
113 pthread_mutex_unlock(&atomic_sim_lock); \
114 return ret; \
115 }
116 IMPL_fallback_atomic_load_n(uint32_t)
IMPL_fallback_atomic_load_n(uint64_t)117 IMPL_fallback_atomic_load_n(uint64_t)
118 IMPL_fallback_atomic_load_n(pvoid)
119
120 # define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
121
122 # define IMPL_fallback_atomic_store_n(t) \
123 static ossl_inline t fallback_atomic_store_n_##t(t *p, t v) \
124 { \
125 t ret; \
126 \
127 pthread_mutex_lock(&atomic_sim_lock); \
128 ret = *p; \
129 *p = v; \
130 pthread_mutex_unlock(&atomic_sim_lock); \
131 return ret; \
132 }
133 IMPL_fallback_atomic_store_n(uint32_t)
134
135 # define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
136
137 # define IMPL_fallback_atomic_store(t) \
138 static ossl_inline void fallback_atomic_store_##t(t *p, t *v) \
139 { \
140 pthread_mutex_lock(&atomic_sim_lock); \
141 *p = *v; \
142 pthread_mutex_unlock(&atomic_sim_lock); \
143 }
144 IMPL_fallback_atomic_store(pvoid)
145
146 # define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
147
148 /*
149 * The fallbacks that follow don't need any per type implementation, as
150 * they are designed for uint64_t only. If there comes a time when multiple
151 * types need to be covered, it's relatively easy to refactor them the same
152 * way as the fallbacks above.
153 */
154
155 static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
156 {
157 uint64_t ret;
158
159 pthread_mutex_lock(&atomic_sim_lock);
160 *p += v;
161 ret = *p;
162 pthread_mutex_unlock(&atomic_sim_lock);
163 return ret;
164 }
165
166 # define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
167
fallback_atomic_sub_fetch(uint64_t * p,uint64_t v)168 static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
169 {
170 uint64_t ret;
171
172 pthread_mutex_lock(&atomic_sim_lock);
173 *p -= v;
174 ret = *p;
175 pthread_mutex_unlock(&atomic_sim_lock);
176 return ret;
177 }
178
179 # define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
180 # endif
181
182 /*
183 * This is the core of an rcu lock. It tracks the readers and writers for the
184 * current quiescence point for a given lock. Users is the 64 bit value that
185 * stores the READERS/ID as defined above
186 *
187 */
188 struct rcu_qp {
189 uint64_t users;
190 };
191
192 struct thread_qp {
193 struct rcu_qp *qp;
194 unsigned int depth;
195 CRYPTO_RCU_LOCK *lock;
196 };
197
198 # define MAX_QPS 10
199 /*
200 * This is the per thread tracking data
201 * that is assigned to each thread participating
202 * in an rcu qp
203 *
204 * qp points to the qp that it last acquired
205 *
206 */
207 struct rcu_thr_data {
208 struct thread_qp thread_qps[MAX_QPS];
209 };
210
211 /*
212 * This is the internal version of a CRYPTO_RCU_LOCK
213 * it is cast from CRYPTO_RCU_LOCK
214 */
215 struct rcu_lock_st {
216 /* Callbacks to call for next ossl_synchronize_rcu */
217 struct rcu_cb_item *cb_items;
218
219 /* The context we are being created against */
220 OSSL_LIB_CTX *ctx;
221
222 /* Array of quiescent points for synchronization */
223 struct rcu_qp *qp_group;
224
225 /* rcu generation counter for in-order retirement */
226 uint32_t id_ctr;
227
228 /* Number of elements in qp_group array */
229 uint32_t group_count;
230
231 /* Index of the current qp in the qp_group array */
232 uint32_t reader_idx;
233
234 /* value of the next id_ctr value to be retired */
235 uint32_t next_to_retire;
236
237 /* index of the next free rcu_qp in the qp_group */
238 uint32_t current_alloc_idx;
239
240 /* number of qp's in qp_group array currently being retired */
241 uint32_t writers_alloced;
242
243 /* lock protecting write side operations */
244 pthread_mutex_t write_lock;
245
246 /* lock protecting updates to writers_alloced/current_alloc_idx */
247 pthread_mutex_t alloc_lock;
248
249 /* signal to wake threads waiting on alloc_lock */
250 pthread_cond_t alloc_signal;
251
252 /* lock to enforce in-order retirement */
253 pthread_mutex_t prior_lock;
254
255 /* signal to wake threads waiting on prior_lock */
256 pthread_cond_t prior_signal;
257 };
258
259 /* Read side acquisition of the current qp */
get_hold_current_qp(struct rcu_lock_st * lock)260 static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
261 {
262 uint32_t qp_idx;
263
264 /* get the current qp index */
265 for (;;) {
266 qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_RELAXED);
267
268 /*
269 * Notes on use of __ATOMIC_ACQUIRE
270 * We need to ensure the following:
271 * 1) That subsequent operations aren't optimized by hoisting them above
272 * this operation. Specifically, we don't want the below re-load of
273 * qp_idx to get optimized away
274 * 2) We want to ensure that any updating of reader_idx on the write side
275 * of the lock is flushed from a local cpu cache so that we see any
276 * updates prior to the load. This is a non-issue on cache coherent
277 * systems like x86, but is relevant on other arches
278 */
279 ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
280 __ATOMIC_ACQUIRE);
281
282 /* if the idx hasn't changed, we're good, else try again */
283 if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx,
284 __ATOMIC_ACQUIRE))
285 break;
286
287 ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
288 __ATOMIC_RELAXED);
289 }
290
291 return &lock->qp_group[qp_idx];
292 }
293
ossl_rcu_free_local_data(void * arg)294 static void ossl_rcu_free_local_data(void *arg)
295 {
296 OSSL_LIB_CTX *ctx = arg;
297 CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
298 struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
299
300 OPENSSL_free(data);
301 CRYPTO_THREAD_set_local(lkey, NULL);
302 }
303
ossl_rcu_read_lock(CRYPTO_RCU_LOCK * lock)304 void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
305 {
306 struct rcu_thr_data *data;
307 int i, available_qp = -1;
308 CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
309
310 /*
311 * we're going to access current_qp here so ask the
312 * processor to fetch it
313 */
314 data = CRYPTO_THREAD_get_local(lkey);
315
316 if (data == NULL) {
317 data = OPENSSL_zalloc(sizeof(*data));
318 OPENSSL_assert(data != NULL);
319 CRYPTO_THREAD_set_local(lkey, data);
320 ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
321 }
322
323 for (i = 0; i < MAX_QPS; i++) {
324 if (data->thread_qps[i].qp == NULL && available_qp == -1)
325 available_qp = i;
326 /* If we have a hold on this lock already, we're good */
327 if (data->thread_qps[i].lock == lock) {
328 data->thread_qps[i].depth++;
329 return;
330 }
331 }
332
333 /*
334 * if we get here, then we don't have a hold on this lock yet
335 */
336 assert(available_qp != -1);
337
338 data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
339 data->thread_qps[available_qp].depth = 1;
340 data->thread_qps[available_qp].lock = lock;
341 }
342
ossl_rcu_read_unlock(CRYPTO_RCU_LOCK * lock)343 void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
344 {
345 int i;
346 CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
347 struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
348 uint64_t ret;
349
350 assert(data != NULL);
351
352 for (i = 0; i < MAX_QPS; i++) {
353 if (data->thread_qps[i].lock == lock) {
354 /*
355 * we have to use __ATOMIC_RELEASE here
356 * to ensure that all preceding read instructions complete
357 * before the decrement is visible to ossl_synchronize_rcu
358 */
359 data->thread_qps[i].depth--;
360 if (data->thread_qps[i].depth == 0) {
361 ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users,
362 (uint64_t)1, __ATOMIC_RELEASE);
363 OPENSSL_assert(ret != UINT64_MAX);
364 data->thread_qps[i].qp = NULL;
365 data->thread_qps[i].lock = NULL;
366 }
367 return;
368 }
369 }
370 /*
371 * If we get here, we're trying to unlock a lock that we never acquired -
372 * that's fatal.
373 */
374 assert(0);
375 }
376
377 /*
378 * Write side allocation routine to get the current qp
379 * and replace it with a new one
380 */
update_qp(CRYPTO_RCU_LOCK * lock,uint32_t * curr_id)381 static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id)
382 {
383 uint32_t current_idx;
384
385 pthread_mutex_lock(&lock->alloc_lock);
386
387 /*
388 * we need at least one qp to be available with one
389 * left over, so that readers can start working on
390 * one that isn't yet being waited on
391 */
392 while (lock->group_count - lock->writers_alloced < 2)
393 /* we have to wait for one to be free */
394 pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
395
396 current_idx = lock->current_alloc_idx;
397
398 /* Allocate the qp */
399 lock->writers_alloced++;
400
401 /* increment the allocation index */
402 lock->current_alloc_idx =
403 (lock->current_alloc_idx + 1) % lock->group_count;
404
405 *curr_id = lock->id_ctr;
406 lock->id_ctr++;
407
408 /*
409 * make the current state of everything visible by this release
410 * when get_hold_current_qp acquires the next qp
411 */
412 ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx,
413 __ATOMIC_RELEASE);
414
415 /*
416 * this should make sure that the new value of reader_idx is visible in
417 * get_hold_current_qp, directly after incrementing the users count
418 */
419 ATOMIC_ADD_FETCH(&lock->qp_group[current_idx].users, (uint64_t)0,
420 __ATOMIC_RELEASE);
421
422 /* wake up any waiters */
423 pthread_cond_signal(&lock->alloc_signal);
424 pthread_mutex_unlock(&lock->alloc_lock);
425 return &lock->qp_group[current_idx];
426 }
427
retire_qp(CRYPTO_RCU_LOCK * lock,struct rcu_qp * qp)428 static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
429 {
430 pthread_mutex_lock(&lock->alloc_lock);
431 lock->writers_alloced--;
432 pthread_cond_signal(&lock->alloc_signal);
433 pthread_mutex_unlock(&lock->alloc_lock);
434 }
435
allocate_new_qp_group(CRYPTO_RCU_LOCK * lock,uint32_t count)436 static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
437 uint32_t count)
438 {
439 struct rcu_qp *new =
440 OPENSSL_zalloc(sizeof(*new) * count);
441
442 lock->group_count = count;
443 return new;
444 }
445
ossl_rcu_write_lock(CRYPTO_RCU_LOCK * lock)446 void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
447 {
448 pthread_mutex_lock(&lock->write_lock);
449 TSAN_FAKE_UNLOCK(&lock->write_lock);
450 }
451
ossl_rcu_write_unlock(CRYPTO_RCU_LOCK * lock)452 void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
453 {
454 TSAN_FAKE_LOCK(&lock->write_lock);
455 pthread_mutex_unlock(&lock->write_lock);
456 }
457
ossl_synchronize_rcu(CRYPTO_RCU_LOCK * lock)458 void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
459 {
460 struct rcu_qp *qp;
461 uint64_t count;
462 uint32_t curr_id;
463 struct rcu_cb_item *cb_items, *tmpcb;
464
465 pthread_mutex_lock(&lock->write_lock);
466 cb_items = lock->cb_items;
467 lock->cb_items = NULL;
468 pthread_mutex_unlock(&lock->write_lock);
469
470 qp = update_qp(lock, &curr_id);
471
472 /* retire in order */
473 pthread_mutex_lock(&lock->prior_lock);
474 while (lock->next_to_retire != curr_id)
475 pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
476
477 /*
478 * wait for the reader count to reach zero
479 * Note the use of __ATOMIC_ACQUIRE here to ensure that any
480 * prior __ATOMIC_RELEASE write operation in ossl_rcu_read_unlock
481 * is visible prior to our read
482 * however this is likely just necessary to silence a tsan warning
483 * because the read side should not do any write operation
484 * outside the atomic itself
485 */
486 do {
487 count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
488 } while (count != (uint64_t)0);
489
490 lock->next_to_retire++;
491 pthread_cond_broadcast(&lock->prior_signal);
492 pthread_mutex_unlock(&lock->prior_lock);
493
494 retire_qp(lock, qp);
495
496 /* handle any callbacks that we have */
497 while (cb_items != NULL) {
498 tmpcb = cb_items;
499 cb_items = cb_items->next;
500 tmpcb->fn(tmpcb->data);
501 OPENSSL_free(tmpcb);
502 }
503 }
504
505 /*
506 * Note: This call assumes its made under the protection of
507 * ossl_rcu_write_lock
508 */
ossl_rcu_call(CRYPTO_RCU_LOCK * lock,rcu_cb_fn cb,void * data)509 int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
510 {
511 struct rcu_cb_item *new =
512 OPENSSL_zalloc(sizeof(*new));
513
514 if (new == NULL)
515 return 0;
516
517 new->data = data;
518 new->fn = cb;
519
520 new->next = lock->cb_items;
521 lock->cb_items = new;
522
523 return 1;
524 }
525
ossl_rcu_uptr_deref(void ** p)526 void *ossl_rcu_uptr_deref(void **p)
527 {
528 return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
529 }
530
ossl_rcu_assign_uptr(void ** p,void ** v)531 void ossl_rcu_assign_uptr(void **p, void **v)
532 {
533 ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
534 }
535
ossl_rcu_lock_new(int num_writers,OSSL_LIB_CTX * ctx)536 CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
537 {
538 struct rcu_lock_st *new;
539
540 /*
541 * We need a minimum of 2 qp's
542 */
543 if (num_writers < 2)
544 num_writers = 2;
545
546 ctx = ossl_lib_ctx_get_concrete(ctx);
547 if (ctx == NULL)
548 return 0;
549
550 new = OPENSSL_zalloc(sizeof(*new));
551 if (new == NULL)
552 return NULL;
553
554 new->ctx = ctx;
555 pthread_mutex_init(&new->write_lock, NULL);
556 pthread_mutex_init(&new->prior_lock, NULL);
557 pthread_mutex_init(&new->alloc_lock, NULL);
558 pthread_cond_init(&new->prior_signal, NULL);
559 pthread_cond_init(&new->alloc_signal, NULL);
560
561 new->qp_group = allocate_new_qp_group(new, num_writers);
562 if (new->qp_group == NULL) {
563 OPENSSL_free(new);
564 new = NULL;
565 }
566
567 return new;
568 }
569
ossl_rcu_lock_free(CRYPTO_RCU_LOCK * lock)570 void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
571 {
572 struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
573
574 if (lock == NULL)
575 return;
576
577 /* make sure we're synchronized */
578 ossl_synchronize_rcu(rlock);
579
580 OPENSSL_free(rlock->qp_group);
581 /* There should only be a single qp left now */
582 OPENSSL_free(rlock);
583 }
584
CRYPTO_THREAD_lock_new(void)585 CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
586 {
587 # ifdef USE_RWLOCK
588 CRYPTO_RWLOCK *lock;
589
590 if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
591 /* Don't set error, to avoid recursion blowup. */
592 return NULL;
593
594 if (pthread_rwlock_init(lock, NULL) != 0) {
595 OPENSSL_free(lock);
596 return NULL;
597 }
598 # else
599 pthread_mutexattr_t attr;
600 CRYPTO_RWLOCK *lock;
601
602 if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
603 /* Don't set error, to avoid recursion blowup. */
604 return NULL;
605
606 /*
607 * We don't use recursive mutexes, but try to catch errors if we do.
608 */
609 pthread_mutexattr_init(&attr);
610 # if !defined (__TANDEM) && !defined (_SPT_MODEL_)
611 # if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
612 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
613 # endif
614 # else
615 /* The SPT Thread Library does not define MUTEX attributes. */
616 # endif
617
618 if (pthread_mutex_init(lock, &attr) != 0) {
619 pthread_mutexattr_destroy(&attr);
620 OPENSSL_free(lock);
621 return NULL;
622 }
623
624 pthread_mutexattr_destroy(&attr);
625 # endif
626
627 return lock;
628 }
629
CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK * lock)630 __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
631 {
632 # ifdef USE_RWLOCK
633 if (!ossl_assert(pthread_rwlock_rdlock(lock) == 0))
634 return 0;
635 # else
636 if (pthread_mutex_lock(lock) != 0) {
637 assert(errno != EDEADLK && errno != EBUSY);
638 return 0;
639 }
640 # endif
641
642 return 1;
643 }
644
CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK * lock)645 __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
646 {
647 # ifdef USE_RWLOCK
648 if (!ossl_assert(pthread_rwlock_wrlock(lock) == 0))
649 return 0;
650 # else
651 if (pthread_mutex_lock(lock) != 0) {
652 assert(errno != EDEADLK && errno != EBUSY);
653 return 0;
654 }
655 # endif
656
657 return 1;
658 }
659
CRYPTO_THREAD_unlock(CRYPTO_RWLOCK * lock)660 int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
661 {
662 # ifdef USE_RWLOCK
663 if (pthread_rwlock_unlock(lock) != 0)
664 return 0;
665 # else
666 if (pthread_mutex_unlock(lock) != 0) {
667 assert(errno != EPERM);
668 return 0;
669 }
670 # endif
671
672 return 1;
673 }
674
CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK * lock)675 void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
676 {
677 if (lock == NULL)
678 return;
679
680 # ifdef USE_RWLOCK
681 pthread_rwlock_destroy(lock);
682 # else
683 pthread_mutex_destroy(lock);
684 # endif
685 OPENSSL_free(lock);
686
687 return;
688 }
689
CRYPTO_THREAD_run_once(CRYPTO_ONCE * once,void (* init)(void))690 int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
691 {
692 if (pthread_once(once, init) != 0)
693 return 0;
694
695 return 1;
696 }
697
CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL * key,void (* cleanup)(void *))698 int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
699 {
700 if (pthread_key_create(key, cleanup) != 0)
701 return 0;
702
703 return 1;
704 }
705
CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL * key)706 void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
707 {
708 return pthread_getspecific(*key);
709 }
710
CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL * key,void * val)711 int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
712 {
713 if (pthread_setspecific(*key, val) != 0)
714 return 0;
715
716 return 1;
717 }
718
CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL * key)719 int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
720 {
721 if (pthread_key_delete(*key) != 0)
722 return 0;
723
724 return 1;
725 }
726
CRYPTO_THREAD_get_current_id(void)727 CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
728 {
729 return pthread_self();
730 }
731
CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a,CRYPTO_THREAD_ID b)732 int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
733 {
734 return pthread_equal(a, b);
735 }
736
CRYPTO_atomic_add(int * val,int amount,int * ret,CRYPTO_RWLOCK * lock)737 int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
738 {
739 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
740 if (__atomic_is_lock_free(sizeof(*val), val)) {
741 *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
742 return 1;
743 }
744 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
745 /* This will work for all future Solaris versions. */
746 if (ret != NULL) {
747 *ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
748 return 1;
749 }
750 # endif
751 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
752 return 0;
753
754 *val += amount;
755 *ret = *val;
756
757 if (!CRYPTO_THREAD_unlock(lock))
758 return 0;
759
760 return 1;
761 }
762
CRYPTO_atomic_add64(uint64_t * val,uint64_t op,uint64_t * ret,CRYPTO_RWLOCK * lock)763 int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
764 CRYPTO_RWLOCK *lock)
765 {
766 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
767 if (__atomic_is_lock_free(sizeof(*val), val)) {
768 *ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL);
769 return 1;
770 }
771 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
772 /* This will work for all future Solaris versions. */
773 if (ret != NULL) {
774 *ret = atomic_add_64_nv(val, op);
775 return 1;
776 }
777 # endif
778 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
779 return 0;
780 *val += op;
781 *ret = *val;
782
783 if (!CRYPTO_THREAD_unlock(lock))
784 return 0;
785
786 return 1;
787 }
788
CRYPTO_atomic_and(uint64_t * val,uint64_t op,uint64_t * ret,CRYPTO_RWLOCK * lock)789 int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
790 CRYPTO_RWLOCK *lock)
791 {
792 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
793 if (__atomic_is_lock_free(sizeof(*val), val)) {
794 *ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL);
795 return 1;
796 }
797 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
798 /* This will work for all future Solaris versions. */
799 if (ret != NULL) {
800 *ret = atomic_and_64_nv(val, op);
801 return 1;
802 }
803 # endif
804 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
805 return 0;
806 *val &= op;
807 *ret = *val;
808
809 if (!CRYPTO_THREAD_unlock(lock))
810 return 0;
811
812 return 1;
813 }
814
CRYPTO_atomic_or(uint64_t * val,uint64_t op,uint64_t * ret,CRYPTO_RWLOCK * lock)815 int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
816 CRYPTO_RWLOCK *lock)
817 {
818 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
819 if (__atomic_is_lock_free(sizeof(*val), val)) {
820 *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
821 return 1;
822 }
823 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
824 /* This will work for all future Solaris versions. */
825 if (ret != NULL) {
826 *ret = atomic_or_64_nv(val, op);
827 return 1;
828 }
829 # endif
830 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
831 return 0;
832 *val |= op;
833 *ret = *val;
834
835 if (!CRYPTO_THREAD_unlock(lock))
836 return 0;
837
838 return 1;
839 }
840
CRYPTO_atomic_load(uint64_t * val,uint64_t * ret,CRYPTO_RWLOCK * lock)841 int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
842 {
843 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
844 if (__atomic_is_lock_free(sizeof(*val), val)) {
845 __atomic_load(val, ret, __ATOMIC_ACQUIRE);
846 return 1;
847 }
848 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
849 /* This will work for all future Solaris versions. */
850 if (ret != NULL) {
851 *ret = atomic_or_64_nv(val, 0);
852 return 1;
853 }
854 # endif
855 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
856 return 0;
857 *ret = *val;
858 if (!CRYPTO_THREAD_unlock(lock))
859 return 0;
860
861 return 1;
862 }
863
CRYPTO_atomic_store(uint64_t * dst,uint64_t val,CRYPTO_RWLOCK * lock)864 int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
865 {
866 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
867 if (__atomic_is_lock_free(sizeof(*dst), dst)) {
868 __atomic_store(dst, &val, __ATOMIC_RELEASE);
869 return 1;
870 }
871 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
872 /* This will work for all future Solaris versions. */
873 if (dst != NULL) {
874 atomic_swap_64(dst, val);
875 return 1;
876 }
877 # endif
878 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
879 return 0;
880 *dst = val;
881 if (!CRYPTO_THREAD_unlock(lock))
882 return 0;
883
884 return 1;
885 }
886
CRYPTO_atomic_load_int(int * val,int * ret,CRYPTO_RWLOCK * lock)887 int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
888 {
889 # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
890 if (__atomic_is_lock_free(sizeof(*val), val)) {
891 __atomic_load(val, ret, __ATOMIC_ACQUIRE);
892 return 1;
893 }
894 # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
895 /* This will work for all future Solaris versions. */
896 if (ret != NULL) {
897 *ret = (int)atomic_or_uint_nv((unsigned int *)val, 0);
898 return 1;
899 }
900 # endif
901 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
902 return 0;
903 *ret = *val;
904 if (!CRYPTO_THREAD_unlock(lock))
905 return 0;
906
907 return 1;
908 }
909
910 # ifndef FIPS_MODULE
openssl_init_fork_handlers(void)911 int openssl_init_fork_handlers(void)
912 {
913 return 1;
914 }
915 # endif /* FIPS_MODULE */
916
openssl_get_fork_id(void)917 int openssl_get_fork_id(void)
918 {
919 return getpid();
920 }
921 #endif
922