1 /*
2 * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 /* We need to use the OPENSSL_fork_*() deprecated APIs */
11 #define OPENSSL_SUPPRESS_DEPRECATED
12
13 #include <openssl/crypto.h>
14 #include <crypto/cryptlib.h>
15 #include "internal/cryptlib.h"
16 #include "internal/rcu.h"
17 #include "rcu_internal.h"
18
19 #if defined(__clang__) && defined(__has_feature)
20 #if __has_feature(thread_sanitizer)
21 #define __SANITIZE_THREAD__
22 #endif
23 #endif
24
25 #if defined(__SANITIZE_THREAD__)
26 #include <sanitizer/tsan_interface.h>
27 #define TSAN_FAKE_UNLOCK(x) \
28 __tsan_mutex_pre_unlock((x), 0); \
29 __tsan_mutex_post_unlock((x), 0)
30
31 #define TSAN_FAKE_LOCK(x) \
32 __tsan_mutex_pre_lock((x), 0); \
33 __tsan_mutex_post_lock((x), 0, 0)
34 #else
35 #define TSAN_FAKE_UNLOCK(x)
36 #define TSAN_FAKE_LOCK(x)
37 #endif
38
39 #if defined(__sun)
40 #include <atomic.h>
41 #endif
42
43 #if defined(__apple_build_version__) && __apple_build_version__ < 6000000
44 /*
45 * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
46 * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
47 * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
48 * All of this makes impossible to use __atomic_is_lock_free here.
49 *
50 * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
51 */
52 #define BROKEN_CLANG_ATOMICS
53 #endif
54
55 #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
56
57 #if defined(OPENSSL_SYS_UNIX)
58 #include <sys/types.h>
59 #include <unistd.h>
60 #endif
61
62 #include <assert.h>
63
64 /*
65 * The Non-Stop KLT thread model currently seems broken in its rwlock
66 * implementation
67 * Likewise is there a problem with the glibc implementation on riscv.
68 */
69 #if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_) \
70 && !defined(__riscv)
71 #define USE_RWLOCK
72 #endif
73
74 /*
75 * For all GNU/clang atomic builtins, we also need fallbacks, to cover all
76 * other compilers.
77
78 * Unfortunately, we can't do that with some "generic type", because there's no
79 * guarantee that the chosen generic type is large enough to cover all cases.
80 * Therefore, we implement fallbacks for each applicable type, with composed
81 * names that include the type they handle.
82 *
83 * (an anecdote: we previously tried to use |void *| as the generic type, with
84 * the thought that the pointer itself is the largest type. However, this is
85 * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
86 *
87 * All applicable ATOMIC_ macros take the intended type as first parameter, so
88 * they can map to the correct fallback function. In the GNU/clang case, that
89 * parameter is simply ignored.
90 */
91
92 /*
93 * Internal types used with the ATOMIC_ macros, to make it possible to compose
94 * fallback function names.
95 */
96 typedef void *pvoid;
97
98 #if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
99 && !defined(USE_ATOMIC_FALLBACKS)
100 #define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
101 #define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
102 #define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
103 #define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
104 #define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
105 #else
106 static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
107
108 #define IMPL_fallback_atomic_load_n(t) \
109 static ossl_inline t fallback_atomic_load_n_##t(t *p) \
110 { \
111 t ret; \
112 \
113 pthread_mutex_lock(&atomic_sim_lock); \
114 ret = *p; \
115 pthread_mutex_unlock(&atomic_sim_lock); \
116 return ret; \
117 }
118 IMPL_fallback_atomic_load_n(uint32_t)
IMPL_fallback_atomic_load_n(uint64_t)119 IMPL_fallback_atomic_load_n(uint64_t)
120 IMPL_fallback_atomic_load_n(pvoid)
121
122 #define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
123
124 #define IMPL_fallback_atomic_store_n(t) \
125 static ossl_inline t fallback_atomic_store_n_##t(t *p, t v) \
126 { \
127 t ret; \
128 \
129 pthread_mutex_lock(&atomic_sim_lock); \
130 ret = *p; \
131 *p = v; \
132 pthread_mutex_unlock(&atomic_sim_lock); \
133 return ret; \
134 }
135 IMPL_fallback_atomic_store_n(uint32_t)
136
137 #define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
138
139 #define IMPL_fallback_atomic_store(t) \
140 static ossl_inline void fallback_atomic_store_##t(t *p, t *v) \
141 { \
142 pthread_mutex_lock(&atomic_sim_lock); \
143 *p = *v; \
144 pthread_mutex_unlock(&atomic_sim_lock); \
145 }
146 IMPL_fallback_atomic_store(pvoid)
147
148 #define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
149
150 /*
151 * The fallbacks that follow don't need any per type implementation, as
152 * they are designed for uint64_t only. If there comes a time when multiple
153 * types need to be covered, it's relatively easy to refactor them the same
154 * way as the fallbacks above.
155 */
156
157 static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
158 {
159 uint64_t ret;
160
161 pthread_mutex_lock(&atomic_sim_lock);
162 *p += v;
163 ret = *p;
164 pthread_mutex_unlock(&atomic_sim_lock);
165 return ret;
166 }
167
168 #define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
169
fallback_atomic_sub_fetch(uint64_t * p,uint64_t v)170 static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
171 {
172 uint64_t ret;
173
174 pthread_mutex_lock(&atomic_sim_lock);
175 *p -= v;
176 ret = *p;
177 pthread_mutex_unlock(&atomic_sim_lock);
178 return ret;
179 }
180
181 #define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
182 #endif
183
184 /*
185 * This is the core of an rcu lock. It tracks the readers and writers for the
186 * current quiescence point for a given lock. Users is the 64 bit value that
187 * stores the READERS/ID as defined above
188 *
189 */
190 struct rcu_qp {
191 uint64_t users;
192 };
193
194 struct thread_qp {
195 struct rcu_qp *qp;
196 unsigned int depth;
197 CRYPTO_RCU_LOCK *lock;
198 };
199
200 #define MAX_QPS 10
201 /*
202 * This is the per thread tracking data
203 * that is assigned to each thread participating
204 * in an rcu qp
205 *
206 * qp points to the qp that it last acquired
207 *
208 */
209 struct rcu_thr_data {
210 struct thread_qp thread_qps[MAX_QPS];
211 };
212
213 /*
214 * This is the internal version of a CRYPTO_RCU_LOCK
215 * it is cast from CRYPTO_RCU_LOCK
216 */
217 struct rcu_lock_st {
218 /* Callbacks to call for next ossl_synchronize_rcu */
219 struct rcu_cb_item *cb_items;
220
221 /* The context we are being created against */
222 OSSL_LIB_CTX *ctx;
223
224 /* Array of quiescent points for synchronization */
225 struct rcu_qp *qp_group;
226
227 /* rcu generation counter for in-order retirement */
228 uint32_t id_ctr;
229
230 /* Number of elements in qp_group array */
231 uint32_t group_count;
232
233 /* Index of the current qp in the qp_group array */
234 uint32_t reader_idx;
235
236 /* value of the next id_ctr value to be retired */
237 uint32_t next_to_retire;
238
239 /* index of the next free rcu_qp in the qp_group */
240 uint32_t current_alloc_idx;
241
242 /* number of qp's in qp_group array currently being retired */
243 uint32_t writers_alloced;
244
245 /* lock protecting write side operations */
246 pthread_mutex_t write_lock;
247
248 /* lock protecting updates to writers_alloced/current_alloc_idx */
249 pthread_mutex_t alloc_lock;
250
251 /* signal to wake threads waiting on alloc_lock */
252 pthread_cond_t alloc_signal;
253
254 /* lock to enforce in-order retirement */
255 pthread_mutex_t prior_lock;
256
257 /* signal to wake threads waiting on prior_lock */
258 pthread_cond_t prior_signal;
259 };
260
261 /* Read side acquisition of the current qp */
get_hold_current_qp(struct rcu_lock_st * lock)262 static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
263 {
264 uint32_t qp_idx;
265
266 /* get the current qp index */
267 for (;;) {
268 qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_RELAXED);
269
270 /*
271 * Notes on use of __ATOMIC_ACQUIRE
272 * We need to ensure the following:
273 * 1) That subsequent operations aren't optimized by hoisting them above
274 * this operation. Specifically, we don't want the below re-load of
275 * qp_idx to get optimized away
276 * 2) We want to ensure that any updating of reader_idx on the write side
277 * of the lock is flushed from a local cpu cache so that we see any
278 * updates prior to the load. This is a non-issue on cache coherent
279 * systems like x86, but is relevant on other arches
280 */
281 ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
282 __ATOMIC_ACQUIRE);
283
284 /* if the idx hasn't changed, we're good, else try again */
285 if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_ACQUIRE))
286 break;
287
288 ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
289 __ATOMIC_RELAXED);
290 }
291
292 return &lock->qp_group[qp_idx];
293 }
294
ossl_rcu_free_local_data(void * arg)295 static void ossl_rcu_free_local_data(void *arg)
296 {
297 OSSL_LIB_CTX *ctx = arg;
298 CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
299 struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
300
301 OPENSSL_free(data);
302 CRYPTO_THREAD_set_local(lkey, NULL);
303 }
304
ossl_rcu_read_lock(CRYPTO_RCU_LOCK * lock)305 void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
306 {
307 struct rcu_thr_data *data;
308 int i, available_qp = -1;
309 CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
310
311 /*
312 * we're going to access current_qp here so ask the
313 * processor to fetch it
314 */
315 data = CRYPTO_THREAD_get_local(lkey);
316
317 if (data == NULL) {
318 data = OPENSSL_zalloc(sizeof(*data));
319 OPENSSL_assert(data != NULL);
320 CRYPTO_THREAD_set_local(lkey, data);
321 ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
322 }
323
324 for (i = 0; i < MAX_QPS; i++) {
325 if (data->thread_qps[i].qp == NULL && available_qp == -1)
326 available_qp = i;
327 /* If we have a hold on this lock already, we're good */
328 if (data->thread_qps[i].lock == lock) {
329 data->thread_qps[i].depth++;
330 return;
331 }
332 }
333
334 /*
335 * if we get here, then we don't have a hold on this lock yet
336 */
337 assert(available_qp != -1);
338
339 data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
340 data->thread_qps[available_qp].depth = 1;
341 data->thread_qps[available_qp].lock = lock;
342 }
343
ossl_rcu_read_unlock(CRYPTO_RCU_LOCK * lock)344 void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
345 {
346 int i;
347 CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
348 struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
349 uint64_t ret;
350
351 assert(data != NULL);
352
353 for (i = 0; i < MAX_QPS; i++) {
354 if (data->thread_qps[i].lock == lock) {
355 /*
356 * we have to use __ATOMIC_RELEASE here
357 * to ensure that all preceding read instructions complete
358 * before the decrement is visible to ossl_synchronize_rcu
359 */
360 data->thread_qps[i].depth--;
361 if (data->thread_qps[i].depth == 0) {
362 ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users,
363 (uint64_t)1, __ATOMIC_RELEASE);
364 OPENSSL_assert(ret != UINT64_MAX);
365 data->thread_qps[i].qp = NULL;
366 data->thread_qps[i].lock = NULL;
367 }
368 return;
369 }
370 }
371 /*
372 * If we get here, we're trying to unlock a lock that we never acquired -
373 * that's fatal.
374 */
375 assert(0);
376 }
377
378 /*
379 * Write side allocation routine to get the current qp
380 * and replace it with a new one
381 */
update_qp(CRYPTO_RCU_LOCK * lock,uint32_t * curr_id)382 static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id)
383 {
384 uint32_t current_idx;
385
386 pthread_mutex_lock(&lock->alloc_lock);
387
388 /*
389 * we need at least one qp to be available with one
390 * left over, so that readers can start working on
391 * one that isn't yet being waited on
392 */
393 while (lock->group_count - lock->writers_alloced < 2)
394 /* we have to wait for one to be free */
395 pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
396
397 current_idx = lock->current_alloc_idx;
398
399 /* Allocate the qp */
400 lock->writers_alloced++;
401
402 /* increment the allocation index */
403 lock->current_alloc_idx = (lock->current_alloc_idx + 1) % lock->group_count;
404
405 *curr_id = lock->id_ctr;
406 lock->id_ctr++;
407
408 /*
409 * make the current state of everything visible by this release
410 * when get_hold_current_qp acquires the next qp
411 */
412 ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx,
413 __ATOMIC_RELEASE);
414
415 /*
416 * this should make sure that the new value of reader_idx is visible in
417 * get_hold_current_qp, directly after incrementing the users count
418 */
419 ATOMIC_ADD_FETCH(&lock->qp_group[current_idx].users, (uint64_t)0,
420 __ATOMIC_RELEASE);
421
422 /* wake up any waiters */
423 pthread_cond_signal(&lock->alloc_signal);
424 pthread_mutex_unlock(&lock->alloc_lock);
425 return &lock->qp_group[current_idx];
426 }
427
retire_qp(CRYPTO_RCU_LOCK * lock,struct rcu_qp * qp)428 static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
429 {
430 pthread_mutex_lock(&lock->alloc_lock);
431 lock->writers_alloced--;
432 pthread_cond_signal(&lock->alloc_signal);
433 pthread_mutex_unlock(&lock->alloc_lock);
434 }
435
allocate_new_qp_group(CRYPTO_RCU_LOCK * lock,uint32_t count)436 static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
437 uint32_t count)
438 {
439 struct rcu_qp *new = OPENSSL_zalloc(sizeof(*new) * count);
440
441 lock->group_count = count;
442 return new;
443 }
444
ossl_rcu_write_lock(CRYPTO_RCU_LOCK * lock)445 void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
446 {
447 pthread_mutex_lock(&lock->write_lock);
448 TSAN_FAKE_UNLOCK(&lock->write_lock);
449 }
450
ossl_rcu_write_unlock(CRYPTO_RCU_LOCK * lock)451 void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
452 {
453 TSAN_FAKE_LOCK(&lock->write_lock);
454 pthread_mutex_unlock(&lock->write_lock);
455 }
456
ossl_synchronize_rcu(CRYPTO_RCU_LOCK * lock)457 void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
458 {
459 struct rcu_qp *qp;
460 uint64_t count;
461 uint32_t curr_id;
462 struct rcu_cb_item *cb_items, *tmpcb;
463
464 pthread_mutex_lock(&lock->write_lock);
465 cb_items = lock->cb_items;
466 lock->cb_items = NULL;
467 pthread_mutex_unlock(&lock->write_lock);
468
469 qp = update_qp(lock, &curr_id);
470
471 /* retire in order */
472 pthread_mutex_lock(&lock->prior_lock);
473 while (lock->next_to_retire != curr_id)
474 pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
475
476 /*
477 * wait for the reader count to reach zero
478 * Note the use of __ATOMIC_ACQUIRE here to ensure that any
479 * prior __ATOMIC_RELEASE write operation in ossl_rcu_read_unlock
480 * is visible prior to our read
481 * however this is likely just necessary to silence a tsan warning
482 * because the read side should not do any write operation
483 * outside the atomic itself
484 */
485 do {
486 count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
487 } while (count != (uint64_t)0);
488
489 lock->next_to_retire++;
490 pthread_cond_broadcast(&lock->prior_signal);
491 pthread_mutex_unlock(&lock->prior_lock);
492
493 retire_qp(lock, qp);
494
495 /* handle any callbacks that we have */
496 while (cb_items != NULL) {
497 tmpcb = cb_items;
498 cb_items = cb_items->next;
499 tmpcb->fn(tmpcb->data);
500 OPENSSL_free(tmpcb);
501 }
502 }
503
504 /*
505 * Note: This call assumes its made under the protection of
506 * ossl_rcu_write_lock
507 */
ossl_rcu_call(CRYPTO_RCU_LOCK * lock,rcu_cb_fn cb,void * data)508 int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
509 {
510 struct rcu_cb_item *new = OPENSSL_zalloc(sizeof(*new));
511
512 if (new == NULL)
513 return 0;
514
515 new->data = data;
516 new->fn = cb;
517
518 new->next = lock->cb_items;
519 lock->cb_items = new;
520
521 return 1;
522 }
523
ossl_rcu_uptr_deref(void ** p)524 void *ossl_rcu_uptr_deref(void **p)
525 {
526 return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
527 }
528
ossl_rcu_assign_uptr(void ** p,void ** v)529 void ossl_rcu_assign_uptr(void **p, void **v)
530 {
531 ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
532 }
533
ossl_rcu_lock_new(int num_writers,OSSL_LIB_CTX * ctx)534 CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
535 {
536 struct rcu_lock_st *new;
537
538 /*
539 * We need a minimum of 2 qp's
540 */
541 if (num_writers < 2)
542 num_writers = 2;
543
544 ctx = ossl_lib_ctx_get_concrete(ctx);
545 if (ctx == NULL)
546 return 0;
547
548 new = OPENSSL_zalloc(sizeof(*new));
549 if (new == NULL)
550 return NULL;
551
552 new->ctx = ctx;
553 pthread_mutex_init(&new->write_lock, NULL);
554 pthread_mutex_init(&new->prior_lock, NULL);
555 pthread_mutex_init(&new->alloc_lock, NULL);
556 pthread_cond_init(&new->prior_signal, NULL);
557 pthread_cond_init(&new->alloc_signal, NULL);
558
559 new->qp_group = allocate_new_qp_group(new, num_writers);
560 if (new->qp_group == NULL) {
561 OPENSSL_free(new);
562 new = NULL;
563 }
564
565 return new;
566 }
567
ossl_rcu_lock_free(CRYPTO_RCU_LOCK * lock)568 void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
569 {
570 struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
571
572 if (lock == NULL)
573 return;
574
575 /* make sure we're synchronized */
576 ossl_synchronize_rcu(rlock);
577
578 OPENSSL_free(rlock->qp_group);
579 /* There should only be a single qp left now */
580 OPENSSL_free(rlock);
581 }
582
CRYPTO_THREAD_lock_new(void)583 CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
584 {
585 #ifdef USE_RWLOCK
586 CRYPTO_RWLOCK *lock;
587
588 if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
589 /* Don't set error, to avoid recursion blowup. */
590 return NULL;
591
592 if (pthread_rwlock_init(lock, NULL) != 0) {
593 OPENSSL_free(lock);
594 return NULL;
595 }
596 #else
597 pthread_mutexattr_t attr;
598 CRYPTO_RWLOCK *lock;
599
600 if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
601 /* Don't set error, to avoid recursion blowup. */
602 return NULL;
603
604 /*
605 * We don't use recursive mutexes, but try to catch errors if we do.
606 */
607 pthread_mutexattr_init(&attr);
608 #if !defined(__TANDEM) && !defined(_SPT_MODEL_)
609 #if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
610 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
611 #endif
612 #else
613 /* The SPT Thread Library does not define MUTEX attributes. */
614 #endif
615
616 if (pthread_mutex_init(lock, &attr) != 0) {
617 pthread_mutexattr_destroy(&attr);
618 OPENSSL_free(lock);
619 return NULL;
620 }
621
622 pthread_mutexattr_destroy(&attr);
623 #endif
624
625 return lock;
626 }
627
CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK * lock)628 __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
629 {
630 #ifdef USE_RWLOCK
631 if (!ossl_assert(pthread_rwlock_rdlock(lock) == 0))
632 return 0;
633 #else
634 if (pthread_mutex_lock(lock) != 0) {
635 assert(errno != EDEADLK && errno != EBUSY);
636 return 0;
637 }
638 #endif
639
640 return 1;
641 }
642
CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK * lock)643 __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
644 {
645 #ifdef USE_RWLOCK
646 if (!ossl_assert(pthread_rwlock_wrlock(lock) == 0))
647 return 0;
648 #else
649 if (pthread_mutex_lock(lock) != 0) {
650 assert(errno != EDEADLK && errno != EBUSY);
651 return 0;
652 }
653 #endif
654
655 return 1;
656 }
657
CRYPTO_THREAD_unlock(CRYPTO_RWLOCK * lock)658 int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
659 {
660 #ifdef USE_RWLOCK
661 if (pthread_rwlock_unlock(lock) != 0)
662 return 0;
663 #else
664 if (pthread_mutex_unlock(lock) != 0) {
665 assert(errno != EPERM);
666 return 0;
667 }
668 #endif
669
670 return 1;
671 }
672
CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK * lock)673 void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
674 {
675 if (lock == NULL)
676 return;
677
678 #ifdef USE_RWLOCK
679 pthread_rwlock_destroy(lock);
680 #else
681 pthread_mutex_destroy(lock);
682 #endif
683 OPENSSL_free(lock);
684
685 return;
686 }
687
CRYPTO_THREAD_run_once(CRYPTO_ONCE * once,void (* init)(void))688 int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
689 {
690 if (pthread_once(once, init) != 0)
691 return 0;
692
693 return 1;
694 }
695
CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL * key,void (* cleanup)(void *))696 int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
697 {
698
699 #ifndef FIPS_MODULE
700 if (!ossl_init_thread())
701 return 0;
702 #endif
703
704 if (pthread_key_create(key, cleanup) != 0)
705 return 0;
706
707 return 1;
708 }
709
CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL * key)710 void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
711 {
712 return pthread_getspecific(*key);
713 }
714
CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL * key,void * val)715 int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
716 {
717 if (pthread_setspecific(*key, val) != 0)
718 return 0;
719
720 return 1;
721 }
722
CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL * key)723 int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
724 {
725 if (pthread_key_delete(*key) != 0)
726 return 0;
727
728 return 1;
729 }
730
CRYPTO_THREAD_get_current_id(void)731 CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
732 {
733 return pthread_self();
734 }
735
CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a,CRYPTO_THREAD_ID b)736 int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
737 {
738 return pthread_equal(a, b);
739 }
740
CRYPTO_atomic_add(int * val,int amount,int * ret,CRYPTO_RWLOCK * lock)741 int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
742 {
743 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
744 if (__atomic_is_lock_free(sizeof(*val), val)) {
745 *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
746 return 1;
747 }
748 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
749 /* This will work for all future Solaris versions. */
750 if (ret != NULL) {
751 *ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
752 return 1;
753 }
754 #endif
755 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
756 return 0;
757
758 *val += amount;
759 *ret = *val;
760
761 if (!CRYPTO_THREAD_unlock(lock))
762 return 0;
763
764 return 1;
765 }
766
CRYPTO_atomic_add64(uint64_t * val,uint64_t op,uint64_t * ret,CRYPTO_RWLOCK * lock)767 int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
768 CRYPTO_RWLOCK *lock)
769 {
770 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
771 if (__atomic_is_lock_free(sizeof(*val), val)) {
772 *ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL);
773 return 1;
774 }
775 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
776 /* This will work for all future Solaris versions. */
777 if (ret != NULL) {
778 *ret = atomic_add_64_nv(val, op);
779 return 1;
780 }
781 #endif
782 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
783 return 0;
784 *val += op;
785 *ret = *val;
786
787 if (!CRYPTO_THREAD_unlock(lock))
788 return 0;
789
790 return 1;
791 }
792
CRYPTO_atomic_and(uint64_t * val,uint64_t op,uint64_t * ret,CRYPTO_RWLOCK * lock)793 int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
794 CRYPTO_RWLOCK *lock)
795 {
796 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
797 if (__atomic_is_lock_free(sizeof(*val), val)) {
798 *ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL);
799 return 1;
800 }
801 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
802 /* This will work for all future Solaris versions. */
803 if (ret != NULL) {
804 *ret = atomic_and_64_nv(val, op);
805 return 1;
806 }
807 #endif
808 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
809 return 0;
810 *val &= op;
811 *ret = *val;
812
813 if (!CRYPTO_THREAD_unlock(lock))
814 return 0;
815
816 return 1;
817 }
818
CRYPTO_atomic_or(uint64_t * val,uint64_t op,uint64_t * ret,CRYPTO_RWLOCK * lock)819 int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
820 CRYPTO_RWLOCK *lock)
821 {
822 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
823 if (__atomic_is_lock_free(sizeof(*val), val)) {
824 *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
825 return 1;
826 }
827 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
828 /* This will work for all future Solaris versions. */
829 if (ret != NULL) {
830 *ret = atomic_or_64_nv(val, op);
831 return 1;
832 }
833 #endif
834 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
835 return 0;
836 *val |= op;
837 *ret = *val;
838
839 if (!CRYPTO_THREAD_unlock(lock))
840 return 0;
841
842 return 1;
843 }
844
CRYPTO_atomic_load(uint64_t * val,uint64_t * ret,CRYPTO_RWLOCK * lock)845 int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
846 {
847 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
848 if (__atomic_is_lock_free(sizeof(*val), val)) {
849 __atomic_load(val, ret, __ATOMIC_ACQUIRE);
850 return 1;
851 }
852 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
853 /* This will work for all future Solaris versions. */
854 if (ret != NULL) {
855 *ret = atomic_or_64_nv(val, 0);
856 return 1;
857 }
858 #endif
859 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
860 return 0;
861 *ret = *val;
862 if (!CRYPTO_THREAD_unlock(lock))
863 return 0;
864
865 return 1;
866 }
867
CRYPTO_atomic_store(uint64_t * dst,uint64_t val,CRYPTO_RWLOCK * lock)868 int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
869 {
870 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
871 if (__atomic_is_lock_free(sizeof(*dst), dst)) {
872 __atomic_store(dst, &val, __ATOMIC_RELEASE);
873 return 1;
874 }
875 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
876 /* This will work for all future Solaris versions. */
877 if (dst != NULL) {
878 atomic_swap_64(dst, val);
879 return 1;
880 }
881 #endif
882 if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
883 return 0;
884 *dst = val;
885 if (!CRYPTO_THREAD_unlock(lock))
886 return 0;
887
888 return 1;
889 }
890
CRYPTO_atomic_load_int(int * val,int * ret,CRYPTO_RWLOCK * lock)891 int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
892 {
893 #if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
894 if (__atomic_is_lock_free(sizeof(*val), val)) {
895 __atomic_load(val, ret, __ATOMIC_ACQUIRE);
896 return 1;
897 }
898 #elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
899 /* This will work for all future Solaris versions. */
900 if (ret != NULL) {
901 *ret = (int)atomic_or_uint_nv((unsigned int *)val, 0);
902 return 1;
903 }
904 #endif
905 if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
906 return 0;
907 *ret = *val;
908 if (!CRYPTO_THREAD_unlock(lock))
909 return 0;
910
911 return 1;
912 }
913
914 #ifndef FIPS_MODULE
openssl_init_fork_handlers(void)915 int openssl_init_fork_handlers(void)
916 {
917 return 1;
918 }
919 #endif /* FIPS_MODULE */
920
openssl_get_fork_id(void)921 int openssl_get_fork_id(void)
922 {
923 return getpid();
924 }
925 #endif
926