xref: /freebsd/crypto/openssl/crypto/bn/rsaz_exp_x2.c (revision b077aed33b7b6aefca7b17ddb250cf521f938613)
1 /*
2  * Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2020, Intel Corporation. All Rights Reserved.
4  *
5  * Licensed under the Apache License 2.0 (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  *
10  *
11  * Originally written by Ilya Albrekht, Sergey Kirillov and Andrey Matyukov
12  * Intel Corporation
13  *
14  */
15 
16 #include <openssl/opensslconf.h>
17 #include <openssl/crypto.h>
18 #include "rsaz_exp.h"
19 
20 #ifndef RSAZ_ENABLED
21 NON_EMPTY_TRANSLATION_UNIT
22 #else
23 # include <assert.h>
24 # include <string.h>
25 
26 # if defined(__GNUC__)
27 #  define ALIGN64 __attribute__((aligned(64)))
28 # elif defined(_MSC_VER)
29 #  define ALIGN64 __declspec(align(64))
30 # else
31 #  define ALIGN64
32 # endif
33 
34 # define ALIGN_OF(ptr, boundary) \
35     ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
36 
37 /* Internal radix */
38 # define DIGIT_SIZE (52)
39 /* 52-bit mask */
40 # define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
41 
42 # define BITS2WORD8_SIZE(x)  (((x) + 7) >> 3)
43 # define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
44 
45 static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len);
46 static ossl_inline void put_digit52(uint8_t *out, int out_len, uint64_t digit);
47 static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
48                        int in_bitsize);
49 static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
50 static ossl_inline void set_bit(BN_ULONG *a, int idx);
51 
52 /* Number of |digit_size|-bit digits in |bitsize|-bit value */
53 static ossl_inline int number_of_digits(int bitsize, int digit_size)
54 {
55     return (bitsize + digit_size - 1) / digit_size;
56 }
57 
58 typedef void (*AMM52)(BN_ULONG *res, const BN_ULONG *base,
59                       const BN_ULONG *exp, const BN_ULONG *m, BN_ULONG k0);
60 typedef void (*EXP52_x2)(BN_ULONG *res, const BN_ULONG *base,
61                          const BN_ULONG *exp[2], const BN_ULONG *m,
62                          const BN_ULONG *rr, const BN_ULONG k0[2]);
63 
64 /*
65  * For details of the methods declared below please refer to
66  *    crypto/bn/asm/rsaz-avx512.pl
67  *
68  * Naming notes:
69  *  amm = Almost Montgomery Multiplication
70  *  ams = Almost Montgomery Squaring
71  *  52x20 - data represented as array of 20 digits in 52-bit radix
72  *  _x1_/_x2_ - 1 or 2 independent inputs/outputs
73  *  _256 suffix - uses 256-bit (AVX512VL) registers
74  */
75 
76 /*AMM = Almost Montgomery Multiplication. */
77 void ossl_rsaz_amm52x20_x1_256(BN_ULONG *res, const BN_ULONG *base,
78                                const BN_ULONG *exp, const BN_ULONG *m,
79                                BN_ULONG k0);
80 static void RSAZ_exp52x20_x2_256(BN_ULONG *res, const BN_ULONG *base,
81                                  const BN_ULONG *exp[2], const BN_ULONG *m,
82                                  const BN_ULONG *rr, const BN_ULONG k0[2]);
83 void ossl_rsaz_amm52x20_x2_256(BN_ULONG *out, const BN_ULONG *a,
84                                const BN_ULONG *b, const BN_ULONG *m,
85                                const BN_ULONG k0[2]);
86 void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
87                                        const BN_ULONG *red_table,
88                                        int red_table_idx, int tbl_idx);
89 
90 /*
91  * Dual Montgomery modular exponentiation using prime moduli of the
92  * same bit size, optimized with AVX512 ISA.
93  *
94  * Input and output parameters for each exponentiation are independent and
95  * denoted here by index |i|, i = 1..2.
96  *
97  * Input and output are all in regular 2^64 radix.
98  *
99  * Each moduli shall be |factor_size| bit size.
100  *
101  * NOTE: currently only 2x1024 case is supported.
102  *
103  *  [out] res|i|      - result of modular exponentiation: array of qword values
104  *                      in regular (2^64) radix. Size of array shall be enough
105  *                      to hold |factor_size| bits.
106  *  [in]  base|i|     - base
107  *  [in]  exp|i|      - exponent
108  *  [in]  m|i|        - moduli
109  *  [in]  rr|i|       - Montgomery parameter RR = R^2 mod m|i|
110  *  [in]  k0_|i|      - Montgomery parameter k0 = -1/m|i| mod 2^64
111  *  [in]  factor_size - moduli bit size
112  *
113  * \return 0 in case of failure,
114  *         1 in case of success.
115  */
116 int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
117                                 const BN_ULONG *base1,
118                                 const BN_ULONG *exp1,
119                                 const BN_ULONG *m1,
120                                 const BN_ULONG *rr1,
121                                 BN_ULONG k0_1,
122                                 BN_ULONG *res2,
123                                 const BN_ULONG *base2,
124                                 const BN_ULONG *exp2,
125                                 const BN_ULONG *m2,
126                                 const BN_ULONG *rr2,
127                                 BN_ULONG k0_2,
128                                 int factor_size)
129 {
130     int ret = 0;
131 
132     /*
133      * Number of word-size (BN_ULONG) digits to store exponent in redundant
134      * representation.
135      */
136     int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
137     int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
138     BN_ULONG *base1_red, *m1_red, *rr1_red;
139     BN_ULONG *base2_red, *m2_red, *rr2_red;
140     BN_ULONG *coeff_red;
141     BN_ULONG *storage = NULL;
142     BN_ULONG *storage_aligned = NULL;
143     BN_ULONG storage_len_bytes = 7 * exp_digits * sizeof(BN_ULONG);
144 
145     /* AMM = Almost Montgomery Multiplication */
146     AMM52 amm = NULL;
147     /* Dual (2-exps in parallel) exponentiation */
148     EXP52_x2 exp_x2 = NULL;
149 
150     const BN_ULONG *exp[2] = {0};
151     BN_ULONG k0[2] = {0};
152 
153     /* Only 1024-bit factor size is supported now */
154     switch (factor_size) {
155     case 1024:
156         amm = ossl_rsaz_amm52x20_x1_256;
157         exp_x2 = RSAZ_exp52x20_x2_256;
158         break;
159     default:
160         goto err;
161     }
162 
163     storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes + 64);
164     if (storage == NULL)
165         goto err;
166     storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
167 
168     /* Memory layout for red(undant) representations */
169     base1_red = storage_aligned;
170     base2_red = storage_aligned + 1 * exp_digits;
171     m1_red    = storage_aligned + 2 * exp_digits;
172     m2_red    = storage_aligned + 3 * exp_digits;
173     rr1_red   = storage_aligned + 4 * exp_digits;
174     rr2_red   = storage_aligned + 5 * exp_digits;
175     coeff_red = storage_aligned + 6 * exp_digits;
176 
177     /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
178     to_words52(base1_red, exp_digits, base1, factor_size);
179     to_words52(base2_red, exp_digits, base2, factor_size);
180     to_words52(m1_red, exp_digits, m1, factor_size);
181     to_words52(m2_red, exp_digits, m2, factor_size);
182     to_words52(rr1_red, exp_digits, rr1, factor_size);
183     to_words52(rr2_red, exp_digits, rr2, factor_size);
184 
185     /*
186      * Compute target domain Montgomery converters RR' for each modulus
187      * based on precomputed original domain's RR.
188      *
189      * RR -> RR' transformation steps:
190      *  (1) coeff = 2^k
191      *  (2) t = AMM(RR,RR) = RR^2 / R' mod m
192      *  (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
193      * where
194      *  k = 4 * (52 * digits52 - modlen)
195      *  R  = 2^(64 * ceil(modlen/64)) mod m
196      *  RR = R^2 mod M
197      *  R' = 2^(52 * ceil(modlen/52)) mod m
198      *
199      *  modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
200      */
201     memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
202     /* (1) in reduced domain representation */
203     set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
204 
205     amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1);     /* (2) for m1 */
206     amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1);   /* (3) for m1 */
207 
208     amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2);     /* (2) for m2 */
209     amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2);   /* (3) for m2 */
210 
211     exp[0] = exp1;
212     exp[1] = exp2;
213 
214     k0[0] = k0_1;
215     k0[1] = k0_2;
216 
217     exp_x2(rr1_red, base1_red, exp, m1_red, rr1_red, k0);
218 
219     /* Convert rr_i back to regular radix */
220     from_words52(res1, factor_size, rr1_red);
221     from_words52(res2, factor_size, rr2_red);
222 
223     /* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
224     factor_size /= sizeof(BN_ULONG) * 8;
225 
226     bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
227     bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);
228 
229     ret = 1;
230 err:
231     if (storage != NULL) {
232         OPENSSL_cleanse(storage, storage_len_bytes);
233         OPENSSL_free(storage);
234     }
235     return ret;
236 }
237 
238 /*
239  * Dual 1024-bit w-ary modular exponentiation using prime moduli of the same
240  * bit size using Almost Montgomery Multiplication, optimized with AVX512_IFMA
241  * ISA.
242  *
243  * The parameter w (window size) = 5.
244  *
245  *  [out] res      - result of modular exponentiation: 2x20 qword
246  *                   values in 2^52 radix.
247  *  [in]  base     - base (2x20 qword values in 2^52 radix)
248  *  [in]  exp      - array of 2 pointers to 16 qword values in 2^64 radix.
249  *                   Exponent is not converted to redundant representation.
250  *  [in]  m        - moduli (2x20 qword values in 2^52 radix)
251  *  [in]  rr       - Montgomery parameter for 2 moduli: RR = 2^2080 mod m.
252  *                   (2x20 qword values in 2^52 radix)
253  *  [in]  k0       - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
254  *
255  * \return (void).
256  */
257 static void RSAZ_exp52x20_x2_256(BN_ULONG *out,          /* [2][20] */
258                                  const BN_ULONG *base,   /* [2][20] */
259                                  const BN_ULONG *exp[2], /* 2x16    */
260                                  const BN_ULONG *m,      /* [2][20] */
261                                  const BN_ULONG *rr,     /* [2][20] */
262                                  const BN_ULONG k0[2])
263 {
264 # define BITSIZE_MODULUS (1024)
265 # define EXP_WIN_SIZE (5)
266 # define EXP_WIN_MASK ((1U << EXP_WIN_SIZE) - 1)
267 /*
268  * Number of digits (64-bit words) in redundant representation to handle
269  * modulus bits
270  */
271 # define RED_DIGITS (20)
272 # define EXP_DIGITS (16)
273 # define DAMM ossl_rsaz_amm52x20_x2_256
274 /*
275  * Squaring is done using multiplication now. That can be a subject of
276  * optimization in future.
277  */
278 # define DAMS(r,a,m,k0) \
279               ossl_rsaz_amm52x20_x2_256((r),(a),(a),(m),(k0))
280 
281     /* Allocate stack for red(undant) result Y and multiplier X */
282     ALIGN64 BN_ULONG red_Y[2][RED_DIGITS];
283     ALIGN64 BN_ULONG red_X[2][RED_DIGITS];
284 
285     /* Allocate expanded exponent */
286     ALIGN64 BN_ULONG expz[2][EXP_DIGITS + 1];
287 
288     /* Pre-computed table of base powers */
289     ALIGN64 BN_ULONG red_table[1U << EXP_WIN_SIZE][2][RED_DIGITS];
290 
291     int idx;
292 
293     memset(red_Y, 0, sizeof(red_Y));
294     memset(red_table, 0, sizeof(red_table));
295     memset(red_X, 0, sizeof(red_X));
296 
297     /*
298      * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
299      *   table[0] = mont(x^0) = mont(1)
300      *   table[1] = mont(x^1) = mont(x)
301      */
302     red_X[0][0] = 1;
303     red_X[1][0] = 1;
304     DAMM(red_table[0][0], (const BN_ULONG*)red_X, rr, m, k0);
305     DAMM(red_table[1][0], base,  rr, m, k0);
306 
307     for (idx = 1; idx < (int)((1U << EXP_WIN_SIZE) / 2); idx++) {
308         DAMS(red_table[2 * idx + 0][0], red_table[1 * idx][0], m, k0);
309         DAMM(red_table[2 * idx + 1][0], red_table[2 * idx][0], red_table[1][0], m, k0);
310     }
311 
312     /* Copy and expand exponents */
313     memcpy(expz[0], exp[0], EXP_DIGITS * sizeof(BN_ULONG));
314     expz[0][EXP_DIGITS] = 0;
315     memcpy(expz[1], exp[1], EXP_DIGITS * sizeof(BN_ULONG));
316     expz[1][EXP_DIGITS] = 0;
317 
318     /* Exponentiation */
319     {
320         const int rem = BITSIZE_MODULUS % EXP_WIN_SIZE;
321         BN_ULONG table_idx_mask = EXP_WIN_MASK;
322 
323         int exp_bit_no = BITSIZE_MODULUS - rem;
324         int exp_chunk_no = exp_bit_no / 64;
325         int exp_chunk_shift = exp_bit_no % 64;
326 
327         BN_ULONG red_table_idx_0, red_table_idx_1;
328 
329         /*
330          * If rem == 0, then
331          *      exp_bit_no = modulus_bitsize - exp_win_size
332          * However, this isn't possible because rem is { 1024, 1536, 2048 } % 5
333          * which is { 4, 1, 3 } respectively.
334          *
335          * If this assertion ever fails the fix above is easy.
336          */
337         OPENSSL_assert(rem != 0);
338 
339         /* Process 1-st exp window - just init result */
340         red_table_idx_0 = expz[0][exp_chunk_no];
341         red_table_idx_1 = expz[1][exp_chunk_no];
342         /*
343          * The function operates with fixed moduli sizes divisible by 64,
344          * thus table index here is always in supported range [0, EXP_WIN_SIZE).
345          */
346         red_table_idx_0 >>= exp_chunk_shift;
347         red_table_idx_1 >>= exp_chunk_shift;
348 
349         ossl_extract_multiplier_2x20_win5(red_Y[0], (const BN_ULONG*)red_table,
350                                           (int)red_table_idx_0, 0);
351         ossl_extract_multiplier_2x20_win5(red_Y[1], (const BN_ULONG*)red_table,
352                                           (int)red_table_idx_1, 1);
353 
354         /* Process other exp windows */
355         for (exp_bit_no -= EXP_WIN_SIZE; exp_bit_no >= 0; exp_bit_no -= EXP_WIN_SIZE) {
356             /* Extract pre-computed multiplier from the table */
357             {
358                 BN_ULONG T;
359 
360                 exp_chunk_no = exp_bit_no / 64;
361                 exp_chunk_shift = exp_bit_no % 64;
362                 {
363                     red_table_idx_0 = expz[0][exp_chunk_no];
364                     T = expz[0][exp_chunk_no + 1];
365 
366                     red_table_idx_0 >>= exp_chunk_shift;
367                     /*
368                      * Get additional bits from then next quadword
369                      * when 64-bit boundaries are crossed.
370                      */
371                     if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
372                         T <<= (64 - exp_chunk_shift);
373                         red_table_idx_0 ^= T;
374                     }
375                     red_table_idx_0 &= table_idx_mask;
376 
377                     ossl_extract_multiplier_2x20_win5(red_X[0],
378                                                       (const BN_ULONG*)red_table,
379                                                       (int)red_table_idx_0, 0);
380                 }
381                 {
382                     red_table_idx_1 = expz[1][exp_chunk_no];
383                     T = expz[1][exp_chunk_no + 1];
384 
385                     red_table_idx_1 >>= exp_chunk_shift;
386                     /*
387                      * Get additional bits from then next quadword
388                      * when 64-bit boundaries are crossed.
389                      */
390                     if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
391                         T <<= (64 - exp_chunk_shift);
392                         red_table_idx_1 ^= T;
393                     }
394                     red_table_idx_1 &= table_idx_mask;
395 
396                     ossl_extract_multiplier_2x20_win5(red_X[1],
397                                                       (const BN_ULONG*)red_table,
398                                                       (int)red_table_idx_1, 1);
399                 }
400             }
401 
402             /* Series of squaring */
403             DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
404             DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
405             DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
406             DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
407             DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
408 
409             DAMM((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
410         }
411     }
412 
413     /*
414      *
415      * NB: After the last AMM of exponentiation in Montgomery domain, the result
416      * may be 1025-bit, but the conversion out of Montgomery domain performs an
417      * AMM(x,1) which guarantees that the final result is less than |m|, so no
418      * conditional subtraction is needed here. See "Efficient Software
419      * Implementations of Modular Exponentiation" (by Shay Gueron) paper for details.
420      */
421 
422     /* Convert result back in regular 2^52 domain */
423     memset(red_X, 0, sizeof(red_X));
424     red_X[0][0] = 1;
425     red_X[1][0] = 1;
426     DAMM(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
427 
428     /* Clear exponents */
429     OPENSSL_cleanse(expz, sizeof(expz));
430     OPENSSL_cleanse(red_Y, sizeof(red_Y));
431 
432 # undef DAMS
433 # undef DAMM
434 # undef EXP_DIGITS
435 # undef RED_DIGITS
436 # undef EXP_WIN_MASK
437 # undef EXP_WIN_SIZE
438 # undef BITSIZE_MODULUS
439 }
440 
441 static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len)
442 {
443     uint64_t digit = 0;
444 
445     assert(in != NULL);
446 
447     for (; in_len > 0; in_len--) {
448         digit <<= 8;
449         digit += (uint64_t)(in[in_len - 1]);
450     }
451     return digit;
452 }
453 
454 /*
455  * Convert array of words in regular (base=2^64) representation to array of
456  * words in redundant (base=2^52) one.
457  */
458 static void to_words52(BN_ULONG *out, int out_len,
459                        const BN_ULONG *in, int in_bitsize)
460 {
461     uint8_t *in_str = NULL;
462 
463     assert(out != NULL);
464     assert(in != NULL);
465     /* Check destination buffer capacity */
466     assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
467 
468     in_str = (uint8_t *)in;
469 
470     for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
471         uint64_t digit;
472 
473         memcpy(&digit, in_str, sizeof(digit));
474         out[0] = digit & DIGIT_MASK;
475         in_str += 6;
476         memcpy(&digit, in_str, sizeof(digit));
477         out[1] = (digit >> 4) & DIGIT_MASK;
478         in_str += 7;
479         out_len -= 2;
480     }
481 
482     if (in_bitsize > DIGIT_SIZE) {
483         uint64_t digit = get_digit52(in_str, 7);
484 
485         out[0] = digit & DIGIT_MASK;
486         in_str += 6;
487         in_bitsize -= DIGIT_SIZE;
488         digit = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize));
489         out[1] = digit >> 4;
490         out += 2;
491         out_len -= 2;
492     } else if (in_bitsize > 0) {
493         out[0] = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize));
494         out++;
495         out_len--;
496     }
497 
498     while (out_len > 0) {
499         *out = 0;
500         out_len--;
501         out++;
502     }
503 }
504 
505 static ossl_inline void put_digit52(uint8_t *pStr, int strLen, uint64_t digit)
506 {
507     assert(pStr != NULL);
508 
509     for (; strLen > 0; strLen--) {
510         *pStr++ = (uint8_t)(digit & 0xFF);
511         digit >>= 8;
512     }
513 }
514 
515 /*
516  * Convert array of words in redundant (base=2^52) representation to array of
517  * words in regular (base=2^64) one.
518  */
519 static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
520 {
521     int i;
522     int out_len = BITS2WORD64_SIZE(out_bitsize);
523 
524     assert(out != NULL);
525     assert(in != NULL);
526 
527     for (i = 0; i < out_len; i++)
528         out[i] = 0;
529 
530     {
531         uint8_t *out_str = (uint8_t *)out;
532 
533         for (; out_bitsize >= (2 * DIGIT_SIZE);
534                out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
535             uint64_t digit;
536 
537             digit = in[0];
538             memcpy(out_str, &digit, sizeof(digit));
539             out_str += 6;
540             digit = digit >> 48 | in[1] << 4;
541             memcpy(out_str, &digit, sizeof(digit));
542             out_str += 7;
543         }
544 
545         if (out_bitsize > DIGIT_SIZE) {
546             put_digit52(out_str, 7, in[0]);
547             out_str += 6;
548             out_bitsize -= DIGIT_SIZE;
549             put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize),
550                         (in[1] << 4 | in[0] >> 48));
551         } else if (out_bitsize) {
552             put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
553         }
554     }
555 }
556 
557 /*
558  * Set bit at index |idx| in the words array |a|.
559  * It does not do any boundaries checks, make sure the index is valid before
560  * calling the function.
561  */
562 static ossl_inline void set_bit(BN_ULONG *a, int idx)
563 {
564     assert(a != NULL);
565 
566     {
567         int i, j;
568 
569         i = idx / BN_BITS2;
570         j = idx % BN_BITS2;
571         a[i] |= (((BN_ULONG)1) << j);
572     }
573 }
574 
575 #endif
576