1 /*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16 /*
17 * Copyright (c) 2016, 2018 by Delphix. All rights reserved.
18 */
19
20 /*
21 * ZFS Channel Programs (ZCP)
22 *
23 * The ZCP interface allows various ZFS commands and operations ZFS
24 * administrative operations (e.g. creating and destroying snapshots, typically
25 * performed via an ioctl to /dev/zfs by the zfs(8) command and
26 * libzfs/libzfs_core) to be run * programmatically as a Lua script. A ZCP
27 * script is run as a dsl_sync_task and fully executed during one transaction
28 * group sync. This ensures that no other changes can be written concurrently
29 * with a running Lua script. Combining multiple calls to the exposed ZFS
30 * functions into one script gives a number of benefits:
31 *
32 * 1. Atomicity. For some compound or iterative operations, it's useful to be
33 * able to guarantee that the state of a pool has not changed between calls to
34 * ZFS.
35 *
36 * 2. Performance. If a large number of changes need to be made (e.g. deleting
37 * many filesystems), there can be a significant performance penalty as a
38 * result of the need to wait for a transaction group sync to pass for every
39 * single operation. When expressed as a single ZCP script, all these changes
40 * can be performed at once in one txg sync.
41 *
42 * A modified version of the Lua 5.2 interpreter is used to run channel program
43 * scripts. The Lua 5.2 manual can be found at:
44 *
45 * http://www.lua.org/manual/5.2/
46 *
47 * If being run by a user (via an ioctl syscall), executing a ZCP script
48 * requires root privileges in the global zone.
49 *
50 * Scripts are passed to zcp_eval() as a string, then run in a synctask by
51 * zcp_eval_sync(). Arguments can be passed into the Lua script as an nvlist,
52 * which will be converted to a Lua table. Similarly, values returned from
53 * a ZCP script will be converted to an nvlist. See zcp_lua_to_nvlist_impl()
54 * for details on exact allowed types and conversion.
55 *
56 * ZFS functionality is exposed to a ZCP script as a library of function calls.
57 * These calls are sorted into submodules, such as zfs.list and zfs.sync, for
58 * iterators and synctasks, respectively. Each of these submodules resides in
59 * its own source file, with a zcp_*_info structure describing each library
60 * call in the submodule.
61 *
62 * Error handling in ZCP scripts is handled by a number of different methods
63 * based on severity:
64 *
65 * 1. Memory and time limits are in place to prevent a channel program from
66 * consuming excessive system or running forever. If one of these limits is
67 * hit, the channel program will be stopped immediately and return from
68 * zcp_eval() with an error code. No attempt will be made to roll back or undo
69 * any changes made by the channel program before the error occurred.
70 * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
71 * limit of 0, disabling the time limit.
72 *
73 * 2. Internal Lua errors can occur as a result of a syntax error, calling a
74 * library function with incorrect arguments, invoking the error() function,
75 * failing an assert(), or other runtime errors. In these cases the channel
76 * program will stop executing and return from zcp_eval() with an error code.
77 * In place of a return value, an error message will also be returned in the
78 * 'result' nvlist containing information about the error. No attempt will be
79 * made to roll back or undo any changes made by the channel program before the
80 * error occurred.
81 *
82 * 3. If an error occurs inside a ZFS library call which returns an error code,
83 * the error is returned to the Lua script to be handled as desired.
84 *
85 * In the first two cases, Lua's error-throwing mechanism is used, which
86 * longjumps out of the script execution with luaL_error() and returns with the
87 * error.
88 *
89 * See zfs-program(8) for more information on high level usage.
90 */
91
92 #include <sys/lua/lua.h>
93 #include <sys/lua/lualib.h>
94 #include <sys/lua/lauxlib.h>
95
96 #include <sys/dsl_prop.h>
97 #include <sys/dsl_synctask.h>
98 #include <sys/dsl_dataset.h>
99 #include <sys/zcp.h>
100 #include <sys/zcp_iter.h>
101 #include <sys/zcp_prop.h>
102 #include <sys/zcp_global.h>
103 #include <sys/zvol.h>
104
105 #ifndef KM_NORMALPRI
106 #define KM_NORMALPRI 0
107 #endif
108
109 #define ZCP_NVLIST_MAX_DEPTH 20
110
111 static const uint64_t zfs_lua_check_instrlimit_interval = 100;
112 uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
113 uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
114
115 /*
116 * Forward declarations for mutually recursive functions
117 */
118 static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
119 static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
120 int);
121
122 /*
123 * The outer-most error callback handler for use with lua_pcall(). On
124 * error Lua will call this callback with a single argument that
125 * represents the error value. In most cases this will be a string
126 * containing an error message, but channel programs can use Lua's
127 * error() function to return arbitrary objects as errors. This callback
128 * returns (on the Lua stack) the original error object along with a traceback.
129 *
130 * Fatal Lua errors can occur while resources are held, so we also call any
131 * registered cleanup function here.
132 */
133 static int
zcp_error_handler(lua_State * state)134 zcp_error_handler(lua_State *state)
135 {
136 const char *msg;
137
138 zcp_cleanup(state);
139
140 VERIFY3U(1, ==, lua_gettop(state));
141 msg = lua_tostring(state, 1);
142 luaL_traceback(state, state, msg, 1);
143 return (1);
144 }
145
146 int
zcp_argerror(lua_State * state,int narg,const char * msg,...)147 zcp_argerror(lua_State *state, int narg, const char *msg, ...)
148 {
149 va_list alist;
150
151 va_start(alist, msg);
152 const char *buf = lua_pushvfstring(state, msg, alist);
153 va_end(alist);
154
155 return (luaL_argerror(state, narg, buf));
156 }
157
158 /*
159 * Install a new cleanup function, which will be invoked with the given
160 * opaque argument if a fatal error causes the Lua interpreter to longjump out
161 * of a function call.
162 *
163 * If an error occurs, the cleanup function will be invoked exactly once and
164 * then unregistered.
165 *
166 * Returns the registered cleanup handler so the caller can deregister it
167 * if no error occurs.
168 */
169 zcp_cleanup_handler_t *
zcp_register_cleanup(lua_State * state,zcp_cleanup_t cleanfunc,void * cleanarg)170 zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
171 {
172 zcp_run_info_t *ri = zcp_run_info(state);
173
174 zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP);
175 zch->zch_cleanup_func = cleanfunc;
176 zch->zch_cleanup_arg = cleanarg;
177 list_insert_head(&ri->zri_cleanup_handlers, zch);
178
179 return (zch);
180 }
181
182 void
zcp_deregister_cleanup(lua_State * state,zcp_cleanup_handler_t * zch)183 zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch)
184 {
185 zcp_run_info_t *ri = zcp_run_info(state);
186 list_remove(&ri->zri_cleanup_handlers, zch);
187 kmem_free(zch, sizeof (*zch));
188 }
189
190 /*
191 * Execute the currently registered cleanup handlers then free them and
192 * destroy the handler list.
193 */
194 void
zcp_cleanup(lua_State * state)195 zcp_cleanup(lua_State *state)
196 {
197 zcp_run_info_t *ri = zcp_run_info(state);
198
199 for (zcp_cleanup_handler_t *zch =
200 list_remove_head(&ri->zri_cleanup_handlers); zch != NULL;
201 zch = list_remove_head(&ri->zri_cleanup_handlers)) {
202 zch->zch_cleanup_func(zch->zch_cleanup_arg);
203 kmem_free(zch, sizeof (*zch));
204 }
205 }
206
207 /*
208 * Convert the lua table at the given index on the Lua stack to an nvlist
209 * and return it.
210 *
211 * If the table can not be converted for any reason, NULL is returned and
212 * an error message is pushed onto the Lua stack.
213 */
214 static nvlist_t *
zcp_table_to_nvlist(lua_State * state,int index,int depth)215 zcp_table_to_nvlist(lua_State *state, int index, int depth)
216 {
217 nvlist_t *nvl;
218 /*
219 * Converting a Lua table to an nvlist with key uniqueness checking is
220 * O(n^2) in the number of keys in the nvlist, which can take a long
221 * time when we return a large table from a channel program.
222 * Furthermore, Lua's table interface *almost* guarantees unique keys
223 * on its own (details below). Therefore, we don't use fnvlist_alloc()
224 * here to avoid the built-in uniqueness checking.
225 *
226 * The *almost* is because it's possible to have key collisions between
227 * e.g. the string "1" and the number 1, or the string "true" and the
228 * boolean true, so we explicitly check that when we're looking at a
229 * key which is an integer / boolean or a string that can be parsed as
230 * one of those types. In the worst case this could still devolve into
231 * O(n^2), so we only start doing these checks on boolean/integer keys
232 * once we've seen a string key which fits this weird usage pattern.
233 *
234 * Ultimately, we still want callers to know that the keys in this
235 * nvlist are unique, so before we return this we set the nvlist's
236 * flags to reflect that.
237 */
238 VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
239
240 /*
241 * Push an empty stack slot where lua_next() will store each
242 * table key.
243 */
244 lua_pushnil(state);
245 boolean_t saw_str_could_collide = B_FALSE;
246 while (lua_next(state, index) != 0) {
247 /*
248 * The next key-value pair from the table at index is
249 * now on the stack, with the key at stack slot -2 and
250 * the value at slot -1.
251 */
252 int err = 0;
253 char buf[32];
254 const char *key = NULL;
255 boolean_t key_could_collide = B_FALSE;
256
257 switch (lua_type(state, -2)) {
258 case LUA_TSTRING:
259 key = lua_tostring(state, -2);
260
261 /* check if this could collide with a number or bool */
262 long long tmp;
263 int parselen;
264 if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
265 parselen == strlen(key)) ||
266 strcmp(key, "true") == 0 ||
267 strcmp(key, "false") == 0) {
268 key_could_collide = B_TRUE;
269 saw_str_could_collide = B_TRUE;
270 }
271 break;
272 case LUA_TBOOLEAN:
273 key = (lua_toboolean(state, -2) == B_TRUE ?
274 "true" : "false");
275 if (saw_str_could_collide) {
276 key_could_collide = B_TRUE;
277 }
278 break;
279 case LUA_TNUMBER:
280 (void) snprintf(buf, sizeof (buf), "%lld",
281 (longlong_t)lua_tonumber(state, -2));
282
283 key = buf;
284 if (saw_str_could_collide) {
285 key_could_collide = B_TRUE;
286 }
287 break;
288 default:
289 fnvlist_free(nvl);
290 (void) lua_pushfstring(state, "Invalid key "
291 "type '%s' in table",
292 lua_typename(state, lua_type(state, -2)));
293 return (NULL);
294 }
295 /*
296 * Check for type-mismatched key collisions, and throw an error.
297 */
298 if (key_could_collide && nvlist_exists(nvl, key)) {
299 fnvlist_free(nvl);
300 (void) lua_pushfstring(state, "Collision of "
301 "key '%s' in table", key);
302 return (NULL);
303 }
304 /*
305 * Recursively convert the table value and insert into
306 * the new nvlist with the parsed key. To prevent
307 * stack overflow on circular or heavily nested tables,
308 * we track the current nvlist depth.
309 */
310 if (depth >= ZCP_NVLIST_MAX_DEPTH) {
311 fnvlist_free(nvl);
312 (void) lua_pushfstring(state, "Maximum table "
313 "depth (%d) exceeded for table",
314 ZCP_NVLIST_MAX_DEPTH);
315 return (NULL);
316 }
317 err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
318 depth + 1);
319 if (err != 0) {
320 fnvlist_free(nvl);
321 /*
322 * Error message has been pushed to the lua
323 * stack by the recursive call.
324 */
325 return (NULL);
326 }
327 /*
328 * Pop the value pushed by lua_next().
329 */
330 lua_pop(state, 1);
331 }
332
333 /*
334 * Mark the nvlist as having unique keys. This is a little ugly, but we
335 * ensured above that there are no duplicate keys in the nvlist.
336 */
337 nvl->nvl_nvflag |= NV_UNIQUE_NAME;
338
339 return (nvl);
340 }
341
342 /*
343 * Convert a value from the given index into the lua stack to an nvpair, adding
344 * it to an nvlist with the given key.
345 *
346 * Values are converted as follows:
347 *
348 * string -> string
349 * number -> int64
350 * boolean -> boolean
351 * nil -> boolean (no value)
352 *
353 * Lua tables are converted to nvlists and then inserted. The table's keys
354 * are converted to strings then used as keys in the nvlist to store each table
355 * element. Keys are converted as follows:
356 *
357 * string -> no change
358 * number -> "%lld"
359 * boolean -> "true" | "false"
360 * nil -> error
361 *
362 * In the case of a key collision, an error is thrown.
363 *
364 * If an error is encountered, a nonzero error code is returned, and an error
365 * string will be pushed onto the Lua stack.
366 */
367 static int
zcp_lua_to_nvlist_impl(lua_State * state,int index,nvlist_t * nvl,const char * key,int depth)368 zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
369 const char *key, int depth)
370 {
371 /*
372 * Verify that we have enough remaining space in the lua stack to parse
373 * a key-value pair and push an error.
374 */
375 if (!lua_checkstack(state, 3)) {
376 (void) lua_pushstring(state, "Lua stack overflow");
377 return (1);
378 }
379
380 index = lua_absindex(state, index);
381
382 switch (lua_type(state, index)) {
383 case LUA_TNIL:
384 fnvlist_add_boolean(nvl, key);
385 break;
386 case LUA_TBOOLEAN:
387 fnvlist_add_boolean_value(nvl, key,
388 lua_toboolean(state, index));
389 break;
390 case LUA_TNUMBER:
391 fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
392 break;
393 case LUA_TSTRING:
394 fnvlist_add_string(nvl, key, lua_tostring(state, index));
395 break;
396 case LUA_TTABLE: {
397 nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
398 if (value_nvl == NULL)
399 return (SET_ERROR(EINVAL));
400
401 fnvlist_add_nvlist(nvl, key, value_nvl);
402 fnvlist_free(value_nvl);
403 break;
404 }
405 default:
406 (void) lua_pushfstring(state,
407 "Invalid value type '%s' for key '%s'",
408 lua_typename(state, lua_type(state, index)), key);
409 return (SET_ERROR(EINVAL));
410 }
411
412 return (0);
413 }
414
415 /*
416 * Convert a lua value to an nvpair, adding it to an nvlist with the given key.
417 */
418 static void
zcp_lua_to_nvlist(lua_State * state,int index,nvlist_t * nvl,const char * key)419 zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
420 {
421 /*
422 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
423 * stack before returning with a nonzero error code. If an error is
424 * returned, throw a fatal lua error with the given string.
425 */
426 if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
427 (void) lua_error(state);
428 }
429
430 static int
zcp_lua_to_nvlist_helper(lua_State * state)431 zcp_lua_to_nvlist_helper(lua_State *state)
432 {
433 nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
434 const char *key = (const char *)lua_touserdata(state, 1);
435 zcp_lua_to_nvlist(state, 3, nv, key);
436 return (0);
437 }
438
439 static void
zcp_convert_return_values(lua_State * state,nvlist_t * nvl,const char * key,int * result)440 zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
441 const char *key, int *result)
442 {
443 int err;
444 VERIFY3U(1, ==, lua_gettop(state));
445 lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
446 lua_pushlightuserdata(state, (char *)key);
447 lua_pushlightuserdata(state, nvl);
448 lua_pushvalue(state, 1);
449 lua_remove(state, 1);
450 err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
451 if (err != 0) {
452 zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
453 *result = SET_ERROR(ECHRNG);
454 }
455 }
456
457 /*
458 * Push a Lua table representing nvl onto the stack. If it can't be
459 * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
460 * be specified as NULL, in which case no error string will be output.
461 *
462 * Most nvlists are converted as simple key->value Lua tables, but we make
463 * an exception for the case where all nvlist entries are BOOLEANs (a string
464 * key without a value). In Lua, a table key pointing to a value of Nil
465 * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
466 * entry can't be directly converted to a Lua table entry. Nvlists of entirely
467 * BOOLEAN entries are frequently used to pass around lists of datasets, so for
468 * convenience we check for this case, and convert it to a simple Lua array of
469 * strings.
470 */
471 int
zcp_nvlist_to_lua(lua_State * state,nvlist_t * nvl,char * errbuf,int errbuf_len)472 zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
473 char *errbuf, int errbuf_len)
474 {
475 nvpair_t *pair;
476 lua_newtable(state);
477 boolean_t has_values = B_FALSE;
478 /*
479 * If the list doesn't have any values, just convert it to a string
480 * array.
481 */
482 for (pair = nvlist_next_nvpair(nvl, NULL);
483 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
484 if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
485 has_values = B_TRUE;
486 break;
487 }
488 }
489 if (!has_values) {
490 int i = 1;
491 for (pair = nvlist_next_nvpair(nvl, NULL);
492 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
493 (void) lua_pushinteger(state, i);
494 (void) lua_pushstring(state, nvpair_name(pair));
495 (void) lua_settable(state, -3);
496 i++;
497 }
498 } else {
499 for (pair = nvlist_next_nvpair(nvl, NULL);
500 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
501 int err = zcp_nvpair_value_to_lua(state, pair,
502 errbuf, errbuf_len);
503 if (err != 0) {
504 lua_pop(state, 1);
505 return (err);
506 }
507 (void) lua_setfield(state, -2, nvpair_name(pair));
508 }
509 }
510 return (0);
511 }
512
513 /*
514 * Push a Lua object representing the value of "pair" onto the stack.
515 *
516 * Only understands boolean_value, string, int64, nvlist,
517 * string_array, and int64_array type values. For other
518 * types, returns EINVAL, fills in errbuf, and pushes nothing.
519 */
520 static int
zcp_nvpair_value_to_lua(lua_State * state,nvpair_t * pair,char * errbuf,int errbuf_len)521 zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
522 char *errbuf, int errbuf_len)
523 {
524 int err = 0;
525
526 if (pair == NULL) {
527 lua_pushnil(state);
528 return (0);
529 }
530
531 switch (nvpair_type(pair)) {
532 case DATA_TYPE_BOOLEAN_VALUE:
533 (void) lua_pushboolean(state,
534 fnvpair_value_boolean_value(pair));
535 break;
536 case DATA_TYPE_STRING:
537 (void) lua_pushstring(state, fnvpair_value_string(pair));
538 break;
539 case DATA_TYPE_INT64:
540 (void) lua_pushinteger(state, fnvpair_value_int64(pair));
541 break;
542 case DATA_TYPE_NVLIST:
543 err = zcp_nvlist_to_lua(state,
544 fnvpair_value_nvlist(pair), errbuf, errbuf_len);
545 break;
546 case DATA_TYPE_STRING_ARRAY: {
547 const char **strarr;
548 uint_t nelem;
549 (void) nvpair_value_string_array(pair, &strarr, &nelem);
550 lua_newtable(state);
551 for (int i = 0; i < nelem; i++) {
552 (void) lua_pushinteger(state, i + 1);
553 (void) lua_pushstring(state, strarr[i]);
554 (void) lua_settable(state, -3);
555 }
556 break;
557 }
558 case DATA_TYPE_UINT64_ARRAY: {
559 uint64_t *intarr;
560 uint_t nelem;
561 (void) nvpair_value_uint64_array(pair, &intarr, &nelem);
562 lua_newtable(state);
563 for (int i = 0; i < nelem; i++) {
564 (void) lua_pushinteger(state, i + 1);
565 (void) lua_pushinteger(state, intarr[i]);
566 (void) lua_settable(state, -3);
567 }
568 break;
569 }
570 case DATA_TYPE_INT64_ARRAY: {
571 int64_t *intarr;
572 uint_t nelem;
573 (void) nvpair_value_int64_array(pair, &intarr, &nelem);
574 lua_newtable(state);
575 for (int i = 0; i < nelem; i++) {
576 (void) lua_pushinteger(state, i + 1);
577 (void) lua_pushinteger(state, intarr[i]);
578 (void) lua_settable(state, -3);
579 }
580 break;
581 }
582 default: {
583 if (errbuf != NULL) {
584 (void) snprintf(errbuf, errbuf_len,
585 "Unhandled nvpair type %d for key '%s'",
586 nvpair_type(pair), nvpair_name(pair));
587 }
588 return (SET_ERROR(EINVAL));
589 }
590 }
591 return (err);
592 }
593
594 int
zcp_dataset_hold_error(lua_State * state,dsl_pool_t * dp,const char * dsname,int error)595 zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
596 int error)
597 {
598 if (error == ENOENT) {
599 (void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
600 return (0); /* not reached; zcp_argerror will longjmp */
601 } else if (error == EXDEV) {
602 (void) zcp_argerror(state, 1,
603 "dataset '%s' is not in the target pool '%s'",
604 dsname, spa_name(dp->dp_spa));
605 return (0); /* not reached; zcp_argerror will longjmp */
606 } else if (error == EIO) {
607 (void) luaL_error(state,
608 "I/O error while accessing dataset '%s'", dsname);
609 return (0); /* not reached; luaL_error will longjmp */
610 } else if (error != 0) {
611 (void) luaL_error(state,
612 "unexpected error %d while accessing dataset '%s'",
613 error, dsname);
614 return (0); /* not reached; luaL_error will longjmp */
615 }
616 return (0);
617 }
618
619 /*
620 * Note: will longjmp (via lua_error()) on error.
621 * Assumes that the dsname is argument #1 (for error reporting purposes).
622 */
623 dsl_dataset_t *
zcp_dataset_hold(lua_State * state,dsl_pool_t * dp,const char * dsname,const void * tag)624 zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
625 const void *tag)
626 {
627 dsl_dataset_t *ds;
628 int error = dsl_dataset_hold(dp, dsname, tag, &ds);
629 (void) zcp_dataset_hold_error(state, dp, dsname, error);
630 return (ds);
631 }
632
633 static int zcp_debug(lua_State *);
634 static const zcp_lib_info_t zcp_debug_info = {
635 .name = "debug",
636 .func = zcp_debug,
637 .pargs = {
638 { .za_name = "debug string", .za_lua_type = LUA_TSTRING },
639 {NULL, 0}
640 },
641 .kwargs = {
642 {NULL, 0}
643 }
644 };
645
646 static int
zcp_debug(lua_State * state)647 zcp_debug(lua_State *state)
648 {
649 const char *dbgstring;
650 zcp_run_info_t *ri = zcp_run_info(state);
651 const zcp_lib_info_t *libinfo = &zcp_debug_info;
652
653 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
654
655 dbgstring = lua_tostring(state, 1);
656
657 zfs_dbgmsg("txg %lld ZCP: %s", (longlong_t)ri->zri_tx->tx_txg,
658 dbgstring);
659
660 return (0);
661 }
662
663 static int zcp_exists(lua_State *);
664 static const zcp_lib_info_t zcp_exists_info = {
665 .name = "exists",
666 .func = zcp_exists,
667 .pargs = {
668 { .za_name = "dataset", .za_lua_type = LUA_TSTRING },
669 {NULL, 0}
670 },
671 .kwargs = {
672 {NULL, 0}
673 }
674 };
675
676 static int
zcp_exists(lua_State * state)677 zcp_exists(lua_State *state)
678 {
679 zcp_run_info_t *ri = zcp_run_info(state);
680 dsl_pool_t *dp = ri->zri_pool;
681 const zcp_lib_info_t *libinfo = &zcp_exists_info;
682
683 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
684
685 const char *dsname = lua_tostring(state, 1);
686
687 dsl_dataset_t *ds;
688 int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
689 if (error == 0) {
690 dsl_dataset_rele(ds, FTAG);
691 lua_pushboolean(state, B_TRUE);
692 } else if (error == ENOENT) {
693 lua_pushboolean(state, B_FALSE);
694 } else if (error == EXDEV) {
695 return (luaL_error(state, "dataset '%s' is not in the "
696 "target pool", dsname));
697 } else if (error == EIO) {
698 return (luaL_error(state, "I/O error opening dataset '%s'",
699 dsname));
700 } else if (error != 0) {
701 return (luaL_error(state, "unexpected error %d", error));
702 }
703
704 return (1);
705 }
706
707 /*
708 * Allocate/realloc/free a buffer for the lua interpreter.
709 *
710 * When nsize is 0, behaves as free() and returns NULL.
711 *
712 * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
713 * at least nsize.
714 *
715 * Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
716 * Shrinking the buffer size never fails.
717 *
718 * The original allocated buffer size is stored as a uint64 at the beginning of
719 * the buffer to avoid actually reallocating when shrinking a buffer, since lua
720 * requires that this operation never fail.
721 */
722 static void *
zcp_lua_alloc(void * ud,void * ptr,size_t osize,size_t nsize)723 zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
724 {
725 zcp_alloc_arg_t *allocargs = ud;
726
727 if (nsize == 0) {
728 if (ptr != NULL) {
729 int64_t *allocbuf = (int64_t *)ptr - 1;
730 int64_t allocsize = *allocbuf;
731 ASSERT3S(allocsize, >, 0);
732 ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
733 allocargs->aa_alloc_limit);
734 allocargs->aa_alloc_remaining += allocsize;
735 vmem_free(allocbuf, allocsize);
736 }
737 return (NULL);
738 } else if (ptr == NULL) {
739 int64_t *allocbuf;
740 int64_t allocsize = nsize + sizeof (int64_t);
741
742 if (!allocargs->aa_must_succeed &&
743 (allocsize <= 0 ||
744 allocsize > allocargs->aa_alloc_remaining)) {
745 return (NULL);
746 }
747
748 allocbuf = vmem_alloc(allocsize, KM_SLEEP);
749 allocargs->aa_alloc_remaining -= allocsize;
750
751 *allocbuf = allocsize;
752 return (allocbuf + 1);
753 } else if (nsize <= osize) {
754 /*
755 * If shrinking the buffer, lua requires that the reallocation
756 * never fail.
757 */
758 return (ptr);
759 } else {
760 ASSERT3U(nsize, >, osize);
761
762 uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
763 if (luabuf == NULL) {
764 return (NULL);
765 }
766 (void) memcpy(luabuf, ptr, osize);
767 VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
768 return (luabuf);
769 }
770 }
771
772 static void
zcp_lua_counthook(lua_State * state,lua_Debug * ar)773 zcp_lua_counthook(lua_State *state, lua_Debug *ar)
774 {
775 (void) ar;
776 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
777 zcp_run_info_t *ri = lua_touserdata(state, -1);
778
779 /*
780 * Check if we were canceled while waiting for the
781 * txg to sync or from our open context thread
782 */
783 if (ri->zri_canceled || (!ri->zri_sync && issig())) {
784 ri->zri_canceled = B_TRUE;
785 (void) lua_pushstring(state, "Channel program was canceled.");
786 (void) lua_error(state);
787 /* Unreachable */
788 }
789
790 /*
791 * Check how many instructions the channel program has
792 * executed so far, and compare against the limit.
793 */
794 ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
795 if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
796 ri->zri_timed_out = B_TRUE;
797 (void) lua_pushstring(state,
798 "Channel program timed out.");
799 (void) lua_error(state);
800 /* Unreachable */
801 }
802 }
803
804 static int
zcp_panic_cb(lua_State * state)805 zcp_panic_cb(lua_State *state)
806 {
807 panic("unprotected error in call to Lua API (%s)\n",
808 lua_tostring(state, -1));
809 return (0);
810 }
811
812 static void
zcp_eval_impl(dmu_tx_t * tx,zcp_run_info_t * ri)813 zcp_eval_impl(dmu_tx_t *tx, zcp_run_info_t *ri)
814 {
815 int err;
816 lua_State *state = ri->zri_state;
817
818 VERIFY3U(3, ==, lua_gettop(state));
819
820 /* finish initializing our runtime state */
821 ri->zri_pool = dmu_tx_pool(tx);
822 ri->zri_tx = tx;
823 list_create(&ri->zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t),
824 offsetof(zcp_cleanup_handler_t, zch_node));
825
826 /*
827 * Store the zcp_run_info_t struct for this run in the Lua registry.
828 * Registry entries are not directly accessible by the Lua scripts but
829 * can be accessed by our callbacks.
830 */
831 lua_pushlightuserdata(state, ri);
832 lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
833 VERIFY3U(3, ==, lua_gettop(state));
834
835 /*
836 * Tell the Lua interpreter to call our handler every count
837 * instructions. Channel programs that execute too many instructions
838 * should die with ETIME.
839 */
840 (void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
841 zfs_lua_check_instrlimit_interval);
842
843 /*
844 * Tell the Lua memory allocator to stop using KM_SLEEP before handing
845 * off control to the channel program. Channel programs that use too
846 * much memory should die with ENOSPC.
847 */
848 ri->zri_allocargs->aa_must_succeed = B_FALSE;
849
850 /*
851 * Call the Lua function that open-context passed us. This pops the
852 * function and its input from the stack and pushes any return
853 * or error values.
854 */
855 err = lua_pcall(state, 1, LUA_MULTRET, 1);
856
857 /*
858 * Let Lua use KM_SLEEP while we interpret the return values.
859 */
860 ri->zri_allocargs->aa_must_succeed = B_TRUE;
861
862 /*
863 * Remove the error handler callback from the stack. At this point,
864 * there shouldn't be any cleanup handler registered in the handler
865 * list (zri_cleanup_handlers), regardless of whether it ran or not.
866 */
867 list_destroy(&ri->zri_cleanup_handlers);
868 lua_remove(state, 1);
869
870 switch (err) {
871 case LUA_OK: {
872 /*
873 * Lua supports returning multiple values in a single return
874 * statement. Return values will have been pushed onto the
875 * stack:
876 * 1: Return value 1
877 * 2: Return value 2
878 * 3: etc...
879 * To simplify the process of retrieving a return value from a
880 * channel program, we disallow returning more than one value
881 * to ZFS from the Lua script, yielding a singleton return
882 * nvlist of the form { "return": Return value 1 }.
883 */
884 int return_count = lua_gettop(state);
885
886 if (return_count == 1) {
887 ri->zri_result = 0;
888 zcp_convert_return_values(state, ri->zri_outnvl,
889 ZCP_RET_RETURN, &ri->zri_result);
890 } else if (return_count > 1) {
891 ri->zri_result = SET_ERROR(ECHRNG);
892 lua_settop(state, 0);
893 (void) lua_pushfstring(state, "Multiple return "
894 "values not supported");
895 zcp_convert_return_values(state, ri->zri_outnvl,
896 ZCP_RET_ERROR, &ri->zri_result);
897 }
898 break;
899 }
900 case LUA_ERRRUN:
901 case LUA_ERRGCMM: {
902 /*
903 * The channel program encountered a fatal error within the
904 * script, such as failing an assertion, or calling a function
905 * with incompatible arguments. The error value and the
906 * traceback generated by zcp_error_handler() should be on the
907 * stack.
908 */
909 VERIFY3U(1, ==, lua_gettop(state));
910 if (ri->zri_timed_out) {
911 ri->zri_result = SET_ERROR(ETIME);
912 } else if (ri->zri_canceled) {
913 ri->zri_result = SET_ERROR(EINTR);
914 } else {
915 ri->zri_result = SET_ERROR(ECHRNG);
916 }
917
918 zcp_convert_return_values(state, ri->zri_outnvl,
919 ZCP_RET_ERROR, &ri->zri_result);
920
921 if (ri->zri_result == ETIME && ri->zri_outnvl != NULL) {
922 (void) nvlist_add_uint64(ri->zri_outnvl,
923 ZCP_ARG_INSTRLIMIT, ri->zri_curinstrs);
924 }
925 break;
926 }
927 case LUA_ERRERR: {
928 /*
929 * The channel program encountered a fatal error within the
930 * script, and we encountered another error while trying to
931 * compute the traceback in zcp_error_handler(). We can only
932 * return the error message.
933 */
934 VERIFY3U(1, ==, lua_gettop(state));
935 if (ri->zri_timed_out) {
936 ri->zri_result = SET_ERROR(ETIME);
937 } else if (ri->zri_canceled) {
938 ri->zri_result = SET_ERROR(EINTR);
939 } else {
940 ri->zri_result = SET_ERROR(ECHRNG);
941 }
942
943 zcp_convert_return_values(state, ri->zri_outnvl,
944 ZCP_RET_ERROR, &ri->zri_result);
945 break;
946 }
947 case LUA_ERRMEM:
948 /*
949 * Lua ran out of memory while running the channel program.
950 * There's not much we can do.
951 */
952 ri->zri_result = SET_ERROR(ENOSPC);
953 break;
954 default:
955 VERIFY0(err);
956 }
957 }
958
959 static void
zcp_pool_error(zcp_run_info_t * ri,const char * poolname,int error)960 zcp_pool_error(zcp_run_info_t *ri, const char *poolname, int error)
961 {
962 ri->zri_result = SET_ERROR(ECHRNG);
963 lua_settop(ri->zri_state, 0);
964 (void) lua_pushfstring(ri->zri_state, "Could not open pool: %s "
965 "errno: %d", poolname, error);
966 zcp_convert_return_values(ri->zri_state, ri->zri_outnvl,
967 ZCP_RET_ERROR, &ri->zri_result);
968
969 }
970
971 /*
972 * This callback is called when txg_wait_synced_sig encountered a signal.
973 * The txg_wait_synced_sig will continue to wait for the txg to complete
974 * after calling this callback.
975 */
976 static void
zcp_eval_sig(void * arg,dmu_tx_t * tx)977 zcp_eval_sig(void *arg, dmu_tx_t *tx)
978 {
979 (void) tx;
980 zcp_run_info_t *ri = arg;
981
982 ri->zri_canceled = B_TRUE;
983 }
984
985 static void
zcp_eval_sync(void * arg,dmu_tx_t * tx)986 zcp_eval_sync(void *arg, dmu_tx_t *tx)
987 {
988 zcp_run_info_t *ri = arg;
989
990 /*
991 * Open context should have setup the stack to contain:
992 * 1: Error handler callback
993 * 2: Script to run (converted to a Lua function)
994 * 3: nvlist input to function (converted to Lua table or nil)
995 */
996 VERIFY3U(3, ==, lua_gettop(ri->zri_state));
997
998 zcp_eval_impl(tx, ri);
999 }
1000
1001 static void
zcp_eval_open(zcp_run_info_t * ri,const char * poolname)1002 zcp_eval_open(zcp_run_info_t *ri, const char *poolname)
1003 {
1004 int error;
1005 dsl_pool_t *dp;
1006 dmu_tx_t *tx;
1007
1008 /*
1009 * See comment from the same assertion in zcp_eval_sync().
1010 */
1011 VERIFY3U(3, ==, lua_gettop(ri->zri_state));
1012
1013 error = dsl_pool_hold(poolname, FTAG, &dp);
1014 if (error != 0) {
1015 zcp_pool_error(ri, poolname, error);
1016 return;
1017 }
1018
1019 /*
1020 * As we are running in open-context, we have no transaction associated
1021 * with the channel program. At the same time, functions from the
1022 * zfs.check submodule need to be associated with a transaction as
1023 * they are basically dry-runs of their counterparts in the zfs.sync
1024 * submodule. These functions should be able to run in open-context.
1025 * Therefore we create a new transaction that we later abort once
1026 * the channel program has been evaluated.
1027 */
1028 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1029
1030 zcp_eval_impl(tx, ri);
1031
1032 dmu_tx_abort(tx);
1033
1034 dsl_pool_rele(dp, FTAG);
1035 }
1036
1037 int
zcp_eval(const char * poolname,const char * program,boolean_t sync,uint64_t instrlimit,uint64_t memlimit,nvpair_t * nvarg,nvlist_t * outnvl)1038 zcp_eval(const char *poolname, const char *program, boolean_t sync,
1039 uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
1040 {
1041 int err;
1042 lua_State *state;
1043 zcp_run_info_t runinfo;
1044
1045 if (instrlimit > zfs_lua_max_instrlimit)
1046 return (SET_ERROR(EINVAL));
1047 if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
1048 return (SET_ERROR(EINVAL));
1049
1050 zcp_alloc_arg_t allocargs = {
1051 .aa_must_succeed = B_TRUE,
1052 .aa_alloc_remaining = (int64_t)memlimit,
1053 .aa_alloc_limit = (int64_t)memlimit,
1054 };
1055
1056 /*
1057 * Creates a Lua state with a memory allocator that uses KM_SLEEP.
1058 * This should never fail.
1059 */
1060 state = lua_newstate(zcp_lua_alloc, &allocargs);
1061 VERIFY(state != NULL);
1062 (void) lua_atpanic(state, zcp_panic_cb);
1063
1064 /*
1065 * Load core Lua libraries we want access to.
1066 */
1067 VERIFY3U(1, ==, luaopen_base(state));
1068 lua_pop(state, 1);
1069 VERIFY3U(1, ==, luaopen_coroutine(state));
1070 lua_setglobal(state, LUA_COLIBNAME);
1071 VERIFY0(lua_gettop(state));
1072 VERIFY3U(1, ==, luaopen_string(state));
1073 lua_setglobal(state, LUA_STRLIBNAME);
1074 VERIFY0(lua_gettop(state));
1075 VERIFY3U(1, ==, luaopen_table(state));
1076 lua_setglobal(state, LUA_TABLIBNAME);
1077 VERIFY0(lua_gettop(state));
1078
1079 /*
1080 * Load globally visible variables such as errno aliases.
1081 */
1082 zcp_load_globals(state);
1083 VERIFY0(lua_gettop(state));
1084
1085 /*
1086 * Load ZFS-specific modules.
1087 */
1088 lua_newtable(state);
1089 VERIFY3U(1, ==, zcp_load_list_lib(state));
1090 lua_setfield(state, -2, "list");
1091 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
1092 lua_setfield(state, -2, "check");
1093 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
1094 lua_setfield(state, -2, "sync");
1095 VERIFY3U(1, ==, zcp_load_get_lib(state));
1096 lua_pushcclosure(state, zcp_debug_info.func, 0);
1097 lua_setfield(state, -2, zcp_debug_info.name);
1098 lua_pushcclosure(state, zcp_exists_info.func, 0);
1099 lua_setfield(state, -2, zcp_exists_info.name);
1100 lua_setglobal(state, "zfs");
1101 VERIFY0(lua_gettop(state));
1102
1103 /*
1104 * Push the error-callback that calculates Lua stack traces on
1105 * unexpected failures.
1106 */
1107 lua_pushcfunction(state, zcp_error_handler);
1108 VERIFY3U(1, ==, lua_gettop(state));
1109
1110 /*
1111 * Load the actual script as a function onto the stack as text ("t").
1112 * The only valid error condition is a syntax error in the script.
1113 * ERRMEM should not be possible because our allocator is using
1114 * KM_SLEEP. ERRGCMM should not be possible because we have not added
1115 * any objects with __gc metamethods to the interpreter that could
1116 * fail.
1117 */
1118 err = luaL_loadbufferx(state, program, strlen(program),
1119 "channel program", "t");
1120 if (err == LUA_ERRSYNTAX) {
1121 fnvlist_add_string(outnvl, ZCP_RET_ERROR,
1122 lua_tostring(state, -1));
1123 lua_close(state);
1124 return (SET_ERROR(EINVAL));
1125 }
1126 VERIFY0(err);
1127 VERIFY3U(2, ==, lua_gettop(state));
1128
1129 /*
1130 * Convert the input nvlist to a Lua object and put it on top of the
1131 * stack.
1132 */
1133 char errmsg[128];
1134 err = zcp_nvpair_value_to_lua(state, nvarg,
1135 errmsg, sizeof (errmsg));
1136 if (err != 0) {
1137 fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
1138 lua_close(state);
1139 return (SET_ERROR(EINVAL));
1140 }
1141 VERIFY3U(3, ==, lua_gettop(state));
1142
1143 runinfo.zri_state = state;
1144 runinfo.zri_allocargs = &allocargs;
1145 runinfo.zri_outnvl = outnvl;
1146 runinfo.zri_result = 0;
1147 runinfo.zri_cred = CRED();
1148 runinfo.zri_proc = curproc;
1149 runinfo.zri_timed_out = B_FALSE;
1150 runinfo.zri_canceled = B_FALSE;
1151 runinfo.zri_sync = sync;
1152 runinfo.zri_space_used = 0;
1153 runinfo.zri_curinstrs = 0;
1154 runinfo.zri_maxinstrs = instrlimit;
1155 runinfo.zri_new_zvols = fnvlist_alloc();
1156
1157 if (sync) {
1158 err = dsl_sync_task_sig(poolname, NULL, zcp_eval_sync,
1159 zcp_eval_sig, &runinfo, 0, ZFS_SPACE_CHECK_ZCP_EVAL);
1160 if (err != 0)
1161 zcp_pool_error(&runinfo, poolname, err);
1162 } else {
1163 zcp_eval_open(&runinfo, poolname);
1164 }
1165 lua_close(state);
1166
1167 /*
1168 * Create device minor nodes for any new zvols.
1169 */
1170 for (nvpair_t *pair = nvlist_next_nvpair(runinfo.zri_new_zvols, NULL);
1171 pair != NULL;
1172 pair = nvlist_next_nvpair(runinfo.zri_new_zvols, pair)) {
1173 zvol_create_minor(nvpair_name(pair));
1174 }
1175 fnvlist_free(runinfo.zri_new_zvols);
1176
1177 return (runinfo.zri_result);
1178 }
1179
1180 /*
1181 * Retrieve metadata about the currently running channel program.
1182 */
1183 zcp_run_info_t *
zcp_run_info(lua_State * state)1184 zcp_run_info(lua_State *state)
1185 {
1186 zcp_run_info_t *ri;
1187
1188 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
1189 ri = lua_touserdata(state, -1);
1190 lua_pop(state, 1);
1191 return (ri);
1192 }
1193
1194 /*
1195 * Argument Parsing
1196 * ================
1197 *
1198 * The Lua language allows methods to be called with any number
1199 * of arguments of any type. When calling back into ZFS we need to sanitize
1200 * arguments from channel programs to make sure unexpected arguments or
1201 * arguments of the wrong type result in clear error messages. To do this
1202 * in a uniform way all callbacks from channel programs should use the
1203 * zcp_parse_args() function to interpret inputs.
1204 *
1205 * Positional vs Keyword Arguments
1206 * ===============================
1207 *
1208 * Every callback function takes a fixed set of required positional arguments
1209 * and optional keyword arguments. For example, the destroy function takes
1210 * a single positional string argument (the name of the dataset to destroy)
1211 * and an optional "defer" keyword boolean argument. When calling lua functions
1212 * with parentheses, only positional arguments can be used:
1213 *
1214 * zfs.sync.snapshot("rpool@snap")
1215 *
1216 * To use keyword arguments functions should be called with a single argument
1217 * that is a lua table containing mappings of integer -> positional arguments
1218 * and string -> keyword arguments:
1219 *
1220 * zfs.sync.snapshot({1="rpool@snap", defer=true})
1221 *
1222 * The lua language allows curly braces to be used in place of parenthesis as
1223 * syntactic sugar for this calling convention:
1224 *
1225 * zfs.sync.snapshot{"rpool@snap", defer=true}
1226 */
1227
1228 /*
1229 * Throw an error and print the given arguments. If there are too many
1230 * arguments to fit in the output buffer, only the error format string is
1231 * output.
1232 */
1233 static void
zcp_args_error(lua_State * state,const char * fname,const zcp_arg_t * pargs,const zcp_arg_t * kwargs,const char * fmt,...)1234 zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1235 const zcp_arg_t *kwargs, const char *fmt, ...)
1236 {
1237 int i;
1238 char errmsg[512];
1239 size_t len = sizeof (errmsg);
1240 size_t msglen = 0;
1241 va_list argp;
1242
1243 va_start(argp, fmt);
1244 VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
1245 va_end(argp);
1246
1247 /*
1248 * Calculate the total length of the final string, including extra
1249 * formatting characters. If the argument dump would be too large,
1250 * only print the error string.
1251 */
1252 msglen = strlen(errmsg);
1253 msglen += strlen(fname) + 4; /* : + {} + null terminator */
1254 for (i = 0; pargs[i].za_name != NULL; i++) {
1255 msglen += strlen(pargs[i].za_name);
1256 msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
1257 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
1258 msglen += 5; /* < + ( + )> + , */
1259 else
1260 msglen += 4; /* < + ( + )> */
1261 }
1262 for (i = 0; kwargs[i].za_name != NULL; i++) {
1263 msglen += strlen(kwargs[i].za_name);
1264 msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
1265 if (kwargs[i + 1].za_name != NULL)
1266 msglen += 4; /* =( + ) + , */
1267 else
1268 msglen += 3; /* =( + ) */
1269 }
1270
1271 if (msglen >= len)
1272 (void) luaL_error(state, errmsg);
1273
1274 VERIFY3U(len, >, strlcat(errmsg, ": ", len));
1275 VERIFY3U(len, >, strlcat(errmsg, fname, len));
1276 VERIFY3U(len, >, strlcat(errmsg, "{", len));
1277 for (i = 0; pargs[i].za_name != NULL; i++) {
1278 VERIFY3U(len, >, strlcat(errmsg, "<", len));
1279 VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
1280 VERIFY3U(len, >, strlcat(errmsg, "(", len));
1281 VERIFY3U(len, >, strlcat(errmsg,
1282 lua_typename(state, pargs[i].za_lua_type), len));
1283 VERIFY3U(len, >, strlcat(errmsg, ")>", len));
1284 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
1285 VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1286 }
1287 }
1288 for (i = 0; kwargs[i].za_name != NULL; i++) {
1289 VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
1290 VERIFY3U(len, >, strlcat(errmsg, "=(", len));
1291 VERIFY3U(len, >, strlcat(errmsg,
1292 lua_typename(state, kwargs[i].za_lua_type), len));
1293 VERIFY3U(len, >, strlcat(errmsg, ")", len));
1294 if (kwargs[i + 1].za_name != NULL) {
1295 VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1296 }
1297 }
1298 VERIFY3U(len, >, strlcat(errmsg, "}", len));
1299
1300 (void) luaL_error(state, errmsg);
1301 panic("unreachable code");
1302 }
1303
1304 static void
zcp_parse_table_args(lua_State * state,const char * fname,const zcp_arg_t * pargs,const zcp_arg_t * kwargs)1305 zcp_parse_table_args(lua_State *state, const char *fname,
1306 const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
1307 {
1308 int i;
1309 int type;
1310
1311 for (i = 0; pargs[i].za_name != NULL; i++) {
1312 /*
1313 * Check the table for this positional argument, leaving it
1314 * on the top of the stack once we finish validating it.
1315 */
1316 lua_pushinteger(state, i + 1);
1317 lua_gettable(state, 1);
1318
1319 type = lua_type(state, -1);
1320 if (type == LUA_TNIL) {
1321 zcp_args_error(state, fname, pargs, kwargs,
1322 "too few arguments");
1323 panic("unreachable code");
1324 } else if (type != pargs[i].za_lua_type) {
1325 zcp_args_error(state, fname, pargs, kwargs,
1326 "arg %d wrong type (is '%s', expected '%s')",
1327 i + 1, lua_typename(state, type),
1328 lua_typename(state, pargs[i].za_lua_type));
1329 panic("unreachable code");
1330 }
1331
1332 /*
1333 * Remove the positional argument from the table.
1334 */
1335 lua_pushinteger(state, i + 1);
1336 lua_pushnil(state);
1337 lua_settable(state, 1);
1338 }
1339
1340 for (i = 0; kwargs[i].za_name != NULL; i++) {
1341 /*
1342 * Check the table for this keyword argument, which may be
1343 * nil if it was omitted. Leave the value on the top of
1344 * the stack after validating it.
1345 */
1346 lua_getfield(state, 1, kwargs[i].za_name);
1347
1348 type = lua_type(state, -1);
1349 if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
1350 zcp_args_error(state, fname, pargs, kwargs,
1351 "kwarg '%s' wrong type (is '%s', expected '%s')",
1352 kwargs[i].za_name, lua_typename(state, type),
1353 lua_typename(state, kwargs[i].za_lua_type));
1354 panic("unreachable code");
1355 }
1356
1357 /*
1358 * Remove the keyword argument from the table.
1359 */
1360 lua_pushnil(state);
1361 lua_setfield(state, 1, kwargs[i].za_name);
1362 }
1363
1364 /*
1365 * Any entries remaining in the table are invalid inputs, print
1366 * an error message based on what the entry is.
1367 */
1368 lua_pushnil(state);
1369 if (lua_next(state, 1)) {
1370 if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
1371 zcp_args_error(state, fname, pargs, kwargs,
1372 "too many positional arguments");
1373 } else if (lua_isstring(state, -2)) {
1374 zcp_args_error(state, fname, pargs, kwargs,
1375 "invalid kwarg '%s'", lua_tostring(state, -2));
1376 } else {
1377 zcp_args_error(state, fname, pargs, kwargs,
1378 "kwarg keys must be strings");
1379 }
1380 panic("unreachable code");
1381 }
1382
1383 lua_remove(state, 1);
1384 }
1385
1386 static void
zcp_parse_pos_args(lua_State * state,const char * fname,const zcp_arg_t * pargs,const zcp_arg_t * kwargs)1387 zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1388 const zcp_arg_t *kwargs)
1389 {
1390 int i;
1391 int type;
1392
1393 for (i = 0; pargs[i].za_name != NULL; i++) {
1394 type = lua_type(state, i + 1);
1395 if (type == LUA_TNONE) {
1396 zcp_args_error(state, fname, pargs, kwargs,
1397 "too few arguments");
1398 panic("unreachable code");
1399 } else if (type != pargs[i].za_lua_type) {
1400 zcp_args_error(state, fname, pargs, kwargs,
1401 "arg %d wrong type (is '%s', expected '%s')",
1402 i + 1, lua_typename(state, type),
1403 lua_typename(state, pargs[i].za_lua_type));
1404 panic("unreachable code");
1405 }
1406 }
1407 if (lua_gettop(state) != i) {
1408 zcp_args_error(state, fname, pargs, kwargs,
1409 "too many positional arguments");
1410 panic("unreachable code");
1411 }
1412
1413 for (i = 0; kwargs[i].za_name != NULL; i++) {
1414 lua_pushnil(state);
1415 }
1416 }
1417
1418 /*
1419 * Checks the current Lua stack against an expected set of positional and
1420 * keyword arguments. If the stack does not match the expected arguments
1421 * aborts the current channel program with a useful error message, otherwise
1422 * it re-arranges the stack so that it contains the positional arguments
1423 * followed by the keyword argument values in declaration order. Any missing
1424 * keyword argument will be represented by a nil value on the stack.
1425 *
1426 * If the stack contains exactly one argument of type LUA_TTABLE the curly
1427 * braces calling convention is assumed, otherwise the stack is parsed for
1428 * positional arguments only.
1429 *
1430 * This function should be used by every function callback. It should be called
1431 * before the callback manipulates the Lua stack as it assumes the stack
1432 * represents the function arguments.
1433 */
1434 void
zcp_parse_args(lua_State * state,const char * fname,const zcp_arg_t * pargs,const zcp_arg_t * kwargs)1435 zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1436 const zcp_arg_t *kwargs)
1437 {
1438 if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
1439 zcp_parse_table_args(state, fname, pargs, kwargs);
1440 } else {
1441 zcp_parse_pos_args(state, fname, pargs, kwargs);
1442 }
1443 }
1444
1445 ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_instrlimit, U64, ZMOD_RW,
1446 "Max instruction limit that can be specified for a channel program");
1447
1448 ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_memlimit, U64, ZMOD_RW,
1449 "Max memory limit that can be specified for a channel program");
1450