1 //===-- sanitizer_linux.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements linux-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
13
14 #include "sanitizer_platform.h"
15
16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \
17 SANITIZER_SOLARIS
18
19 # include "sanitizer_common.h"
20 # include "sanitizer_flags.h"
21 # include "sanitizer_getauxval.h"
22 # include "sanitizer_internal_defs.h"
23 # include "sanitizer_libc.h"
24 # include "sanitizer_linux.h"
25 # include "sanitizer_mutex.h"
26 # include "sanitizer_placement_new.h"
27 # include "sanitizer_procmaps.h"
28
29 # if SANITIZER_LINUX && !SANITIZER_GO
30 # include <asm/param.h>
31 # endif
32
33 // For mips64, syscall(__NR_stat) fills the buffer in the 'struct kernel_stat'
34 // format. Struct kernel_stat is defined as 'struct stat' in asm/stat.h. To
35 // access stat from asm/stat.h, without conflicting with definition in
36 // sys/stat.h, we use this trick. sparc64 is similar, using
37 // syscall(__NR_stat64) and struct kernel_stat64.
38 # if SANITIZER_LINUX && (SANITIZER_MIPS64 || SANITIZER_SPARC64)
39 # include <asm/unistd.h>
40 # include <sys/types.h>
41 # define stat kernel_stat
42 # if SANITIZER_SPARC64
43 # define stat64 kernel_stat64
44 # endif
45 # if SANITIZER_GO
46 # undef st_atime
47 # undef st_mtime
48 # undef st_ctime
49 # define st_atime st_atim
50 # define st_mtime st_mtim
51 # define st_ctime st_ctim
52 # endif
53 # include <asm/stat.h>
54 # undef stat
55 # undef stat64
56 # endif
57
58 # include <dlfcn.h>
59 # include <errno.h>
60 # include <fcntl.h>
61 # include <link.h>
62 # include <pthread.h>
63 # include <sched.h>
64 # include <signal.h>
65 # include <sys/mman.h>
66 # if !SANITIZER_SOLARIS
67 # include <sys/ptrace.h>
68 # endif
69 # include <sys/resource.h>
70 # include <sys/stat.h>
71 # include <sys/syscall.h>
72 # include <sys/time.h>
73 # include <sys/types.h>
74 # include <ucontext.h>
75 # include <unistd.h>
76
77 # if SANITIZER_LINUX
78 # include <sys/utsname.h>
79 # endif
80
81 # if SANITIZER_LINUX && !SANITIZER_ANDROID
82 # include <sys/personality.h>
83 # endif
84
85 # if SANITIZER_LINUX && defined(__loongarch__)
86 # include <sys/sysmacros.h>
87 # endif
88
89 # if SANITIZER_FREEBSD
90 # include <machine/atomic.h>
91 # include <sys/exec.h>
92 # include <sys/procctl.h>
93 # include <sys/sysctl.h>
94 extern "C" {
95 // <sys/umtx.h> must be included after <errno.h> and <sys/types.h> on
96 // FreeBSD 9.2 and 10.0.
97 # include <sys/umtx.h>
98 }
99 # include <sys/thr.h>
100 # endif // SANITIZER_FREEBSD
101
102 # if SANITIZER_NETBSD
103 # include <limits.h> // For NAME_MAX
104 # include <sys/exec.h>
105 # include <sys/sysctl.h>
106 extern struct ps_strings *__ps_strings;
107 # endif // SANITIZER_NETBSD
108
109 # if SANITIZER_SOLARIS
110 # include <stdlib.h>
111 # include <thread.h>
112 # define environ _environ
113 # endif
114
115 extern char **environ;
116
117 # if SANITIZER_LINUX
118 // <linux/time.h>
119 struct kernel_timeval {
120 long tv_sec;
121 long tv_usec;
122 };
123
124 // <linux/futex.h> is broken on some linux distributions.
125 const int FUTEX_WAIT = 0;
126 const int FUTEX_WAKE = 1;
127 const int FUTEX_PRIVATE_FLAG = 128;
128 const int FUTEX_WAIT_PRIVATE = FUTEX_WAIT | FUTEX_PRIVATE_FLAG;
129 const int FUTEX_WAKE_PRIVATE = FUTEX_WAKE | FUTEX_PRIVATE_FLAG;
130 # endif // SANITIZER_LINUX
131
132 // Are we using 32-bit or 64-bit Linux syscalls?
133 // x32 (which defines __x86_64__) has SANITIZER_WORDSIZE == 32
134 // but it still needs to use 64-bit syscalls.
135 # if SANITIZER_LINUX && (defined(__x86_64__) || defined(__powerpc64__) || \
136 SANITIZER_WORDSIZE == 64 || \
137 (defined(__mips__) && _MIPS_SIM == _ABIN32))
138 # define SANITIZER_LINUX_USES_64BIT_SYSCALLS 1
139 # else
140 # define SANITIZER_LINUX_USES_64BIT_SYSCALLS 0
141 # endif
142
143 // Note : FreeBSD implemented both Linux and OpenBSD apis.
144 # if SANITIZER_LINUX && defined(__NR_getrandom)
145 # if !defined(GRND_NONBLOCK)
146 # define GRND_NONBLOCK 1
147 # endif
148 # define SANITIZER_USE_GETRANDOM 1
149 # else
150 # define SANITIZER_USE_GETRANDOM 0
151 # endif // SANITIZER_LINUX && defined(__NR_getrandom)
152
153 # if SANITIZER_FREEBSD
154 # define SANITIZER_USE_GETENTROPY 1
155 # endif
156
157 namespace __sanitizer {
158
SetSigProcMask(__sanitizer_sigset_t * set,__sanitizer_sigset_t * oldset)159 void SetSigProcMask(__sanitizer_sigset_t *set, __sanitizer_sigset_t *oldset) {
160 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, set, oldset));
161 }
162
163 # if SANITIZER_LINUX
164 // Deletes the specified signal from newset, if it is not present in oldset
165 // Equivalently: newset[signum] = newset[signum] & oldset[signum]
KeepUnblocked(__sanitizer_sigset_t & newset,__sanitizer_sigset_t & oldset,int signum)166 static void KeepUnblocked(__sanitizer_sigset_t &newset,
167 __sanitizer_sigset_t &oldset, int signum) {
168 // FIXME: https://github.com/google/sanitizers/issues/1816
169 if (SANITIZER_ANDROID || !internal_sigismember(&oldset, signum))
170 internal_sigdelset(&newset, signum);
171 }
172 # endif
173
174 // Block asynchronous signals
BlockSignals(__sanitizer_sigset_t * oldset)175 void BlockSignals(__sanitizer_sigset_t *oldset) {
176 __sanitizer_sigset_t newset;
177 internal_sigfillset(&newset);
178
179 # if SANITIZER_LINUX
180 __sanitizer_sigset_t currentset;
181
182 # if !SANITIZER_ANDROID
183 // FIXME: https://github.com/google/sanitizers/issues/1816
184 SetSigProcMask(NULL, ¤tset);
185
186 // Glibc uses SIGSETXID signal during setuid call. If this signal is blocked
187 // on any thread, setuid call hangs.
188 // See test/sanitizer_common/TestCases/Linux/setuid.c.
189 KeepUnblocked(newset, currentset, 33);
190 # endif // !SANITIZER_ANDROID
191
192 // Seccomp-BPF-sandboxed processes rely on SIGSYS to handle trapped syscalls.
193 // If this signal is blocked, such calls cannot be handled and the process may
194 // hang.
195 KeepUnblocked(newset, currentset, 31);
196
197 # if !SANITIZER_ANDROID
198 // Don't block synchronous signals
199 // but also don't unblock signals that the user had deliberately blocked.
200 // FIXME: https://github.com/google/sanitizers/issues/1816
201 KeepUnblocked(newset, currentset, SIGSEGV);
202 KeepUnblocked(newset, currentset, SIGBUS);
203 KeepUnblocked(newset, currentset, SIGILL);
204 KeepUnblocked(newset, currentset, SIGTRAP);
205 KeepUnblocked(newset, currentset, SIGABRT);
206 KeepUnblocked(newset, currentset, SIGFPE);
207 KeepUnblocked(newset, currentset, SIGPIPE);
208 # endif //! SANITIZER_ANDROID
209
210 # endif // SANITIZER_LINUX
211
212 SetSigProcMask(&newset, oldset);
213 }
214
ScopedBlockSignals(__sanitizer_sigset_t * copy)215 ScopedBlockSignals::ScopedBlockSignals(__sanitizer_sigset_t *copy) {
216 BlockSignals(&saved_);
217 if (copy)
218 internal_memcpy(copy, &saved_, sizeof(saved_));
219 }
220
~ScopedBlockSignals()221 ScopedBlockSignals::~ScopedBlockSignals() { SetSigProcMask(&saved_, nullptr); }
222
223 # if SANITIZER_LINUX && defined(__x86_64__)
224 # include "sanitizer_syscall_linux_x86_64.inc"
225 # elif SANITIZER_LINUX && SANITIZER_RISCV64
226 # include "sanitizer_syscall_linux_riscv64.inc"
227 # elif SANITIZER_LINUX && defined(__aarch64__)
228 # include "sanitizer_syscall_linux_aarch64.inc"
229 # elif SANITIZER_LINUX && defined(__arm__)
230 # include "sanitizer_syscall_linux_arm.inc"
231 # elif SANITIZER_LINUX && defined(__hexagon__)
232 # include "sanitizer_syscall_linux_hexagon.inc"
233 # elif SANITIZER_LINUX && SANITIZER_LOONGARCH64
234 # include "sanitizer_syscall_linux_loongarch64.inc"
235 # else
236 # include "sanitizer_syscall_generic.inc"
237 # endif
238
239 // --------------- sanitizer_libc.h
240 # if !SANITIZER_SOLARIS && !SANITIZER_NETBSD
241 # if !SANITIZER_S390
internal_mmap(void * addr,uptr length,int prot,int flags,int fd,u64 offset)242 uptr internal_mmap(void *addr, uptr length, int prot, int flags, int fd,
243 u64 offset) {
244 # if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS
245 return internal_syscall(SYSCALL(mmap), (uptr)addr, length, prot, flags, fd,
246 offset);
247 # else
248 // mmap2 specifies file offset in 4096-byte units.
249 CHECK(IsAligned(offset, 4096));
250 return internal_syscall(SYSCALL(mmap2), addr, length, prot, flags, fd,
251 (OFF_T)(offset / 4096));
252 # endif
253 }
254 # endif // !SANITIZER_S390
255
internal_munmap(void * addr,uptr length)256 uptr internal_munmap(void *addr, uptr length) {
257 return internal_syscall(SYSCALL(munmap), (uptr)addr, length);
258 }
259
260 # if SANITIZER_LINUX
internal_mremap(void * old_address,uptr old_size,uptr new_size,int flags,void * new_address)261 uptr internal_mremap(void *old_address, uptr old_size, uptr new_size, int flags,
262 void *new_address) {
263 return internal_syscall(SYSCALL(mremap), (uptr)old_address, old_size,
264 new_size, flags, (uptr)new_address);
265 }
266 # endif
267
internal_mprotect(void * addr,uptr length,int prot)268 int internal_mprotect(void *addr, uptr length, int prot) {
269 return internal_syscall(SYSCALL(mprotect), (uptr)addr, length, prot);
270 }
271
internal_madvise(uptr addr,uptr length,int advice)272 int internal_madvise(uptr addr, uptr length, int advice) {
273 return internal_syscall(SYSCALL(madvise), addr, length, advice);
274 }
275
internal_close(fd_t fd)276 uptr internal_close(fd_t fd) { return internal_syscall(SYSCALL(close), fd); }
277
internal_open(const char * filename,int flags)278 uptr internal_open(const char *filename, int flags) {
279 # if SANITIZER_LINUX
280 return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags);
281 # else
282 return internal_syscall(SYSCALL(open), (uptr)filename, flags);
283 # endif
284 }
285
internal_open(const char * filename,int flags,u32 mode)286 uptr internal_open(const char *filename, int flags, u32 mode) {
287 # if SANITIZER_LINUX
288 return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags,
289 mode);
290 # else
291 return internal_syscall(SYSCALL(open), (uptr)filename, flags, mode);
292 # endif
293 }
294
internal_read(fd_t fd,void * buf,uptr count)295 uptr internal_read(fd_t fd, void *buf, uptr count) {
296 sptr res;
297 HANDLE_EINTR(res,
298 (sptr)internal_syscall(SYSCALL(read), fd, (uptr)buf, count));
299 return res;
300 }
301
internal_write(fd_t fd,const void * buf,uptr count)302 uptr internal_write(fd_t fd, const void *buf, uptr count) {
303 sptr res;
304 HANDLE_EINTR(res,
305 (sptr)internal_syscall(SYSCALL(write), fd, (uptr)buf, count));
306 return res;
307 }
308
internal_ftruncate(fd_t fd,uptr size)309 uptr internal_ftruncate(fd_t fd, uptr size) {
310 sptr res;
311 HANDLE_EINTR(res,
312 (sptr)internal_syscall(SYSCALL(ftruncate), fd, (OFF_T)size));
313 return res;
314 }
315
316 # if !SANITIZER_LINUX_USES_64BIT_SYSCALLS && SANITIZER_LINUX
stat64_to_stat(struct stat64 * in,struct stat * out)317 static void stat64_to_stat(struct stat64 *in, struct stat *out) {
318 internal_memset(out, 0, sizeof(*out));
319 out->st_dev = in->st_dev;
320 out->st_ino = in->st_ino;
321 out->st_mode = in->st_mode;
322 out->st_nlink = in->st_nlink;
323 out->st_uid = in->st_uid;
324 out->st_gid = in->st_gid;
325 out->st_rdev = in->st_rdev;
326 out->st_size = in->st_size;
327 out->st_blksize = in->st_blksize;
328 out->st_blocks = in->st_blocks;
329 out->st_atime = in->st_atime;
330 out->st_mtime = in->st_mtime;
331 out->st_ctime = in->st_ctime;
332 }
333 # endif
334
335 # if SANITIZER_LINUX && defined(__loongarch__)
statx_to_stat(struct statx * in,struct stat * out)336 static void statx_to_stat(struct statx *in, struct stat *out) {
337 internal_memset(out, 0, sizeof(*out));
338 out->st_dev = makedev(in->stx_dev_major, in->stx_dev_minor);
339 out->st_ino = in->stx_ino;
340 out->st_mode = in->stx_mode;
341 out->st_nlink = in->stx_nlink;
342 out->st_uid = in->stx_uid;
343 out->st_gid = in->stx_gid;
344 out->st_rdev = makedev(in->stx_rdev_major, in->stx_rdev_minor);
345 out->st_size = in->stx_size;
346 out->st_blksize = in->stx_blksize;
347 out->st_blocks = in->stx_blocks;
348 out->st_atime = in->stx_atime.tv_sec;
349 out->st_atim.tv_nsec = in->stx_atime.tv_nsec;
350 out->st_mtime = in->stx_mtime.tv_sec;
351 out->st_mtim.tv_nsec = in->stx_mtime.tv_nsec;
352 out->st_ctime = in->stx_ctime.tv_sec;
353 out->st_ctim.tv_nsec = in->stx_ctime.tv_nsec;
354 }
355 # endif
356
357 # if SANITIZER_MIPS64 || SANITIZER_SPARC64
358 # if SANITIZER_MIPS64
359 typedef struct kernel_stat kstat_t;
360 # else
361 typedef struct kernel_stat64 kstat_t;
362 # endif
363 // Undefine compatibility macros from <sys/stat.h>
364 // so that they would not clash with the kernel_stat
365 // st_[a|m|c]time fields
366 # if !SANITIZER_GO
367 # undef st_atime
368 # undef st_mtime
369 # undef st_ctime
370 # endif
371 # if defined(SANITIZER_ANDROID)
372 // Bionic sys/stat.h defines additional macros
373 // for compatibility with the old NDKs and
374 // they clash with the kernel_stat structure
375 // st_[a|m|c]time_nsec fields.
376 # undef st_atime_nsec
377 # undef st_mtime_nsec
378 # undef st_ctime_nsec
379 # endif
kernel_stat_to_stat(kstat_t * in,struct stat * out)380 static void kernel_stat_to_stat(kstat_t *in, struct stat *out) {
381 internal_memset(out, 0, sizeof(*out));
382 out->st_dev = in->st_dev;
383 out->st_ino = in->st_ino;
384 out->st_mode = in->st_mode;
385 out->st_nlink = in->st_nlink;
386 out->st_uid = in->st_uid;
387 out->st_gid = in->st_gid;
388 out->st_rdev = in->st_rdev;
389 out->st_size = in->st_size;
390 out->st_blksize = in->st_blksize;
391 out->st_blocks = in->st_blocks;
392 # if defined(__USE_MISC) || defined(__USE_XOPEN2K8) || \
393 defined(SANITIZER_ANDROID)
394 out->st_atim.tv_sec = in->st_atime;
395 out->st_atim.tv_nsec = in->st_atime_nsec;
396 out->st_mtim.tv_sec = in->st_mtime;
397 out->st_mtim.tv_nsec = in->st_mtime_nsec;
398 out->st_ctim.tv_sec = in->st_ctime;
399 out->st_ctim.tv_nsec = in->st_ctime_nsec;
400 # else
401 out->st_atime = in->st_atime;
402 out->st_atimensec = in->st_atime_nsec;
403 out->st_mtime = in->st_mtime;
404 out->st_mtimensec = in->st_mtime_nsec;
405 out->st_ctime = in->st_ctime;
406 out->st_atimensec = in->st_ctime_nsec;
407 # endif
408 }
409 # endif
410
internal_stat(const char * path,void * buf)411 uptr internal_stat(const char *path, void *buf) {
412 # if SANITIZER_FREEBSD
413 return internal_syscall(SYSCALL(fstatat), AT_FDCWD, (uptr)path, (uptr)buf, 0);
414 # elif SANITIZER_LINUX
415 # if defined(__loongarch__)
416 struct statx bufx;
417 int res = internal_syscall(SYSCALL(statx), AT_FDCWD, (uptr)path,
418 AT_NO_AUTOMOUNT, STATX_BASIC_STATS, (uptr)&bufx);
419 statx_to_stat(&bufx, (struct stat *)buf);
420 return res;
421 # elif (SANITIZER_WORDSIZE == 64 || SANITIZER_X32 || \
422 (defined(__mips__) && _MIPS_SIM == _ABIN32)) && \
423 !SANITIZER_SPARC
424 return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf,
425 0);
426 # elif SANITIZER_SPARC64
427 kstat_t buf64;
428 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path,
429 (uptr)&buf64, 0);
430 kernel_stat_to_stat(&buf64, (struct stat *)buf);
431 return res;
432 # else
433 struct stat64 buf64;
434 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path,
435 (uptr)&buf64, 0);
436 stat64_to_stat(&buf64, (struct stat *)buf);
437 return res;
438 # endif
439 # else
440 struct stat64 buf64;
441 int res = internal_syscall(SYSCALL(stat64), path, &buf64);
442 stat64_to_stat(&buf64, (struct stat *)buf);
443 return res;
444 # endif
445 }
446
internal_lstat(const char * path,void * buf)447 uptr internal_lstat(const char *path, void *buf) {
448 # if SANITIZER_FREEBSD
449 return internal_syscall(SYSCALL(fstatat), AT_FDCWD, (uptr)path, (uptr)buf,
450 AT_SYMLINK_NOFOLLOW);
451 # elif SANITIZER_LINUX
452 # if defined(__loongarch__)
453 struct statx bufx;
454 int res = internal_syscall(SYSCALL(statx), AT_FDCWD, (uptr)path,
455 AT_SYMLINK_NOFOLLOW | AT_NO_AUTOMOUNT,
456 STATX_BASIC_STATS, (uptr)&bufx);
457 statx_to_stat(&bufx, (struct stat *)buf);
458 return res;
459 # elif (defined(_LP64) || SANITIZER_X32 || \
460 (defined(__mips__) && _MIPS_SIM == _ABIN32)) && \
461 !SANITIZER_SPARC
462 return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf,
463 AT_SYMLINK_NOFOLLOW);
464 # elif SANITIZER_SPARC64
465 kstat_t buf64;
466 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path,
467 (uptr)&buf64, AT_SYMLINK_NOFOLLOW);
468 kernel_stat_to_stat(&buf64, (struct stat *)buf);
469 return res;
470 # else
471 struct stat64 buf64;
472 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path,
473 (uptr)&buf64, AT_SYMLINK_NOFOLLOW);
474 stat64_to_stat(&buf64, (struct stat *)buf);
475 return res;
476 # endif
477 # else
478 struct stat64 buf64;
479 int res = internal_syscall(SYSCALL(lstat64), path, &buf64);
480 stat64_to_stat(&buf64, (struct stat *)buf);
481 return res;
482 # endif
483 }
484
internal_fstat(fd_t fd,void * buf)485 uptr internal_fstat(fd_t fd, void *buf) {
486 # if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS
487 # if SANITIZER_MIPS64
488 // For mips64, fstat syscall fills buffer in the format of kernel_stat
489 kstat_t kbuf;
490 int res = internal_syscall(SYSCALL(fstat), fd, &kbuf);
491 kernel_stat_to_stat(&kbuf, (struct stat *)buf);
492 return res;
493 # elif SANITIZER_LINUX && SANITIZER_SPARC64
494 // For sparc64, fstat64 syscall fills buffer in the format of kernel_stat64
495 kstat_t kbuf;
496 int res = internal_syscall(SYSCALL(fstat64), fd, &kbuf);
497 kernel_stat_to_stat(&kbuf, (struct stat *)buf);
498 return res;
499 # elif SANITIZER_LINUX && defined(__loongarch__)
500 struct statx bufx;
501 int res = internal_syscall(SYSCALL(statx), fd, "", AT_EMPTY_PATH,
502 STATX_BASIC_STATS, (uptr)&bufx);
503 statx_to_stat(&bufx, (struct stat *)buf);
504 return res;
505 # else
506 return internal_syscall(SYSCALL(fstat), fd, (uptr)buf);
507 # endif
508 # else
509 struct stat64 buf64;
510 int res = internal_syscall(SYSCALL(fstat64), fd, &buf64);
511 stat64_to_stat(&buf64, (struct stat *)buf);
512 return res;
513 # endif
514 }
515
internal_filesize(fd_t fd)516 uptr internal_filesize(fd_t fd) {
517 struct stat st;
518 if (internal_fstat(fd, &st))
519 return -1;
520 return (uptr)st.st_size;
521 }
522
internal_dup(int oldfd)523 uptr internal_dup(int oldfd) { return internal_syscall(SYSCALL(dup), oldfd); }
524
internal_dup2(int oldfd,int newfd)525 uptr internal_dup2(int oldfd, int newfd) {
526 # if SANITIZER_LINUX
527 return internal_syscall(SYSCALL(dup3), oldfd, newfd, 0);
528 # else
529 return internal_syscall(SYSCALL(dup2), oldfd, newfd);
530 # endif
531 }
532
internal_readlink(const char * path,char * buf,uptr bufsize)533 uptr internal_readlink(const char *path, char *buf, uptr bufsize) {
534 # if SANITIZER_LINUX
535 return internal_syscall(SYSCALL(readlinkat), AT_FDCWD, (uptr)path, (uptr)buf,
536 bufsize);
537 # else
538 return internal_syscall(SYSCALL(readlink), (uptr)path, (uptr)buf, bufsize);
539 # endif
540 }
541
internal_unlink(const char * path)542 uptr internal_unlink(const char *path) {
543 # if SANITIZER_LINUX
544 return internal_syscall(SYSCALL(unlinkat), AT_FDCWD, (uptr)path, 0);
545 # else
546 return internal_syscall(SYSCALL(unlink), (uptr)path);
547 # endif
548 }
549
internal_rename(const char * oldpath,const char * newpath)550 uptr internal_rename(const char *oldpath, const char *newpath) {
551 # if (defined(__riscv) || defined(__loongarch__)) && defined(__linux__)
552 return internal_syscall(SYSCALL(renameat2), AT_FDCWD, (uptr)oldpath, AT_FDCWD,
553 (uptr)newpath, 0);
554 # elif SANITIZER_LINUX
555 return internal_syscall(SYSCALL(renameat), AT_FDCWD, (uptr)oldpath, AT_FDCWD,
556 (uptr)newpath);
557 # else
558 return internal_syscall(SYSCALL(rename), (uptr)oldpath, (uptr)newpath);
559 # endif
560 }
561
internal_sched_yield()562 uptr internal_sched_yield() { return internal_syscall(SYSCALL(sched_yield)); }
563
internal_usleep(u64 useconds)564 void internal_usleep(u64 useconds) {
565 struct timespec ts;
566 ts.tv_sec = useconds / 1000000;
567 ts.tv_nsec = (useconds % 1000000) * 1000;
568 internal_syscall(SYSCALL(nanosleep), &ts, &ts);
569 }
570
internal_execve(const char * filename,char * const argv[],char * const envp[])571 uptr internal_execve(const char *filename, char *const argv[],
572 char *const envp[]) {
573 return internal_syscall(SYSCALL(execve), (uptr)filename, (uptr)argv,
574 (uptr)envp);
575 }
576 # endif // !SANITIZER_SOLARIS && !SANITIZER_NETBSD
577
578 # if !SANITIZER_NETBSD
internal__exit(int exitcode)579 void internal__exit(int exitcode) {
580 # if SANITIZER_FREEBSD || SANITIZER_SOLARIS
581 internal_syscall(SYSCALL(exit), exitcode);
582 # else
583 internal_syscall(SYSCALL(exit_group), exitcode);
584 # endif
585 Die(); // Unreachable.
586 }
587 # endif // !SANITIZER_NETBSD
588
589 // ----------------- sanitizer_common.h
FileExists(const char * filename)590 bool FileExists(const char *filename) {
591 if (ShouldMockFailureToOpen(filename))
592 return false;
593 struct stat st;
594 if (internal_stat(filename, &st))
595 return false;
596 // Sanity check: filename is a regular file.
597 return S_ISREG(st.st_mode);
598 }
599
DirExists(const char * path)600 bool DirExists(const char *path) {
601 struct stat st;
602 if (internal_stat(path, &st))
603 return false;
604 return S_ISDIR(st.st_mode);
605 }
606
607 # if !SANITIZER_NETBSD
GetTid()608 tid_t GetTid() {
609 # if SANITIZER_FREEBSD
610 long Tid;
611 thr_self(&Tid);
612 return Tid;
613 # elif SANITIZER_SOLARIS
614 return thr_self();
615 # else
616 return internal_syscall(SYSCALL(gettid));
617 # endif
618 }
619
TgKill(pid_t pid,tid_t tid,int sig)620 int TgKill(pid_t pid, tid_t tid, int sig) {
621 # if SANITIZER_LINUX
622 return internal_syscall(SYSCALL(tgkill), pid, tid, sig);
623 # elif SANITIZER_FREEBSD
624 return internal_syscall(SYSCALL(thr_kill2), pid, tid, sig);
625 # elif SANITIZER_SOLARIS
626 (void)pid;
627 errno = thr_kill(tid, sig);
628 // TgKill is expected to return -1 on error, not an errno.
629 return errno != 0 ? -1 : 0;
630 # endif
631 }
632 # endif
633
634 # if SANITIZER_GLIBC
NanoTime()635 u64 NanoTime() {
636 kernel_timeval tv;
637 internal_memset(&tv, 0, sizeof(tv));
638 internal_syscall(SYSCALL(gettimeofday), &tv, 0);
639 return (u64)tv.tv_sec * 1000 * 1000 * 1000 + tv.tv_usec * 1000;
640 }
641 // Used by real_clock_gettime.
internal_clock_gettime(__sanitizer_clockid_t clk_id,void * tp)642 uptr internal_clock_gettime(__sanitizer_clockid_t clk_id, void *tp) {
643 return internal_syscall(SYSCALL(clock_gettime), clk_id, tp);
644 }
645 # elif !SANITIZER_SOLARIS && !SANITIZER_NETBSD
NanoTime()646 u64 NanoTime() {
647 struct timespec ts;
648 clock_gettime(CLOCK_REALTIME, &ts);
649 return (u64)ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
650 }
651 # endif
652
653 // Like getenv, but reads env directly from /proc (on Linux) or parses the
654 // 'environ' array (on some others) and does not use libc. This function
655 // should be called first inside __asan_init.
GetEnv(const char * name)656 const char *GetEnv(const char *name) {
657 # if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_SOLARIS
658 if (::environ != 0) {
659 uptr NameLen = internal_strlen(name);
660 for (char **Env = ::environ; *Env != 0; Env++) {
661 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
662 return (*Env) + NameLen + 1;
663 }
664 }
665 return 0; // Not found.
666 # elif SANITIZER_LINUX
667 static char *environ;
668 static uptr len;
669 static bool inited;
670 if (!inited) {
671 inited = true;
672 uptr environ_size;
673 if (!ReadFileToBuffer("/proc/self/environ", &environ, &environ_size, &len))
674 environ = nullptr;
675 }
676 if (!environ || len == 0)
677 return nullptr;
678 uptr namelen = internal_strlen(name);
679 const char *p = environ;
680 while (*p != '\0') { // will happen at the \0\0 that terminates the buffer
681 // proc file has the format NAME=value\0NAME=value\0NAME=value\0...
682 const char *endp = (char *)internal_memchr(p, '\0', len - (p - environ));
683 if (!endp) // this entry isn't NUL terminated
684 return nullptr;
685 else if (!internal_memcmp(p, name, namelen) && p[namelen] == '=') // Match.
686 return p + namelen + 1; // point after =
687 p = endp + 1;
688 }
689 return nullptr; // Not found.
690 # else
691 # error "Unsupported platform"
692 # endif
693 }
694
695 # if !SANITIZER_FREEBSD && !SANITIZER_NETBSD && !SANITIZER_GO
696 extern "C" {
697 SANITIZER_WEAK_ATTRIBUTE extern void *__libc_stack_end;
698 }
699 # endif
700
701 # if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
ReadNullSepFileToArray(const char * path,char *** arr,int arr_size)702 static void ReadNullSepFileToArray(const char *path, char ***arr,
703 int arr_size) {
704 char *buff;
705 uptr buff_size;
706 uptr buff_len;
707 *arr = (char **)MmapOrDie(arr_size * sizeof(char *), "NullSepFileArray");
708 if (!ReadFileToBuffer(path, &buff, &buff_size, &buff_len, 1024 * 1024)) {
709 (*arr)[0] = nullptr;
710 return;
711 }
712 (*arr)[0] = buff;
713 int count, i;
714 for (count = 1, i = 1;; i++) {
715 if (buff[i] == 0) {
716 if (buff[i + 1] == 0)
717 break;
718 (*arr)[count] = &buff[i + 1];
719 CHECK_LE(count, arr_size - 1); // FIXME: make this more flexible.
720 count++;
721 }
722 }
723 (*arr)[count] = nullptr;
724 }
725 # endif
726
GetArgsAndEnv(char *** argv,char *** envp)727 static void GetArgsAndEnv(char ***argv, char ***envp) {
728 # if SANITIZER_FREEBSD
729 // On FreeBSD, retrieving the argument and environment arrays is done via the
730 // kern.ps_strings sysctl, which returns a pointer to a structure containing
731 // this information. See also <sys/exec.h>.
732 ps_strings *pss;
733 uptr sz = sizeof(pss);
734 if (internal_sysctlbyname("kern.ps_strings", &pss, &sz, NULL, 0) == -1) {
735 Printf("sysctl kern.ps_strings failed\n");
736 Die();
737 }
738 *argv = pss->ps_argvstr;
739 *envp = pss->ps_envstr;
740 # elif SANITIZER_NETBSD
741 *argv = __ps_strings->ps_argvstr;
742 *envp = __ps_strings->ps_envstr;
743 # else // SANITIZER_FREEBSD
744 # if !SANITIZER_GO
745 if (&__libc_stack_end) {
746 uptr *stack_end = (uptr *)__libc_stack_end;
747 // Normally argc can be obtained from *stack_end, however, on ARM glibc's
748 // _start clobbers it:
749 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/arm/start.S;hb=refs/heads/release/2.31/master#l75
750 // Do not special-case ARM and infer argc from argv everywhere.
751 int argc = 0;
752 while (stack_end[argc + 1]) argc++;
753 *argv = (char **)(stack_end + 1);
754 *envp = (char **)(stack_end + argc + 2);
755 } else {
756 # endif // !SANITIZER_GO
757 static const int kMaxArgv = 2000, kMaxEnvp = 2000;
758 ReadNullSepFileToArray("/proc/self/cmdline", argv, kMaxArgv);
759 ReadNullSepFileToArray("/proc/self/environ", envp, kMaxEnvp);
760 # if !SANITIZER_GO
761 }
762 # endif // !SANITIZER_GO
763 # endif // SANITIZER_FREEBSD
764 }
765
GetArgv()766 char **GetArgv() {
767 char **argv, **envp;
768 GetArgsAndEnv(&argv, &envp);
769 return argv;
770 }
771
GetEnviron()772 char **GetEnviron() {
773 char **argv, **envp;
774 GetArgsAndEnv(&argv, &envp);
775 return envp;
776 }
777
778 # if !SANITIZER_SOLARIS
FutexWait(atomic_uint32_t * p,u32 cmp)779 void FutexWait(atomic_uint32_t *p, u32 cmp) {
780 # if SANITIZER_FREEBSD
781 _umtx_op(p, UMTX_OP_WAIT_UINT, cmp, 0, 0);
782 # elif SANITIZER_NETBSD
783 sched_yield(); /* No userspace futex-like synchronization */
784 # else
785 internal_syscall(SYSCALL(futex), (uptr)p, FUTEX_WAIT_PRIVATE, cmp, 0, 0, 0);
786 # endif
787 }
788
FutexWake(atomic_uint32_t * p,u32 count)789 void FutexWake(atomic_uint32_t *p, u32 count) {
790 # if SANITIZER_FREEBSD
791 _umtx_op(p, UMTX_OP_WAKE, count, 0, 0);
792 # elif SANITIZER_NETBSD
793 /* No userspace futex-like synchronization */
794 # else
795 internal_syscall(SYSCALL(futex), (uptr)p, FUTEX_WAKE_PRIVATE, count, 0, 0, 0);
796 # endif
797 }
798
799 # endif // !SANITIZER_SOLARIS
800
801 // ----------------- sanitizer_linux.h
802 // The actual size of this structure is specified by d_reclen.
803 // Note that getdents64 uses a different structure format. We only provide the
804 // 32-bit syscall here.
805 # if SANITIZER_NETBSD
806 // Not used
807 # else
808 struct linux_dirent {
809 # if SANITIZER_X32 || SANITIZER_LINUX
810 u64 d_ino;
811 u64 d_off;
812 # else
813 unsigned long d_ino;
814 unsigned long d_off;
815 # endif
816 unsigned short d_reclen;
817 # if SANITIZER_LINUX
818 unsigned char d_type;
819 # endif
820 char d_name[256];
821 };
822 # endif
823
824 # if !SANITIZER_SOLARIS && !SANITIZER_NETBSD
825 // Syscall wrappers.
internal_ptrace(int request,int pid,void * addr,void * data)826 uptr internal_ptrace(int request, int pid, void *addr, void *data) {
827 return internal_syscall(SYSCALL(ptrace), request, pid, (uptr)addr,
828 (uptr)data);
829 }
830
internal_waitpid(int pid,int * status,int options)831 uptr internal_waitpid(int pid, int *status, int options) {
832 return internal_syscall(SYSCALL(wait4), pid, (uptr)status, options,
833 0 /* rusage */);
834 }
835
internal_getpid()836 uptr internal_getpid() { return internal_syscall(SYSCALL(getpid)); }
837
internal_getppid()838 uptr internal_getppid() { return internal_syscall(SYSCALL(getppid)); }
839
internal_dlinfo(void * handle,int request,void * p)840 int internal_dlinfo(void *handle, int request, void *p) {
841 # if SANITIZER_FREEBSD
842 return dlinfo(handle, request, p);
843 # else
844 UNIMPLEMENTED();
845 # endif
846 }
847
internal_getdents(fd_t fd,struct linux_dirent * dirp,unsigned int count)848 uptr internal_getdents(fd_t fd, struct linux_dirent *dirp, unsigned int count) {
849 # if SANITIZER_FREEBSD
850 return internal_syscall(SYSCALL(getdirentries), fd, (uptr)dirp, count, NULL);
851 # elif SANITIZER_LINUX
852 return internal_syscall(SYSCALL(getdents64), fd, (uptr)dirp, count);
853 # else
854 return internal_syscall(SYSCALL(getdents), fd, (uptr)dirp, count);
855 # endif
856 }
857
internal_lseek(fd_t fd,OFF_T offset,int whence)858 uptr internal_lseek(fd_t fd, OFF_T offset, int whence) {
859 return internal_syscall(SYSCALL(lseek), fd, offset, whence);
860 }
861
862 # if SANITIZER_LINUX
internal_prctl(int option,uptr arg2,uptr arg3,uptr arg4,uptr arg5)863 uptr internal_prctl(int option, uptr arg2, uptr arg3, uptr arg4, uptr arg5) {
864 return internal_syscall(SYSCALL(prctl), option, arg2, arg3, arg4, arg5);
865 }
866 # if defined(__x86_64__)
867 # include <asm/unistd_64.h>
868 // Currently internal_arch_prctl() is only needed on x86_64.
internal_arch_prctl(int option,uptr arg2)869 uptr internal_arch_prctl(int option, uptr arg2) {
870 return internal_syscall(__NR_arch_prctl, option, arg2);
871 }
872 # endif
873 # endif
874
internal_sigaltstack(const void * ss,void * oss)875 uptr internal_sigaltstack(const void *ss, void *oss) {
876 return internal_syscall(SYSCALL(sigaltstack), (uptr)ss, (uptr)oss);
877 }
878
879 extern "C" pid_t __fork(void);
880
internal_fork()881 int internal_fork() {
882 # if SANITIZER_LINUX
883 # if SANITIZER_S390
884 return internal_syscall(SYSCALL(clone), 0, SIGCHLD);
885 # elif SANITIZER_SPARC
886 // The clone syscall interface on SPARC differs massively from the rest,
887 // so fall back to __fork.
888 return __fork();
889 # else
890 return internal_syscall(SYSCALL(clone), SIGCHLD, 0);
891 # endif
892 # else
893 return internal_syscall(SYSCALL(fork));
894 # endif
895 }
896
897 # if SANITIZER_FREEBSD
internal_sysctl(const int * name,unsigned int namelen,void * oldp,uptr * oldlenp,const void * newp,uptr newlen)898 int internal_sysctl(const int *name, unsigned int namelen, void *oldp,
899 uptr *oldlenp, const void *newp, uptr newlen) {
900 return internal_syscall(SYSCALL(__sysctl), name, namelen, oldp,
901 (size_t *)oldlenp, newp, (size_t)newlen);
902 }
903
internal_sysctlbyname(const char * sname,void * oldp,uptr * oldlenp,const void * newp,uptr newlen)904 int internal_sysctlbyname(const char *sname, void *oldp, uptr *oldlenp,
905 const void *newp, uptr newlen) {
906 // Note: this function can be called during startup, so we need to avoid
907 // calling any interceptable functions. On FreeBSD >= 1300045 sysctlbyname()
908 // is a real syscall, but for older versions it calls sysctlnametomib()
909 // followed by sysctl(). To avoid calling the intercepted version and
910 // asserting if this happens during startup, call the real sysctlnametomib()
911 // followed by internal_sysctl() if the syscall is not available.
912 # ifdef SYS___sysctlbyname
913 return internal_syscall(SYSCALL(__sysctlbyname), sname,
914 internal_strlen(sname), oldp, (size_t *)oldlenp, newp,
915 (size_t)newlen);
916 # else
917 static decltype(sysctlnametomib) *real_sysctlnametomib = nullptr;
918 if (!real_sysctlnametomib)
919 real_sysctlnametomib =
920 (decltype(sysctlnametomib) *)dlsym(RTLD_NEXT, "sysctlnametomib");
921 CHECK(real_sysctlnametomib);
922
923 int oid[CTL_MAXNAME];
924 size_t len = CTL_MAXNAME;
925 if (real_sysctlnametomib(sname, oid, &len) == -1)
926 return (-1);
927 return internal_sysctl(oid, len, oldp, oldlenp, newp, newlen);
928 # endif
929 }
930 # endif
931
932 # if SANITIZER_LINUX
933 # define SA_RESTORER 0x04000000
934 // Doesn't set sa_restorer if the caller did not set it, so use with caution
935 //(see below).
internal_sigaction_norestorer(int signum,const void * act,void * oldact)936 int internal_sigaction_norestorer(int signum, const void *act, void *oldact) {
937 __sanitizer_kernel_sigaction_t k_act, k_oldact;
938 internal_memset(&k_act, 0, sizeof(__sanitizer_kernel_sigaction_t));
939 internal_memset(&k_oldact, 0, sizeof(__sanitizer_kernel_sigaction_t));
940 const __sanitizer_sigaction *u_act = (const __sanitizer_sigaction *)act;
941 __sanitizer_sigaction *u_oldact = (__sanitizer_sigaction *)oldact;
942 if (u_act) {
943 k_act.handler = u_act->handler;
944 k_act.sigaction = u_act->sigaction;
945 internal_memcpy(&k_act.sa_mask, &u_act->sa_mask,
946 sizeof(__sanitizer_kernel_sigset_t));
947 // Without SA_RESTORER kernel ignores the calls (probably returns EINVAL).
948 k_act.sa_flags = u_act->sa_flags | SA_RESTORER;
949 // FIXME: most often sa_restorer is unset, however the kernel requires it
950 // to point to a valid signal restorer that calls the rt_sigreturn syscall.
951 // If sa_restorer passed to the kernel is NULL, the program may crash upon
952 // signal delivery or fail to unwind the stack in the signal handler.
953 // libc implementation of sigaction() passes its own restorer to
954 // rt_sigaction, so we need to do the same (we'll need to reimplement the
955 // restorers; for x86_64 the restorer address can be obtained from
956 // oldact->sa_restorer upon a call to sigaction(xxx, NULL, oldact).
957 # if !SANITIZER_ANDROID || !SANITIZER_MIPS32
958 k_act.sa_restorer = u_act->sa_restorer;
959 # endif
960 }
961
962 uptr result = internal_syscall(SYSCALL(rt_sigaction), (uptr)signum,
963 (uptr)(u_act ? &k_act : nullptr),
964 (uptr)(u_oldact ? &k_oldact : nullptr),
965 (uptr)sizeof(__sanitizer_kernel_sigset_t));
966
967 if ((result == 0) && u_oldact) {
968 u_oldact->handler = k_oldact.handler;
969 u_oldact->sigaction = k_oldact.sigaction;
970 internal_memcpy(&u_oldact->sa_mask, &k_oldact.sa_mask,
971 sizeof(__sanitizer_kernel_sigset_t));
972 u_oldact->sa_flags = k_oldact.sa_flags;
973 # if !SANITIZER_ANDROID || !SANITIZER_MIPS32
974 u_oldact->sa_restorer = k_oldact.sa_restorer;
975 # endif
976 }
977 return result;
978 }
979 # endif // SANITIZER_LINUX
980
internal_sigprocmask(int how,__sanitizer_sigset_t * set,__sanitizer_sigset_t * oldset)981 uptr internal_sigprocmask(int how, __sanitizer_sigset_t *set,
982 __sanitizer_sigset_t *oldset) {
983 # if SANITIZER_FREEBSD
984 return internal_syscall(SYSCALL(sigprocmask), how, set, oldset);
985 # else
986 __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set;
987 __sanitizer_kernel_sigset_t *k_oldset = (__sanitizer_kernel_sigset_t *)oldset;
988 return internal_syscall(SYSCALL(rt_sigprocmask), (uptr)how, (uptr)k_set,
989 (uptr)k_oldset, sizeof(__sanitizer_kernel_sigset_t));
990 # endif
991 }
992
internal_sigfillset(__sanitizer_sigset_t * set)993 void internal_sigfillset(__sanitizer_sigset_t *set) {
994 internal_memset(set, 0xff, sizeof(*set));
995 }
996
internal_sigemptyset(__sanitizer_sigset_t * set)997 void internal_sigemptyset(__sanitizer_sigset_t *set) {
998 internal_memset(set, 0, sizeof(*set));
999 }
1000
1001 # if SANITIZER_LINUX
internal_sigdelset(__sanitizer_sigset_t * set,int signum)1002 void internal_sigdelset(__sanitizer_sigset_t *set, int signum) {
1003 signum -= 1;
1004 CHECK_GE(signum, 0);
1005 CHECK_LT(signum, sizeof(*set) * 8);
1006 __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set;
1007 const uptr idx = signum / (sizeof(k_set->sig[0]) * 8);
1008 const uptr bit = signum % (sizeof(k_set->sig[0]) * 8);
1009 k_set->sig[idx] &= ~((uptr)1 << bit);
1010 }
1011
internal_sigismember(__sanitizer_sigset_t * set,int signum)1012 bool internal_sigismember(__sanitizer_sigset_t *set, int signum) {
1013 signum -= 1;
1014 CHECK_GE(signum, 0);
1015 CHECK_LT(signum, sizeof(*set) * 8);
1016 __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set;
1017 const uptr idx = signum / (sizeof(k_set->sig[0]) * 8);
1018 const uptr bit = signum % (sizeof(k_set->sig[0]) * 8);
1019 return k_set->sig[idx] & ((uptr)1 << bit);
1020 }
1021 # elif SANITIZER_FREEBSD
internal_procctl(int type,int id,int cmd,void * data)1022 uptr internal_procctl(int type, int id, int cmd, void *data) {
1023 return internal_syscall(SYSCALL(procctl), type, id, cmd, data);
1024 }
1025
internal_sigdelset(__sanitizer_sigset_t * set,int signum)1026 void internal_sigdelset(__sanitizer_sigset_t *set, int signum) {
1027 sigset_t *rset = reinterpret_cast<sigset_t *>(set);
1028 sigdelset(rset, signum);
1029 }
1030
internal_sigismember(__sanitizer_sigset_t * set,int signum)1031 bool internal_sigismember(__sanitizer_sigset_t *set, int signum) {
1032 sigset_t *rset = reinterpret_cast<sigset_t *>(set);
1033 return sigismember(rset, signum);
1034 }
1035 # endif
1036 # endif // !SANITIZER_SOLARIS
1037
1038 # if !SANITIZER_NETBSD
1039 // ThreadLister implementation.
ThreadLister(pid_t pid)1040 ThreadLister::ThreadLister(pid_t pid) : pid_(pid), buffer_(4096) {
1041 char task_directory_path[80];
1042 internal_snprintf(task_directory_path, sizeof(task_directory_path),
1043 "/proc/%d/task/", pid);
1044 descriptor_ = internal_open(task_directory_path, O_RDONLY | O_DIRECTORY);
1045 if (internal_iserror(descriptor_)) {
1046 Report("Can't open /proc/%d/task for reading.\n", pid);
1047 }
1048 }
1049
ListThreads(InternalMmapVector<tid_t> * threads)1050 ThreadLister::Result ThreadLister::ListThreads(
1051 InternalMmapVector<tid_t> *threads) {
1052 if (internal_iserror(descriptor_))
1053 return Error;
1054 internal_lseek(descriptor_, 0, SEEK_SET);
1055 threads->clear();
1056
1057 Result result = Ok;
1058 for (bool first_read = true;; first_read = false) {
1059 // Resize to max capacity if it was downsized by IsAlive.
1060 buffer_.resize(buffer_.capacity());
1061 CHECK_GE(buffer_.size(), 4096);
1062 uptr read = internal_getdents(
1063 descriptor_, (struct linux_dirent *)buffer_.data(), buffer_.size());
1064 if (!read)
1065 return result;
1066 if (internal_iserror(read)) {
1067 Report("Can't read directory entries from /proc/%d/task.\n", pid_);
1068 return Error;
1069 }
1070
1071 for (uptr begin = (uptr)buffer_.data(), end = begin + read; begin < end;) {
1072 struct linux_dirent *entry = (struct linux_dirent *)begin;
1073 begin += entry->d_reclen;
1074 if (entry->d_ino == 1) {
1075 // Inode 1 is for bad blocks and also can be a reason for early return.
1076 // Should be emitted if kernel tried to output terminating thread.
1077 // See proc_task_readdir implementation in Linux.
1078 result = Incomplete;
1079 }
1080 if (entry->d_ino && *entry->d_name >= '0' && *entry->d_name <= '9')
1081 threads->push_back(internal_atoll(entry->d_name));
1082 }
1083
1084 // Now we are going to detect short-read or early EOF. In such cases Linux
1085 // can return inconsistent list with missing alive threads.
1086 // Code will just remember that the list can be incomplete but it will
1087 // continue reads to return as much as possible.
1088 if (!first_read) {
1089 // The first one was a short-read by definition.
1090 result = Incomplete;
1091 } else if (read > buffer_.size() - 1024) {
1092 // Read was close to the buffer size. So double the size and assume the
1093 // worst.
1094 buffer_.resize(buffer_.size() * 2);
1095 result = Incomplete;
1096 } else if (!threads->empty() && !IsAlive(threads->back())) {
1097 // Maybe Linux early returned from read on terminated thread (!pid_alive)
1098 // and failed to restore read position.
1099 // See next_tid and proc_task_instantiate in Linux.
1100 result = Incomplete;
1101 }
1102 }
1103 }
1104
IsAlive(int tid)1105 bool ThreadLister::IsAlive(int tid) {
1106 // /proc/%d/task/%d/status uses same call to detect alive threads as
1107 // proc_task_readdir. See task_state implementation in Linux.
1108 char path[80];
1109 internal_snprintf(path, sizeof(path), "/proc/%d/task/%d/status", pid_, tid);
1110 if (!ReadFileToVector(path, &buffer_) || buffer_.empty())
1111 return false;
1112 buffer_.push_back(0);
1113 static const char kPrefix[] = "\nPPid:";
1114 const char *field = internal_strstr(buffer_.data(), kPrefix);
1115 if (!field)
1116 return false;
1117 field += internal_strlen(kPrefix);
1118 return (int)internal_atoll(field) != 0;
1119 }
1120
~ThreadLister()1121 ThreadLister::~ThreadLister() {
1122 if (!internal_iserror(descriptor_))
1123 internal_close(descriptor_);
1124 }
1125 # endif
1126
1127 # if SANITIZER_WORDSIZE == 32
1128 // Take care of unusable kernel area in top gigabyte.
GetKernelAreaSize()1129 static uptr GetKernelAreaSize() {
1130 # if SANITIZER_LINUX && !SANITIZER_X32
1131 const uptr gbyte = 1UL << 30;
1132
1133 // Firstly check if there are writable segments
1134 // mapped to top gigabyte (e.g. stack).
1135 MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
1136 if (proc_maps.Error())
1137 return 0;
1138 MemoryMappedSegment segment;
1139 while (proc_maps.Next(&segment)) {
1140 if ((segment.end >= 3 * gbyte) && segment.IsWritable())
1141 return 0;
1142 }
1143
1144 # if !SANITIZER_ANDROID
1145 // Even if nothing is mapped, top Gb may still be accessible
1146 // if we are running on 64-bit kernel.
1147 // Uname may report misleading results if personality type
1148 // is modified (e.g. under schroot) so check this as well.
1149 struct utsname uname_info;
1150 int pers = personality(0xffffffffUL);
1151 if (!(pers & PER_MASK) && internal_uname(&uname_info) == 0 &&
1152 internal_strstr(uname_info.machine, "64"))
1153 return 0;
1154 # endif // SANITIZER_ANDROID
1155
1156 // Top gigabyte is reserved for kernel.
1157 return gbyte;
1158 # else
1159 return 0;
1160 # endif // SANITIZER_LINUX && !SANITIZER_X32
1161 }
1162 # endif // SANITIZER_WORDSIZE == 32
1163
GetMaxVirtualAddress()1164 uptr GetMaxVirtualAddress() {
1165 # if SANITIZER_NETBSD && defined(__x86_64__)
1166 return 0x7f7ffffff000ULL; // (0x00007f8000000000 - PAGE_SIZE)
1167 # elif SANITIZER_WORDSIZE == 64
1168 # if defined(__powerpc64__) || defined(__aarch64__) || \
1169 defined(__loongarch__) || SANITIZER_RISCV64
1170 // On PowerPC64 we have two different address space layouts: 44- and 46-bit.
1171 // We somehow need to figure out which one we are using now and choose
1172 // one of 0x00000fffffffffffUL and 0x00003fffffffffffUL.
1173 // Note that with 'ulimit -s unlimited' the stack is moved away from the top
1174 // of the address space, so simply checking the stack address is not enough.
1175 // This should (does) work for both PowerPC64 Endian modes.
1176 // Similarly, aarch64 has multiple address space layouts: 39, 42 and 47-bit.
1177 // loongarch64 also has multiple address space layouts: default is 47-bit.
1178 // RISC-V 64 also has multiple address space layouts: 39, 48 and 57-bit.
1179 return (1ULL << (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1)) - 1;
1180 # elif SANITIZER_MIPS64
1181 return (1ULL << 40) - 1; // 0x000000ffffffffffUL;
1182 # elif defined(__s390x__)
1183 return (1ULL << 53) - 1; // 0x001fffffffffffffUL;
1184 # elif defined(__sparc__)
1185 return ~(uptr)0;
1186 # else
1187 return (1ULL << 47) - 1; // 0x00007fffffffffffUL;
1188 # endif
1189 # else // SANITIZER_WORDSIZE == 32
1190 # if defined(__s390__)
1191 return (1ULL << 31) - 1; // 0x7fffffff;
1192 # else
1193 return (1ULL << 32) - 1; // 0xffffffff;
1194 # endif
1195 # endif // SANITIZER_WORDSIZE
1196 }
1197
GetMaxUserVirtualAddress()1198 uptr GetMaxUserVirtualAddress() {
1199 uptr addr = GetMaxVirtualAddress();
1200 # if SANITIZER_WORDSIZE == 32 && !defined(__s390__)
1201 if (!common_flags()->full_address_space)
1202 addr -= GetKernelAreaSize();
1203 CHECK_LT(reinterpret_cast<uptr>(&addr), addr);
1204 # endif
1205 return addr;
1206 }
1207
1208 # if !SANITIZER_ANDROID || defined(__aarch64__)
GetPageSize()1209 uptr GetPageSize() {
1210 # if SANITIZER_LINUX && (defined(__x86_64__) || defined(__i386__)) && \
1211 defined(EXEC_PAGESIZE)
1212 return EXEC_PAGESIZE;
1213 # elif SANITIZER_FREEBSD || SANITIZER_NETBSD
1214 // Use sysctl as sysconf can trigger interceptors internally.
1215 int pz = 0;
1216 uptr pzl = sizeof(pz);
1217 int mib[2] = {CTL_HW, HW_PAGESIZE};
1218 int rv = internal_sysctl(mib, 2, &pz, &pzl, nullptr, 0);
1219 CHECK_EQ(rv, 0);
1220 return (uptr)pz;
1221 # elif SANITIZER_USE_GETAUXVAL
1222 return getauxval(AT_PAGESZ);
1223 # else
1224 return sysconf(_SC_PAGESIZE); // EXEC_PAGESIZE may not be trustworthy.
1225 # endif
1226 }
1227 # endif
1228
ReadBinaryName(char * buf,uptr buf_len)1229 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
1230 # if SANITIZER_SOLARIS
1231 const char *default_module_name = getexecname();
1232 CHECK_NE(default_module_name, NULL);
1233 return internal_snprintf(buf, buf_len, "%s", default_module_name);
1234 # else
1235 # if SANITIZER_FREEBSD || SANITIZER_NETBSD
1236 # if SANITIZER_FREEBSD
1237 const int Mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1};
1238 # else
1239 const int Mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME};
1240 # endif
1241 const char *default_module_name = "kern.proc.pathname";
1242 uptr Size = buf_len;
1243 bool IsErr =
1244 (internal_sysctl(Mib, ARRAY_SIZE(Mib), buf, &Size, NULL, 0) != 0);
1245 int readlink_error = IsErr ? errno : 0;
1246 uptr module_name_len = Size;
1247 # else
1248 const char *default_module_name = "/proc/self/exe";
1249 uptr module_name_len = internal_readlink(default_module_name, buf, buf_len);
1250 int readlink_error;
1251 bool IsErr = internal_iserror(module_name_len, &readlink_error);
1252 # endif
1253 if (IsErr) {
1254 // We can't read binary name for some reason, assume it's unknown.
1255 Report(
1256 "WARNING: reading executable name failed with errno %d, "
1257 "some stack frames may not be symbolized\n",
1258 readlink_error);
1259 module_name_len =
1260 internal_snprintf(buf, buf_len, "%s", default_module_name);
1261 CHECK_LT(module_name_len, buf_len);
1262 }
1263 return module_name_len;
1264 # endif
1265 }
1266
ReadLongProcessName(char * buf,uptr buf_len)1267 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
1268 # if SANITIZER_LINUX
1269 char *tmpbuf;
1270 uptr tmpsize;
1271 uptr tmplen;
1272 if (ReadFileToBuffer("/proc/self/cmdline", &tmpbuf, &tmpsize, &tmplen,
1273 1024 * 1024)) {
1274 internal_strncpy(buf, tmpbuf, buf_len);
1275 UnmapOrDie(tmpbuf, tmpsize);
1276 return internal_strlen(buf);
1277 }
1278 # endif
1279 return ReadBinaryName(buf, buf_len);
1280 }
1281
1282 // Match full names of the form /path/to/base_name{-,.}*
LibraryNameIs(const char * full_name,const char * base_name)1283 bool LibraryNameIs(const char *full_name, const char *base_name) {
1284 const char *name = full_name;
1285 // Strip path.
1286 while (*name != '\0') name++;
1287 while (name > full_name && *name != '/') name--;
1288 if (*name == '/')
1289 name++;
1290 uptr base_name_length = internal_strlen(base_name);
1291 if (internal_strncmp(name, base_name, base_name_length))
1292 return false;
1293 return (name[base_name_length] == '-' || name[base_name_length] == '.');
1294 }
1295
1296 # if !SANITIZER_ANDROID
1297 // Call cb for each region mapped by map.
ForEachMappedRegion(link_map * map,void (* cb)(const void *,uptr))1298 void ForEachMappedRegion(link_map *map, void (*cb)(const void *, uptr)) {
1299 CHECK_NE(map, nullptr);
1300 # if !SANITIZER_FREEBSD
1301 typedef ElfW(Phdr) Elf_Phdr;
1302 typedef ElfW(Ehdr) Elf_Ehdr;
1303 # endif // !SANITIZER_FREEBSD
1304 char *base = (char *)map->l_addr;
1305 Elf_Ehdr *ehdr = (Elf_Ehdr *)base;
1306 char *phdrs = base + ehdr->e_phoff;
1307 char *phdrs_end = phdrs + ehdr->e_phnum * ehdr->e_phentsize;
1308
1309 // Find the segment with the minimum base so we can "relocate" the p_vaddr
1310 // fields. Typically ET_DYN objects (DSOs) have base of zero and ET_EXEC
1311 // objects have a non-zero base.
1312 uptr preferred_base = (uptr)-1;
1313 for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) {
1314 Elf_Phdr *phdr = (Elf_Phdr *)iter;
1315 if (phdr->p_type == PT_LOAD && preferred_base > (uptr)phdr->p_vaddr)
1316 preferred_base = (uptr)phdr->p_vaddr;
1317 }
1318
1319 // Compute the delta from the real base to get a relocation delta.
1320 sptr delta = (uptr)base - preferred_base;
1321 // Now we can figure out what the loader really mapped.
1322 for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) {
1323 Elf_Phdr *phdr = (Elf_Phdr *)iter;
1324 if (phdr->p_type == PT_LOAD) {
1325 uptr seg_start = phdr->p_vaddr + delta;
1326 uptr seg_end = seg_start + phdr->p_memsz;
1327 // None of these values are aligned. We consider the ragged edges of the
1328 // load command as defined, since they are mapped from the file.
1329 seg_start = RoundDownTo(seg_start, GetPageSizeCached());
1330 seg_end = RoundUpTo(seg_end, GetPageSizeCached());
1331 cb((void *)seg_start, seg_end - seg_start);
1332 }
1333 }
1334 }
1335 # endif
1336
1337 # if SANITIZER_LINUX
1338 # if defined(__x86_64__)
1339 // We cannot use glibc's clone wrapper, because it messes with the child
1340 // task's TLS. It writes the PID and TID of the child task to its thread
1341 // descriptor, but in our case the child task shares the thread descriptor with
1342 // the parent (because we don't know how to allocate a new thread
1343 // descriptor to keep glibc happy). So the stock version of clone(), when
1344 // used with CLONE_VM, would end up corrupting the parent's thread descriptor.
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1345 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1346 int *parent_tidptr, void *newtls, int *child_tidptr) {
1347 long long res;
1348 if (!fn || !child_stack)
1349 return -EINVAL;
1350 CHECK_EQ(0, (uptr)child_stack % 16);
1351 child_stack = (char *)child_stack - 2 * sizeof(unsigned long long);
1352 ((unsigned long long *)child_stack)[0] = (uptr)fn;
1353 ((unsigned long long *)child_stack)[1] = (uptr)arg;
1354 register void *r8 __asm__("r8") = newtls;
1355 register int *r10 __asm__("r10") = child_tidptr;
1356 __asm__ __volatile__(
1357 /* %rax = syscall(%rax = SYSCALL(clone),
1358 * %rdi = flags,
1359 * %rsi = child_stack,
1360 * %rdx = parent_tidptr,
1361 * %r8 = new_tls,
1362 * %r10 = child_tidptr)
1363 */
1364 "syscall\n"
1365
1366 /* if (%rax != 0)
1367 * return;
1368 */
1369 "testq %%rax,%%rax\n"
1370 "jnz 1f\n"
1371
1372 /* In the child. Terminate unwind chain. */
1373 // XXX: We should also terminate the CFI unwind chain
1374 // here. Unfortunately clang 3.2 doesn't support the
1375 // necessary CFI directives, so we skip that part.
1376 "xorq %%rbp,%%rbp\n"
1377
1378 /* Call "fn(arg)". */
1379 "popq %%rax\n"
1380 "popq %%rdi\n"
1381 "call *%%rax\n"
1382
1383 /* Call _exit(%rax). */
1384 "movq %%rax,%%rdi\n"
1385 "movq %2,%%rax\n"
1386 "syscall\n"
1387
1388 /* Return to parent. */
1389 "1:\n"
1390 : "=a"(res)
1391 : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "S"(child_stack), "D"(flags),
1392 "d"(parent_tidptr), "r"(r8), "r"(r10)
1393 : "memory", "r11", "rcx");
1394 return res;
1395 }
1396 # elif defined(__mips__)
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1397 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1398 int *parent_tidptr, void *newtls, int *child_tidptr) {
1399 long long res;
1400 if (!fn || !child_stack)
1401 return -EINVAL;
1402 CHECK_EQ(0, (uptr)child_stack % 16);
1403 child_stack = (char *)child_stack - 2 * sizeof(unsigned long long);
1404 ((unsigned long long *)child_stack)[0] = (uptr)fn;
1405 ((unsigned long long *)child_stack)[1] = (uptr)arg;
1406 register void *a3 __asm__("$7") = newtls;
1407 register int *a4 __asm__("$8") = child_tidptr;
1408 // We don't have proper CFI directives here because it requires alot of code
1409 // for very marginal benefits.
1410 __asm__ __volatile__(
1411 /* $v0 = syscall($v0 = __NR_clone,
1412 * $a0 = flags,
1413 * $a1 = child_stack,
1414 * $a2 = parent_tidptr,
1415 * $a3 = new_tls,
1416 * $a4 = child_tidptr)
1417 */
1418 ".cprestore 16;\n"
1419 "move $4,%1;\n"
1420 "move $5,%2;\n"
1421 "move $6,%3;\n"
1422 "move $7,%4;\n"
1423 /* Store the fifth argument on stack
1424 * if we are using 32-bit abi.
1425 */
1426 # if SANITIZER_WORDSIZE == 32
1427 "lw %5,16($29);\n"
1428 # else
1429 "move $8,%5;\n"
1430 # endif
1431 "li $2,%6;\n"
1432 "syscall;\n"
1433
1434 /* if ($v0 != 0)
1435 * return;
1436 */
1437 "bnez $2,1f;\n"
1438
1439 /* Call "fn(arg)". */
1440 # if SANITIZER_WORDSIZE == 32
1441 # ifdef __BIG_ENDIAN__
1442 "lw $25,4($29);\n"
1443 "lw $4,12($29);\n"
1444 # else
1445 "lw $25,0($29);\n"
1446 "lw $4,8($29);\n"
1447 # endif
1448 # else
1449 "ld $25,0($29);\n"
1450 "ld $4,8($29);\n"
1451 # endif
1452 "jal $25;\n"
1453
1454 /* Call _exit($v0). */
1455 "move $4,$2;\n"
1456 "li $2,%7;\n"
1457 "syscall;\n"
1458
1459 /* Return to parent. */
1460 "1:\n"
1461 : "=r"(res)
1462 : "r"(flags), "r"(child_stack), "r"(parent_tidptr), "r"(a3), "r"(a4),
1463 "i"(__NR_clone), "i"(__NR_exit)
1464 : "memory", "$29");
1465 return res;
1466 }
1467 # elif SANITIZER_RISCV64
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1468 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1469 int *parent_tidptr, void *newtls, int *child_tidptr) {
1470 if (!fn || !child_stack)
1471 return -EINVAL;
1472
1473 CHECK_EQ(0, (uptr)child_stack % 16);
1474
1475 register int res __asm__("a0");
1476 register int __flags __asm__("a0") = flags;
1477 register void *__stack __asm__("a1") = child_stack;
1478 register int *__ptid __asm__("a2") = parent_tidptr;
1479 register void *__tls __asm__("a3") = newtls;
1480 register int *__ctid __asm__("a4") = child_tidptr;
1481 register int (*__fn)(void *) __asm__("a5") = fn;
1482 register void *__arg __asm__("a6") = arg;
1483 register int nr_clone __asm__("a7") = __NR_clone;
1484
1485 __asm__ __volatile__(
1486 "ecall\n"
1487
1488 /* if (a0 != 0)
1489 * return a0;
1490 */
1491 "bnez a0, 1f\n"
1492
1493 // In the child, now. Call "fn(arg)".
1494 "mv a0, a6\n"
1495 "jalr a5\n"
1496
1497 // Call _exit(a0).
1498 "addi a7, zero, %9\n"
1499 "ecall\n"
1500 "1:\n"
1501
1502 : "=r"(res)
1503 : "0"(__flags), "r"(__stack), "r"(__ptid), "r"(__tls), "r"(__ctid),
1504 "r"(__fn), "r"(__arg), "r"(nr_clone), "i"(__NR_exit)
1505 : "memory");
1506 return res;
1507 }
1508 # elif defined(__aarch64__)
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1509 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1510 int *parent_tidptr, void *newtls, int *child_tidptr) {
1511 register long long res __asm__("x0");
1512 if (!fn || !child_stack)
1513 return -EINVAL;
1514 CHECK_EQ(0, (uptr)child_stack % 16);
1515 child_stack = (char *)child_stack - 2 * sizeof(unsigned long long);
1516 ((unsigned long long *)child_stack)[0] = (uptr)fn;
1517 ((unsigned long long *)child_stack)[1] = (uptr)arg;
1518
1519 register int (*__fn)(void *) __asm__("x0") = fn;
1520 register void *__stack __asm__("x1") = child_stack;
1521 register int __flags __asm__("x2") = flags;
1522 register void *__arg __asm__("x3") = arg;
1523 register int *__ptid __asm__("x4") = parent_tidptr;
1524 register void *__tls __asm__("x5") = newtls;
1525 register int *__ctid __asm__("x6") = child_tidptr;
1526
1527 __asm__ __volatile__(
1528 "mov x0,x2\n" /* flags */
1529 "mov x2,x4\n" /* ptid */
1530 "mov x3,x5\n" /* tls */
1531 "mov x4,x6\n" /* ctid */
1532 "mov x8,%9\n" /* clone */
1533
1534 "svc 0x0\n"
1535
1536 /* if (%r0 != 0)
1537 * return %r0;
1538 */
1539 "cmp x0, #0\n"
1540 "bne 1f\n"
1541
1542 /* In the child, now. Call "fn(arg)". */
1543 "ldp x1, x0, [sp], #16\n"
1544 "blr x1\n"
1545
1546 /* Call _exit(%r0). */
1547 "mov x8, %10\n"
1548 "svc 0x0\n"
1549 "1:\n"
1550
1551 : "=r"(res)
1552 : "i"(-EINVAL), "r"(__fn), "r"(__stack), "r"(__flags), "r"(__arg),
1553 "r"(__ptid), "r"(__tls), "r"(__ctid), "i"(__NR_clone), "i"(__NR_exit)
1554 : "x30", "memory");
1555 return res;
1556 }
1557 # elif SANITIZER_LOONGARCH64
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1558 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1559 int *parent_tidptr, void *newtls, int *child_tidptr) {
1560 if (!fn || !child_stack)
1561 return -EINVAL;
1562
1563 CHECK_EQ(0, (uptr)child_stack % 16);
1564
1565 register int res __asm__("$a0");
1566 register int __flags __asm__("$a0") = flags;
1567 register void *__stack __asm__("$a1") = child_stack;
1568 register int *__ptid __asm__("$a2") = parent_tidptr;
1569 register int *__ctid __asm__("$a3") = child_tidptr;
1570 register void *__tls __asm__("$a4") = newtls;
1571 register int (*__fn)(void *) __asm__("$a5") = fn;
1572 register void *__arg __asm__("$a6") = arg;
1573 register int nr_clone __asm__("$a7") = __NR_clone;
1574
1575 __asm__ __volatile__(
1576 "syscall 0\n"
1577
1578 // if ($a0 != 0)
1579 // return $a0;
1580 "bnez $a0, 1f\n"
1581
1582 // In the child, now. Call "fn(arg)".
1583 "move $a0, $a6\n"
1584 "jirl $ra, $a5, 0\n"
1585
1586 // Call _exit($a0).
1587 "addi.d $a7, $zero, %9\n"
1588 "syscall 0\n"
1589
1590 "1:\n"
1591
1592 : "=r"(res)
1593 : "0"(__flags), "r"(__stack), "r"(__ptid), "r"(__ctid), "r"(__tls),
1594 "r"(__fn), "r"(__arg), "r"(nr_clone), "i"(__NR_exit)
1595 : "memory", "$t0", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7",
1596 "$t8");
1597 return res;
1598 }
1599 # elif defined(__powerpc64__)
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1600 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1601 int *parent_tidptr, void *newtls, int *child_tidptr) {
1602 long long res;
1603 // Stack frame structure.
1604 # if SANITIZER_PPC64V1
1605 // Back chain == 0 (SP + 112)
1606 // Frame (112 bytes):
1607 // Parameter save area (SP + 48), 8 doublewords
1608 // TOC save area (SP + 40)
1609 // Link editor doubleword (SP + 32)
1610 // Compiler doubleword (SP + 24)
1611 // LR save area (SP + 16)
1612 // CR save area (SP + 8)
1613 // Back chain (SP + 0)
1614 # define FRAME_SIZE 112
1615 # define FRAME_TOC_SAVE_OFFSET 40
1616 # elif SANITIZER_PPC64V2
1617 // Back chain == 0 (SP + 32)
1618 // Frame (32 bytes):
1619 // TOC save area (SP + 24)
1620 // LR save area (SP + 16)
1621 // CR save area (SP + 8)
1622 // Back chain (SP + 0)
1623 # define FRAME_SIZE 32
1624 # define FRAME_TOC_SAVE_OFFSET 24
1625 # else
1626 # error "Unsupported PPC64 ABI"
1627 # endif
1628 if (!fn || !child_stack)
1629 return -EINVAL;
1630 CHECK_EQ(0, (uptr)child_stack % 16);
1631
1632 register int (*__fn)(void *) __asm__("r3") = fn;
1633 register void *__cstack __asm__("r4") = child_stack;
1634 register int __flags __asm__("r5") = flags;
1635 register void *__arg __asm__("r6") = arg;
1636 register int *__ptidptr __asm__("r7") = parent_tidptr;
1637 register void *__newtls __asm__("r8") = newtls;
1638 register int *__ctidptr __asm__("r9") = child_tidptr;
1639
1640 __asm__ __volatile__(
1641 /* fn and arg are saved across the syscall */
1642 "mr 28, %5\n\t"
1643 "mr 27, %8\n\t"
1644
1645 /* syscall
1646 r0 == __NR_clone
1647 r3 == flags
1648 r4 == child_stack
1649 r5 == parent_tidptr
1650 r6 == newtls
1651 r7 == child_tidptr */
1652 "mr 3, %7\n\t"
1653 "mr 5, %9\n\t"
1654 "mr 6, %10\n\t"
1655 "mr 7, %11\n\t"
1656 "li 0, %3\n\t"
1657 "sc\n\t"
1658
1659 /* Test if syscall was successful */
1660 "cmpdi cr1, 3, 0\n\t"
1661 "crandc cr1*4+eq, cr1*4+eq, cr0*4+so\n\t"
1662 "bne- cr1, 1f\n\t"
1663
1664 /* Set up stack frame */
1665 "li 29, 0\n\t"
1666 "stdu 29, -8(1)\n\t"
1667 "stdu 1, -%12(1)\n\t"
1668 /* Do the function call */
1669 "std 2, %13(1)\n\t"
1670 # if SANITIZER_PPC64V1
1671 "ld 0, 0(28)\n\t"
1672 "ld 2, 8(28)\n\t"
1673 "mtctr 0\n\t"
1674 # elif SANITIZER_PPC64V2
1675 "mr 12, 28\n\t"
1676 "mtctr 12\n\t"
1677 # else
1678 # error "Unsupported PPC64 ABI"
1679 # endif
1680 "mr 3, 27\n\t"
1681 "bctrl\n\t"
1682 "ld 2, %13(1)\n\t"
1683
1684 /* Call _exit(r3) */
1685 "li 0, %4\n\t"
1686 "sc\n\t"
1687
1688 /* Return to parent */
1689 "1:\n\t"
1690 "mr %0, 3\n\t"
1691 : "=r"(res)
1692 : "0"(-1), "i"(EINVAL), "i"(__NR_clone), "i"(__NR_exit), "r"(__fn),
1693 "r"(__cstack), "r"(__flags), "r"(__arg), "r"(__ptidptr), "r"(__newtls),
1694 "r"(__ctidptr), "i"(FRAME_SIZE), "i"(FRAME_TOC_SAVE_OFFSET)
1695 : "cr0", "cr1", "memory", "ctr", "r0", "r27", "r28", "r29");
1696 return res;
1697 }
1698 # elif defined(__i386__)
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1699 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1700 int *parent_tidptr, void *newtls, int *child_tidptr) {
1701 int res;
1702 if (!fn || !child_stack)
1703 return -EINVAL;
1704 CHECK_EQ(0, (uptr)child_stack % 16);
1705 child_stack = (char *)child_stack - 7 * sizeof(unsigned int);
1706 ((unsigned int *)child_stack)[0] = (uptr)flags;
1707 ((unsigned int *)child_stack)[1] = (uptr)0;
1708 ((unsigned int *)child_stack)[2] = (uptr)fn;
1709 ((unsigned int *)child_stack)[3] = (uptr)arg;
1710 __asm__ __volatile__(
1711 /* %eax = syscall(%eax = SYSCALL(clone),
1712 * %ebx = flags,
1713 * %ecx = child_stack,
1714 * %edx = parent_tidptr,
1715 * %esi = new_tls,
1716 * %edi = child_tidptr)
1717 */
1718
1719 /* Obtain flags */
1720 "movl (%%ecx), %%ebx\n"
1721 /* Do the system call */
1722 "pushl %%ebx\n"
1723 "pushl %%esi\n"
1724 "pushl %%edi\n"
1725 /* Remember the flag value. */
1726 "movl %%ebx, (%%ecx)\n"
1727 "int $0x80\n"
1728 "popl %%edi\n"
1729 "popl %%esi\n"
1730 "popl %%ebx\n"
1731
1732 /* if (%eax != 0)
1733 * return;
1734 */
1735
1736 "test %%eax,%%eax\n"
1737 "jnz 1f\n"
1738
1739 /* terminate the stack frame */
1740 "xorl %%ebp,%%ebp\n"
1741 /* Call FN. */
1742 "call *%%ebx\n"
1743 # ifdef PIC
1744 "call here\n"
1745 "here:\n"
1746 "popl %%ebx\n"
1747 "addl $_GLOBAL_OFFSET_TABLE_+[.-here], %%ebx\n"
1748 # endif
1749 /* Call exit */
1750 "movl %%eax, %%ebx\n"
1751 "movl %2, %%eax\n"
1752 "int $0x80\n"
1753 "1:\n"
1754 : "=a"(res)
1755 : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "c"(child_stack),
1756 "d"(parent_tidptr), "S"(newtls), "D"(child_tidptr)
1757 : "memory");
1758 return res;
1759 }
1760 # elif defined(__arm__)
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1761 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1762 int *parent_tidptr, void *newtls, int *child_tidptr) {
1763 unsigned int res;
1764 if (!fn || !child_stack)
1765 return -EINVAL;
1766 child_stack = (char *)child_stack - 2 * sizeof(unsigned int);
1767 ((unsigned int *)child_stack)[0] = (uptr)fn;
1768 ((unsigned int *)child_stack)[1] = (uptr)arg;
1769 register int r0 __asm__("r0") = flags;
1770 register void *r1 __asm__("r1") = child_stack;
1771 register int *r2 __asm__("r2") = parent_tidptr;
1772 register void *r3 __asm__("r3") = newtls;
1773 register int *r4 __asm__("r4") = child_tidptr;
1774 register int r7 __asm__("r7") = __NR_clone;
1775
1776 # if __ARM_ARCH > 4 || defined(__ARM_ARCH_4T__)
1777 # define ARCH_HAS_BX
1778 # endif
1779 # if __ARM_ARCH > 4
1780 # define ARCH_HAS_BLX
1781 # endif
1782
1783 # ifdef ARCH_HAS_BX
1784 # ifdef ARCH_HAS_BLX
1785 # define BLX(R) "blx " #R "\n"
1786 # else
1787 # define BLX(R) "mov lr, pc; bx " #R "\n"
1788 # endif
1789 # else
1790 # define BLX(R) "mov lr, pc; mov pc," #R "\n"
1791 # endif
1792
1793 __asm__ __volatile__(
1794 /* %r0 = syscall(%r7 = SYSCALL(clone),
1795 * %r0 = flags,
1796 * %r1 = child_stack,
1797 * %r2 = parent_tidptr,
1798 * %r3 = new_tls,
1799 * %r4 = child_tidptr)
1800 */
1801
1802 /* Do the system call */
1803 "swi 0x0\n"
1804
1805 /* if (%r0 != 0)
1806 * return %r0;
1807 */
1808 "cmp r0, #0\n"
1809 "bne 1f\n"
1810
1811 /* In the child, now. Call "fn(arg)". */
1812 "ldr r0, [sp, #4]\n"
1813 "ldr ip, [sp], #8\n" BLX(ip)
1814 /* Call _exit(%r0). */
1815 "mov r7, %7\n"
1816 "swi 0x0\n"
1817 "1:\n"
1818 "mov %0, r0\n"
1819 : "=r"(res)
1820 : "r"(r0), "r"(r1), "r"(r2), "r"(r3), "r"(r4), "r"(r7), "i"(__NR_exit)
1821 : "memory");
1822 return res;
1823 }
1824 # endif
1825 # endif // SANITIZER_LINUX
1826
1827 # if SANITIZER_LINUX
internal_uname(struct utsname * buf)1828 int internal_uname(struct utsname *buf) {
1829 return internal_syscall(SYSCALL(uname), buf);
1830 }
1831 # endif
1832
1833 # if SANITIZER_ANDROID
1834 # if __ANDROID_API__ < 21
1835 extern "C" __attribute__((weak)) int dl_iterate_phdr(
1836 int (*)(struct dl_phdr_info *, size_t, void *), void *);
1837 # endif
1838
dl_iterate_phdr_test_cb(struct dl_phdr_info * info,size_t size,void * data)1839 static int dl_iterate_phdr_test_cb(struct dl_phdr_info *info, size_t size,
1840 void *data) {
1841 // Any name starting with "lib" indicates a bug in L where library base names
1842 // are returned instead of paths.
1843 if (info->dlpi_name && info->dlpi_name[0] == 'l' &&
1844 info->dlpi_name[1] == 'i' && info->dlpi_name[2] == 'b') {
1845 *(bool *)data = true;
1846 return 1;
1847 }
1848 return 0;
1849 }
1850
1851 static atomic_uint32_t android_api_level;
1852
AndroidDetectApiLevelStatic()1853 static AndroidApiLevel AndroidDetectApiLevelStatic() {
1854 # if __ANDROID_API__ <= 19
1855 return ANDROID_KITKAT;
1856 # elif __ANDROID_API__ <= 22
1857 return ANDROID_LOLLIPOP_MR1;
1858 # else
1859 return ANDROID_POST_LOLLIPOP;
1860 # endif
1861 }
1862
AndroidDetectApiLevel()1863 static AndroidApiLevel AndroidDetectApiLevel() {
1864 if (!&dl_iterate_phdr)
1865 return ANDROID_KITKAT; // K or lower
1866 bool base_name_seen = false;
1867 dl_iterate_phdr(dl_iterate_phdr_test_cb, &base_name_seen);
1868 if (base_name_seen)
1869 return ANDROID_LOLLIPOP_MR1; // L MR1
1870 return ANDROID_POST_LOLLIPOP; // post-L
1871 // Plain L (API level 21) is completely broken wrt ASan and not very
1872 // interesting to detect.
1873 }
1874
1875 extern "C" __attribute__((weak)) void *_DYNAMIC;
1876
AndroidGetApiLevel()1877 AndroidApiLevel AndroidGetApiLevel() {
1878 AndroidApiLevel level =
1879 (AndroidApiLevel)atomic_load(&android_api_level, memory_order_relaxed);
1880 if (level)
1881 return level;
1882 level = &_DYNAMIC == nullptr ? AndroidDetectApiLevelStatic()
1883 : AndroidDetectApiLevel();
1884 atomic_store(&android_api_level, level, memory_order_relaxed);
1885 return level;
1886 }
1887
1888 # endif
1889
GetHandleSignalModeImpl(int signum)1890 static HandleSignalMode GetHandleSignalModeImpl(int signum) {
1891 switch (signum) {
1892 case SIGABRT:
1893 return common_flags()->handle_abort;
1894 case SIGILL:
1895 return common_flags()->handle_sigill;
1896 case SIGTRAP:
1897 return common_flags()->handle_sigtrap;
1898 case SIGFPE:
1899 return common_flags()->handle_sigfpe;
1900 case SIGSEGV:
1901 return common_flags()->handle_segv;
1902 case SIGBUS:
1903 return common_flags()->handle_sigbus;
1904 }
1905 return kHandleSignalNo;
1906 }
1907
GetHandleSignalMode(int signum)1908 HandleSignalMode GetHandleSignalMode(int signum) {
1909 HandleSignalMode result = GetHandleSignalModeImpl(signum);
1910 if (result == kHandleSignalYes && !common_flags()->allow_user_segv_handler)
1911 return kHandleSignalExclusive;
1912 return result;
1913 }
1914
1915 # if !SANITIZER_GO
internal_start_thread(void * (* func)(void * arg),void * arg)1916 void *internal_start_thread(void *(*func)(void *arg), void *arg) {
1917 if (&internal_pthread_create == 0)
1918 return nullptr;
1919 // Start the thread with signals blocked, otherwise it can steal user signals.
1920 ScopedBlockSignals block(nullptr);
1921 void *th;
1922 internal_pthread_create(&th, nullptr, func, arg);
1923 return th;
1924 }
1925
internal_join_thread(void * th)1926 void internal_join_thread(void *th) {
1927 if (&internal_pthread_join)
1928 internal_pthread_join(th, nullptr);
1929 }
1930 # else
internal_start_thread(void * (* func)(void *),void * arg)1931 void *internal_start_thread(void *(*func)(void *), void *arg) { return 0; }
1932
internal_join_thread(void * th)1933 void internal_join_thread(void *th) {}
1934 # endif
1935
1936 # if SANITIZER_LINUX && defined(__aarch64__)
1937 // Android headers in the older NDK releases miss this definition.
1938 struct __sanitizer_esr_context {
1939 struct _aarch64_ctx head;
1940 uint64_t esr;
1941 };
1942
Aarch64GetESR(ucontext_t * ucontext,u64 * esr)1943 static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) {
1944 static const u32 kEsrMagic = 0x45535201;
1945 u8 *aux = reinterpret_cast<u8 *>(ucontext->uc_mcontext.__reserved);
1946 while (true) {
1947 _aarch64_ctx *ctx = (_aarch64_ctx *)aux;
1948 if (ctx->size == 0)
1949 break;
1950 if (ctx->magic == kEsrMagic) {
1951 *esr = ((__sanitizer_esr_context *)ctx)->esr;
1952 return true;
1953 }
1954 aux += ctx->size;
1955 }
1956 return false;
1957 }
1958 # elif SANITIZER_FREEBSD && defined(__aarch64__)
1959 // FreeBSD doesn't provide ESR in the ucontext.
Aarch64GetESR(ucontext_t * ucontext,u64 * esr)1960 static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) { return false; }
1961 # endif
1962
1963 using Context = ucontext_t;
1964
GetWriteFlag() const1965 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
1966 Context *ucontext = (Context *)context;
1967 # if defined(__x86_64__) || defined(__i386__)
1968 static const uptr PF_WRITE = 1U << 1;
1969 # if SANITIZER_FREEBSD
1970 uptr err = ucontext->uc_mcontext.mc_err;
1971 # elif SANITIZER_NETBSD
1972 uptr err = ucontext->uc_mcontext.__gregs[_REG_ERR];
1973 # elif SANITIZER_SOLARIS && defined(__i386__)
1974 const int Err = 13;
1975 uptr err = ucontext->uc_mcontext.gregs[Err];
1976 # else
1977 uptr err = ucontext->uc_mcontext.gregs[REG_ERR];
1978 # endif // SANITIZER_FREEBSD
1979 return err & PF_WRITE ? Write : Read;
1980 # elif defined(__mips__)
1981 uint32_t *exception_source;
1982 uint32_t faulty_instruction;
1983 uint32_t op_code;
1984
1985 exception_source = (uint32_t *)ucontext->uc_mcontext.pc;
1986 faulty_instruction = (uint32_t)(*exception_source);
1987
1988 op_code = (faulty_instruction >> 26) & 0x3f;
1989
1990 // FIXME: Add support for FPU, microMIPS, DSP, MSA memory instructions.
1991 switch (op_code) {
1992 case 0x28: // sb
1993 case 0x29: // sh
1994 case 0x2b: // sw
1995 case 0x3f: // sd
1996 # if __mips_isa_rev < 6
1997 case 0x2c: // sdl
1998 case 0x2d: // sdr
1999 case 0x2a: // swl
2000 case 0x2e: // swr
2001 # endif
2002 return SignalContext::Write;
2003
2004 case 0x20: // lb
2005 case 0x24: // lbu
2006 case 0x21: // lh
2007 case 0x25: // lhu
2008 case 0x23: // lw
2009 case 0x27: // lwu
2010 case 0x37: // ld
2011 # if __mips_isa_rev < 6
2012 case 0x1a: // ldl
2013 case 0x1b: // ldr
2014 case 0x22: // lwl
2015 case 0x26: // lwr
2016 # endif
2017 return SignalContext::Read;
2018 # if __mips_isa_rev == 6
2019 case 0x3b: // pcrel
2020 op_code = (faulty_instruction >> 19) & 0x3;
2021 switch (op_code) {
2022 case 0x1: // lwpc
2023 case 0x2: // lwupc
2024 return SignalContext::Read;
2025 }
2026 # endif
2027 }
2028 return SignalContext::Unknown;
2029 # elif defined(__arm__)
2030 static const uptr FSR_WRITE = 1U << 11;
2031 uptr fsr = ucontext->uc_mcontext.error_code;
2032 return fsr & FSR_WRITE ? Write : Read;
2033 # elif defined(__aarch64__)
2034 static const u64 ESR_ELx_WNR = 1U << 6;
2035 u64 esr;
2036 if (!Aarch64GetESR(ucontext, &esr))
2037 return Unknown;
2038 return esr & ESR_ELx_WNR ? Write : Read;
2039 # elif defined(__loongarch__)
2040 // In the musl environment, the Linux kernel uapi sigcontext.h is not
2041 // included in signal.h. To avoid missing the SC_ADDRERR_{RD,WR} macros,
2042 // copy them here. The LoongArch Linux kernel uapi is already stable,
2043 // so there's no need to worry about the value changing.
2044 # ifndef SC_ADDRERR_RD
2045 // Address error was due to memory load
2046 # define SC_ADDRERR_RD (1 << 30)
2047 # endif
2048 # ifndef SC_ADDRERR_WR
2049 // Address error was due to memory store
2050 # define SC_ADDRERR_WR (1 << 31)
2051 # endif
2052 u32 flags = ucontext->uc_mcontext.__flags;
2053 if (flags & SC_ADDRERR_RD)
2054 return SignalContext::Read;
2055 if (flags & SC_ADDRERR_WR)
2056 return SignalContext::Write;
2057 return SignalContext::Unknown;
2058 # elif defined(__sparc__)
2059 // Decode the instruction to determine the access type.
2060 // From OpenSolaris $SRC/uts/sun4/os/trap.c (get_accesstype).
2061 # if SANITIZER_SOLARIS
2062 uptr pc = ucontext->uc_mcontext.gregs[REG_PC];
2063 # else
2064 // Historical BSDism here.
2065 struct sigcontext *scontext = (struct sigcontext *)context;
2066 # if defined(__arch64__)
2067 uptr pc = scontext->sigc_regs.tpc;
2068 # else
2069 uptr pc = scontext->si_regs.pc;
2070 # endif
2071 # endif
2072 u32 instr = *(u32 *)pc;
2073 return (instr >> 21) & 1 ? Write : Read;
2074 # elif defined(__riscv)
2075 # if SANITIZER_FREEBSD
2076 unsigned long pc = ucontext->uc_mcontext.mc_gpregs.gp_sepc;
2077 # else
2078 unsigned long pc = ucontext->uc_mcontext.__gregs[REG_PC];
2079 # endif
2080 unsigned faulty_instruction = *(uint16_t *)pc;
2081
2082 # if defined(__riscv_compressed)
2083 if ((faulty_instruction & 0x3) != 0x3) { // it's a compressed instruction
2084 // set op_bits to the instruction bits [1, 0, 15, 14, 13]
2085 unsigned op_bits =
2086 ((faulty_instruction & 0x3) << 3) | (faulty_instruction >> 13);
2087 unsigned rd = faulty_instruction & 0xF80; // bits 7-11, inclusive
2088 switch (op_bits) {
2089 case 0b10'010: // c.lwsp (rd != x0)
2090 # if __riscv_xlen == 64
2091 case 0b10'011: // c.ldsp (rd != x0)
2092 # endif
2093 return rd ? SignalContext::Read : SignalContext::Unknown;
2094 case 0b00'010: // c.lw
2095 # if __riscv_flen >= 32 && __riscv_xlen == 32
2096 case 0b10'011: // c.flwsp
2097 # endif
2098 # if __riscv_flen >= 32 || __riscv_xlen == 64
2099 case 0b00'011: // c.flw / c.ld
2100 # endif
2101 # if __riscv_flen == 64
2102 case 0b00'001: // c.fld
2103 case 0b10'001: // c.fldsp
2104 # endif
2105 return SignalContext::Read;
2106 case 0b00'110: // c.sw
2107 case 0b10'110: // c.swsp
2108 # if __riscv_flen >= 32 || __riscv_xlen == 64
2109 case 0b00'111: // c.fsw / c.sd
2110 case 0b10'111: // c.fswsp / c.sdsp
2111 # endif
2112 # if __riscv_flen == 64
2113 case 0b00'101: // c.fsd
2114 case 0b10'101: // c.fsdsp
2115 # endif
2116 return SignalContext::Write;
2117 default:
2118 return SignalContext::Unknown;
2119 }
2120 }
2121 # endif
2122
2123 unsigned opcode = faulty_instruction & 0x7f; // lower 7 bits
2124 unsigned funct3 = (faulty_instruction >> 12) & 0x7; // bits 12-14, inclusive
2125 switch (opcode) {
2126 case 0b0000011: // loads
2127 switch (funct3) {
2128 case 0b000: // lb
2129 case 0b001: // lh
2130 case 0b010: // lw
2131 # if __riscv_xlen == 64
2132 case 0b011: // ld
2133 # endif
2134 case 0b100: // lbu
2135 case 0b101: // lhu
2136 return SignalContext::Read;
2137 default:
2138 return SignalContext::Unknown;
2139 }
2140 case 0b0100011: // stores
2141 switch (funct3) {
2142 case 0b000: // sb
2143 case 0b001: // sh
2144 case 0b010: // sw
2145 # if __riscv_xlen == 64
2146 case 0b011: // sd
2147 # endif
2148 return SignalContext::Write;
2149 default:
2150 return SignalContext::Unknown;
2151 }
2152 # if __riscv_flen >= 32
2153 case 0b0000111: // floating-point loads
2154 switch (funct3) {
2155 case 0b010: // flw
2156 # if __riscv_flen == 64
2157 case 0b011: // fld
2158 # endif
2159 return SignalContext::Read;
2160 default:
2161 return SignalContext::Unknown;
2162 }
2163 case 0b0100111: // floating-point stores
2164 switch (funct3) {
2165 case 0b010: // fsw
2166 # if __riscv_flen == 64
2167 case 0b011: // fsd
2168 # endif
2169 return SignalContext::Write;
2170 default:
2171 return SignalContext::Unknown;
2172 }
2173 # endif
2174 default:
2175 return SignalContext::Unknown;
2176 }
2177 # else
2178 (void)ucontext;
2179 return Unknown; // FIXME: Implement.
2180 # endif
2181 }
2182
IsTrueFaultingAddress() const2183 bool SignalContext::IsTrueFaultingAddress() const {
2184 auto si = static_cast<const siginfo_t *>(siginfo);
2185 // SIGSEGV signals without a true fault address have si_code set to 128.
2186 return si->si_signo == SIGSEGV && si->si_code != 128;
2187 }
2188
2189 UNUSED
RegNumToRegName(int reg)2190 static const char *RegNumToRegName(int reg) {
2191 switch (reg) {
2192 # if SANITIZER_LINUX
2193 # if defined(__x86_64__)
2194 case REG_RAX:
2195 return "rax";
2196 case REG_RBX:
2197 return "rbx";
2198 case REG_RCX:
2199 return "rcx";
2200 case REG_RDX:
2201 return "rdx";
2202 case REG_RDI:
2203 return "rdi";
2204 case REG_RSI:
2205 return "rsi";
2206 case REG_RBP:
2207 return "rbp";
2208 case REG_RSP:
2209 return "rsp";
2210 case REG_R8:
2211 return "r8";
2212 case REG_R9:
2213 return "r9";
2214 case REG_R10:
2215 return "r10";
2216 case REG_R11:
2217 return "r11";
2218 case REG_R12:
2219 return "r12";
2220 case REG_R13:
2221 return "r13";
2222 case REG_R14:
2223 return "r14";
2224 case REG_R15:
2225 return "r15";
2226 # elif defined(__i386__)
2227 case REG_EAX:
2228 return "eax";
2229 case REG_EBX:
2230 return "ebx";
2231 case REG_ECX:
2232 return "ecx";
2233 case REG_EDX:
2234 return "edx";
2235 case REG_EDI:
2236 return "edi";
2237 case REG_ESI:
2238 return "esi";
2239 case REG_EBP:
2240 return "ebp";
2241 case REG_ESP:
2242 return "esp";
2243 # endif
2244 # endif
2245 default:
2246 return NULL;
2247 }
2248 return NULL;
2249 }
2250
2251 # if SANITIZER_LINUX
2252 UNUSED
DumpSingleReg(ucontext_t * ctx,int RegNum)2253 static void DumpSingleReg(ucontext_t *ctx, int RegNum) {
2254 const char *RegName = RegNumToRegName(RegNum);
2255 # if defined(__x86_64__)
2256 Printf("%s%s = 0x%016llx ", internal_strlen(RegName) == 2 ? " " : "",
2257 RegName, ctx->uc_mcontext.gregs[RegNum]);
2258 # elif defined(__i386__)
2259 Printf("%s = 0x%08x ", RegName, ctx->uc_mcontext.gregs[RegNum]);
2260 # else
2261 (void)RegName;
2262 # endif
2263 }
2264 # endif
2265
DumpAllRegisters(void * context)2266 void SignalContext::DumpAllRegisters(void *context) {
2267 ucontext_t *ucontext = (ucontext_t *)context;
2268 # if SANITIZER_LINUX
2269 # if defined(__x86_64__)
2270 Report("Register values:\n");
2271 DumpSingleReg(ucontext, REG_RAX);
2272 DumpSingleReg(ucontext, REG_RBX);
2273 DumpSingleReg(ucontext, REG_RCX);
2274 DumpSingleReg(ucontext, REG_RDX);
2275 Printf("\n");
2276 DumpSingleReg(ucontext, REG_RDI);
2277 DumpSingleReg(ucontext, REG_RSI);
2278 DumpSingleReg(ucontext, REG_RBP);
2279 DumpSingleReg(ucontext, REG_RSP);
2280 Printf("\n");
2281 DumpSingleReg(ucontext, REG_R8);
2282 DumpSingleReg(ucontext, REG_R9);
2283 DumpSingleReg(ucontext, REG_R10);
2284 DumpSingleReg(ucontext, REG_R11);
2285 Printf("\n");
2286 DumpSingleReg(ucontext, REG_R12);
2287 DumpSingleReg(ucontext, REG_R13);
2288 DumpSingleReg(ucontext, REG_R14);
2289 DumpSingleReg(ucontext, REG_R15);
2290 Printf("\n");
2291 # elif defined(__i386__)
2292 // Duplication of this report print is caused by partial support
2293 // of register values dumping. In case of unsupported yet architecture let's
2294 // avoid printing 'Register values:' without actual values in the following
2295 // output.
2296 Report("Register values:\n");
2297 DumpSingleReg(ucontext, REG_EAX);
2298 DumpSingleReg(ucontext, REG_EBX);
2299 DumpSingleReg(ucontext, REG_ECX);
2300 DumpSingleReg(ucontext, REG_EDX);
2301 Printf("\n");
2302 DumpSingleReg(ucontext, REG_EDI);
2303 DumpSingleReg(ucontext, REG_ESI);
2304 DumpSingleReg(ucontext, REG_EBP);
2305 DumpSingleReg(ucontext, REG_ESP);
2306 Printf("\n");
2307 # else
2308 (void)ucontext;
2309 # endif
2310 # elif SANITIZER_FREEBSD
2311 # if defined(__x86_64__)
2312 Report("Register values:\n");
2313 Printf("rax = 0x%016lx ", ucontext->uc_mcontext.mc_rax);
2314 Printf("rbx = 0x%016lx ", ucontext->uc_mcontext.mc_rbx);
2315 Printf("rcx = 0x%016lx ", ucontext->uc_mcontext.mc_rcx);
2316 Printf("rdx = 0x%016lx ", ucontext->uc_mcontext.mc_rdx);
2317 Printf("\n");
2318 Printf("rdi = 0x%016lx ", ucontext->uc_mcontext.mc_rdi);
2319 Printf("rsi = 0x%016lx ", ucontext->uc_mcontext.mc_rsi);
2320 Printf("rbp = 0x%016lx ", ucontext->uc_mcontext.mc_rbp);
2321 Printf("rsp = 0x%016lx ", ucontext->uc_mcontext.mc_rsp);
2322 Printf("\n");
2323 Printf(" r8 = 0x%016lx ", ucontext->uc_mcontext.mc_r8);
2324 Printf(" r9 = 0x%016lx ", ucontext->uc_mcontext.mc_r9);
2325 Printf("r10 = 0x%016lx ", ucontext->uc_mcontext.mc_r10);
2326 Printf("r11 = 0x%016lx ", ucontext->uc_mcontext.mc_r11);
2327 Printf("\n");
2328 Printf("r12 = 0x%016lx ", ucontext->uc_mcontext.mc_r12);
2329 Printf("r13 = 0x%016lx ", ucontext->uc_mcontext.mc_r13);
2330 Printf("r14 = 0x%016lx ", ucontext->uc_mcontext.mc_r14);
2331 Printf("r15 = 0x%016lx ", ucontext->uc_mcontext.mc_r15);
2332 Printf("\n");
2333 # elif defined(__i386__)
2334 Report("Register values:\n");
2335 Printf("eax = 0x%08x ", ucontext->uc_mcontext.mc_eax);
2336 Printf("ebx = 0x%08x ", ucontext->uc_mcontext.mc_ebx);
2337 Printf("ecx = 0x%08x ", ucontext->uc_mcontext.mc_ecx);
2338 Printf("edx = 0x%08x ", ucontext->uc_mcontext.mc_edx);
2339 Printf("\n");
2340 Printf("edi = 0x%08x ", ucontext->uc_mcontext.mc_edi);
2341 Printf("esi = 0x%08x ", ucontext->uc_mcontext.mc_esi);
2342 Printf("ebp = 0x%08x ", ucontext->uc_mcontext.mc_ebp);
2343 Printf("esp = 0x%08x ", ucontext->uc_mcontext.mc_esp);
2344 Printf("\n");
2345 # else
2346 (void)ucontext;
2347 # endif
2348 # endif
2349 // FIXME: Implement this for other OSes and architectures.
2350 }
2351
GetPcSpBp(void * context,uptr * pc,uptr * sp,uptr * bp)2352 static void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp) {
2353 # if SANITIZER_NETBSD
2354 // This covers all NetBSD architectures
2355 ucontext_t *ucontext = (ucontext_t *)context;
2356 *pc = _UC_MACHINE_PC(ucontext);
2357 *bp = _UC_MACHINE_FP(ucontext);
2358 *sp = _UC_MACHINE_SP(ucontext);
2359 # elif defined(__arm__)
2360 ucontext_t *ucontext = (ucontext_t *)context;
2361 *pc = ucontext->uc_mcontext.arm_pc;
2362 *bp = ucontext->uc_mcontext.arm_fp;
2363 *sp = ucontext->uc_mcontext.arm_sp;
2364 # elif defined(__aarch64__)
2365 # if SANITIZER_FREEBSD
2366 ucontext_t *ucontext = (ucontext_t *)context;
2367 *pc = ucontext->uc_mcontext.mc_gpregs.gp_elr;
2368 *bp = ucontext->uc_mcontext.mc_gpregs.gp_x[29];
2369 *sp = ucontext->uc_mcontext.mc_gpregs.gp_sp;
2370 # else
2371 ucontext_t *ucontext = (ucontext_t *)context;
2372 *pc = ucontext->uc_mcontext.pc;
2373 *bp = ucontext->uc_mcontext.regs[29];
2374 *sp = ucontext->uc_mcontext.sp;
2375 # endif
2376 # elif defined(__hppa__)
2377 ucontext_t *ucontext = (ucontext_t *)context;
2378 *pc = ucontext->uc_mcontext.sc_iaoq[0];
2379 /* GCC uses %r3 whenever a frame pointer is needed. */
2380 *bp = ucontext->uc_mcontext.sc_gr[3];
2381 *sp = ucontext->uc_mcontext.sc_gr[30];
2382 # elif defined(__x86_64__)
2383 # if SANITIZER_FREEBSD
2384 ucontext_t *ucontext = (ucontext_t *)context;
2385 *pc = ucontext->uc_mcontext.mc_rip;
2386 *bp = ucontext->uc_mcontext.mc_rbp;
2387 *sp = ucontext->uc_mcontext.mc_rsp;
2388 # else
2389 ucontext_t *ucontext = (ucontext_t *)context;
2390 *pc = ucontext->uc_mcontext.gregs[REG_RIP];
2391 *bp = ucontext->uc_mcontext.gregs[REG_RBP];
2392 *sp = ucontext->uc_mcontext.gregs[REG_RSP];
2393 # endif
2394 # elif defined(__i386__)
2395 # if SANITIZER_FREEBSD
2396 ucontext_t *ucontext = (ucontext_t *)context;
2397 *pc = ucontext->uc_mcontext.mc_eip;
2398 *bp = ucontext->uc_mcontext.mc_ebp;
2399 *sp = ucontext->uc_mcontext.mc_esp;
2400 # else
2401 ucontext_t *ucontext = (ucontext_t *)context;
2402 # if SANITIZER_SOLARIS
2403 /* Use the numeric values: the symbolic ones are undefined by llvm
2404 include/llvm/Support/Solaris.h. */
2405 # ifndef REG_EIP
2406 # define REG_EIP 14 // REG_PC
2407 # endif
2408 # ifndef REG_EBP
2409 # define REG_EBP 6 // REG_FP
2410 # endif
2411 # ifndef REG_UESP
2412 # define REG_UESP 17 // REG_SP
2413 # endif
2414 # endif
2415 *pc = ucontext->uc_mcontext.gregs[REG_EIP];
2416 *bp = ucontext->uc_mcontext.gregs[REG_EBP];
2417 *sp = ucontext->uc_mcontext.gregs[REG_UESP];
2418 # endif
2419 # elif defined(__powerpc__) || defined(__powerpc64__)
2420 # if SANITIZER_FREEBSD
2421 ucontext_t *ucontext = (ucontext_t *)context;
2422 *pc = ucontext->uc_mcontext.mc_srr0;
2423 *sp = ucontext->uc_mcontext.mc_frame[1];
2424 *bp = ucontext->uc_mcontext.mc_frame[31];
2425 # else
2426 ucontext_t *ucontext = (ucontext_t *)context;
2427 *pc = ucontext->uc_mcontext.regs->nip;
2428 *sp = ucontext->uc_mcontext.regs->gpr[PT_R1];
2429 // The powerpc{,64}-linux ABIs do not specify r31 as the frame
2430 // pointer, but GCC always uses r31 when we need a frame pointer.
2431 *bp = ucontext->uc_mcontext.regs->gpr[PT_R31];
2432 # endif
2433 # elif defined(__sparc__)
2434 # if defined(__arch64__) || defined(__sparcv9)
2435 # define STACK_BIAS 2047
2436 # else
2437 # define STACK_BIAS 0
2438 # endif
2439 # if SANITIZER_SOLARIS
2440 ucontext_t *ucontext = (ucontext_t *)context;
2441 *pc = ucontext->uc_mcontext.gregs[REG_PC];
2442 *sp = ucontext->uc_mcontext.gregs[REG_O6] + STACK_BIAS;
2443 # else
2444 // Historical BSDism here.
2445 struct sigcontext *scontext = (struct sigcontext *)context;
2446 # if defined(__arch64__)
2447 *pc = scontext->sigc_regs.tpc;
2448 *sp = scontext->sigc_regs.u_regs[14] + STACK_BIAS;
2449 # else
2450 *pc = scontext->si_regs.pc;
2451 *sp = scontext->si_regs.u_regs[14];
2452 # endif
2453 # endif
2454 *bp = (uptr)((uhwptr *)*sp)[14] + STACK_BIAS;
2455 # elif defined(__mips__)
2456 ucontext_t *ucontext = (ucontext_t *)context;
2457 *pc = ucontext->uc_mcontext.pc;
2458 *bp = ucontext->uc_mcontext.gregs[30];
2459 *sp = ucontext->uc_mcontext.gregs[29];
2460 # elif defined(__s390__)
2461 ucontext_t *ucontext = (ucontext_t *)context;
2462 # if defined(__s390x__)
2463 *pc = ucontext->uc_mcontext.psw.addr;
2464 # else
2465 *pc = ucontext->uc_mcontext.psw.addr & 0x7fffffff;
2466 # endif
2467 *bp = ucontext->uc_mcontext.gregs[11];
2468 *sp = ucontext->uc_mcontext.gregs[15];
2469 # elif defined(__riscv)
2470 ucontext_t *ucontext = (ucontext_t *)context;
2471 # if SANITIZER_FREEBSD
2472 *pc = ucontext->uc_mcontext.mc_gpregs.gp_sepc;
2473 *bp = ucontext->uc_mcontext.mc_gpregs.gp_s[0];
2474 *sp = ucontext->uc_mcontext.mc_gpregs.gp_sp;
2475 # else
2476 *pc = ucontext->uc_mcontext.__gregs[REG_PC];
2477 *bp = ucontext->uc_mcontext.__gregs[REG_S0];
2478 *sp = ucontext->uc_mcontext.__gregs[REG_SP];
2479 # endif
2480 # elif defined(__hexagon__)
2481 ucontext_t *ucontext = (ucontext_t *)context;
2482 *pc = ucontext->uc_mcontext.pc;
2483 *bp = ucontext->uc_mcontext.r30;
2484 *sp = ucontext->uc_mcontext.r29;
2485 # elif defined(__loongarch__)
2486 ucontext_t *ucontext = (ucontext_t *)context;
2487 *pc = ucontext->uc_mcontext.__pc;
2488 *bp = ucontext->uc_mcontext.__gregs[22];
2489 *sp = ucontext->uc_mcontext.__gregs[3];
2490 # else
2491 # error "Unsupported arch"
2492 # endif
2493 }
2494
InitPcSpBp()2495 void SignalContext::InitPcSpBp() { GetPcSpBp(context, &pc, &sp, &bp); }
2496
InitializePlatformEarly()2497 void InitializePlatformEarly() {
2498 // Do nothing.
2499 }
2500
CheckASLR()2501 void CheckASLR() {
2502 # if SANITIZER_NETBSD
2503 int mib[3];
2504 int paxflags;
2505 uptr len = sizeof(paxflags);
2506
2507 mib[0] = CTL_PROC;
2508 mib[1] = internal_getpid();
2509 mib[2] = PROC_PID_PAXFLAGS;
2510
2511 if (UNLIKELY(internal_sysctl(mib, 3, &paxflags, &len, NULL, 0) == -1)) {
2512 Printf("sysctl failed\n");
2513 Die();
2514 }
2515
2516 if (UNLIKELY(paxflags & CTL_PROC_PAXFLAGS_ASLR)) {
2517 Printf(
2518 "This sanitizer is not compatible with enabled ASLR.\n"
2519 "To disable ASLR, please run \"paxctl +a %s\" and try again.\n",
2520 GetArgv()[0]);
2521 Die();
2522 }
2523 # elif SANITIZER_FREEBSD
2524 int aslr_status;
2525 int r = internal_procctl(P_PID, 0, PROC_ASLR_STATUS, &aslr_status);
2526 if (UNLIKELY(r == -1)) {
2527 // We're making things less 'dramatic' here since
2528 // the cmd is not necessarily guaranteed to be here
2529 // just yet regarding FreeBSD release
2530 return;
2531 }
2532 if ((aslr_status & PROC_ASLR_ACTIVE) != 0) {
2533 VReport(1,
2534 "This sanitizer is not compatible with enabled ASLR "
2535 "and binaries compiled with PIE\n"
2536 "ASLR will be disabled and the program re-executed.\n");
2537 int aslr_ctl = PROC_ASLR_FORCE_DISABLE;
2538 CHECK_NE(internal_procctl(P_PID, 0, PROC_ASLR_CTL, &aslr_ctl), -1);
2539 ReExec();
2540 }
2541 # elif SANITIZER_PPC64V2
2542 // Disable ASLR for Linux PPC64LE.
2543 int old_personality = personality(0xffffffff);
2544 if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) {
2545 VReport(1,
2546 "WARNING: Program is being run with address space layout "
2547 "randomization (ASLR) enabled which prevents the thread and "
2548 "memory sanitizers from working on powerpc64le.\n"
2549 "ASLR will be disabled and the program re-executed.\n");
2550 CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1);
2551 ReExec();
2552 }
2553 # else
2554 // Do nothing
2555 # endif
2556 }
2557
CheckMPROTECT()2558 void CheckMPROTECT() {
2559 # if SANITIZER_NETBSD
2560 int mib[3];
2561 int paxflags;
2562 uptr len = sizeof(paxflags);
2563
2564 mib[0] = CTL_PROC;
2565 mib[1] = internal_getpid();
2566 mib[2] = PROC_PID_PAXFLAGS;
2567
2568 if (UNLIKELY(internal_sysctl(mib, 3, &paxflags, &len, NULL, 0) == -1)) {
2569 Printf("sysctl failed\n");
2570 Die();
2571 }
2572
2573 if (UNLIKELY(paxflags & CTL_PROC_PAXFLAGS_MPROTECT)) {
2574 Printf("This sanitizer is not compatible with enabled MPROTECT\n");
2575 Die();
2576 }
2577 # else
2578 // Do nothing
2579 # endif
2580 }
2581
CheckNoDeepBind(const char * filename,int flag)2582 void CheckNoDeepBind(const char *filename, int flag) {
2583 # ifdef RTLD_DEEPBIND
2584 if (flag & RTLD_DEEPBIND) {
2585 Report(
2586 "You are trying to dlopen a %s shared library with RTLD_DEEPBIND flag"
2587 " which is incompatible with sanitizer runtime "
2588 "(see https://github.com/google/sanitizers/issues/611 for details"
2589 "). If you want to run %s library under sanitizers please remove "
2590 "RTLD_DEEPBIND from dlopen flags.\n",
2591 filename, filename);
2592 Die();
2593 }
2594 # endif
2595 }
2596
FindAvailableMemoryRange(uptr size,uptr alignment,uptr left_padding,uptr * largest_gap_found,uptr * max_occupied_addr)2597 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
2598 uptr *largest_gap_found,
2599 uptr *max_occupied_addr) {
2600 UNREACHABLE("FindAvailableMemoryRange is not available");
2601 return 0;
2602 }
2603
GetRandom(void * buffer,uptr length,bool blocking)2604 bool GetRandom(void *buffer, uptr length, bool blocking) {
2605 if (!buffer || !length || length > 256)
2606 return false;
2607 # if SANITIZER_USE_GETENTROPY
2608 uptr rnd = getentropy(buffer, length);
2609 int rverrno = 0;
2610 if (internal_iserror(rnd, &rverrno) && rverrno == EFAULT)
2611 return false;
2612 else if (rnd == 0)
2613 return true;
2614 # endif // SANITIZER_USE_GETENTROPY
2615
2616 # if SANITIZER_USE_GETRANDOM
2617 static atomic_uint8_t skip_getrandom_syscall;
2618 if (!atomic_load_relaxed(&skip_getrandom_syscall)) {
2619 // Up to 256 bytes, getrandom will not be interrupted.
2620 uptr res = internal_syscall(SYSCALL(getrandom), buffer, length,
2621 blocking ? 0 : GRND_NONBLOCK);
2622 int rverrno = 0;
2623 if (internal_iserror(res, &rverrno) && rverrno == ENOSYS)
2624 atomic_store_relaxed(&skip_getrandom_syscall, 1);
2625 else if (res == length)
2626 return true;
2627 }
2628 # endif // SANITIZER_USE_GETRANDOM
2629 // Up to 256 bytes, a read off /dev/urandom will not be interrupted.
2630 // blocking is moot here, O_NONBLOCK has no effect when opening /dev/urandom.
2631 uptr fd = internal_open("/dev/urandom", O_RDONLY);
2632 if (internal_iserror(fd))
2633 return false;
2634 uptr res = internal_read(fd, buffer, length);
2635 if (internal_iserror(res))
2636 return false;
2637 internal_close(fd);
2638 return true;
2639 }
2640
2641 } // namespace __sanitizer
2642
2643 #endif
2644