xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_linux.cpp (revision 415efcecd8b80f68e76376ef2b854cb6f5c84b5a)
1 //===-- sanitizer_linux.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements linux-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_platform.h"
15 
16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \
17     SANITIZER_SOLARIS
18 
19 #  include "sanitizer_common.h"
20 #  include "sanitizer_flags.h"
21 #  include "sanitizer_getauxval.h"
22 #  include "sanitizer_internal_defs.h"
23 #  include "sanitizer_libc.h"
24 #  include "sanitizer_linux.h"
25 #  include "sanitizer_mutex.h"
26 #  include "sanitizer_placement_new.h"
27 #  include "sanitizer_procmaps.h"
28 
29 #  if SANITIZER_LINUX && !SANITIZER_GO
30 #    include <asm/param.h>
31 #  endif
32 
33 // For mips64, syscall(__NR_stat) fills the buffer in the 'struct kernel_stat'
34 // format. Struct kernel_stat is defined as 'struct stat' in asm/stat.h. To
35 // access stat from asm/stat.h, without conflicting with definition in
36 // sys/stat.h, we use this trick.  sparc64 is similar, using
37 // syscall(__NR_stat64) and struct kernel_stat64.
38 #  if SANITIZER_LINUX && (SANITIZER_MIPS64 || SANITIZER_SPARC64)
39 #    include <asm/unistd.h>
40 #    include <sys/types.h>
41 #    define stat kernel_stat
42 #    if SANITIZER_SPARC64
43 #      define stat64 kernel_stat64
44 #    endif
45 #    if SANITIZER_GO
46 #      undef st_atime
47 #      undef st_mtime
48 #      undef st_ctime
49 #      define st_atime st_atim
50 #      define st_mtime st_mtim
51 #      define st_ctime st_ctim
52 #    endif
53 #    include <asm/stat.h>
54 #    undef stat
55 #    undef stat64
56 #  endif
57 
58 #  include <dlfcn.h>
59 #  include <errno.h>
60 #  include <fcntl.h>
61 #  include <link.h>
62 #  include <pthread.h>
63 #  include <sched.h>
64 #  include <signal.h>
65 #  include <sys/mman.h>
66 #  if !SANITIZER_SOLARIS
67 #    include <sys/ptrace.h>
68 #  endif
69 #  include <sys/resource.h>
70 #  include <sys/stat.h>
71 #  include <sys/syscall.h>
72 #  include <sys/time.h>
73 #  include <sys/types.h>
74 #  include <ucontext.h>
75 #  include <unistd.h>
76 
77 #  if SANITIZER_LINUX
78 #    include <sys/utsname.h>
79 #  endif
80 
81 #  if SANITIZER_LINUX && !SANITIZER_ANDROID
82 #    include <sys/personality.h>
83 #  endif
84 
85 #  if SANITIZER_LINUX && defined(__loongarch__)
86 #    include <sys/sysmacros.h>
87 #  endif
88 
89 #  if SANITIZER_FREEBSD
90 #    include <machine/atomic.h>
91 #    include <sys/exec.h>
92 #    include <sys/procctl.h>
93 #    include <sys/sysctl.h>
94 extern "C" {
95 // <sys/umtx.h> must be included after <errno.h> and <sys/types.h> on
96 // FreeBSD 9.2 and 10.0.
97 #    include <sys/umtx.h>
98 }
99 #    include <sys/thr.h>
100 #  endif  // SANITIZER_FREEBSD
101 
102 #  if SANITIZER_NETBSD
103 #    include <limits.h>  // For NAME_MAX
104 #    include <sys/exec.h>
105 #    include <sys/sysctl.h>
106 extern struct ps_strings *__ps_strings;
107 #  endif  // SANITIZER_NETBSD
108 
109 #  if SANITIZER_SOLARIS
110 #    include <stdlib.h>
111 #    include <thread.h>
112 #    define environ _environ
113 #  endif
114 
115 extern char **environ;
116 
117 #  if SANITIZER_LINUX
118 // <linux/time.h>
119 struct kernel_timeval {
120   long tv_sec;
121   long tv_usec;
122 };
123 
124 // <linux/futex.h> is broken on some linux distributions.
125 const int FUTEX_WAIT = 0;
126 const int FUTEX_WAKE = 1;
127 const int FUTEX_PRIVATE_FLAG = 128;
128 const int FUTEX_WAIT_PRIVATE = FUTEX_WAIT | FUTEX_PRIVATE_FLAG;
129 const int FUTEX_WAKE_PRIVATE = FUTEX_WAKE | FUTEX_PRIVATE_FLAG;
130 #  endif  // SANITIZER_LINUX
131 
132 // Are we using 32-bit or 64-bit Linux syscalls?
133 // x32 (which defines __x86_64__) has SANITIZER_WORDSIZE == 32
134 // but it still needs to use 64-bit syscalls.
135 #  if SANITIZER_LINUX && (defined(__x86_64__) || defined(__powerpc64__) || \
136                           SANITIZER_WORDSIZE == 64 ||                      \
137                           (defined(__mips__) && _MIPS_SIM == _ABIN32))
138 #    define SANITIZER_LINUX_USES_64BIT_SYSCALLS 1
139 #  else
140 #    define SANITIZER_LINUX_USES_64BIT_SYSCALLS 0
141 #  endif
142 
143 // Note : FreeBSD implemented both Linux and OpenBSD apis.
144 #  if SANITIZER_LINUX && defined(__NR_getrandom)
145 #    if !defined(GRND_NONBLOCK)
146 #      define GRND_NONBLOCK 1
147 #    endif
148 #    define SANITIZER_USE_GETRANDOM 1
149 #  else
150 #    define SANITIZER_USE_GETRANDOM 0
151 #  endif  // SANITIZER_LINUX && defined(__NR_getrandom)
152 
153 #  if SANITIZER_FREEBSD
154 #    define SANITIZER_USE_GETENTROPY 1
155 #  endif
156 
157 namespace __sanitizer {
158 
SetSigProcMask(__sanitizer_sigset_t * set,__sanitizer_sigset_t * oldset)159 void SetSigProcMask(__sanitizer_sigset_t *set, __sanitizer_sigset_t *oldset) {
160   CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, set, oldset));
161 }
162 
163 #  if SANITIZER_LINUX
164 // Deletes the specified signal from newset, if it is not present in oldset
165 // Equivalently: newset[signum] = newset[signum] & oldset[signum]
KeepUnblocked(__sanitizer_sigset_t & newset,__sanitizer_sigset_t & oldset,int signum)166 static void KeepUnblocked(__sanitizer_sigset_t &newset,
167                           __sanitizer_sigset_t &oldset, int signum) {
168   // FIXME: https://github.com/google/sanitizers/issues/1816
169   if (SANITIZER_ANDROID || !internal_sigismember(&oldset, signum))
170     internal_sigdelset(&newset, signum);
171 }
172 #  endif
173 
174 // Block asynchronous signals
BlockSignals(__sanitizer_sigset_t * oldset)175 void BlockSignals(__sanitizer_sigset_t *oldset) {
176   __sanitizer_sigset_t newset;
177   internal_sigfillset(&newset);
178 
179 #  if SANITIZER_LINUX
180   __sanitizer_sigset_t currentset;
181 
182 #    if !SANITIZER_ANDROID
183   // FIXME: https://github.com/google/sanitizers/issues/1816
184   SetSigProcMask(NULL, &currentset);
185 
186   // Glibc uses SIGSETXID signal during setuid call. If this signal is blocked
187   // on any thread, setuid call hangs.
188   // See test/sanitizer_common/TestCases/Linux/setuid.c.
189   KeepUnblocked(newset, currentset, 33);
190 #    endif  // !SANITIZER_ANDROID
191 
192   // Seccomp-BPF-sandboxed processes rely on SIGSYS to handle trapped syscalls.
193   // If this signal is blocked, such calls cannot be handled and the process may
194   // hang.
195   KeepUnblocked(newset, currentset, 31);
196 
197 #    if !SANITIZER_ANDROID
198   // Don't block synchronous signals
199   // but also don't unblock signals that the user had deliberately blocked.
200   // FIXME: https://github.com/google/sanitizers/issues/1816
201   KeepUnblocked(newset, currentset, SIGSEGV);
202   KeepUnblocked(newset, currentset, SIGBUS);
203   KeepUnblocked(newset, currentset, SIGILL);
204   KeepUnblocked(newset, currentset, SIGTRAP);
205   KeepUnblocked(newset, currentset, SIGABRT);
206   KeepUnblocked(newset, currentset, SIGFPE);
207   KeepUnblocked(newset, currentset, SIGPIPE);
208 #    endif  //! SANITIZER_ANDROID
209 
210 #  endif  // SANITIZER_LINUX
211 
212   SetSigProcMask(&newset, oldset);
213 }
214 
ScopedBlockSignals(__sanitizer_sigset_t * copy)215 ScopedBlockSignals::ScopedBlockSignals(__sanitizer_sigset_t *copy) {
216   BlockSignals(&saved_);
217   if (copy)
218     internal_memcpy(copy, &saved_, sizeof(saved_));
219 }
220 
~ScopedBlockSignals()221 ScopedBlockSignals::~ScopedBlockSignals() { SetSigProcMask(&saved_, nullptr); }
222 
223 #  if SANITIZER_LINUX && defined(__x86_64__)
224 #    include "sanitizer_syscall_linux_x86_64.inc"
225 #  elif SANITIZER_LINUX && SANITIZER_RISCV64
226 #    include "sanitizer_syscall_linux_riscv64.inc"
227 #  elif SANITIZER_LINUX && defined(__aarch64__)
228 #    include "sanitizer_syscall_linux_aarch64.inc"
229 #  elif SANITIZER_LINUX && defined(__arm__)
230 #    include "sanitizer_syscall_linux_arm.inc"
231 #  elif SANITIZER_LINUX && defined(__hexagon__)
232 #    include "sanitizer_syscall_linux_hexagon.inc"
233 #  elif SANITIZER_LINUX && SANITIZER_LOONGARCH64
234 #    include "sanitizer_syscall_linux_loongarch64.inc"
235 #  else
236 #    include "sanitizer_syscall_generic.inc"
237 #  endif
238 
239 // --------------- sanitizer_libc.h
240 #  if !SANITIZER_SOLARIS && !SANITIZER_NETBSD
241 #    if !SANITIZER_S390
internal_mmap(void * addr,uptr length,int prot,int flags,int fd,u64 offset)242 uptr internal_mmap(void *addr, uptr length, int prot, int flags, int fd,
243                    u64 offset) {
244 #      if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS
245   return internal_syscall(SYSCALL(mmap), (uptr)addr, length, prot, flags, fd,
246                           offset);
247 #      else
248   // mmap2 specifies file offset in 4096-byte units.
249   CHECK(IsAligned(offset, 4096));
250   return internal_syscall(SYSCALL(mmap2), addr, length, prot, flags, fd,
251                           (OFF_T)(offset / 4096));
252 #      endif
253 }
254 #    endif  // !SANITIZER_S390
255 
internal_munmap(void * addr,uptr length)256 uptr internal_munmap(void *addr, uptr length) {
257   return internal_syscall(SYSCALL(munmap), (uptr)addr, length);
258 }
259 
260 #    if SANITIZER_LINUX
internal_mremap(void * old_address,uptr old_size,uptr new_size,int flags,void * new_address)261 uptr internal_mremap(void *old_address, uptr old_size, uptr new_size, int flags,
262                      void *new_address) {
263   return internal_syscall(SYSCALL(mremap), (uptr)old_address, old_size,
264                           new_size, flags, (uptr)new_address);
265 }
266 #    endif
267 
internal_mprotect(void * addr,uptr length,int prot)268 int internal_mprotect(void *addr, uptr length, int prot) {
269   return internal_syscall(SYSCALL(mprotect), (uptr)addr, length, prot);
270 }
271 
internal_madvise(uptr addr,uptr length,int advice)272 int internal_madvise(uptr addr, uptr length, int advice) {
273   return internal_syscall(SYSCALL(madvise), addr, length, advice);
274 }
275 
internal_close(fd_t fd)276 uptr internal_close(fd_t fd) { return internal_syscall(SYSCALL(close), fd); }
277 
internal_open(const char * filename,int flags)278 uptr internal_open(const char *filename, int flags) {
279 #    if SANITIZER_LINUX
280   return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags);
281 #    else
282   return internal_syscall(SYSCALL(open), (uptr)filename, flags);
283 #    endif
284 }
285 
internal_open(const char * filename,int flags,u32 mode)286 uptr internal_open(const char *filename, int flags, u32 mode) {
287 #    if SANITIZER_LINUX
288   return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags,
289                           mode);
290 #    else
291   return internal_syscall(SYSCALL(open), (uptr)filename, flags, mode);
292 #    endif
293 }
294 
internal_read(fd_t fd,void * buf,uptr count)295 uptr internal_read(fd_t fd, void *buf, uptr count) {
296   sptr res;
297   HANDLE_EINTR(res,
298                (sptr)internal_syscall(SYSCALL(read), fd, (uptr)buf, count));
299   return res;
300 }
301 
internal_write(fd_t fd,const void * buf,uptr count)302 uptr internal_write(fd_t fd, const void *buf, uptr count) {
303   sptr res;
304   HANDLE_EINTR(res,
305                (sptr)internal_syscall(SYSCALL(write), fd, (uptr)buf, count));
306   return res;
307 }
308 
internal_ftruncate(fd_t fd,uptr size)309 uptr internal_ftruncate(fd_t fd, uptr size) {
310   sptr res;
311   HANDLE_EINTR(res,
312                (sptr)internal_syscall(SYSCALL(ftruncate), fd, (OFF_T)size));
313   return res;
314 }
315 
316 #    if !SANITIZER_LINUX_USES_64BIT_SYSCALLS && SANITIZER_LINUX
stat64_to_stat(struct stat64 * in,struct stat * out)317 static void stat64_to_stat(struct stat64 *in, struct stat *out) {
318   internal_memset(out, 0, sizeof(*out));
319   out->st_dev = in->st_dev;
320   out->st_ino = in->st_ino;
321   out->st_mode = in->st_mode;
322   out->st_nlink = in->st_nlink;
323   out->st_uid = in->st_uid;
324   out->st_gid = in->st_gid;
325   out->st_rdev = in->st_rdev;
326   out->st_size = in->st_size;
327   out->st_blksize = in->st_blksize;
328   out->st_blocks = in->st_blocks;
329   out->st_atime = in->st_atime;
330   out->st_mtime = in->st_mtime;
331   out->st_ctime = in->st_ctime;
332 }
333 #    endif
334 
335 #    if SANITIZER_LINUX && defined(__loongarch__)
statx_to_stat(struct statx * in,struct stat * out)336 static void statx_to_stat(struct statx *in, struct stat *out) {
337   internal_memset(out, 0, sizeof(*out));
338   out->st_dev = makedev(in->stx_dev_major, in->stx_dev_minor);
339   out->st_ino = in->stx_ino;
340   out->st_mode = in->stx_mode;
341   out->st_nlink = in->stx_nlink;
342   out->st_uid = in->stx_uid;
343   out->st_gid = in->stx_gid;
344   out->st_rdev = makedev(in->stx_rdev_major, in->stx_rdev_minor);
345   out->st_size = in->stx_size;
346   out->st_blksize = in->stx_blksize;
347   out->st_blocks = in->stx_blocks;
348   out->st_atime = in->stx_atime.tv_sec;
349   out->st_atim.tv_nsec = in->stx_atime.tv_nsec;
350   out->st_mtime = in->stx_mtime.tv_sec;
351   out->st_mtim.tv_nsec = in->stx_mtime.tv_nsec;
352   out->st_ctime = in->stx_ctime.tv_sec;
353   out->st_ctim.tv_nsec = in->stx_ctime.tv_nsec;
354 }
355 #    endif
356 
357 #    if SANITIZER_MIPS64 || SANITIZER_SPARC64
358 #      if SANITIZER_MIPS64
359 typedef struct kernel_stat kstat_t;
360 #      else
361 typedef struct kernel_stat64 kstat_t;
362 #      endif
363 // Undefine compatibility macros from <sys/stat.h>
364 // so that they would not clash with the kernel_stat
365 // st_[a|m|c]time fields
366 #      if !SANITIZER_GO
367 #        undef st_atime
368 #        undef st_mtime
369 #        undef st_ctime
370 #      endif
371 #      if defined(SANITIZER_ANDROID)
372 // Bionic sys/stat.h defines additional macros
373 // for compatibility with the old NDKs and
374 // they clash with the kernel_stat structure
375 // st_[a|m|c]time_nsec fields.
376 #        undef st_atime_nsec
377 #        undef st_mtime_nsec
378 #        undef st_ctime_nsec
379 #      endif
kernel_stat_to_stat(kstat_t * in,struct stat * out)380 static void kernel_stat_to_stat(kstat_t *in, struct stat *out) {
381   internal_memset(out, 0, sizeof(*out));
382   out->st_dev = in->st_dev;
383   out->st_ino = in->st_ino;
384   out->st_mode = in->st_mode;
385   out->st_nlink = in->st_nlink;
386   out->st_uid = in->st_uid;
387   out->st_gid = in->st_gid;
388   out->st_rdev = in->st_rdev;
389   out->st_size = in->st_size;
390   out->st_blksize = in->st_blksize;
391   out->st_blocks = in->st_blocks;
392 #      if defined(__USE_MISC) || defined(__USE_XOPEN2K8) || \
393           defined(SANITIZER_ANDROID)
394   out->st_atim.tv_sec = in->st_atime;
395   out->st_atim.tv_nsec = in->st_atime_nsec;
396   out->st_mtim.tv_sec = in->st_mtime;
397   out->st_mtim.tv_nsec = in->st_mtime_nsec;
398   out->st_ctim.tv_sec = in->st_ctime;
399   out->st_ctim.tv_nsec = in->st_ctime_nsec;
400 #      else
401   out->st_atime = in->st_atime;
402   out->st_atimensec = in->st_atime_nsec;
403   out->st_mtime = in->st_mtime;
404   out->st_mtimensec = in->st_mtime_nsec;
405   out->st_ctime = in->st_ctime;
406   out->st_atimensec = in->st_ctime_nsec;
407 #      endif
408 }
409 #    endif
410 
internal_stat(const char * path,void * buf)411 uptr internal_stat(const char *path, void *buf) {
412 #    if SANITIZER_FREEBSD
413   return internal_syscall(SYSCALL(fstatat), AT_FDCWD, (uptr)path, (uptr)buf, 0);
414 #    elif SANITIZER_LINUX
415 #      if defined(__loongarch__)
416   struct statx bufx;
417   int res = internal_syscall(SYSCALL(statx), AT_FDCWD, (uptr)path,
418                              AT_NO_AUTOMOUNT, STATX_BASIC_STATS, (uptr)&bufx);
419   statx_to_stat(&bufx, (struct stat *)buf);
420   return res;
421 #      elif (SANITIZER_WORDSIZE == 64 || SANITIZER_X32 ||    \
422              (defined(__mips__) && _MIPS_SIM == _ABIN32)) && \
423           !SANITIZER_SPARC
424   return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf,
425                           0);
426 #      elif SANITIZER_SPARC64
427   kstat_t buf64;
428   int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path,
429                              (uptr)&buf64, 0);
430   kernel_stat_to_stat(&buf64, (struct stat *)buf);
431   return res;
432 #      else
433   struct stat64 buf64;
434   int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path,
435                              (uptr)&buf64, 0);
436   stat64_to_stat(&buf64, (struct stat *)buf);
437   return res;
438 #      endif
439 #    else
440   struct stat64 buf64;
441   int res = internal_syscall(SYSCALL(stat64), path, &buf64);
442   stat64_to_stat(&buf64, (struct stat *)buf);
443   return res;
444 #    endif
445 }
446 
internal_lstat(const char * path,void * buf)447 uptr internal_lstat(const char *path, void *buf) {
448 #    if SANITIZER_FREEBSD
449   return internal_syscall(SYSCALL(fstatat), AT_FDCWD, (uptr)path, (uptr)buf,
450                           AT_SYMLINK_NOFOLLOW);
451 #    elif SANITIZER_LINUX
452 #      if defined(__loongarch__)
453   struct statx bufx;
454   int res = internal_syscall(SYSCALL(statx), AT_FDCWD, (uptr)path,
455                              AT_SYMLINK_NOFOLLOW | AT_NO_AUTOMOUNT,
456                              STATX_BASIC_STATS, (uptr)&bufx);
457   statx_to_stat(&bufx, (struct stat *)buf);
458   return res;
459 #      elif (defined(_LP64) || SANITIZER_X32 ||              \
460              (defined(__mips__) && _MIPS_SIM == _ABIN32)) && \
461           !SANITIZER_SPARC
462   return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf,
463                           AT_SYMLINK_NOFOLLOW);
464 #      elif SANITIZER_SPARC64
465   kstat_t buf64;
466   int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path,
467                              (uptr)&buf64, AT_SYMLINK_NOFOLLOW);
468   kernel_stat_to_stat(&buf64, (struct stat *)buf);
469   return res;
470 #      else
471   struct stat64 buf64;
472   int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path,
473                              (uptr)&buf64, AT_SYMLINK_NOFOLLOW);
474   stat64_to_stat(&buf64, (struct stat *)buf);
475   return res;
476 #      endif
477 #    else
478   struct stat64 buf64;
479   int res = internal_syscall(SYSCALL(lstat64), path, &buf64);
480   stat64_to_stat(&buf64, (struct stat *)buf);
481   return res;
482 #    endif
483 }
484 
internal_fstat(fd_t fd,void * buf)485 uptr internal_fstat(fd_t fd, void *buf) {
486 #    if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS
487 #      if SANITIZER_MIPS64
488   // For mips64, fstat syscall fills buffer in the format of kernel_stat
489   kstat_t kbuf;
490   int res = internal_syscall(SYSCALL(fstat), fd, &kbuf);
491   kernel_stat_to_stat(&kbuf, (struct stat *)buf);
492   return res;
493 #      elif SANITIZER_LINUX && SANITIZER_SPARC64
494   // For sparc64, fstat64 syscall fills buffer in the format of kernel_stat64
495   kstat_t kbuf;
496   int res = internal_syscall(SYSCALL(fstat64), fd, &kbuf);
497   kernel_stat_to_stat(&kbuf, (struct stat *)buf);
498   return res;
499 #      elif SANITIZER_LINUX && defined(__loongarch__)
500   struct statx bufx;
501   int res = internal_syscall(SYSCALL(statx), fd, "", AT_EMPTY_PATH,
502                              STATX_BASIC_STATS, (uptr)&bufx);
503   statx_to_stat(&bufx, (struct stat *)buf);
504   return res;
505 #      else
506   return internal_syscall(SYSCALL(fstat), fd, (uptr)buf);
507 #      endif
508 #    else
509   struct stat64 buf64;
510   int res = internal_syscall(SYSCALL(fstat64), fd, &buf64);
511   stat64_to_stat(&buf64, (struct stat *)buf);
512   return res;
513 #    endif
514 }
515 
internal_filesize(fd_t fd)516 uptr internal_filesize(fd_t fd) {
517   struct stat st;
518   if (internal_fstat(fd, &st))
519     return -1;
520   return (uptr)st.st_size;
521 }
522 
internal_dup(int oldfd)523 uptr internal_dup(int oldfd) { return internal_syscall(SYSCALL(dup), oldfd); }
524 
internal_dup2(int oldfd,int newfd)525 uptr internal_dup2(int oldfd, int newfd) {
526 #    if SANITIZER_LINUX
527   return internal_syscall(SYSCALL(dup3), oldfd, newfd, 0);
528 #    else
529   return internal_syscall(SYSCALL(dup2), oldfd, newfd);
530 #    endif
531 }
532 
internal_readlink(const char * path,char * buf,uptr bufsize)533 uptr internal_readlink(const char *path, char *buf, uptr bufsize) {
534 #    if SANITIZER_LINUX
535   return internal_syscall(SYSCALL(readlinkat), AT_FDCWD, (uptr)path, (uptr)buf,
536                           bufsize);
537 #    else
538   return internal_syscall(SYSCALL(readlink), (uptr)path, (uptr)buf, bufsize);
539 #    endif
540 }
541 
internal_unlink(const char * path)542 uptr internal_unlink(const char *path) {
543 #    if SANITIZER_LINUX
544   return internal_syscall(SYSCALL(unlinkat), AT_FDCWD, (uptr)path, 0);
545 #    else
546   return internal_syscall(SYSCALL(unlink), (uptr)path);
547 #    endif
548 }
549 
internal_rename(const char * oldpath,const char * newpath)550 uptr internal_rename(const char *oldpath, const char *newpath) {
551 #    if (defined(__riscv) || defined(__loongarch__)) && defined(__linux__)
552   return internal_syscall(SYSCALL(renameat2), AT_FDCWD, (uptr)oldpath, AT_FDCWD,
553                           (uptr)newpath, 0);
554 #    elif SANITIZER_LINUX
555   return internal_syscall(SYSCALL(renameat), AT_FDCWD, (uptr)oldpath, AT_FDCWD,
556                           (uptr)newpath);
557 #    else
558   return internal_syscall(SYSCALL(rename), (uptr)oldpath, (uptr)newpath);
559 #    endif
560 }
561 
internal_sched_yield()562 uptr internal_sched_yield() { return internal_syscall(SYSCALL(sched_yield)); }
563 
internal_usleep(u64 useconds)564 void internal_usleep(u64 useconds) {
565   struct timespec ts;
566   ts.tv_sec = useconds / 1000000;
567   ts.tv_nsec = (useconds % 1000000) * 1000;
568   internal_syscall(SYSCALL(nanosleep), &ts, &ts);
569 }
570 
internal_execve(const char * filename,char * const argv[],char * const envp[])571 uptr internal_execve(const char *filename, char *const argv[],
572                      char *const envp[]) {
573   return internal_syscall(SYSCALL(execve), (uptr)filename, (uptr)argv,
574                           (uptr)envp);
575 }
576 #  endif  // !SANITIZER_SOLARIS && !SANITIZER_NETBSD
577 
578 #  if !SANITIZER_NETBSD
internal__exit(int exitcode)579 void internal__exit(int exitcode) {
580 #    if SANITIZER_FREEBSD || SANITIZER_SOLARIS
581   internal_syscall(SYSCALL(exit), exitcode);
582 #    else
583   internal_syscall(SYSCALL(exit_group), exitcode);
584 #    endif
585   Die();  // Unreachable.
586 }
587 #  endif  // !SANITIZER_NETBSD
588 
589 // ----------------- sanitizer_common.h
FileExists(const char * filename)590 bool FileExists(const char *filename) {
591   if (ShouldMockFailureToOpen(filename))
592     return false;
593   struct stat st;
594   if (internal_stat(filename, &st))
595     return false;
596   // Sanity check: filename is a regular file.
597   return S_ISREG(st.st_mode);
598 }
599 
DirExists(const char * path)600 bool DirExists(const char *path) {
601   struct stat st;
602   if (internal_stat(path, &st))
603     return false;
604   return S_ISDIR(st.st_mode);
605 }
606 
607 #  if !SANITIZER_NETBSD
GetTid()608 tid_t GetTid() {
609 #    if SANITIZER_FREEBSD
610   long Tid;
611   thr_self(&Tid);
612   return Tid;
613 #    elif SANITIZER_SOLARIS
614   return thr_self();
615 #    else
616   return internal_syscall(SYSCALL(gettid));
617 #    endif
618 }
619 
TgKill(pid_t pid,tid_t tid,int sig)620 int TgKill(pid_t pid, tid_t tid, int sig) {
621 #    if SANITIZER_LINUX
622   return internal_syscall(SYSCALL(tgkill), pid, tid, sig);
623 #    elif SANITIZER_FREEBSD
624   return internal_syscall(SYSCALL(thr_kill2), pid, tid, sig);
625 #    elif SANITIZER_SOLARIS
626   (void)pid;
627   errno = thr_kill(tid, sig);
628   // TgKill is expected to return -1 on error, not an errno.
629   return errno != 0 ? -1 : 0;
630 #    endif
631 }
632 #  endif
633 
634 #  if SANITIZER_GLIBC
NanoTime()635 u64 NanoTime() {
636   kernel_timeval tv;
637   internal_memset(&tv, 0, sizeof(tv));
638   internal_syscall(SYSCALL(gettimeofday), &tv, 0);
639   return (u64)tv.tv_sec * 1000 * 1000 * 1000 + tv.tv_usec * 1000;
640 }
641 // Used by real_clock_gettime.
internal_clock_gettime(__sanitizer_clockid_t clk_id,void * tp)642 uptr internal_clock_gettime(__sanitizer_clockid_t clk_id, void *tp) {
643   return internal_syscall(SYSCALL(clock_gettime), clk_id, tp);
644 }
645 #  elif !SANITIZER_SOLARIS && !SANITIZER_NETBSD
NanoTime()646 u64 NanoTime() {
647   struct timespec ts;
648   clock_gettime(CLOCK_REALTIME, &ts);
649   return (u64)ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
650 }
651 #  endif
652 
653 // Like getenv, but reads env directly from /proc (on Linux) or parses the
654 // 'environ' array (on some others) and does not use libc. This function
655 // should be called first inside __asan_init.
GetEnv(const char * name)656 const char *GetEnv(const char *name) {
657 #  if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_SOLARIS
658   if (::environ != 0) {
659     uptr NameLen = internal_strlen(name);
660     for (char **Env = ::environ; *Env != 0; Env++) {
661       if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
662         return (*Env) + NameLen + 1;
663     }
664   }
665   return 0;  // Not found.
666 #  elif SANITIZER_LINUX
667   static char *environ;
668   static uptr len;
669   static bool inited;
670   if (!inited) {
671     inited = true;
672     uptr environ_size;
673     if (!ReadFileToBuffer("/proc/self/environ", &environ, &environ_size, &len))
674       environ = nullptr;
675   }
676   if (!environ || len == 0)
677     return nullptr;
678   uptr namelen = internal_strlen(name);
679   const char *p = environ;
680   while (*p != '\0') {  // will happen at the \0\0 that terminates the buffer
681     // proc file has the format NAME=value\0NAME=value\0NAME=value\0...
682     const char *endp = (char *)internal_memchr(p, '\0', len - (p - environ));
683     if (!endp)  // this entry isn't NUL terminated
684       return nullptr;
685     else if (!internal_memcmp(p, name, namelen) && p[namelen] == '=')  // Match.
686       return p + namelen + 1;  // point after =
687     p = endp + 1;
688   }
689   return nullptr;  // Not found.
690 #  else
691 #    error "Unsupported platform"
692 #  endif
693 }
694 
695 #  if !SANITIZER_FREEBSD && !SANITIZER_NETBSD && !SANITIZER_GO
696 extern "C" {
697 SANITIZER_WEAK_ATTRIBUTE extern void *__libc_stack_end;
698 }
699 #  endif
700 
701 #  if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
ReadNullSepFileToArray(const char * path,char *** arr,int arr_size)702 static void ReadNullSepFileToArray(const char *path, char ***arr,
703                                    int arr_size) {
704   char *buff;
705   uptr buff_size;
706   uptr buff_len;
707   *arr = (char **)MmapOrDie(arr_size * sizeof(char *), "NullSepFileArray");
708   if (!ReadFileToBuffer(path, &buff, &buff_size, &buff_len, 1024 * 1024)) {
709     (*arr)[0] = nullptr;
710     return;
711   }
712   (*arr)[0] = buff;
713   int count, i;
714   for (count = 1, i = 1;; i++) {
715     if (buff[i] == 0) {
716       if (buff[i + 1] == 0)
717         break;
718       (*arr)[count] = &buff[i + 1];
719       CHECK_LE(count, arr_size - 1);  // FIXME: make this more flexible.
720       count++;
721     }
722   }
723   (*arr)[count] = nullptr;
724 }
725 #  endif
726 
GetArgsAndEnv(char *** argv,char *** envp)727 static void GetArgsAndEnv(char ***argv, char ***envp) {
728 #  if SANITIZER_FREEBSD
729   // On FreeBSD, retrieving the argument and environment arrays is done via the
730   // kern.ps_strings sysctl, which returns a pointer to a structure containing
731   // this information. See also <sys/exec.h>.
732   ps_strings *pss;
733   uptr sz = sizeof(pss);
734   if (internal_sysctlbyname("kern.ps_strings", &pss, &sz, NULL, 0) == -1) {
735     Printf("sysctl kern.ps_strings failed\n");
736     Die();
737   }
738   *argv = pss->ps_argvstr;
739   *envp = pss->ps_envstr;
740 #  elif SANITIZER_NETBSD
741   *argv = __ps_strings->ps_argvstr;
742   *envp = __ps_strings->ps_envstr;
743 #  else  // SANITIZER_FREEBSD
744 #    if !SANITIZER_GO
745   if (&__libc_stack_end) {
746     uptr *stack_end = (uptr *)__libc_stack_end;
747     // Normally argc can be obtained from *stack_end, however, on ARM glibc's
748     // _start clobbers it:
749     // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/arm/start.S;hb=refs/heads/release/2.31/master#l75
750     // Do not special-case ARM and infer argc from argv everywhere.
751     int argc = 0;
752     while (stack_end[argc + 1]) argc++;
753     *argv = (char **)(stack_end + 1);
754     *envp = (char **)(stack_end + argc + 2);
755   } else {
756 #    endif  // !SANITIZER_GO
757     static const int kMaxArgv = 2000, kMaxEnvp = 2000;
758     ReadNullSepFileToArray("/proc/self/cmdline", argv, kMaxArgv);
759     ReadNullSepFileToArray("/proc/self/environ", envp, kMaxEnvp);
760 #    if !SANITIZER_GO
761   }
762 #    endif  // !SANITIZER_GO
763 #  endif    // SANITIZER_FREEBSD
764 }
765 
GetArgv()766 char **GetArgv() {
767   char **argv, **envp;
768   GetArgsAndEnv(&argv, &envp);
769   return argv;
770 }
771 
GetEnviron()772 char **GetEnviron() {
773   char **argv, **envp;
774   GetArgsAndEnv(&argv, &envp);
775   return envp;
776 }
777 
778 #  if !SANITIZER_SOLARIS
FutexWait(atomic_uint32_t * p,u32 cmp)779 void FutexWait(atomic_uint32_t *p, u32 cmp) {
780 #    if SANITIZER_FREEBSD
781   _umtx_op(p, UMTX_OP_WAIT_UINT, cmp, 0, 0);
782 #    elif SANITIZER_NETBSD
783   sched_yield(); /* No userspace futex-like synchronization */
784 #    else
785   internal_syscall(SYSCALL(futex), (uptr)p, FUTEX_WAIT_PRIVATE, cmp, 0, 0, 0);
786 #    endif
787 }
788 
FutexWake(atomic_uint32_t * p,u32 count)789 void FutexWake(atomic_uint32_t *p, u32 count) {
790 #    if SANITIZER_FREEBSD
791   _umtx_op(p, UMTX_OP_WAKE, count, 0, 0);
792 #    elif SANITIZER_NETBSD
793   /* No userspace futex-like synchronization */
794 #    else
795   internal_syscall(SYSCALL(futex), (uptr)p, FUTEX_WAKE_PRIVATE, count, 0, 0, 0);
796 #    endif
797 }
798 
799 #  endif  // !SANITIZER_SOLARIS
800 
801 // ----------------- sanitizer_linux.h
802 // The actual size of this structure is specified by d_reclen.
803 // Note that getdents64 uses a different structure format. We only provide the
804 // 32-bit syscall here.
805 #  if SANITIZER_NETBSD
806 // Not used
807 #  else
808 struct linux_dirent {
809 #    if SANITIZER_X32 || SANITIZER_LINUX
810   u64 d_ino;
811   u64 d_off;
812 #    else
813   unsigned long d_ino;
814   unsigned long d_off;
815 #    endif
816   unsigned short d_reclen;
817 #    if SANITIZER_LINUX
818   unsigned char d_type;
819 #    endif
820   char d_name[256];
821 };
822 #  endif
823 
824 #  if !SANITIZER_SOLARIS && !SANITIZER_NETBSD
825 // Syscall wrappers.
internal_ptrace(int request,int pid,void * addr,void * data)826 uptr internal_ptrace(int request, int pid, void *addr, void *data) {
827   return internal_syscall(SYSCALL(ptrace), request, pid, (uptr)addr,
828                           (uptr)data);
829 }
830 
internal_waitpid(int pid,int * status,int options)831 uptr internal_waitpid(int pid, int *status, int options) {
832   return internal_syscall(SYSCALL(wait4), pid, (uptr)status, options,
833                           0 /* rusage */);
834 }
835 
internal_getpid()836 uptr internal_getpid() { return internal_syscall(SYSCALL(getpid)); }
837 
internal_getppid()838 uptr internal_getppid() { return internal_syscall(SYSCALL(getppid)); }
839 
internal_dlinfo(void * handle,int request,void * p)840 int internal_dlinfo(void *handle, int request, void *p) {
841 #    if SANITIZER_FREEBSD
842   return dlinfo(handle, request, p);
843 #    else
844   UNIMPLEMENTED();
845 #    endif
846 }
847 
internal_getdents(fd_t fd,struct linux_dirent * dirp,unsigned int count)848 uptr internal_getdents(fd_t fd, struct linux_dirent *dirp, unsigned int count) {
849 #    if SANITIZER_FREEBSD
850   return internal_syscall(SYSCALL(getdirentries), fd, (uptr)dirp, count, NULL);
851 #    elif SANITIZER_LINUX
852   return internal_syscall(SYSCALL(getdents64), fd, (uptr)dirp, count);
853 #    else
854   return internal_syscall(SYSCALL(getdents), fd, (uptr)dirp, count);
855 #    endif
856 }
857 
internal_lseek(fd_t fd,OFF_T offset,int whence)858 uptr internal_lseek(fd_t fd, OFF_T offset, int whence) {
859   return internal_syscall(SYSCALL(lseek), fd, offset, whence);
860 }
861 
862 #    if SANITIZER_LINUX
internal_prctl(int option,uptr arg2,uptr arg3,uptr arg4,uptr arg5)863 uptr internal_prctl(int option, uptr arg2, uptr arg3, uptr arg4, uptr arg5) {
864   return internal_syscall(SYSCALL(prctl), option, arg2, arg3, arg4, arg5);
865 }
866 #      if defined(__x86_64__)
867 #        include <asm/unistd_64.h>
868 // Currently internal_arch_prctl() is only needed on x86_64.
internal_arch_prctl(int option,uptr arg2)869 uptr internal_arch_prctl(int option, uptr arg2) {
870   return internal_syscall(__NR_arch_prctl, option, arg2);
871 }
872 #      endif
873 #    endif
874 
internal_sigaltstack(const void * ss,void * oss)875 uptr internal_sigaltstack(const void *ss, void *oss) {
876   return internal_syscall(SYSCALL(sigaltstack), (uptr)ss, (uptr)oss);
877 }
878 
879 extern "C" pid_t __fork(void);
880 
internal_fork()881 int internal_fork() {
882 #    if SANITIZER_LINUX
883 #      if SANITIZER_S390
884   return internal_syscall(SYSCALL(clone), 0, SIGCHLD);
885 #      elif SANITIZER_SPARC
886   // The clone syscall interface on SPARC differs massively from the rest,
887   // so fall back to __fork.
888   return __fork();
889 #      else
890   return internal_syscall(SYSCALL(clone), SIGCHLD, 0);
891 #      endif
892 #    else
893   return internal_syscall(SYSCALL(fork));
894 #    endif
895 }
896 
897 #    if SANITIZER_FREEBSD
internal_sysctl(const int * name,unsigned int namelen,void * oldp,uptr * oldlenp,const void * newp,uptr newlen)898 int internal_sysctl(const int *name, unsigned int namelen, void *oldp,
899                     uptr *oldlenp, const void *newp, uptr newlen) {
900   return internal_syscall(SYSCALL(__sysctl), name, namelen, oldp,
901                           (size_t *)oldlenp, newp, (size_t)newlen);
902 }
903 
internal_sysctlbyname(const char * sname,void * oldp,uptr * oldlenp,const void * newp,uptr newlen)904 int internal_sysctlbyname(const char *sname, void *oldp, uptr *oldlenp,
905                           const void *newp, uptr newlen) {
906   // Note: this function can be called during startup, so we need to avoid
907   // calling any interceptable functions. On FreeBSD >= 1300045 sysctlbyname()
908   // is a real syscall, but for older versions it calls sysctlnametomib()
909   // followed by sysctl(). To avoid calling the intercepted version and
910   // asserting if this happens during startup, call the real sysctlnametomib()
911   // followed by internal_sysctl() if the syscall is not available.
912 #      ifdef SYS___sysctlbyname
913   return internal_syscall(SYSCALL(__sysctlbyname), sname,
914                           internal_strlen(sname), oldp, (size_t *)oldlenp, newp,
915                           (size_t)newlen);
916 #      else
917   static decltype(sysctlnametomib) *real_sysctlnametomib = nullptr;
918   if (!real_sysctlnametomib)
919     real_sysctlnametomib =
920         (decltype(sysctlnametomib) *)dlsym(RTLD_NEXT, "sysctlnametomib");
921   CHECK(real_sysctlnametomib);
922 
923   int oid[CTL_MAXNAME];
924   size_t len = CTL_MAXNAME;
925   if (real_sysctlnametomib(sname, oid, &len) == -1)
926     return (-1);
927   return internal_sysctl(oid, len, oldp, oldlenp, newp, newlen);
928 #      endif
929 }
930 #    endif
931 
932 #    if SANITIZER_LINUX
933 #      define SA_RESTORER 0x04000000
934 // Doesn't set sa_restorer if the caller did not set it, so use with caution
935 //(see below).
internal_sigaction_norestorer(int signum,const void * act,void * oldact)936 int internal_sigaction_norestorer(int signum, const void *act, void *oldact) {
937   __sanitizer_kernel_sigaction_t k_act, k_oldact;
938   internal_memset(&k_act, 0, sizeof(__sanitizer_kernel_sigaction_t));
939   internal_memset(&k_oldact, 0, sizeof(__sanitizer_kernel_sigaction_t));
940   const __sanitizer_sigaction *u_act = (const __sanitizer_sigaction *)act;
941   __sanitizer_sigaction *u_oldact = (__sanitizer_sigaction *)oldact;
942   if (u_act) {
943     k_act.handler = u_act->handler;
944     k_act.sigaction = u_act->sigaction;
945     internal_memcpy(&k_act.sa_mask, &u_act->sa_mask,
946                     sizeof(__sanitizer_kernel_sigset_t));
947     // Without SA_RESTORER kernel ignores the calls (probably returns EINVAL).
948     k_act.sa_flags = u_act->sa_flags | SA_RESTORER;
949     // FIXME: most often sa_restorer is unset, however the kernel requires it
950     // to point to a valid signal restorer that calls the rt_sigreturn syscall.
951     // If sa_restorer passed to the kernel is NULL, the program may crash upon
952     // signal delivery or fail to unwind the stack in the signal handler.
953     // libc implementation of sigaction() passes its own restorer to
954     // rt_sigaction, so we need to do the same (we'll need to reimplement the
955     // restorers; for x86_64 the restorer address can be obtained from
956     // oldact->sa_restorer upon a call to sigaction(xxx, NULL, oldact).
957 #      if !SANITIZER_ANDROID || !SANITIZER_MIPS32
958     k_act.sa_restorer = u_act->sa_restorer;
959 #      endif
960   }
961 
962   uptr result = internal_syscall(SYSCALL(rt_sigaction), (uptr)signum,
963                                  (uptr)(u_act ? &k_act : nullptr),
964                                  (uptr)(u_oldact ? &k_oldact : nullptr),
965                                  (uptr)sizeof(__sanitizer_kernel_sigset_t));
966 
967   if ((result == 0) && u_oldact) {
968     u_oldact->handler = k_oldact.handler;
969     u_oldact->sigaction = k_oldact.sigaction;
970     internal_memcpy(&u_oldact->sa_mask, &k_oldact.sa_mask,
971                     sizeof(__sanitizer_kernel_sigset_t));
972     u_oldact->sa_flags = k_oldact.sa_flags;
973 #      if !SANITIZER_ANDROID || !SANITIZER_MIPS32
974     u_oldact->sa_restorer = k_oldact.sa_restorer;
975 #      endif
976   }
977   return result;
978 }
979 #    endif  // SANITIZER_LINUX
980 
internal_sigprocmask(int how,__sanitizer_sigset_t * set,__sanitizer_sigset_t * oldset)981 uptr internal_sigprocmask(int how, __sanitizer_sigset_t *set,
982                           __sanitizer_sigset_t *oldset) {
983 #    if SANITIZER_FREEBSD
984   return internal_syscall(SYSCALL(sigprocmask), how, set, oldset);
985 #    else
986   __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set;
987   __sanitizer_kernel_sigset_t *k_oldset = (__sanitizer_kernel_sigset_t *)oldset;
988   return internal_syscall(SYSCALL(rt_sigprocmask), (uptr)how, (uptr)k_set,
989                           (uptr)k_oldset, sizeof(__sanitizer_kernel_sigset_t));
990 #    endif
991 }
992 
internal_sigfillset(__sanitizer_sigset_t * set)993 void internal_sigfillset(__sanitizer_sigset_t *set) {
994   internal_memset(set, 0xff, sizeof(*set));
995 }
996 
internal_sigemptyset(__sanitizer_sigset_t * set)997 void internal_sigemptyset(__sanitizer_sigset_t *set) {
998   internal_memset(set, 0, sizeof(*set));
999 }
1000 
1001 #    if SANITIZER_LINUX
internal_sigdelset(__sanitizer_sigset_t * set,int signum)1002 void internal_sigdelset(__sanitizer_sigset_t *set, int signum) {
1003   signum -= 1;
1004   CHECK_GE(signum, 0);
1005   CHECK_LT(signum, sizeof(*set) * 8);
1006   __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set;
1007   const uptr idx = signum / (sizeof(k_set->sig[0]) * 8);
1008   const uptr bit = signum % (sizeof(k_set->sig[0]) * 8);
1009   k_set->sig[idx] &= ~((uptr)1 << bit);
1010 }
1011 
internal_sigismember(__sanitizer_sigset_t * set,int signum)1012 bool internal_sigismember(__sanitizer_sigset_t *set, int signum) {
1013   signum -= 1;
1014   CHECK_GE(signum, 0);
1015   CHECK_LT(signum, sizeof(*set) * 8);
1016   __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set;
1017   const uptr idx = signum / (sizeof(k_set->sig[0]) * 8);
1018   const uptr bit = signum % (sizeof(k_set->sig[0]) * 8);
1019   return k_set->sig[idx] & ((uptr)1 << bit);
1020 }
1021 #    elif SANITIZER_FREEBSD
internal_procctl(int type,int id,int cmd,void * data)1022 uptr internal_procctl(int type, int id, int cmd, void *data) {
1023   return internal_syscall(SYSCALL(procctl), type, id, cmd, data);
1024 }
1025 
internal_sigdelset(__sanitizer_sigset_t * set,int signum)1026 void internal_sigdelset(__sanitizer_sigset_t *set, int signum) {
1027   sigset_t *rset = reinterpret_cast<sigset_t *>(set);
1028   sigdelset(rset, signum);
1029 }
1030 
internal_sigismember(__sanitizer_sigset_t * set,int signum)1031 bool internal_sigismember(__sanitizer_sigset_t *set, int signum) {
1032   sigset_t *rset = reinterpret_cast<sigset_t *>(set);
1033   return sigismember(rset, signum);
1034 }
1035 #    endif
1036 #  endif  // !SANITIZER_SOLARIS
1037 
1038 #  if !SANITIZER_NETBSD
1039 // ThreadLister implementation.
ThreadLister(pid_t pid)1040 ThreadLister::ThreadLister(pid_t pid) : pid_(pid), buffer_(4096) {
1041   char task_directory_path[80];
1042   internal_snprintf(task_directory_path, sizeof(task_directory_path),
1043                     "/proc/%d/task/", pid);
1044   descriptor_ = internal_open(task_directory_path, O_RDONLY | O_DIRECTORY);
1045   if (internal_iserror(descriptor_)) {
1046     Report("Can't open /proc/%d/task for reading.\n", pid);
1047   }
1048 }
1049 
ListThreads(InternalMmapVector<tid_t> * threads)1050 ThreadLister::Result ThreadLister::ListThreads(
1051     InternalMmapVector<tid_t> *threads) {
1052   if (internal_iserror(descriptor_))
1053     return Error;
1054   internal_lseek(descriptor_, 0, SEEK_SET);
1055   threads->clear();
1056 
1057   Result result = Ok;
1058   for (bool first_read = true;; first_read = false) {
1059     // Resize to max capacity if it was downsized by IsAlive.
1060     buffer_.resize(buffer_.capacity());
1061     CHECK_GE(buffer_.size(), 4096);
1062     uptr read = internal_getdents(
1063         descriptor_, (struct linux_dirent *)buffer_.data(), buffer_.size());
1064     if (!read)
1065       return result;
1066     if (internal_iserror(read)) {
1067       Report("Can't read directory entries from /proc/%d/task.\n", pid_);
1068       return Error;
1069     }
1070 
1071     for (uptr begin = (uptr)buffer_.data(), end = begin + read; begin < end;) {
1072       struct linux_dirent *entry = (struct linux_dirent *)begin;
1073       begin += entry->d_reclen;
1074       if (entry->d_ino == 1) {
1075         // Inode 1 is for bad blocks and also can be a reason for early return.
1076         // Should be emitted if kernel tried to output terminating thread.
1077         // See proc_task_readdir implementation in Linux.
1078         result = Incomplete;
1079       }
1080       if (entry->d_ino && *entry->d_name >= '0' && *entry->d_name <= '9')
1081         threads->push_back(internal_atoll(entry->d_name));
1082     }
1083 
1084     // Now we are going to detect short-read or early EOF. In such cases Linux
1085     // can return inconsistent list with missing alive threads.
1086     // Code will just remember that the list can be incomplete but it will
1087     // continue reads to return as much as possible.
1088     if (!first_read) {
1089       // The first one was a short-read by definition.
1090       result = Incomplete;
1091     } else if (read > buffer_.size() - 1024) {
1092       // Read was close to the buffer size. So double the size and assume the
1093       // worst.
1094       buffer_.resize(buffer_.size() * 2);
1095       result = Incomplete;
1096     } else if (!threads->empty() && !IsAlive(threads->back())) {
1097       // Maybe Linux early returned from read on terminated thread (!pid_alive)
1098       // and failed to restore read position.
1099       // See next_tid and proc_task_instantiate in Linux.
1100       result = Incomplete;
1101     }
1102   }
1103 }
1104 
IsAlive(int tid)1105 bool ThreadLister::IsAlive(int tid) {
1106   // /proc/%d/task/%d/status uses same call to detect alive threads as
1107   // proc_task_readdir. See task_state implementation in Linux.
1108   char path[80];
1109   internal_snprintf(path, sizeof(path), "/proc/%d/task/%d/status", pid_, tid);
1110   if (!ReadFileToVector(path, &buffer_) || buffer_.empty())
1111     return false;
1112   buffer_.push_back(0);
1113   static const char kPrefix[] = "\nPPid:";
1114   const char *field = internal_strstr(buffer_.data(), kPrefix);
1115   if (!field)
1116     return false;
1117   field += internal_strlen(kPrefix);
1118   return (int)internal_atoll(field) != 0;
1119 }
1120 
~ThreadLister()1121 ThreadLister::~ThreadLister() {
1122   if (!internal_iserror(descriptor_))
1123     internal_close(descriptor_);
1124 }
1125 #  endif
1126 
1127 #  if SANITIZER_WORDSIZE == 32
1128 // Take care of unusable kernel area in top gigabyte.
GetKernelAreaSize()1129 static uptr GetKernelAreaSize() {
1130 #    if SANITIZER_LINUX && !SANITIZER_X32
1131   const uptr gbyte = 1UL << 30;
1132 
1133   // Firstly check if there are writable segments
1134   // mapped to top gigabyte (e.g. stack).
1135   MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
1136   if (proc_maps.Error())
1137     return 0;
1138   MemoryMappedSegment segment;
1139   while (proc_maps.Next(&segment)) {
1140     if ((segment.end >= 3 * gbyte) && segment.IsWritable())
1141       return 0;
1142   }
1143 
1144 #      if !SANITIZER_ANDROID
1145   // Even if nothing is mapped, top Gb may still be accessible
1146   // if we are running on 64-bit kernel.
1147   // Uname may report misleading results if personality type
1148   // is modified (e.g. under schroot) so check this as well.
1149   struct utsname uname_info;
1150   int pers = personality(0xffffffffUL);
1151   if (!(pers & PER_MASK) && internal_uname(&uname_info) == 0 &&
1152       internal_strstr(uname_info.machine, "64"))
1153     return 0;
1154 #      endif  // SANITIZER_ANDROID
1155 
1156   // Top gigabyte is reserved for kernel.
1157   return gbyte;
1158 #    else
1159   return 0;
1160 #    endif  // SANITIZER_LINUX && !SANITIZER_X32
1161 }
1162 #  endif  // SANITIZER_WORDSIZE == 32
1163 
GetMaxVirtualAddress()1164 uptr GetMaxVirtualAddress() {
1165 #  if SANITIZER_NETBSD && defined(__x86_64__)
1166   return 0x7f7ffffff000ULL;  // (0x00007f8000000000 - PAGE_SIZE)
1167 #  elif SANITIZER_WORDSIZE == 64
1168 #    if defined(__powerpc64__) || defined(__aarch64__) || \
1169         defined(__loongarch__) || SANITIZER_RISCV64
1170   // On PowerPC64 we have two different address space layouts: 44- and 46-bit.
1171   // We somehow need to figure out which one we are using now and choose
1172   // one of 0x00000fffffffffffUL and 0x00003fffffffffffUL.
1173   // Note that with 'ulimit -s unlimited' the stack is moved away from the top
1174   // of the address space, so simply checking the stack address is not enough.
1175   // This should (does) work for both PowerPC64 Endian modes.
1176   // Similarly, aarch64 has multiple address space layouts: 39, 42 and 47-bit.
1177   // loongarch64 also has multiple address space layouts: default is 47-bit.
1178   // RISC-V 64 also has multiple address space layouts: 39, 48 and 57-bit.
1179   return (1ULL << (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1)) - 1;
1180 #    elif SANITIZER_MIPS64
1181   return (1ULL << 40) - 1;  // 0x000000ffffffffffUL;
1182 #    elif defined(__s390x__)
1183   return (1ULL << 53) - 1;  // 0x001fffffffffffffUL;
1184 #    elif defined(__sparc__)
1185   return ~(uptr)0;
1186 #    else
1187   return (1ULL << 47) - 1;  // 0x00007fffffffffffUL;
1188 #    endif
1189 #  else  // SANITIZER_WORDSIZE == 32
1190 #    if defined(__s390__)
1191   return (1ULL << 31) - 1;  // 0x7fffffff;
1192 #    else
1193   return (1ULL << 32) - 1;  // 0xffffffff;
1194 #    endif
1195 #  endif  // SANITIZER_WORDSIZE
1196 }
1197 
GetMaxUserVirtualAddress()1198 uptr GetMaxUserVirtualAddress() {
1199   uptr addr = GetMaxVirtualAddress();
1200 #  if SANITIZER_WORDSIZE == 32 && !defined(__s390__)
1201   if (!common_flags()->full_address_space)
1202     addr -= GetKernelAreaSize();
1203   CHECK_LT(reinterpret_cast<uptr>(&addr), addr);
1204 #  endif
1205   return addr;
1206 }
1207 
1208 #  if !SANITIZER_ANDROID || defined(__aarch64__)
GetPageSize()1209 uptr GetPageSize() {
1210 #    if SANITIZER_LINUX && (defined(__x86_64__) || defined(__i386__)) && \
1211         defined(EXEC_PAGESIZE)
1212   return EXEC_PAGESIZE;
1213 #    elif SANITIZER_FREEBSD || SANITIZER_NETBSD
1214   // Use sysctl as sysconf can trigger interceptors internally.
1215   int pz = 0;
1216   uptr pzl = sizeof(pz);
1217   int mib[2] = {CTL_HW, HW_PAGESIZE};
1218   int rv = internal_sysctl(mib, 2, &pz, &pzl, nullptr, 0);
1219   CHECK_EQ(rv, 0);
1220   return (uptr)pz;
1221 #    elif SANITIZER_USE_GETAUXVAL
1222   return getauxval(AT_PAGESZ);
1223 #    else
1224   return sysconf(_SC_PAGESIZE);  // EXEC_PAGESIZE may not be trustworthy.
1225 #    endif
1226 }
1227 #  endif
1228 
ReadBinaryName(char * buf,uptr buf_len)1229 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
1230 #  if SANITIZER_SOLARIS
1231   const char *default_module_name = getexecname();
1232   CHECK_NE(default_module_name, NULL);
1233   return internal_snprintf(buf, buf_len, "%s", default_module_name);
1234 #  else
1235 #    if SANITIZER_FREEBSD || SANITIZER_NETBSD
1236 #      if SANITIZER_FREEBSD
1237   const int Mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1};
1238 #      else
1239   const int Mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME};
1240 #      endif
1241   const char *default_module_name = "kern.proc.pathname";
1242   uptr Size = buf_len;
1243   bool IsErr =
1244       (internal_sysctl(Mib, ARRAY_SIZE(Mib), buf, &Size, NULL, 0) != 0);
1245   int readlink_error = IsErr ? errno : 0;
1246   uptr module_name_len = Size;
1247 #    else
1248   const char *default_module_name = "/proc/self/exe";
1249   uptr module_name_len = internal_readlink(default_module_name, buf, buf_len);
1250   int readlink_error;
1251   bool IsErr = internal_iserror(module_name_len, &readlink_error);
1252 #    endif
1253   if (IsErr) {
1254     // We can't read binary name for some reason, assume it's unknown.
1255     Report(
1256         "WARNING: reading executable name failed with errno %d, "
1257         "some stack frames may not be symbolized\n",
1258         readlink_error);
1259     module_name_len =
1260         internal_snprintf(buf, buf_len, "%s", default_module_name);
1261     CHECK_LT(module_name_len, buf_len);
1262   }
1263   return module_name_len;
1264 #  endif
1265 }
1266 
ReadLongProcessName(char * buf,uptr buf_len)1267 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
1268 #  if SANITIZER_LINUX
1269   char *tmpbuf;
1270   uptr tmpsize;
1271   uptr tmplen;
1272   if (ReadFileToBuffer("/proc/self/cmdline", &tmpbuf, &tmpsize, &tmplen,
1273                        1024 * 1024)) {
1274     internal_strncpy(buf, tmpbuf, buf_len);
1275     UnmapOrDie(tmpbuf, tmpsize);
1276     return internal_strlen(buf);
1277   }
1278 #  endif
1279   return ReadBinaryName(buf, buf_len);
1280 }
1281 
1282 // Match full names of the form /path/to/base_name{-,.}*
LibraryNameIs(const char * full_name,const char * base_name)1283 bool LibraryNameIs(const char *full_name, const char *base_name) {
1284   const char *name = full_name;
1285   // Strip path.
1286   while (*name != '\0') name++;
1287   while (name > full_name && *name != '/') name--;
1288   if (*name == '/')
1289     name++;
1290   uptr base_name_length = internal_strlen(base_name);
1291   if (internal_strncmp(name, base_name, base_name_length))
1292     return false;
1293   return (name[base_name_length] == '-' || name[base_name_length] == '.');
1294 }
1295 
1296 #  if !SANITIZER_ANDROID
1297 // Call cb for each region mapped by map.
ForEachMappedRegion(link_map * map,void (* cb)(const void *,uptr))1298 void ForEachMappedRegion(link_map *map, void (*cb)(const void *, uptr)) {
1299   CHECK_NE(map, nullptr);
1300 #    if !SANITIZER_FREEBSD
1301   typedef ElfW(Phdr) Elf_Phdr;
1302   typedef ElfW(Ehdr) Elf_Ehdr;
1303 #    endif  // !SANITIZER_FREEBSD
1304   char *base = (char *)map->l_addr;
1305   Elf_Ehdr *ehdr = (Elf_Ehdr *)base;
1306   char *phdrs = base + ehdr->e_phoff;
1307   char *phdrs_end = phdrs + ehdr->e_phnum * ehdr->e_phentsize;
1308 
1309   // Find the segment with the minimum base so we can "relocate" the p_vaddr
1310   // fields.  Typically ET_DYN objects (DSOs) have base of zero and ET_EXEC
1311   // objects have a non-zero base.
1312   uptr preferred_base = (uptr)-1;
1313   for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) {
1314     Elf_Phdr *phdr = (Elf_Phdr *)iter;
1315     if (phdr->p_type == PT_LOAD && preferred_base > (uptr)phdr->p_vaddr)
1316       preferred_base = (uptr)phdr->p_vaddr;
1317   }
1318 
1319   // Compute the delta from the real base to get a relocation delta.
1320   sptr delta = (uptr)base - preferred_base;
1321   // Now we can figure out what the loader really mapped.
1322   for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) {
1323     Elf_Phdr *phdr = (Elf_Phdr *)iter;
1324     if (phdr->p_type == PT_LOAD) {
1325       uptr seg_start = phdr->p_vaddr + delta;
1326       uptr seg_end = seg_start + phdr->p_memsz;
1327       // None of these values are aligned.  We consider the ragged edges of the
1328       // load command as defined, since they are mapped from the file.
1329       seg_start = RoundDownTo(seg_start, GetPageSizeCached());
1330       seg_end = RoundUpTo(seg_end, GetPageSizeCached());
1331       cb((void *)seg_start, seg_end - seg_start);
1332     }
1333   }
1334 }
1335 #  endif
1336 
1337 #  if SANITIZER_LINUX
1338 #    if defined(__x86_64__)
1339 // We cannot use glibc's clone wrapper, because it messes with the child
1340 // task's TLS. It writes the PID and TID of the child task to its thread
1341 // descriptor, but in our case the child task shares the thread descriptor with
1342 // the parent (because we don't know how to allocate a new thread
1343 // descriptor to keep glibc happy). So the stock version of clone(), when
1344 // used with CLONE_VM, would end up corrupting the parent's thread descriptor.
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1345 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1346                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1347   long long res;
1348   if (!fn || !child_stack)
1349     return -EINVAL;
1350   CHECK_EQ(0, (uptr)child_stack % 16);
1351   child_stack = (char *)child_stack - 2 * sizeof(unsigned long long);
1352   ((unsigned long long *)child_stack)[0] = (uptr)fn;
1353   ((unsigned long long *)child_stack)[1] = (uptr)arg;
1354   register void *r8 __asm__("r8") = newtls;
1355   register int *r10 __asm__("r10") = child_tidptr;
1356   __asm__ __volatile__(
1357       /* %rax = syscall(%rax = SYSCALL(clone),
1358        *                %rdi = flags,
1359        *                %rsi = child_stack,
1360        *                %rdx = parent_tidptr,
1361        *                %r8  = new_tls,
1362        *                %r10 = child_tidptr)
1363        */
1364       "syscall\n"
1365 
1366       /* if (%rax != 0)
1367        *   return;
1368        */
1369       "testq  %%rax,%%rax\n"
1370       "jnz    1f\n"
1371 
1372       /* In the child. Terminate unwind chain. */
1373       // XXX: We should also terminate the CFI unwind chain
1374       // here. Unfortunately clang 3.2 doesn't support the
1375       // necessary CFI directives, so we skip that part.
1376       "xorq   %%rbp,%%rbp\n"
1377 
1378       /* Call "fn(arg)". */
1379       "popq   %%rax\n"
1380       "popq   %%rdi\n"
1381       "call   *%%rax\n"
1382 
1383       /* Call _exit(%rax). */
1384       "movq   %%rax,%%rdi\n"
1385       "movq   %2,%%rax\n"
1386       "syscall\n"
1387 
1388       /* Return to parent. */
1389       "1:\n"
1390       : "=a"(res)
1391       : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "S"(child_stack), "D"(flags),
1392         "d"(parent_tidptr), "r"(r8), "r"(r10)
1393       : "memory", "r11", "rcx");
1394   return res;
1395 }
1396 #    elif defined(__mips__)
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1397 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1398                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1399   long long res;
1400   if (!fn || !child_stack)
1401     return -EINVAL;
1402   CHECK_EQ(0, (uptr)child_stack % 16);
1403   child_stack = (char *)child_stack - 2 * sizeof(unsigned long long);
1404   ((unsigned long long *)child_stack)[0] = (uptr)fn;
1405   ((unsigned long long *)child_stack)[1] = (uptr)arg;
1406   register void *a3 __asm__("$7") = newtls;
1407   register int *a4 __asm__("$8") = child_tidptr;
1408   // We don't have proper CFI directives here because it requires alot of code
1409   // for very marginal benefits.
1410   __asm__ __volatile__(
1411       /* $v0 = syscall($v0 = __NR_clone,
1412        * $a0 = flags,
1413        * $a1 = child_stack,
1414        * $a2 = parent_tidptr,
1415        * $a3 = new_tls,
1416        * $a4 = child_tidptr)
1417        */
1418       ".cprestore 16;\n"
1419       "move $4,%1;\n"
1420       "move $5,%2;\n"
1421       "move $6,%3;\n"
1422       "move $7,%4;\n"
1423   /* Store the fifth argument on stack
1424    * if we are using 32-bit abi.
1425    */
1426 #      if SANITIZER_WORDSIZE == 32
1427       "lw %5,16($29);\n"
1428 #      else
1429       "move $8,%5;\n"
1430 #      endif
1431       "li $2,%6;\n"
1432       "syscall;\n"
1433 
1434       /* if ($v0 != 0)
1435        * return;
1436        */
1437       "bnez $2,1f;\n"
1438 
1439   /* Call "fn(arg)". */
1440 #      if SANITIZER_WORDSIZE == 32
1441 #        ifdef __BIG_ENDIAN__
1442       "lw $25,4($29);\n"
1443       "lw $4,12($29);\n"
1444 #        else
1445       "lw $25,0($29);\n"
1446       "lw $4,8($29);\n"
1447 #        endif
1448 #      else
1449       "ld $25,0($29);\n"
1450       "ld $4,8($29);\n"
1451 #      endif
1452       "jal $25;\n"
1453 
1454       /* Call _exit($v0). */
1455       "move $4,$2;\n"
1456       "li $2,%7;\n"
1457       "syscall;\n"
1458 
1459       /* Return to parent. */
1460       "1:\n"
1461       : "=r"(res)
1462       : "r"(flags), "r"(child_stack), "r"(parent_tidptr), "r"(a3), "r"(a4),
1463         "i"(__NR_clone), "i"(__NR_exit)
1464       : "memory", "$29");
1465   return res;
1466 }
1467 #    elif SANITIZER_RISCV64
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1468 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1469                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1470   if (!fn || !child_stack)
1471     return -EINVAL;
1472 
1473   CHECK_EQ(0, (uptr)child_stack % 16);
1474 
1475   register int res __asm__("a0");
1476   register int __flags __asm__("a0") = flags;
1477   register void *__stack __asm__("a1") = child_stack;
1478   register int *__ptid __asm__("a2") = parent_tidptr;
1479   register void *__tls __asm__("a3") = newtls;
1480   register int *__ctid __asm__("a4") = child_tidptr;
1481   register int (*__fn)(void *) __asm__("a5") = fn;
1482   register void *__arg __asm__("a6") = arg;
1483   register int nr_clone __asm__("a7") = __NR_clone;
1484 
1485   __asm__ __volatile__(
1486       "ecall\n"
1487 
1488       /* if (a0 != 0)
1489        *   return a0;
1490        */
1491       "bnez a0, 1f\n"
1492 
1493       // In the child, now. Call "fn(arg)".
1494       "mv a0, a6\n"
1495       "jalr a5\n"
1496 
1497       // Call _exit(a0).
1498       "addi a7, zero, %9\n"
1499       "ecall\n"
1500       "1:\n"
1501 
1502       : "=r"(res)
1503       : "0"(__flags), "r"(__stack), "r"(__ptid), "r"(__tls), "r"(__ctid),
1504         "r"(__fn), "r"(__arg), "r"(nr_clone), "i"(__NR_exit)
1505       : "memory");
1506   return res;
1507 }
1508 #    elif defined(__aarch64__)
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1509 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1510                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1511   register long long res __asm__("x0");
1512   if (!fn || !child_stack)
1513     return -EINVAL;
1514   CHECK_EQ(0, (uptr)child_stack % 16);
1515   child_stack = (char *)child_stack - 2 * sizeof(unsigned long long);
1516   ((unsigned long long *)child_stack)[0] = (uptr)fn;
1517   ((unsigned long long *)child_stack)[1] = (uptr)arg;
1518 
1519   register int (*__fn)(void *) __asm__("x0") = fn;
1520   register void *__stack __asm__("x1") = child_stack;
1521   register int __flags __asm__("x2") = flags;
1522   register void *__arg __asm__("x3") = arg;
1523   register int *__ptid __asm__("x4") = parent_tidptr;
1524   register void *__tls __asm__("x5") = newtls;
1525   register int *__ctid __asm__("x6") = child_tidptr;
1526 
1527   __asm__ __volatile__(
1528       "mov x0,x2\n" /* flags  */
1529       "mov x2,x4\n" /* ptid  */
1530       "mov x3,x5\n" /* tls  */
1531       "mov x4,x6\n" /* ctid  */
1532       "mov x8,%9\n" /* clone  */
1533 
1534       "svc 0x0\n"
1535 
1536       /* if (%r0 != 0)
1537        *   return %r0;
1538        */
1539       "cmp x0, #0\n"
1540       "bne 1f\n"
1541 
1542       /* In the child, now. Call "fn(arg)". */
1543       "ldp x1, x0, [sp], #16\n"
1544       "blr x1\n"
1545 
1546       /* Call _exit(%r0).  */
1547       "mov x8, %10\n"
1548       "svc 0x0\n"
1549       "1:\n"
1550 
1551       : "=r"(res)
1552       : "i"(-EINVAL), "r"(__fn), "r"(__stack), "r"(__flags), "r"(__arg),
1553         "r"(__ptid), "r"(__tls), "r"(__ctid), "i"(__NR_clone), "i"(__NR_exit)
1554       : "x30", "memory");
1555   return res;
1556 }
1557 #    elif SANITIZER_LOONGARCH64
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1558 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1559                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1560   if (!fn || !child_stack)
1561     return -EINVAL;
1562 
1563   CHECK_EQ(0, (uptr)child_stack % 16);
1564 
1565   register int res __asm__("$a0");
1566   register int __flags __asm__("$a0") = flags;
1567   register void *__stack __asm__("$a1") = child_stack;
1568   register int *__ptid __asm__("$a2") = parent_tidptr;
1569   register int *__ctid __asm__("$a3") = child_tidptr;
1570   register void *__tls __asm__("$a4") = newtls;
1571   register int (*__fn)(void *) __asm__("$a5") = fn;
1572   register void *__arg __asm__("$a6") = arg;
1573   register int nr_clone __asm__("$a7") = __NR_clone;
1574 
1575   __asm__ __volatile__(
1576       "syscall 0\n"
1577 
1578       // if ($a0 != 0)
1579       //   return $a0;
1580       "bnez $a0, 1f\n"
1581 
1582       // In the child, now. Call "fn(arg)".
1583       "move $a0, $a6\n"
1584       "jirl $ra, $a5, 0\n"
1585 
1586       // Call _exit($a0).
1587       "addi.d $a7, $zero, %9\n"
1588       "syscall 0\n"
1589 
1590       "1:\n"
1591 
1592       : "=r"(res)
1593       : "0"(__flags), "r"(__stack), "r"(__ptid), "r"(__ctid), "r"(__tls),
1594         "r"(__fn), "r"(__arg), "r"(nr_clone), "i"(__NR_exit)
1595       : "memory", "$t0", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7",
1596         "$t8");
1597   return res;
1598 }
1599 #    elif defined(__powerpc64__)
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1600 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1601                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1602   long long res;
1603 // Stack frame structure.
1604 #      if SANITIZER_PPC64V1
1605   //   Back chain == 0        (SP + 112)
1606   // Frame (112 bytes):
1607   //   Parameter save area    (SP + 48), 8 doublewords
1608   //   TOC save area          (SP + 40)
1609   //   Link editor doubleword (SP + 32)
1610   //   Compiler doubleword    (SP + 24)
1611   //   LR save area           (SP + 16)
1612   //   CR save area           (SP + 8)
1613   //   Back chain             (SP + 0)
1614 #        define FRAME_SIZE 112
1615 #        define FRAME_TOC_SAVE_OFFSET 40
1616 #      elif SANITIZER_PPC64V2
1617   //   Back chain == 0        (SP + 32)
1618   // Frame (32 bytes):
1619   //   TOC save area          (SP + 24)
1620   //   LR save area           (SP + 16)
1621   //   CR save area           (SP + 8)
1622   //   Back chain             (SP + 0)
1623 #        define FRAME_SIZE 32
1624 #        define FRAME_TOC_SAVE_OFFSET 24
1625 #      else
1626 #        error "Unsupported PPC64 ABI"
1627 #      endif
1628   if (!fn || !child_stack)
1629     return -EINVAL;
1630   CHECK_EQ(0, (uptr)child_stack % 16);
1631 
1632   register int (*__fn)(void *) __asm__("r3") = fn;
1633   register void *__cstack __asm__("r4") = child_stack;
1634   register int __flags __asm__("r5") = flags;
1635   register void *__arg __asm__("r6") = arg;
1636   register int *__ptidptr __asm__("r7") = parent_tidptr;
1637   register void *__newtls __asm__("r8") = newtls;
1638   register int *__ctidptr __asm__("r9") = child_tidptr;
1639 
1640   __asm__ __volatile__(
1641       /* fn and arg are saved across the syscall */
1642       "mr 28, %5\n\t"
1643       "mr 27, %8\n\t"
1644 
1645       /* syscall
1646         r0 == __NR_clone
1647         r3 == flags
1648         r4 == child_stack
1649         r5 == parent_tidptr
1650         r6 == newtls
1651         r7 == child_tidptr */
1652       "mr 3, %7\n\t"
1653       "mr 5, %9\n\t"
1654       "mr 6, %10\n\t"
1655       "mr 7, %11\n\t"
1656       "li 0, %3\n\t"
1657       "sc\n\t"
1658 
1659       /* Test if syscall was successful */
1660       "cmpdi  cr1, 3, 0\n\t"
1661       "crandc cr1*4+eq, cr1*4+eq, cr0*4+so\n\t"
1662       "bne-   cr1, 1f\n\t"
1663 
1664       /* Set up stack frame */
1665       "li    29, 0\n\t"
1666       "stdu  29, -8(1)\n\t"
1667       "stdu  1, -%12(1)\n\t"
1668       /* Do the function call */
1669       "std   2, %13(1)\n\t"
1670 #      if SANITIZER_PPC64V1
1671       "ld    0, 0(28)\n\t"
1672       "ld    2, 8(28)\n\t"
1673       "mtctr 0\n\t"
1674 #      elif SANITIZER_PPC64V2
1675       "mr    12, 28\n\t"
1676       "mtctr 12\n\t"
1677 #      else
1678 #        error "Unsupported PPC64 ABI"
1679 #      endif
1680       "mr    3, 27\n\t"
1681       "bctrl\n\t"
1682       "ld    2, %13(1)\n\t"
1683 
1684       /* Call _exit(r3) */
1685       "li 0, %4\n\t"
1686       "sc\n\t"
1687 
1688       /* Return to parent */
1689       "1:\n\t"
1690       "mr %0, 3\n\t"
1691       : "=r"(res)
1692       : "0"(-1), "i"(EINVAL), "i"(__NR_clone), "i"(__NR_exit), "r"(__fn),
1693         "r"(__cstack), "r"(__flags), "r"(__arg), "r"(__ptidptr), "r"(__newtls),
1694         "r"(__ctidptr), "i"(FRAME_SIZE), "i"(FRAME_TOC_SAVE_OFFSET)
1695       : "cr0", "cr1", "memory", "ctr", "r0", "r27", "r28", "r29");
1696   return res;
1697 }
1698 #    elif defined(__i386__)
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1699 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1700                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1701   int res;
1702   if (!fn || !child_stack)
1703     return -EINVAL;
1704   CHECK_EQ(0, (uptr)child_stack % 16);
1705   child_stack = (char *)child_stack - 7 * sizeof(unsigned int);
1706   ((unsigned int *)child_stack)[0] = (uptr)flags;
1707   ((unsigned int *)child_stack)[1] = (uptr)0;
1708   ((unsigned int *)child_stack)[2] = (uptr)fn;
1709   ((unsigned int *)child_stack)[3] = (uptr)arg;
1710   __asm__ __volatile__(
1711       /* %eax = syscall(%eax = SYSCALL(clone),
1712        *                %ebx = flags,
1713        *                %ecx = child_stack,
1714        *                %edx = parent_tidptr,
1715        *                %esi  = new_tls,
1716        *                %edi = child_tidptr)
1717        */
1718 
1719       /* Obtain flags */
1720       "movl    (%%ecx), %%ebx\n"
1721       /* Do the system call */
1722       "pushl   %%ebx\n"
1723       "pushl   %%esi\n"
1724       "pushl   %%edi\n"
1725       /* Remember the flag value.  */
1726       "movl    %%ebx, (%%ecx)\n"
1727       "int     $0x80\n"
1728       "popl    %%edi\n"
1729       "popl    %%esi\n"
1730       "popl    %%ebx\n"
1731 
1732       /* if (%eax != 0)
1733        *   return;
1734        */
1735 
1736       "test    %%eax,%%eax\n"
1737       "jnz    1f\n"
1738 
1739       /* terminate the stack frame */
1740       "xorl   %%ebp,%%ebp\n"
1741       /* Call FN. */
1742       "call    *%%ebx\n"
1743 #      ifdef PIC
1744       "call    here\n"
1745       "here:\n"
1746       "popl    %%ebx\n"
1747       "addl    $_GLOBAL_OFFSET_TABLE_+[.-here], %%ebx\n"
1748 #      endif
1749       /* Call exit */
1750       "movl    %%eax, %%ebx\n"
1751       "movl    %2, %%eax\n"
1752       "int     $0x80\n"
1753       "1:\n"
1754       : "=a"(res)
1755       : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "c"(child_stack),
1756         "d"(parent_tidptr), "S"(newtls), "D"(child_tidptr)
1757       : "memory");
1758   return res;
1759 }
1760 #    elif defined(__arm__)
internal_clone(int (* fn)(void *),void * child_stack,int flags,void * arg,int * parent_tidptr,void * newtls,int * child_tidptr)1761 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1762                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1763   unsigned int res;
1764   if (!fn || !child_stack)
1765     return -EINVAL;
1766   child_stack = (char *)child_stack - 2 * sizeof(unsigned int);
1767   ((unsigned int *)child_stack)[0] = (uptr)fn;
1768   ((unsigned int *)child_stack)[1] = (uptr)arg;
1769   register int r0 __asm__("r0") = flags;
1770   register void *r1 __asm__("r1") = child_stack;
1771   register int *r2 __asm__("r2") = parent_tidptr;
1772   register void *r3 __asm__("r3") = newtls;
1773   register int *r4 __asm__("r4") = child_tidptr;
1774   register int r7 __asm__("r7") = __NR_clone;
1775 
1776 #      if __ARM_ARCH > 4 || defined(__ARM_ARCH_4T__)
1777 #        define ARCH_HAS_BX
1778 #      endif
1779 #      if __ARM_ARCH > 4
1780 #        define ARCH_HAS_BLX
1781 #      endif
1782 
1783 #      ifdef ARCH_HAS_BX
1784 #        ifdef ARCH_HAS_BLX
1785 #          define BLX(R) "blx " #R "\n"
1786 #        else
1787 #          define BLX(R) "mov lr, pc; bx " #R "\n"
1788 #        endif
1789 #      else
1790 #        define BLX(R) "mov lr, pc; mov pc," #R "\n"
1791 #      endif
1792 
1793   __asm__ __volatile__(
1794       /* %r0 = syscall(%r7 = SYSCALL(clone),
1795        *               %r0 = flags,
1796        *               %r1 = child_stack,
1797        *               %r2 = parent_tidptr,
1798        *               %r3  = new_tls,
1799        *               %r4 = child_tidptr)
1800        */
1801 
1802       /* Do the system call */
1803       "swi 0x0\n"
1804 
1805       /* if (%r0 != 0)
1806        *   return %r0;
1807        */
1808       "cmp r0, #0\n"
1809       "bne 1f\n"
1810 
1811       /* In the child, now. Call "fn(arg)". */
1812       "ldr r0, [sp, #4]\n"
1813       "ldr ip, [sp], #8\n" BLX(ip)
1814       /* Call _exit(%r0). */
1815       "mov r7, %7\n"
1816       "swi 0x0\n"
1817       "1:\n"
1818       "mov %0, r0\n"
1819       : "=r"(res)
1820       : "r"(r0), "r"(r1), "r"(r2), "r"(r3), "r"(r4), "r"(r7), "i"(__NR_exit)
1821       : "memory");
1822   return res;
1823 }
1824 #    endif
1825 #  endif  // SANITIZER_LINUX
1826 
1827 #  if SANITIZER_LINUX
internal_uname(struct utsname * buf)1828 int internal_uname(struct utsname *buf) {
1829   return internal_syscall(SYSCALL(uname), buf);
1830 }
1831 #  endif
1832 
1833 #  if SANITIZER_ANDROID
1834 #    if __ANDROID_API__ < 21
1835 extern "C" __attribute__((weak)) int dl_iterate_phdr(
1836     int (*)(struct dl_phdr_info *, size_t, void *), void *);
1837 #    endif
1838 
dl_iterate_phdr_test_cb(struct dl_phdr_info * info,size_t size,void * data)1839 static int dl_iterate_phdr_test_cb(struct dl_phdr_info *info, size_t size,
1840                                    void *data) {
1841   // Any name starting with "lib" indicates a bug in L where library base names
1842   // are returned instead of paths.
1843   if (info->dlpi_name && info->dlpi_name[0] == 'l' &&
1844       info->dlpi_name[1] == 'i' && info->dlpi_name[2] == 'b') {
1845     *(bool *)data = true;
1846     return 1;
1847   }
1848   return 0;
1849 }
1850 
1851 static atomic_uint32_t android_api_level;
1852 
AndroidDetectApiLevelStatic()1853 static AndroidApiLevel AndroidDetectApiLevelStatic() {
1854 #    if __ANDROID_API__ <= 19
1855   return ANDROID_KITKAT;
1856 #    elif __ANDROID_API__ <= 22
1857   return ANDROID_LOLLIPOP_MR1;
1858 #    else
1859   return ANDROID_POST_LOLLIPOP;
1860 #    endif
1861 }
1862 
AndroidDetectApiLevel()1863 static AndroidApiLevel AndroidDetectApiLevel() {
1864   if (!&dl_iterate_phdr)
1865     return ANDROID_KITKAT;  // K or lower
1866   bool base_name_seen = false;
1867   dl_iterate_phdr(dl_iterate_phdr_test_cb, &base_name_seen);
1868   if (base_name_seen)
1869     return ANDROID_LOLLIPOP_MR1;  // L MR1
1870   return ANDROID_POST_LOLLIPOP;   // post-L
1871   // Plain L (API level 21) is completely broken wrt ASan and not very
1872   // interesting to detect.
1873 }
1874 
1875 extern "C" __attribute__((weak)) void *_DYNAMIC;
1876 
AndroidGetApiLevel()1877 AndroidApiLevel AndroidGetApiLevel() {
1878   AndroidApiLevel level =
1879       (AndroidApiLevel)atomic_load(&android_api_level, memory_order_relaxed);
1880   if (level)
1881     return level;
1882   level = &_DYNAMIC == nullptr ? AndroidDetectApiLevelStatic()
1883                                : AndroidDetectApiLevel();
1884   atomic_store(&android_api_level, level, memory_order_relaxed);
1885   return level;
1886 }
1887 
1888 #  endif
1889 
GetHandleSignalModeImpl(int signum)1890 static HandleSignalMode GetHandleSignalModeImpl(int signum) {
1891   switch (signum) {
1892     case SIGABRT:
1893       return common_flags()->handle_abort;
1894     case SIGILL:
1895       return common_flags()->handle_sigill;
1896     case SIGTRAP:
1897       return common_flags()->handle_sigtrap;
1898     case SIGFPE:
1899       return common_flags()->handle_sigfpe;
1900     case SIGSEGV:
1901       return common_flags()->handle_segv;
1902     case SIGBUS:
1903       return common_flags()->handle_sigbus;
1904   }
1905   return kHandleSignalNo;
1906 }
1907 
GetHandleSignalMode(int signum)1908 HandleSignalMode GetHandleSignalMode(int signum) {
1909   HandleSignalMode result = GetHandleSignalModeImpl(signum);
1910   if (result == kHandleSignalYes && !common_flags()->allow_user_segv_handler)
1911     return kHandleSignalExclusive;
1912   return result;
1913 }
1914 
1915 #  if !SANITIZER_GO
internal_start_thread(void * (* func)(void * arg),void * arg)1916 void *internal_start_thread(void *(*func)(void *arg), void *arg) {
1917   if (&internal_pthread_create == 0)
1918     return nullptr;
1919   // Start the thread with signals blocked, otherwise it can steal user signals.
1920   ScopedBlockSignals block(nullptr);
1921   void *th;
1922   internal_pthread_create(&th, nullptr, func, arg);
1923   return th;
1924 }
1925 
internal_join_thread(void * th)1926 void internal_join_thread(void *th) {
1927   if (&internal_pthread_join)
1928     internal_pthread_join(th, nullptr);
1929 }
1930 #  else
internal_start_thread(void * (* func)(void *),void * arg)1931 void *internal_start_thread(void *(*func)(void *), void *arg) { return 0; }
1932 
internal_join_thread(void * th)1933 void internal_join_thread(void *th) {}
1934 #  endif
1935 
1936 #  if SANITIZER_LINUX && defined(__aarch64__)
1937 // Android headers in the older NDK releases miss this definition.
1938 struct __sanitizer_esr_context {
1939   struct _aarch64_ctx head;
1940   uint64_t esr;
1941 };
1942 
Aarch64GetESR(ucontext_t * ucontext,u64 * esr)1943 static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) {
1944   static const u32 kEsrMagic = 0x45535201;
1945   u8 *aux = reinterpret_cast<u8 *>(ucontext->uc_mcontext.__reserved);
1946   while (true) {
1947     _aarch64_ctx *ctx = (_aarch64_ctx *)aux;
1948     if (ctx->size == 0)
1949       break;
1950     if (ctx->magic == kEsrMagic) {
1951       *esr = ((__sanitizer_esr_context *)ctx)->esr;
1952       return true;
1953     }
1954     aux += ctx->size;
1955   }
1956   return false;
1957 }
1958 #  elif SANITIZER_FREEBSD && defined(__aarch64__)
1959 // FreeBSD doesn't provide ESR in the ucontext.
Aarch64GetESR(ucontext_t * ucontext,u64 * esr)1960 static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) { return false; }
1961 #  endif
1962 
1963 using Context = ucontext_t;
1964 
GetWriteFlag() const1965 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
1966   Context *ucontext = (Context *)context;
1967 #  if defined(__x86_64__) || defined(__i386__)
1968   static const uptr PF_WRITE = 1U << 1;
1969 #    if SANITIZER_FREEBSD
1970   uptr err = ucontext->uc_mcontext.mc_err;
1971 #    elif SANITIZER_NETBSD
1972   uptr err = ucontext->uc_mcontext.__gregs[_REG_ERR];
1973 #    elif SANITIZER_SOLARIS && defined(__i386__)
1974   const int Err = 13;
1975   uptr err = ucontext->uc_mcontext.gregs[Err];
1976 #    else
1977   uptr err = ucontext->uc_mcontext.gregs[REG_ERR];
1978 #    endif  // SANITIZER_FREEBSD
1979   return err & PF_WRITE ? Write : Read;
1980 #  elif defined(__mips__)
1981   uint32_t *exception_source;
1982   uint32_t faulty_instruction;
1983   uint32_t op_code;
1984 
1985   exception_source = (uint32_t *)ucontext->uc_mcontext.pc;
1986   faulty_instruction = (uint32_t)(*exception_source);
1987 
1988   op_code = (faulty_instruction >> 26) & 0x3f;
1989 
1990   // FIXME: Add support for FPU, microMIPS, DSP, MSA memory instructions.
1991   switch (op_code) {
1992     case 0x28:  // sb
1993     case 0x29:  // sh
1994     case 0x2b:  // sw
1995     case 0x3f:  // sd
1996 #    if __mips_isa_rev < 6
1997     case 0x2c:  // sdl
1998     case 0x2d:  // sdr
1999     case 0x2a:  // swl
2000     case 0x2e:  // swr
2001 #    endif
2002       return SignalContext::Write;
2003 
2004     case 0x20:  // lb
2005     case 0x24:  // lbu
2006     case 0x21:  // lh
2007     case 0x25:  // lhu
2008     case 0x23:  // lw
2009     case 0x27:  // lwu
2010     case 0x37:  // ld
2011 #    if __mips_isa_rev < 6
2012     case 0x1a:  // ldl
2013     case 0x1b:  // ldr
2014     case 0x22:  // lwl
2015     case 0x26:  // lwr
2016 #    endif
2017       return SignalContext::Read;
2018 #    if __mips_isa_rev == 6
2019     case 0x3b:  // pcrel
2020       op_code = (faulty_instruction >> 19) & 0x3;
2021       switch (op_code) {
2022         case 0x1:  // lwpc
2023         case 0x2:  // lwupc
2024           return SignalContext::Read;
2025       }
2026 #    endif
2027   }
2028   return SignalContext::Unknown;
2029 #  elif defined(__arm__)
2030   static const uptr FSR_WRITE = 1U << 11;
2031   uptr fsr = ucontext->uc_mcontext.error_code;
2032   return fsr & FSR_WRITE ? Write : Read;
2033 #  elif defined(__aarch64__)
2034   static const u64 ESR_ELx_WNR = 1U << 6;
2035   u64 esr;
2036   if (!Aarch64GetESR(ucontext, &esr))
2037     return Unknown;
2038   return esr & ESR_ELx_WNR ? Write : Read;
2039 #  elif defined(__loongarch__)
2040   // In the musl environment, the Linux kernel uapi sigcontext.h is not
2041   // included in signal.h. To avoid missing the SC_ADDRERR_{RD,WR} macros,
2042   // copy them here. The LoongArch Linux kernel uapi is already stable,
2043   // so there's no need to worry about the value changing.
2044 #    ifndef SC_ADDRERR_RD
2045   // Address error was due to memory load
2046 #      define SC_ADDRERR_RD (1 << 30)
2047 #    endif
2048 #    ifndef SC_ADDRERR_WR
2049   // Address error was due to memory store
2050 #      define SC_ADDRERR_WR (1 << 31)
2051 #    endif
2052   u32 flags = ucontext->uc_mcontext.__flags;
2053   if (flags & SC_ADDRERR_RD)
2054     return SignalContext::Read;
2055   if (flags & SC_ADDRERR_WR)
2056     return SignalContext::Write;
2057   return SignalContext::Unknown;
2058 #  elif defined(__sparc__)
2059   // Decode the instruction to determine the access type.
2060   // From OpenSolaris $SRC/uts/sun4/os/trap.c (get_accesstype).
2061 #    if SANITIZER_SOLARIS
2062   uptr pc = ucontext->uc_mcontext.gregs[REG_PC];
2063 #    else
2064   // Historical BSDism here.
2065   struct sigcontext *scontext = (struct sigcontext *)context;
2066 #      if defined(__arch64__)
2067   uptr pc = scontext->sigc_regs.tpc;
2068 #      else
2069   uptr pc = scontext->si_regs.pc;
2070 #      endif
2071 #    endif
2072   u32 instr = *(u32 *)pc;
2073   return (instr >> 21) & 1 ? Write : Read;
2074 #  elif defined(__riscv)
2075 #    if SANITIZER_FREEBSD
2076   unsigned long pc = ucontext->uc_mcontext.mc_gpregs.gp_sepc;
2077 #    else
2078   unsigned long pc = ucontext->uc_mcontext.__gregs[REG_PC];
2079 #    endif
2080   unsigned faulty_instruction = *(uint16_t *)pc;
2081 
2082 #    if defined(__riscv_compressed)
2083   if ((faulty_instruction & 0x3) != 0x3) {  // it's a compressed instruction
2084     // set op_bits to the instruction bits [1, 0, 15, 14, 13]
2085     unsigned op_bits =
2086         ((faulty_instruction & 0x3) << 3) | (faulty_instruction >> 13);
2087     unsigned rd = faulty_instruction & 0xF80;  // bits 7-11, inclusive
2088     switch (op_bits) {
2089       case 0b10'010:  // c.lwsp (rd != x0)
2090 #      if __riscv_xlen == 64
2091       case 0b10'011:  // c.ldsp (rd != x0)
2092 #      endif
2093         return rd ? SignalContext::Read : SignalContext::Unknown;
2094       case 0b00'010:  // c.lw
2095 #      if __riscv_flen >= 32 && __riscv_xlen == 32
2096       case 0b10'011:  // c.flwsp
2097 #      endif
2098 #      if __riscv_flen >= 32 || __riscv_xlen == 64
2099       case 0b00'011:  // c.flw / c.ld
2100 #      endif
2101 #      if __riscv_flen == 64
2102       case 0b00'001:  // c.fld
2103       case 0b10'001:  // c.fldsp
2104 #      endif
2105         return SignalContext::Read;
2106       case 0b00'110:  // c.sw
2107       case 0b10'110:  // c.swsp
2108 #      if __riscv_flen >= 32 || __riscv_xlen == 64
2109       case 0b00'111:  // c.fsw / c.sd
2110       case 0b10'111:  // c.fswsp / c.sdsp
2111 #      endif
2112 #      if __riscv_flen == 64
2113       case 0b00'101:  // c.fsd
2114       case 0b10'101:  // c.fsdsp
2115 #      endif
2116         return SignalContext::Write;
2117       default:
2118         return SignalContext::Unknown;
2119     }
2120   }
2121 #    endif
2122 
2123   unsigned opcode = faulty_instruction & 0x7f;         // lower 7 bits
2124   unsigned funct3 = (faulty_instruction >> 12) & 0x7;  // bits 12-14, inclusive
2125   switch (opcode) {
2126     case 0b0000011:  // loads
2127       switch (funct3) {
2128         case 0b000:  // lb
2129         case 0b001:  // lh
2130         case 0b010:  // lw
2131 #    if __riscv_xlen == 64
2132         case 0b011:  // ld
2133 #    endif
2134         case 0b100:  // lbu
2135         case 0b101:  // lhu
2136           return SignalContext::Read;
2137         default:
2138           return SignalContext::Unknown;
2139       }
2140     case 0b0100011:  // stores
2141       switch (funct3) {
2142         case 0b000:  // sb
2143         case 0b001:  // sh
2144         case 0b010:  // sw
2145 #    if __riscv_xlen == 64
2146         case 0b011:  // sd
2147 #    endif
2148           return SignalContext::Write;
2149         default:
2150           return SignalContext::Unknown;
2151       }
2152 #    if __riscv_flen >= 32
2153     case 0b0000111:  // floating-point loads
2154       switch (funct3) {
2155         case 0b010:  // flw
2156 #      if __riscv_flen == 64
2157         case 0b011:  // fld
2158 #      endif
2159           return SignalContext::Read;
2160         default:
2161           return SignalContext::Unknown;
2162       }
2163     case 0b0100111:  // floating-point stores
2164       switch (funct3) {
2165         case 0b010:  // fsw
2166 #      if __riscv_flen == 64
2167         case 0b011:  // fsd
2168 #      endif
2169           return SignalContext::Write;
2170         default:
2171           return SignalContext::Unknown;
2172       }
2173 #    endif
2174     default:
2175       return SignalContext::Unknown;
2176   }
2177 #  else
2178   (void)ucontext;
2179   return Unknown;  // FIXME: Implement.
2180 #  endif
2181 }
2182 
IsTrueFaultingAddress() const2183 bool SignalContext::IsTrueFaultingAddress() const {
2184   auto si = static_cast<const siginfo_t *>(siginfo);
2185   // SIGSEGV signals without a true fault address have si_code set to 128.
2186   return si->si_signo == SIGSEGV && si->si_code != 128;
2187 }
2188 
2189 UNUSED
RegNumToRegName(int reg)2190 static const char *RegNumToRegName(int reg) {
2191   switch (reg) {
2192 #  if SANITIZER_LINUX
2193 #    if defined(__x86_64__)
2194     case REG_RAX:
2195       return "rax";
2196     case REG_RBX:
2197       return "rbx";
2198     case REG_RCX:
2199       return "rcx";
2200     case REG_RDX:
2201       return "rdx";
2202     case REG_RDI:
2203       return "rdi";
2204     case REG_RSI:
2205       return "rsi";
2206     case REG_RBP:
2207       return "rbp";
2208     case REG_RSP:
2209       return "rsp";
2210     case REG_R8:
2211       return "r8";
2212     case REG_R9:
2213       return "r9";
2214     case REG_R10:
2215       return "r10";
2216     case REG_R11:
2217       return "r11";
2218     case REG_R12:
2219       return "r12";
2220     case REG_R13:
2221       return "r13";
2222     case REG_R14:
2223       return "r14";
2224     case REG_R15:
2225       return "r15";
2226 #    elif defined(__i386__)
2227     case REG_EAX:
2228       return "eax";
2229     case REG_EBX:
2230       return "ebx";
2231     case REG_ECX:
2232       return "ecx";
2233     case REG_EDX:
2234       return "edx";
2235     case REG_EDI:
2236       return "edi";
2237     case REG_ESI:
2238       return "esi";
2239     case REG_EBP:
2240       return "ebp";
2241     case REG_ESP:
2242       return "esp";
2243 #    endif
2244 #  endif
2245     default:
2246       return NULL;
2247   }
2248   return NULL;
2249 }
2250 
2251 #  if SANITIZER_LINUX
2252 UNUSED
DumpSingleReg(ucontext_t * ctx,int RegNum)2253 static void DumpSingleReg(ucontext_t *ctx, int RegNum) {
2254   const char *RegName = RegNumToRegName(RegNum);
2255 #    if defined(__x86_64__)
2256   Printf("%s%s = 0x%016llx  ", internal_strlen(RegName) == 2 ? " " : "",
2257          RegName, ctx->uc_mcontext.gregs[RegNum]);
2258 #    elif defined(__i386__)
2259   Printf("%s = 0x%08x  ", RegName, ctx->uc_mcontext.gregs[RegNum]);
2260 #    else
2261   (void)RegName;
2262 #    endif
2263 }
2264 #  endif
2265 
DumpAllRegisters(void * context)2266 void SignalContext::DumpAllRegisters(void *context) {
2267   ucontext_t *ucontext = (ucontext_t *)context;
2268 #  if SANITIZER_LINUX
2269 #    if defined(__x86_64__)
2270   Report("Register values:\n");
2271   DumpSingleReg(ucontext, REG_RAX);
2272   DumpSingleReg(ucontext, REG_RBX);
2273   DumpSingleReg(ucontext, REG_RCX);
2274   DumpSingleReg(ucontext, REG_RDX);
2275   Printf("\n");
2276   DumpSingleReg(ucontext, REG_RDI);
2277   DumpSingleReg(ucontext, REG_RSI);
2278   DumpSingleReg(ucontext, REG_RBP);
2279   DumpSingleReg(ucontext, REG_RSP);
2280   Printf("\n");
2281   DumpSingleReg(ucontext, REG_R8);
2282   DumpSingleReg(ucontext, REG_R9);
2283   DumpSingleReg(ucontext, REG_R10);
2284   DumpSingleReg(ucontext, REG_R11);
2285   Printf("\n");
2286   DumpSingleReg(ucontext, REG_R12);
2287   DumpSingleReg(ucontext, REG_R13);
2288   DumpSingleReg(ucontext, REG_R14);
2289   DumpSingleReg(ucontext, REG_R15);
2290   Printf("\n");
2291 #    elif defined(__i386__)
2292   // Duplication of this report print is caused by partial support
2293   // of register values dumping. In case of unsupported yet architecture let's
2294   // avoid printing 'Register values:' without actual values in the following
2295   // output.
2296   Report("Register values:\n");
2297   DumpSingleReg(ucontext, REG_EAX);
2298   DumpSingleReg(ucontext, REG_EBX);
2299   DumpSingleReg(ucontext, REG_ECX);
2300   DumpSingleReg(ucontext, REG_EDX);
2301   Printf("\n");
2302   DumpSingleReg(ucontext, REG_EDI);
2303   DumpSingleReg(ucontext, REG_ESI);
2304   DumpSingleReg(ucontext, REG_EBP);
2305   DumpSingleReg(ucontext, REG_ESP);
2306   Printf("\n");
2307 #    else
2308   (void)ucontext;
2309 #    endif
2310 #  elif SANITIZER_FREEBSD
2311 #    if defined(__x86_64__)
2312   Report("Register values:\n");
2313   Printf("rax = 0x%016lx  ", ucontext->uc_mcontext.mc_rax);
2314   Printf("rbx = 0x%016lx  ", ucontext->uc_mcontext.mc_rbx);
2315   Printf("rcx = 0x%016lx  ", ucontext->uc_mcontext.mc_rcx);
2316   Printf("rdx = 0x%016lx  ", ucontext->uc_mcontext.mc_rdx);
2317   Printf("\n");
2318   Printf("rdi = 0x%016lx  ", ucontext->uc_mcontext.mc_rdi);
2319   Printf("rsi = 0x%016lx  ", ucontext->uc_mcontext.mc_rsi);
2320   Printf("rbp = 0x%016lx  ", ucontext->uc_mcontext.mc_rbp);
2321   Printf("rsp = 0x%016lx  ", ucontext->uc_mcontext.mc_rsp);
2322   Printf("\n");
2323   Printf(" r8 = 0x%016lx  ", ucontext->uc_mcontext.mc_r8);
2324   Printf(" r9 = 0x%016lx  ", ucontext->uc_mcontext.mc_r9);
2325   Printf("r10 = 0x%016lx  ", ucontext->uc_mcontext.mc_r10);
2326   Printf("r11 = 0x%016lx  ", ucontext->uc_mcontext.mc_r11);
2327   Printf("\n");
2328   Printf("r12 = 0x%016lx  ", ucontext->uc_mcontext.mc_r12);
2329   Printf("r13 = 0x%016lx  ", ucontext->uc_mcontext.mc_r13);
2330   Printf("r14 = 0x%016lx  ", ucontext->uc_mcontext.mc_r14);
2331   Printf("r15 = 0x%016lx  ", ucontext->uc_mcontext.mc_r15);
2332   Printf("\n");
2333 #    elif defined(__i386__)
2334   Report("Register values:\n");
2335   Printf("eax = 0x%08x  ", ucontext->uc_mcontext.mc_eax);
2336   Printf("ebx = 0x%08x  ", ucontext->uc_mcontext.mc_ebx);
2337   Printf("ecx = 0x%08x  ", ucontext->uc_mcontext.mc_ecx);
2338   Printf("edx = 0x%08x  ", ucontext->uc_mcontext.mc_edx);
2339   Printf("\n");
2340   Printf("edi = 0x%08x  ", ucontext->uc_mcontext.mc_edi);
2341   Printf("esi = 0x%08x  ", ucontext->uc_mcontext.mc_esi);
2342   Printf("ebp = 0x%08x  ", ucontext->uc_mcontext.mc_ebp);
2343   Printf("esp = 0x%08x  ", ucontext->uc_mcontext.mc_esp);
2344   Printf("\n");
2345 #    else
2346   (void)ucontext;
2347 #    endif
2348 #  endif
2349   // FIXME: Implement this for other OSes and architectures.
2350 }
2351 
GetPcSpBp(void * context,uptr * pc,uptr * sp,uptr * bp)2352 static void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp) {
2353 #  if SANITIZER_NETBSD
2354   // This covers all NetBSD architectures
2355   ucontext_t *ucontext = (ucontext_t *)context;
2356   *pc = _UC_MACHINE_PC(ucontext);
2357   *bp = _UC_MACHINE_FP(ucontext);
2358   *sp = _UC_MACHINE_SP(ucontext);
2359 #  elif defined(__arm__)
2360   ucontext_t *ucontext = (ucontext_t *)context;
2361   *pc = ucontext->uc_mcontext.arm_pc;
2362   *bp = ucontext->uc_mcontext.arm_fp;
2363   *sp = ucontext->uc_mcontext.arm_sp;
2364 #  elif defined(__aarch64__)
2365 #    if SANITIZER_FREEBSD
2366   ucontext_t *ucontext = (ucontext_t *)context;
2367   *pc = ucontext->uc_mcontext.mc_gpregs.gp_elr;
2368   *bp = ucontext->uc_mcontext.mc_gpregs.gp_x[29];
2369   *sp = ucontext->uc_mcontext.mc_gpregs.gp_sp;
2370 #    else
2371   ucontext_t *ucontext = (ucontext_t *)context;
2372   *pc = ucontext->uc_mcontext.pc;
2373   *bp = ucontext->uc_mcontext.regs[29];
2374   *sp = ucontext->uc_mcontext.sp;
2375 #    endif
2376 #  elif defined(__hppa__)
2377   ucontext_t *ucontext = (ucontext_t *)context;
2378   *pc = ucontext->uc_mcontext.sc_iaoq[0];
2379   /* GCC uses %r3 whenever a frame pointer is needed.  */
2380   *bp = ucontext->uc_mcontext.sc_gr[3];
2381   *sp = ucontext->uc_mcontext.sc_gr[30];
2382 #  elif defined(__x86_64__)
2383 #    if SANITIZER_FREEBSD
2384   ucontext_t *ucontext = (ucontext_t *)context;
2385   *pc = ucontext->uc_mcontext.mc_rip;
2386   *bp = ucontext->uc_mcontext.mc_rbp;
2387   *sp = ucontext->uc_mcontext.mc_rsp;
2388 #    else
2389   ucontext_t *ucontext = (ucontext_t *)context;
2390   *pc = ucontext->uc_mcontext.gregs[REG_RIP];
2391   *bp = ucontext->uc_mcontext.gregs[REG_RBP];
2392   *sp = ucontext->uc_mcontext.gregs[REG_RSP];
2393 #    endif
2394 #  elif defined(__i386__)
2395 #    if SANITIZER_FREEBSD
2396   ucontext_t *ucontext = (ucontext_t *)context;
2397   *pc = ucontext->uc_mcontext.mc_eip;
2398   *bp = ucontext->uc_mcontext.mc_ebp;
2399   *sp = ucontext->uc_mcontext.mc_esp;
2400 #    else
2401   ucontext_t *ucontext = (ucontext_t *)context;
2402 #      if SANITIZER_SOLARIS
2403   /* Use the numeric values: the symbolic ones are undefined by llvm
2404      include/llvm/Support/Solaris.h.  */
2405 #        ifndef REG_EIP
2406 #          define REG_EIP 14  // REG_PC
2407 #        endif
2408 #        ifndef REG_EBP
2409 #          define REG_EBP 6  // REG_FP
2410 #        endif
2411 #        ifndef REG_UESP
2412 #          define REG_UESP 17  // REG_SP
2413 #        endif
2414 #      endif
2415   *pc = ucontext->uc_mcontext.gregs[REG_EIP];
2416   *bp = ucontext->uc_mcontext.gregs[REG_EBP];
2417   *sp = ucontext->uc_mcontext.gregs[REG_UESP];
2418 #    endif
2419 #  elif defined(__powerpc__) || defined(__powerpc64__)
2420 #    if SANITIZER_FREEBSD
2421   ucontext_t *ucontext = (ucontext_t *)context;
2422   *pc = ucontext->uc_mcontext.mc_srr0;
2423   *sp = ucontext->uc_mcontext.mc_frame[1];
2424   *bp = ucontext->uc_mcontext.mc_frame[31];
2425 #    else
2426   ucontext_t *ucontext = (ucontext_t *)context;
2427   *pc = ucontext->uc_mcontext.regs->nip;
2428   *sp = ucontext->uc_mcontext.regs->gpr[PT_R1];
2429   // The powerpc{,64}-linux ABIs do not specify r31 as the frame
2430   // pointer, but GCC always uses r31 when we need a frame pointer.
2431   *bp = ucontext->uc_mcontext.regs->gpr[PT_R31];
2432 #    endif
2433 #  elif defined(__sparc__)
2434 #    if defined(__arch64__) || defined(__sparcv9)
2435 #      define STACK_BIAS 2047
2436 #    else
2437 #      define STACK_BIAS 0
2438 #    endif
2439 #    if SANITIZER_SOLARIS
2440   ucontext_t *ucontext = (ucontext_t *)context;
2441   *pc = ucontext->uc_mcontext.gregs[REG_PC];
2442   *sp = ucontext->uc_mcontext.gregs[REG_O6] + STACK_BIAS;
2443 #    else
2444   // Historical BSDism here.
2445   struct sigcontext *scontext = (struct sigcontext *)context;
2446 #      if defined(__arch64__)
2447   *pc = scontext->sigc_regs.tpc;
2448   *sp = scontext->sigc_regs.u_regs[14] + STACK_BIAS;
2449 #      else
2450   *pc = scontext->si_regs.pc;
2451   *sp = scontext->si_regs.u_regs[14];
2452 #      endif
2453 #    endif
2454   *bp = (uptr)((uhwptr *)*sp)[14] + STACK_BIAS;
2455 #  elif defined(__mips__)
2456   ucontext_t *ucontext = (ucontext_t *)context;
2457   *pc = ucontext->uc_mcontext.pc;
2458   *bp = ucontext->uc_mcontext.gregs[30];
2459   *sp = ucontext->uc_mcontext.gregs[29];
2460 #  elif defined(__s390__)
2461   ucontext_t *ucontext = (ucontext_t *)context;
2462 #    if defined(__s390x__)
2463   *pc = ucontext->uc_mcontext.psw.addr;
2464 #    else
2465   *pc = ucontext->uc_mcontext.psw.addr & 0x7fffffff;
2466 #    endif
2467   *bp = ucontext->uc_mcontext.gregs[11];
2468   *sp = ucontext->uc_mcontext.gregs[15];
2469 #  elif defined(__riscv)
2470   ucontext_t *ucontext = (ucontext_t *)context;
2471 #    if SANITIZER_FREEBSD
2472   *pc = ucontext->uc_mcontext.mc_gpregs.gp_sepc;
2473   *bp = ucontext->uc_mcontext.mc_gpregs.gp_s[0];
2474   *sp = ucontext->uc_mcontext.mc_gpregs.gp_sp;
2475 #    else
2476   *pc = ucontext->uc_mcontext.__gregs[REG_PC];
2477   *bp = ucontext->uc_mcontext.__gregs[REG_S0];
2478   *sp = ucontext->uc_mcontext.__gregs[REG_SP];
2479 #    endif
2480 #  elif defined(__hexagon__)
2481   ucontext_t *ucontext = (ucontext_t *)context;
2482   *pc = ucontext->uc_mcontext.pc;
2483   *bp = ucontext->uc_mcontext.r30;
2484   *sp = ucontext->uc_mcontext.r29;
2485 #  elif defined(__loongarch__)
2486   ucontext_t *ucontext = (ucontext_t *)context;
2487   *pc = ucontext->uc_mcontext.__pc;
2488   *bp = ucontext->uc_mcontext.__gregs[22];
2489   *sp = ucontext->uc_mcontext.__gregs[3];
2490 #  else
2491 #    error "Unsupported arch"
2492 #  endif
2493 }
2494 
InitPcSpBp()2495 void SignalContext::InitPcSpBp() { GetPcSpBp(context, &pc, &sp, &bp); }
2496 
InitializePlatformEarly()2497 void InitializePlatformEarly() {
2498   // Do nothing.
2499 }
2500 
CheckASLR()2501 void CheckASLR() {
2502 #  if SANITIZER_NETBSD
2503   int mib[3];
2504   int paxflags;
2505   uptr len = sizeof(paxflags);
2506 
2507   mib[0] = CTL_PROC;
2508   mib[1] = internal_getpid();
2509   mib[2] = PROC_PID_PAXFLAGS;
2510 
2511   if (UNLIKELY(internal_sysctl(mib, 3, &paxflags, &len, NULL, 0) == -1)) {
2512     Printf("sysctl failed\n");
2513     Die();
2514   }
2515 
2516   if (UNLIKELY(paxflags & CTL_PROC_PAXFLAGS_ASLR)) {
2517     Printf(
2518         "This sanitizer is not compatible with enabled ASLR.\n"
2519         "To disable ASLR, please run \"paxctl +a %s\" and try again.\n",
2520         GetArgv()[0]);
2521     Die();
2522   }
2523 #  elif SANITIZER_FREEBSD
2524   int aslr_status;
2525   int r = internal_procctl(P_PID, 0, PROC_ASLR_STATUS, &aslr_status);
2526   if (UNLIKELY(r == -1)) {
2527     // We're making things less 'dramatic' here since
2528     // the cmd is not necessarily guaranteed to be here
2529     // just yet regarding FreeBSD release
2530     return;
2531   }
2532   if ((aslr_status & PROC_ASLR_ACTIVE) != 0) {
2533     VReport(1,
2534             "This sanitizer is not compatible with enabled ASLR "
2535             "and binaries compiled with PIE\n"
2536             "ASLR will be disabled and the program re-executed.\n");
2537     int aslr_ctl = PROC_ASLR_FORCE_DISABLE;
2538     CHECK_NE(internal_procctl(P_PID, 0, PROC_ASLR_CTL, &aslr_ctl), -1);
2539     ReExec();
2540   }
2541 #  elif SANITIZER_PPC64V2
2542   // Disable ASLR for Linux PPC64LE.
2543   int old_personality = personality(0xffffffff);
2544   if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) {
2545     VReport(1,
2546             "WARNING: Program is being run with address space layout "
2547             "randomization (ASLR) enabled which prevents the thread and "
2548             "memory sanitizers from working on powerpc64le.\n"
2549             "ASLR will be disabled and the program re-executed.\n");
2550     CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1);
2551     ReExec();
2552   }
2553 #  else
2554   // Do nothing
2555 #  endif
2556 }
2557 
CheckMPROTECT()2558 void CheckMPROTECT() {
2559 #  if SANITIZER_NETBSD
2560   int mib[3];
2561   int paxflags;
2562   uptr len = sizeof(paxflags);
2563 
2564   mib[0] = CTL_PROC;
2565   mib[1] = internal_getpid();
2566   mib[2] = PROC_PID_PAXFLAGS;
2567 
2568   if (UNLIKELY(internal_sysctl(mib, 3, &paxflags, &len, NULL, 0) == -1)) {
2569     Printf("sysctl failed\n");
2570     Die();
2571   }
2572 
2573   if (UNLIKELY(paxflags & CTL_PROC_PAXFLAGS_MPROTECT)) {
2574     Printf("This sanitizer is not compatible with enabled MPROTECT\n");
2575     Die();
2576   }
2577 #  else
2578   // Do nothing
2579 #  endif
2580 }
2581 
CheckNoDeepBind(const char * filename,int flag)2582 void CheckNoDeepBind(const char *filename, int flag) {
2583 #  ifdef RTLD_DEEPBIND
2584   if (flag & RTLD_DEEPBIND) {
2585     Report(
2586         "You are trying to dlopen a %s shared library with RTLD_DEEPBIND flag"
2587         " which is incompatible with sanitizer runtime "
2588         "(see https://github.com/google/sanitizers/issues/611 for details"
2589         "). If you want to run %s library under sanitizers please remove "
2590         "RTLD_DEEPBIND from dlopen flags.\n",
2591         filename, filename);
2592     Die();
2593   }
2594 #  endif
2595 }
2596 
FindAvailableMemoryRange(uptr size,uptr alignment,uptr left_padding,uptr * largest_gap_found,uptr * max_occupied_addr)2597 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
2598                               uptr *largest_gap_found,
2599                               uptr *max_occupied_addr) {
2600   UNREACHABLE("FindAvailableMemoryRange is not available");
2601   return 0;
2602 }
2603 
GetRandom(void * buffer,uptr length,bool blocking)2604 bool GetRandom(void *buffer, uptr length, bool blocking) {
2605   if (!buffer || !length || length > 256)
2606     return false;
2607 #  if SANITIZER_USE_GETENTROPY
2608   uptr rnd = getentropy(buffer, length);
2609   int rverrno = 0;
2610   if (internal_iserror(rnd, &rverrno) && rverrno == EFAULT)
2611     return false;
2612   else if (rnd == 0)
2613     return true;
2614 #  endif  // SANITIZER_USE_GETENTROPY
2615 
2616 #  if SANITIZER_USE_GETRANDOM
2617   static atomic_uint8_t skip_getrandom_syscall;
2618   if (!atomic_load_relaxed(&skip_getrandom_syscall)) {
2619     // Up to 256 bytes, getrandom will not be interrupted.
2620     uptr res = internal_syscall(SYSCALL(getrandom), buffer, length,
2621                                 blocking ? 0 : GRND_NONBLOCK);
2622     int rverrno = 0;
2623     if (internal_iserror(res, &rverrno) && rverrno == ENOSYS)
2624       atomic_store_relaxed(&skip_getrandom_syscall, 1);
2625     else if (res == length)
2626       return true;
2627   }
2628 #  endif  // SANITIZER_USE_GETRANDOM
2629   // Up to 256 bytes, a read off /dev/urandom will not be interrupted.
2630   // blocking is moot here, O_NONBLOCK has no effect when opening /dev/urandom.
2631   uptr fd = internal_open("/dev/urandom", O_RDONLY);
2632   if (internal_iserror(fd))
2633     return false;
2634   uptr res = internal_read(fd, buffer, length);
2635   if (internal_iserror(res))
2636     return false;
2637   internal_close(fd);
2638   return true;
2639 }
2640 
2641 }  // namespace __sanitizer
2642 
2643 #endif
2644