1 /*-
2 * Copyright (c) 2010 Isilon Systems, Inc.
3 * Copyright (c) 2016 Matthew Macy (mmacy@mattmacy.io)
4 * Copyright (c) 2017 Mellanox Technologies, Ltd.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice unmodified, this list of conditions, and the following
12 * disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/malloc.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/rwlock.h>
37 #include <sys/proc.h>
38 #include <sys/sched.h>
39 #include <sys/memrange.h>
40
41 #include <machine/bus.h>
42
43 #include <vm/vm.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_param.h>
46 #include <vm/vm_kern.h>
47 #include <vm/vm_object.h>
48 #include <vm/vm_map.h>
49 #include <vm/vm_page.h>
50 #include <vm/vm_pageout.h>
51 #include <vm/vm_pager.h>
52 #include <vm/vm_radix.h>
53 #include <vm/vm_reserv.h>
54 #include <vm/vm_extern.h>
55
56 #include <vm/uma.h>
57 #include <vm/uma_int.h>
58
59 #include <linux/gfp.h>
60 #include <linux/mm.h>
61 #include <linux/preempt.h>
62 #include <linux/fs.h>
63 #include <linux/shmem_fs.h>
64 #include <linux/kernel.h>
65 #include <linux/idr.h>
66 #include <linux/io.h>
67 #include <linux/io-mapping.h>
68
69 #ifdef __i386__
70 DEFINE_IDR(mtrr_idr);
71 static MALLOC_DEFINE(M_LKMTRR, "idr", "Linux MTRR compat");
72 extern int pat_works;
73 #endif
74
75 void
si_meminfo(struct sysinfo * si)76 si_meminfo(struct sysinfo *si)
77 {
78 si->totalram = physmem;
79 si->freeram = vm_free_count();
80 si->totalhigh = 0;
81 si->freehigh = 0;
82 si->mem_unit = PAGE_SIZE;
83 }
84
85 void *
linux_page_address(const struct page * page)86 linux_page_address(const struct page *page)
87 {
88
89 if (page->object != kernel_object) {
90 return (PMAP_HAS_DMAP ?
91 ((void *)(uintptr_t)PHYS_TO_DMAP(page_to_phys(page))) :
92 NULL);
93 }
94 return ((void *)(uintptr_t)(VM_MIN_KERNEL_ADDRESS +
95 IDX_TO_OFF(page->pindex)));
96 }
97
98 struct page *
linux_alloc_pages(gfp_t flags,unsigned int order)99 linux_alloc_pages(gfp_t flags, unsigned int order)
100 {
101 struct page *page;
102
103 if (PMAP_HAS_DMAP) {
104 unsigned long npages = 1UL << order;
105 int req = VM_ALLOC_WIRED;
106
107 if ((flags & M_ZERO) != 0)
108 req |= VM_ALLOC_ZERO;
109
110 if (order == 0 && (flags & GFP_DMA32) == 0) {
111 page = vm_page_alloc_noobj(req);
112 if (page == NULL)
113 return (NULL);
114 } else {
115 vm_paddr_t pmax = (flags & GFP_DMA32) ?
116 BUS_SPACE_MAXADDR_32BIT : BUS_SPACE_MAXADDR;
117
118 if ((flags & __GFP_NORETRY) != 0)
119 req |= VM_ALLOC_NORECLAIM;
120
121 retry:
122 page = vm_page_alloc_noobj_contig(req, npages, 0, pmax,
123 PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
124 if (page == NULL) {
125 if ((flags & (M_WAITOK | __GFP_NORETRY)) ==
126 M_WAITOK) {
127 int err = vm_page_reclaim_contig(req,
128 npages, 0, pmax, PAGE_SIZE, 0);
129 if (err == ENOMEM)
130 vm_wait(NULL);
131 else if (err != 0)
132 return (NULL);
133 flags &= ~M_WAITOK;
134 goto retry;
135 }
136 return (NULL);
137 }
138 }
139 } else {
140 vm_offset_t vaddr;
141
142 vaddr = linux_alloc_kmem(flags, order);
143 if (vaddr == 0)
144 return (NULL);
145
146 page = virt_to_page((void *)vaddr);
147
148 KASSERT(vaddr == (vm_offset_t)page_address(page),
149 ("Page address mismatch"));
150 }
151
152 return (page);
153 }
154
155 static void
_linux_free_kmem(vm_offset_t addr,unsigned int order)156 _linux_free_kmem(vm_offset_t addr, unsigned int order)
157 {
158 size_t size = ((size_t)PAGE_SIZE) << order;
159
160 kmem_free((void *)addr, size);
161 }
162
163 void
linux_free_pages(struct page * page,unsigned int order)164 linux_free_pages(struct page *page, unsigned int order)
165 {
166 if (PMAP_HAS_DMAP) {
167 unsigned long npages = 1UL << order;
168 unsigned long x;
169
170 for (x = 0; x != npages; x++) {
171 vm_page_t pgo = page + x;
172
173 /*
174 * The "free page" function is used in several
175 * contexts.
176 *
177 * Some pages are allocated by `linux_alloc_pages()`
178 * above, but not all of them are. For instance in the
179 * DRM drivers, some pages come from
180 * `shmem_read_mapping_page_gfp()`.
181 *
182 * That's why we need to check if the page is managed
183 * or not here.
184 */
185 if ((pgo->oflags & VPO_UNMANAGED) == 0) {
186 vm_page_unwire(pgo, PQ_ACTIVE);
187 } else {
188 if (vm_page_unwire_noq(pgo))
189 vm_page_free(pgo);
190 }
191 }
192 } else {
193 vm_offset_t vaddr;
194
195 vaddr = (vm_offset_t)page_address(page);
196
197 _linux_free_kmem(vaddr, order);
198 }
199 }
200
201 void
linux_release_pages(release_pages_arg arg,int nr)202 linux_release_pages(release_pages_arg arg, int nr)
203 {
204 int i;
205
206 CTASSERT(offsetof(struct folio, page) == 0);
207
208 for (i = 0; i < nr; i++)
209 __free_page(arg.pages[i]);
210 }
211
212 vm_offset_t
linux_alloc_kmem(gfp_t flags,unsigned int order)213 linux_alloc_kmem(gfp_t flags, unsigned int order)
214 {
215 size_t size = ((size_t)PAGE_SIZE) << order;
216 void *addr;
217
218 addr = kmem_alloc_contig(size, flags & GFP_NATIVE_MASK, 0,
219 ((flags & GFP_DMA32) == 0) ? -1UL : BUS_SPACE_MAXADDR_32BIT,
220 PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
221
222 return ((vm_offset_t)addr);
223 }
224
225 void
linux_free_kmem(vm_offset_t addr,unsigned int order)226 linux_free_kmem(vm_offset_t addr, unsigned int order)
227 {
228 KASSERT((addr & ~PAGE_MASK) == 0,
229 ("%s: addr %p is not page aligned", __func__, (void *)addr));
230
231 if (addr >= VM_MIN_KERNEL_ADDRESS && addr < VM_MAX_KERNEL_ADDRESS) {
232 _linux_free_kmem(addr, order);
233 } else {
234 vm_page_t page;
235
236 page = PHYS_TO_VM_PAGE(DMAP_TO_PHYS(addr));
237 linux_free_pages(page, order);
238 }
239 }
240
241 static int
linux_get_user_pages_internal(vm_map_t map,unsigned long start,int nr_pages,int write,struct page ** pages)242 linux_get_user_pages_internal(vm_map_t map, unsigned long start, int nr_pages,
243 int write, struct page **pages)
244 {
245 vm_prot_t prot;
246 size_t len;
247 int count;
248
249 prot = write ? (VM_PROT_READ | VM_PROT_WRITE) : VM_PROT_READ;
250 len = ptoa((vm_offset_t)nr_pages);
251 count = vm_fault_quick_hold_pages(map, start, len, prot, pages, nr_pages);
252 return (count == -1 ? -EFAULT : nr_pages);
253 }
254
255 int
__get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)256 __get_user_pages_fast(unsigned long start, int nr_pages, int write,
257 struct page **pages)
258 {
259 vm_map_t map;
260 vm_page_t *mp;
261 vm_offset_t va;
262 vm_offset_t end;
263 vm_prot_t prot;
264 int count;
265
266 if (nr_pages == 0 || in_interrupt())
267 return (0);
268
269 MPASS(pages != NULL);
270 map = &curthread->td_proc->p_vmspace->vm_map;
271 end = start + ptoa((vm_offset_t)nr_pages);
272 if (!vm_map_range_valid(map, start, end))
273 return (-EINVAL);
274 prot = write ? (VM_PROT_READ | VM_PROT_WRITE) : VM_PROT_READ;
275 for (count = 0, mp = pages, va = start; va < end;
276 mp++, va += PAGE_SIZE, count++) {
277 *mp = pmap_extract_and_hold(map->pmap, va, prot);
278 if (*mp == NULL)
279 break;
280
281 if ((prot & VM_PROT_WRITE) != 0 &&
282 (*mp)->dirty != VM_PAGE_BITS_ALL) {
283 /*
284 * Explicitly dirty the physical page. Otherwise, the
285 * caller's changes may go unnoticed because they are
286 * performed through an unmanaged mapping or by a DMA
287 * operation.
288 *
289 * The object lock is not held here.
290 * See vm_page_clear_dirty_mask().
291 */
292 vm_page_dirty(*mp);
293 }
294 }
295 return (count);
296 }
297
298 long
get_user_pages_remote(struct task_struct * task,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)299 get_user_pages_remote(struct task_struct *task, struct mm_struct *mm,
300 unsigned long start, unsigned long nr_pages, unsigned int gup_flags,
301 struct page **pages, struct vm_area_struct **vmas)
302 {
303 vm_map_t map;
304
305 map = &task->task_thread->td_proc->p_vmspace->vm_map;
306 return (linux_get_user_pages_internal(map, start, nr_pages,
307 !!(gup_flags & FOLL_WRITE), pages));
308 }
309
310 long
lkpi_get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)311 lkpi_get_user_pages(unsigned long start, unsigned long nr_pages,
312 unsigned int gup_flags, struct page **pages)
313 {
314 vm_map_t map;
315
316 map = &curthread->td_proc->p_vmspace->vm_map;
317 return (linux_get_user_pages_internal(map, start, nr_pages,
318 !!(gup_flags & FOLL_WRITE), pages));
319 }
320
321 /*
322 * Hash of vmmap addresses. This is infrequently accessed and does not
323 * need to be particularly large. This is done because we must store the
324 * caller's idea of the map size to properly unmap.
325 */
326 struct vmmap {
327 LIST_ENTRY(vmmap) vm_next;
328 void *vm_addr;
329 unsigned long vm_size;
330 };
331
332 struct vmmaphd {
333 struct vmmap *lh_first;
334 };
335 #define VMMAP_HASH_SIZE 64
336 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1)
337 #define VM_HASH(addr) ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
338 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
339 static struct mtx vmmaplock;
340
341 int
is_vmalloc_addr(const void * addr)342 is_vmalloc_addr(const void *addr)
343 {
344 struct vmmap *vmmap;
345
346 mtx_lock(&vmmaplock);
347 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
348 if (addr == vmmap->vm_addr)
349 break;
350 mtx_unlock(&vmmaplock);
351 if (vmmap != NULL)
352 return (1);
353
354 return (vtoslab((vm_offset_t)addr & ~UMA_SLAB_MASK) != NULL);
355 }
356
357 static void
vmmap_add(void * addr,unsigned long size)358 vmmap_add(void *addr, unsigned long size)
359 {
360 struct vmmap *vmmap;
361
362 vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
363 mtx_lock(&vmmaplock);
364 vmmap->vm_size = size;
365 vmmap->vm_addr = addr;
366 LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
367 mtx_unlock(&vmmaplock);
368 }
369
370 static struct vmmap *
vmmap_remove(void * addr)371 vmmap_remove(void *addr)
372 {
373 struct vmmap *vmmap;
374
375 mtx_lock(&vmmaplock);
376 LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
377 if (vmmap->vm_addr == addr)
378 break;
379 if (vmmap)
380 LIST_REMOVE(vmmap, vm_next);
381 mtx_unlock(&vmmaplock);
382
383 return (vmmap);
384 }
385
386 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
387 void *
_ioremap_attr(vm_paddr_t phys_addr,unsigned long size,int attr)388 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
389 {
390 void *addr;
391
392 addr = pmap_mapdev_attr(phys_addr, size, attr);
393 if (addr == NULL)
394 return (NULL);
395 vmmap_add(addr, size);
396
397 return (addr);
398 }
399 #endif
400
401 void
iounmap(void * addr)402 iounmap(void *addr)
403 {
404 struct vmmap *vmmap;
405
406 vmmap = vmmap_remove(addr);
407 if (vmmap == NULL)
408 return;
409 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
410 pmap_unmapdev(addr, vmmap->vm_size);
411 #endif
412 kfree(vmmap);
413 }
414
415 void *
vmap(struct page ** pages,unsigned int count,unsigned long flags,int prot)416 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
417 {
418 vm_offset_t off;
419 size_t size;
420
421 size = count * PAGE_SIZE;
422 off = kva_alloc(size);
423 if (off == 0)
424 return (NULL);
425 vmmap_add((void *)off, size);
426 pmap_qenter(off, pages, count);
427
428 return ((void *)off);
429 }
430
431 #define VMAP_MAX_CHUNK_SIZE (65536U / sizeof(struct vm_page)) /* KMEM_ZMAX */
432
433 void *
linuxkpi_vmap_pfn(unsigned long * pfns,unsigned int count,int prot)434 linuxkpi_vmap_pfn(unsigned long *pfns, unsigned int count, int prot)
435 {
436 vm_page_t m, *ma, fma;
437 vm_offset_t off, coff;
438 vm_paddr_t pa;
439 vm_memattr_t attr;
440 size_t size;
441 unsigned int i, c, chunk;
442
443 size = ptoa(count);
444 off = kva_alloc(size);
445 if (off == 0)
446 return (NULL);
447 vmmap_add((void *)off, size);
448
449 chunk = MIN(count, VMAP_MAX_CHUNK_SIZE);
450 attr = pgprot2cachemode(prot);
451 ma = malloc(chunk * sizeof(vm_page_t), M_TEMP, M_WAITOK | M_ZERO);
452 fma = NULL;
453 c = 0;
454 coff = off;
455 for (i = 0; i < count; i++) {
456 pa = IDX_TO_OFF(pfns[i]);
457 m = PHYS_TO_VM_PAGE(pa);
458 if (m == NULL) {
459 if (fma == NULL)
460 fma = malloc(chunk * sizeof(struct vm_page),
461 M_TEMP, M_WAITOK | M_ZERO);
462 m = fma + c;
463 vm_page_initfake(m, pa, attr);
464 } else {
465 pmap_page_set_memattr(m, attr);
466 }
467 ma[c] = m;
468 c++;
469 if (c == chunk || i == count - 1) {
470 pmap_qenter(coff, ma, c);
471 if (i == count - 1)
472 break;
473 coff += ptoa(c);
474 c = 0;
475 memset(ma, 0, chunk * sizeof(vm_page_t));
476 if (fma != NULL)
477 memset(fma, 0, chunk * sizeof(struct vm_page));
478 }
479 }
480 free(fma, M_TEMP);
481 free(ma, M_TEMP);
482
483 return ((void *)off);
484 }
485
486 void
vunmap(void * addr)487 vunmap(void *addr)
488 {
489 struct vmmap *vmmap;
490
491 vmmap = vmmap_remove(addr);
492 if (vmmap == NULL)
493 return;
494 pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
495 kva_free((vm_offset_t)addr, vmmap->vm_size);
496 kfree(vmmap);
497 }
498
499 vm_fault_t
lkpi_vmf_insert_pfn_prot_locked(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot)500 lkpi_vmf_insert_pfn_prot_locked(struct vm_area_struct *vma, unsigned long addr,
501 unsigned long pfn, pgprot_t prot)
502 {
503 struct pctrie_iter pages;
504 vm_object_t vm_obj = vma->vm_obj;
505 vm_object_t tmp_obj;
506 vm_page_t page;
507 vm_pindex_t pindex;
508
509 VM_OBJECT_ASSERT_WLOCKED(vm_obj);
510 vm_page_iter_init(&pages, vm_obj);
511 pindex = OFF_TO_IDX(addr - vma->vm_start);
512 if (vma->vm_pfn_count == 0)
513 vma->vm_pfn_first = pindex;
514 MPASS(pindex <= OFF_TO_IDX(vma->vm_end));
515
516 retry:
517 page = vm_page_grab_iter(vm_obj, pindex, VM_ALLOC_NOCREAT, &pages);
518 if (page == NULL) {
519 page = PHYS_TO_VM_PAGE(IDX_TO_OFF(pfn));
520 if (page == NULL)
521 return (VM_FAULT_SIGBUS);
522 if (!vm_page_busy_acquire(page, VM_ALLOC_WAITFAIL)) {
523 pctrie_iter_reset(&pages);
524 goto retry;
525 }
526 if (page->object != NULL) {
527 tmp_obj = page->object;
528 vm_page_xunbusy(page);
529 VM_OBJECT_WUNLOCK(vm_obj);
530 VM_OBJECT_WLOCK(tmp_obj);
531 if (page->object == tmp_obj &&
532 vm_page_busy_acquire(page, VM_ALLOC_WAITFAIL)) {
533 KASSERT(page->object == tmp_obj,
534 ("page has changed identity"));
535 KASSERT((page->oflags & VPO_UNMANAGED) == 0,
536 ("page does not belong to shmem"));
537 vm_pager_page_unswapped(page);
538 if (pmap_page_is_mapped(page)) {
539 vm_page_xunbusy(page);
540 VM_OBJECT_WUNLOCK(tmp_obj);
541 printf("%s: page rename failed: page "
542 "is mapped\n", __func__);
543 VM_OBJECT_WLOCK(vm_obj);
544 return (VM_FAULT_NOPAGE);
545 }
546 vm_page_remove(page);
547 }
548 VM_OBJECT_WUNLOCK(tmp_obj);
549 pctrie_iter_reset(&pages);
550 VM_OBJECT_WLOCK(vm_obj);
551 goto retry;
552 }
553 if (vm_page_iter_insert(page, vm_obj, pindex, &pages) != 0) {
554 vm_page_xunbusy(page);
555 return (VM_FAULT_OOM);
556 }
557 vm_page_valid(page);
558 }
559 pmap_page_set_memattr(page, pgprot2cachemode(prot));
560 vma->vm_pfn_count++;
561
562 return (VM_FAULT_NOPAGE);
563 }
564
565 int
lkpi_remap_pfn_range(struct vm_area_struct * vma,unsigned long start_addr,unsigned long start_pfn,unsigned long size,pgprot_t prot)566 lkpi_remap_pfn_range(struct vm_area_struct *vma, unsigned long start_addr,
567 unsigned long start_pfn, unsigned long size, pgprot_t prot)
568 {
569 vm_object_t vm_obj;
570 unsigned long addr, pfn;
571 int err = 0;
572
573 vm_obj = vma->vm_obj;
574
575 VM_OBJECT_WLOCK(vm_obj);
576 for (addr = start_addr, pfn = start_pfn;
577 addr < start_addr + size;
578 addr += PAGE_SIZE) {
579 vm_fault_t ret;
580 retry:
581 ret = lkpi_vmf_insert_pfn_prot_locked(vma, addr, pfn, prot);
582
583 if ((ret & VM_FAULT_OOM) != 0) {
584 VM_OBJECT_WUNLOCK(vm_obj);
585 vm_wait(NULL);
586 VM_OBJECT_WLOCK(vm_obj);
587 goto retry;
588 }
589
590 if ((ret & VM_FAULT_ERROR) != 0) {
591 err = -EFAULT;
592 break;
593 }
594
595 pfn++;
596 }
597 VM_OBJECT_WUNLOCK(vm_obj);
598
599 if (unlikely(err)) {
600 zap_vma_ptes(vma, start_addr,
601 (pfn - start_pfn) << PAGE_SHIFT);
602 return (err);
603 }
604
605 return (0);
606 }
607
608 int
lkpi_io_mapping_map_user(struct io_mapping * iomap,struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size)609 lkpi_io_mapping_map_user(struct io_mapping *iomap,
610 struct vm_area_struct *vma, unsigned long addr,
611 unsigned long pfn, unsigned long size)
612 {
613 pgprot_t prot;
614 int ret;
615
616 prot = cachemode2protval(iomap->attr);
617 ret = lkpi_remap_pfn_range(vma, addr, pfn, size, prot);
618
619 return (ret);
620 }
621
622 /*
623 * Although FreeBSD version of unmap_mapping_range has semantics and types of
624 * parameters compatible with Linux version, the values passed in are different
625 * @obj should match to vm_private_data field of vm_area_struct returned by
626 * mmap file operation handler, see linux_file_mmap_single() sources
627 * @holelen should match to size of area to be munmapped.
628 */
629 void
lkpi_unmap_mapping_range(void * obj,loff_t const holebegin __unused,loff_t const holelen __unused,int even_cows __unused)630 lkpi_unmap_mapping_range(void *obj, loff_t const holebegin __unused,
631 loff_t const holelen __unused, int even_cows __unused)
632 {
633 vm_object_t devobj;
634
635 devobj = cdev_pager_lookup(obj);
636 if (devobj != NULL) {
637 cdev_mgtdev_pager_free_pages(devobj);
638 vm_object_deallocate(devobj);
639 }
640 }
641
642 int
lkpi_arch_phys_wc_add(unsigned long base,unsigned long size)643 lkpi_arch_phys_wc_add(unsigned long base, unsigned long size)
644 {
645 #ifdef __i386__
646 struct mem_range_desc *mrdesc;
647 int error, id, act;
648
649 /* If PAT is available, do nothing */
650 if (pat_works)
651 return (0);
652
653 mrdesc = malloc(sizeof(*mrdesc), M_LKMTRR, M_WAITOK);
654 mrdesc->mr_base = base;
655 mrdesc->mr_len = size;
656 mrdesc->mr_flags = MDF_WRITECOMBINE;
657 strlcpy(mrdesc->mr_owner, "drm", sizeof(mrdesc->mr_owner));
658 act = MEMRANGE_SET_UPDATE;
659 error = mem_range_attr_set(mrdesc, &act);
660 if (error == 0) {
661 error = idr_get_new(&mtrr_idr, mrdesc, &id);
662 MPASS(idr_find(&mtrr_idr, id) == mrdesc);
663 if (error != 0) {
664 act = MEMRANGE_SET_REMOVE;
665 mem_range_attr_set(mrdesc, &act);
666 }
667 }
668 if (error != 0) {
669 free(mrdesc, M_LKMTRR);
670 pr_warn(
671 "Failed to add WC MTRR for [%p-%p]: %d; "
672 "performance may suffer\n",
673 (void *)base, (void *)(base + size - 1), error);
674 } else
675 pr_warn("Successfully added WC MTRR for [%p-%p]\n",
676 (void *)base, (void *)(base + size - 1));
677
678 return (error != 0 ? -error : id + __MTRR_ID_BASE);
679 #else
680 return (0);
681 #endif
682 }
683
684 void
lkpi_arch_phys_wc_del(int reg)685 lkpi_arch_phys_wc_del(int reg)
686 {
687 #ifdef __i386__
688 struct mem_range_desc *mrdesc;
689 int act;
690
691 /* Check if arch_phys_wc_add() failed. */
692 if (reg < __MTRR_ID_BASE)
693 return;
694
695 mrdesc = idr_find(&mtrr_idr, reg - __MTRR_ID_BASE);
696 MPASS(mrdesc != NULL);
697 idr_remove(&mtrr_idr, reg - __MTRR_ID_BASE);
698 act = MEMRANGE_SET_REMOVE;
699 mem_range_attr_set(mrdesc, &act);
700 free(mrdesc, M_LKMTRR);
701 #endif
702 }
703
704 /*
705 * This is a highly simplified version of the Linux page_frag_cache.
706 * We only support up-to 1 single page as fragment size and we will
707 * always return a full page. This may be wasteful on small objects
708 * but the only known consumer (mt76) is either asking for a half-page
709 * or a full page. If this was to become a problem we can implement
710 * a more elaborate version.
711 */
712 void *
linuxkpi_page_frag_alloc(struct page_frag_cache * pfc,size_t fragsz,gfp_t gfp)713 linuxkpi_page_frag_alloc(struct page_frag_cache *pfc,
714 size_t fragsz, gfp_t gfp)
715 {
716 vm_page_t pages;
717
718 if (fragsz == 0)
719 return (NULL);
720
721 KASSERT(fragsz <= PAGE_SIZE, ("%s: fragsz %zu > PAGE_SIZE not yet "
722 "supported", __func__, fragsz));
723
724 pages = alloc_pages(gfp, flsl(howmany(fragsz, PAGE_SIZE) - 1));
725 if (pages == NULL)
726 return (NULL);
727 pfc->va = linux_page_address(pages);
728
729 /* Passed in as "count" to __page_frag_cache_drain(). Unused by us. */
730 pfc->pagecnt_bias = 0;
731
732 return (pfc->va);
733 }
734
735 void
linuxkpi_page_frag_free(void * addr)736 linuxkpi_page_frag_free(void *addr)
737 {
738 vm_page_t page;
739
740 page = virt_to_page(addr);
741 linux_free_pages(page, 0);
742 }
743
744 void
linuxkpi__page_frag_cache_drain(struct page * page,size_t count __unused)745 linuxkpi__page_frag_cache_drain(struct page *page, size_t count __unused)
746 {
747
748 linux_free_pages(page, 0);
749 }
750
751 static void
lkpi_page_init(void * arg)752 lkpi_page_init(void *arg)
753 {
754 int i;
755
756 mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
757 for (i = 0; i < VMMAP_HASH_SIZE; i++)
758 LIST_INIT(&vmmaphead[i]);
759 }
760 SYSINIT(lkpi_page, SI_SUB_DRIVERS, SI_ORDER_SECOND, lkpi_page_init, NULL);
761
762 static void
lkpi_page_uninit(void * arg)763 lkpi_page_uninit(void *arg)
764 {
765 mtx_destroy(&vmmaplock);
766 }
767 SYSUNINIT(lkpi_page, SI_SUB_DRIVERS, SI_ORDER_SECOND, lkpi_page_uninit, NULL);
768