xref: /freebsd/sys/compat/linuxkpi/common/src/linux_page.c (revision df49fd8efa1a885089488458df0e7e88c9649c90)
1 /*-
2  * Copyright (c) 2010 Isilon Systems, Inc.
3  * Copyright (c) 2016 Matthew Macy (mmacy@mattmacy.io)
4  * Copyright (c) 2017 Mellanox Technologies, Ltd.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/malloc.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/lock.h>
35 #include <sys/mutex.h>
36 #include <sys/rwlock.h>
37 #include <sys/proc.h>
38 #include <sys/sched.h>
39 #include <sys/memrange.h>
40 
41 #include <machine/bus.h>
42 
43 #include <vm/vm.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_param.h>
46 #include <vm/vm_kern.h>
47 #include <vm/vm_object.h>
48 #include <vm/vm_map.h>
49 #include <vm/vm_page.h>
50 #include <vm/vm_pageout.h>
51 #include <vm/vm_pager.h>
52 #include <vm/vm_radix.h>
53 #include <vm/vm_reserv.h>
54 #include <vm/vm_extern.h>
55 
56 #include <vm/uma.h>
57 #include <vm/uma_int.h>
58 
59 #include <linux/gfp.h>
60 #include <linux/mm.h>
61 #include <linux/preempt.h>
62 #include <linux/fs.h>
63 #include <linux/shmem_fs.h>
64 #include <linux/kernel.h>
65 #include <linux/idr.h>
66 #include <linux/io.h>
67 #include <linux/io-mapping.h>
68 
69 #ifdef __i386__
70 DEFINE_IDR(mtrr_idr);
71 static MALLOC_DEFINE(M_LKMTRR, "idr", "Linux MTRR compat");
72 extern int pat_works;
73 #endif
74 
75 void
si_meminfo(struct sysinfo * si)76 si_meminfo(struct sysinfo *si)
77 {
78 	si->totalram = physmem;
79 	si->freeram = vm_free_count();
80 	si->totalhigh = 0;
81 	si->freehigh = 0;
82 	si->mem_unit = PAGE_SIZE;
83 }
84 
85 void *
linux_page_address(const struct page * page)86 linux_page_address(const struct page *page)
87 {
88 
89 	if (page->object != kernel_object) {
90 		return (PMAP_HAS_DMAP ?
91 		    ((void *)(uintptr_t)PHYS_TO_DMAP(page_to_phys(page))) :
92 		    NULL);
93 	}
94 	return ((void *)(uintptr_t)(VM_MIN_KERNEL_ADDRESS +
95 	    IDX_TO_OFF(page->pindex)));
96 }
97 
98 struct page *
linux_alloc_pages(gfp_t flags,unsigned int order)99 linux_alloc_pages(gfp_t flags, unsigned int order)
100 {
101 	struct page *page;
102 
103 	if (PMAP_HAS_DMAP) {
104 		unsigned long npages = 1UL << order;
105 		int req = VM_ALLOC_WIRED;
106 
107 		if ((flags & M_ZERO) != 0)
108 			req |= VM_ALLOC_ZERO;
109 
110 		if (order == 0 && (flags & GFP_DMA32) == 0) {
111 			page = vm_page_alloc_noobj(req);
112 			if (page == NULL)
113 				return (NULL);
114 		} else {
115 			vm_paddr_t pmax = (flags & GFP_DMA32) ?
116 			    BUS_SPACE_MAXADDR_32BIT : BUS_SPACE_MAXADDR;
117 
118 			if ((flags & __GFP_NORETRY) != 0)
119 				req |= VM_ALLOC_NORECLAIM;
120 
121 		retry:
122 			page = vm_page_alloc_noobj_contig(req, npages, 0, pmax,
123 			    PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
124 			if (page == NULL) {
125 				if ((flags & (M_WAITOK | __GFP_NORETRY)) ==
126 				    M_WAITOK) {
127 					int err = vm_page_reclaim_contig(req,
128 					    npages, 0, pmax, PAGE_SIZE, 0);
129 					if (err == ENOMEM)
130 						vm_wait(NULL);
131 					else if (err != 0)
132 						return (NULL);
133 					flags &= ~M_WAITOK;
134 					goto retry;
135 				}
136 				return (NULL);
137 			}
138 		}
139 	} else {
140 		vm_offset_t vaddr;
141 
142 		vaddr = linux_alloc_kmem(flags, order);
143 		if (vaddr == 0)
144 			return (NULL);
145 
146 		page = virt_to_page((void *)vaddr);
147 
148 		KASSERT(vaddr == (vm_offset_t)page_address(page),
149 		    ("Page address mismatch"));
150 	}
151 
152 	return (page);
153 }
154 
155 static void
_linux_free_kmem(vm_offset_t addr,unsigned int order)156 _linux_free_kmem(vm_offset_t addr, unsigned int order)
157 {
158 	size_t size = ((size_t)PAGE_SIZE) << order;
159 
160 	kmem_free((void *)addr, size);
161 }
162 
163 void
linux_free_pages(struct page * page,unsigned int order)164 linux_free_pages(struct page *page, unsigned int order)
165 {
166 	if (PMAP_HAS_DMAP) {
167 		unsigned long npages = 1UL << order;
168 		unsigned long x;
169 
170 		for (x = 0; x != npages; x++) {
171 			vm_page_t pgo = page + x;
172 
173 			/*
174 			 * The "free page" function is used in several
175 			 * contexts.
176 			 *
177 			 * Some pages are allocated by `linux_alloc_pages()`
178 			 * above, but not all of them are. For instance in the
179 			 * DRM drivers, some pages come from
180 			 * `shmem_read_mapping_page_gfp()`.
181 			 *
182 			 * That's why we need to check if the page is managed
183 			 * or not here.
184 			 */
185 			if ((pgo->oflags & VPO_UNMANAGED) == 0) {
186 				vm_page_unwire(pgo, PQ_ACTIVE);
187 			} else {
188 				if (vm_page_unwire_noq(pgo))
189 					vm_page_free(pgo);
190 			}
191 		}
192 	} else {
193 		vm_offset_t vaddr;
194 
195 		vaddr = (vm_offset_t)page_address(page);
196 
197 		_linux_free_kmem(vaddr, order);
198 	}
199 }
200 
201 void
linux_release_pages(release_pages_arg arg,int nr)202 linux_release_pages(release_pages_arg arg, int nr)
203 {
204 	int i;
205 
206 	CTASSERT(offsetof(struct folio, page) == 0);
207 
208 	for (i = 0; i < nr; i++)
209 		__free_page(arg.pages[i]);
210 }
211 
212 vm_offset_t
linux_alloc_kmem(gfp_t flags,unsigned int order)213 linux_alloc_kmem(gfp_t flags, unsigned int order)
214 {
215 	size_t size = ((size_t)PAGE_SIZE) << order;
216 	void *addr;
217 
218 	addr = kmem_alloc_contig(size, flags & GFP_NATIVE_MASK, 0,
219 	    ((flags & GFP_DMA32) == 0) ? -1UL : BUS_SPACE_MAXADDR_32BIT,
220 	    PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
221 
222 	return ((vm_offset_t)addr);
223 }
224 
225 void
linux_free_kmem(vm_offset_t addr,unsigned int order)226 linux_free_kmem(vm_offset_t addr, unsigned int order)
227 {
228 	KASSERT((addr & ~PAGE_MASK) == 0,
229 	    ("%s: addr %p is not page aligned", __func__, (void *)addr));
230 
231 	if (addr >= VM_MIN_KERNEL_ADDRESS && addr < VM_MAX_KERNEL_ADDRESS) {
232 		_linux_free_kmem(addr, order);
233 	} else {
234 		vm_page_t page;
235 
236 		page = PHYS_TO_VM_PAGE(DMAP_TO_PHYS(addr));
237 		linux_free_pages(page, order);
238 	}
239 }
240 
241 static int
linux_get_user_pages_internal(vm_map_t map,unsigned long start,int nr_pages,int write,struct page ** pages)242 linux_get_user_pages_internal(vm_map_t map, unsigned long start, int nr_pages,
243     int write, struct page **pages)
244 {
245 	vm_prot_t prot;
246 	size_t len;
247 	int count;
248 
249 	prot = write ? (VM_PROT_READ | VM_PROT_WRITE) : VM_PROT_READ;
250 	len = ptoa((vm_offset_t)nr_pages);
251 	count = vm_fault_quick_hold_pages(map, start, len, prot, pages, nr_pages);
252 	return (count == -1 ? -EFAULT : nr_pages);
253 }
254 
255 int
__get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)256 __get_user_pages_fast(unsigned long start, int nr_pages, int write,
257     struct page **pages)
258 {
259 	vm_map_t map;
260 	vm_page_t *mp;
261 	vm_offset_t va;
262 	vm_offset_t end;
263 	vm_prot_t prot;
264 	int count;
265 
266 	if (nr_pages == 0 || in_interrupt())
267 		return (0);
268 
269 	MPASS(pages != NULL);
270 	map = &curthread->td_proc->p_vmspace->vm_map;
271 	end = start + ptoa((vm_offset_t)nr_pages);
272 	if (!vm_map_range_valid(map, start, end))
273 		return (-EINVAL);
274 	prot = write ? (VM_PROT_READ | VM_PROT_WRITE) : VM_PROT_READ;
275 	for (count = 0, mp = pages, va = start; va < end;
276 	    mp++, va += PAGE_SIZE, count++) {
277 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
278 		if (*mp == NULL)
279 			break;
280 
281 		if ((prot & VM_PROT_WRITE) != 0 &&
282 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
283 			/*
284 			 * Explicitly dirty the physical page.  Otherwise, the
285 			 * caller's changes may go unnoticed because they are
286 			 * performed through an unmanaged mapping or by a DMA
287 			 * operation.
288 			 *
289 			 * The object lock is not held here.
290 			 * See vm_page_clear_dirty_mask().
291 			 */
292 			vm_page_dirty(*mp);
293 		}
294 	}
295 	return (count);
296 }
297 
298 long
get_user_pages_remote(struct task_struct * task,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)299 get_user_pages_remote(struct task_struct *task, struct mm_struct *mm,
300     unsigned long start, unsigned long nr_pages, unsigned int gup_flags,
301     struct page **pages, struct vm_area_struct **vmas)
302 {
303 	vm_map_t map;
304 
305 	map = &task->task_thread->td_proc->p_vmspace->vm_map;
306 	return (linux_get_user_pages_internal(map, start, nr_pages,
307 	    !!(gup_flags & FOLL_WRITE), pages));
308 }
309 
310 long
lkpi_get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)311 lkpi_get_user_pages(unsigned long start, unsigned long nr_pages,
312     unsigned int gup_flags, struct page **pages)
313 {
314 	vm_map_t map;
315 
316 	map = &curthread->td_proc->p_vmspace->vm_map;
317 	return (linux_get_user_pages_internal(map, start, nr_pages,
318 	    !!(gup_flags & FOLL_WRITE), pages));
319 }
320 
321 /*
322  * Hash of vmmap addresses.  This is infrequently accessed and does not
323  * need to be particularly large.  This is done because we must store the
324  * caller's idea of the map size to properly unmap.
325  */
326 struct vmmap {
327 	LIST_ENTRY(vmmap)	vm_next;
328 	void			*vm_addr;
329 	unsigned long		vm_size;
330 };
331 
332 struct vmmaphd {
333 	struct vmmap *lh_first;
334 };
335 #define VMMAP_HASH_SIZE 64
336 #define VMMAP_HASH_MASK (VMMAP_HASH_SIZE - 1)
337 #define VM_HASH(addr)   ((uintptr_t)(addr) >> PAGE_SHIFT) & VMMAP_HASH_MASK
338 static struct vmmaphd vmmaphead[VMMAP_HASH_SIZE];
339 static struct mtx vmmaplock;
340 
341 int
is_vmalloc_addr(const void * addr)342 is_vmalloc_addr(const void *addr)
343 {
344 	struct vmmap *vmmap;
345 
346 	mtx_lock(&vmmaplock);
347 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
348 		if (addr == vmmap->vm_addr)
349 			break;
350 	mtx_unlock(&vmmaplock);
351 	if (vmmap != NULL)
352 		return (1);
353 
354 	return (vtoslab((vm_offset_t)addr & ~UMA_SLAB_MASK) != NULL);
355 }
356 
357 static void
vmmap_add(void * addr,unsigned long size)358 vmmap_add(void *addr, unsigned long size)
359 {
360 	struct vmmap *vmmap;
361 
362 	vmmap = kmalloc(sizeof(*vmmap), GFP_KERNEL);
363 	mtx_lock(&vmmaplock);
364 	vmmap->vm_size = size;
365 	vmmap->vm_addr = addr;
366 	LIST_INSERT_HEAD(&vmmaphead[VM_HASH(addr)], vmmap, vm_next);
367 	mtx_unlock(&vmmaplock);
368 }
369 
370 static struct vmmap *
vmmap_remove(void * addr)371 vmmap_remove(void *addr)
372 {
373 	struct vmmap *vmmap;
374 
375 	mtx_lock(&vmmaplock);
376 	LIST_FOREACH(vmmap, &vmmaphead[VM_HASH(addr)], vm_next)
377 		if (vmmap->vm_addr == addr)
378 			break;
379 	if (vmmap)
380 		LIST_REMOVE(vmmap, vm_next);
381 	mtx_unlock(&vmmaplock);
382 
383 	return (vmmap);
384 }
385 
386 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
387 void *
_ioremap_attr(vm_paddr_t phys_addr,unsigned long size,int attr)388 _ioremap_attr(vm_paddr_t phys_addr, unsigned long size, int attr)
389 {
390 	void *addr;
391 
392 	addr = pmap_mapdev_attr(phys_addr, size, attr);
393 	if (addr == NULL)
394 		return (NULL);
395 	vmmap_add(addr, size);
396 
397 	return (addr);
398 }
399 #endif
400 
401 void
iounmap(void * addr)402 iounmap(void *addr)
403 {
404 	struct vmmap *vmmap;
405 
406 	vmmap = vmmap_remove(addr);
407 	if (vmmap == NULL)
408 		return;
409 #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) || defined(__aarch64__) || defined(__riscv)
410 	pmap_unmapdev(addr, vmmap->vm_size);
411 #endif
412 	kfree(vmmap);
413 }
414 
415 void *
vmap(struct page ** pages,unsigned int count,unsigned long flags,int prot)416 vmap(struct page **pages, unsigned int count, unsigned long flags, int prot)
417 {
418 	vm_offset_t off;
419 	size_t size;
420 
421 	size = count * PAGE_SIZE;
422 	off = kva_alloc(size);
423 	if (off == 0)
424 		return (NULL);
425 	vmmap_add((void *)off, size);
426 	pmap_qenter(off, pages, count);
427 
428 	return ((void *)off);
429 }
430 
431 #define	VMAP_MAX_CHUNK_SIZE (65536U / sizeof(struct vm_page)) /* KMEM_ZMAX */
432 
433 void *
linuxkpi_vmap_pfn(unsigned long * pfns,unsigned int count,int prot)434 linuxkpi_vmap_pfn(unsigned long *pfns, unsigned int count, int prot)
435 {
436 	vm_page_t m, *ma, fma;
437 	vm_offset_t off, coff;
438 	vm_paddr_t pa;
439 	vm_memattr_t attr;
440 	size_t size;
441 	unsigned int i, c, chunk;
442 
443 	size = ptoa(count);
444 	off = kva_alloc(size);
445 	if (off == 0)
446 		return (NULL);
447 	vmmap_add((void *)off, size);
448 
449 	chunk = MIN(count, VMAP_MAX_CHUNK_SIZE);
450 	attr = pgprot2cachemode(prot);
451 	ma = malloc(chunk * sizeof(vm_page_t), M_TEMP, M_WAITOK | M_ZERO);
452 	fma = NULL;
453 	c = 0;
454 	coff = off;
455 	for (i = 0; i < count; i++) {
456 		pa = IDX_TO_OFF(pfns[i]);
457 		m = PHYS_TO_VM_PAGE(pa);
458 		if (m == NULL) {
459 			if (fma == NULL)
460 				fma = malloc(chunk * sizeof(struct vm_page),
461 				    M_TEMP, M_WAITOK | M_ZERO);
462 			m = fma + c;
463 			vm_page_initfake(m, pa, attr);
464 		} else {
465 			pmap_page_set_memattr(m, attr);
466 		}
467 		ma[c] = m;
468 		c++;
469 		if (c == chunk || i == count - 1) {
470 			pmap_qenter(coff, ma, c);
471 			if (i == count - 1)
472 				break;
473 			coff += ptoa(c);
474 			c = 0;
475 			memset(ma, 0, chunk * sizeof(vm_page_t));
476 			if (fma != NULL)
477 				memset(fma, 0, chunk * sizeof(struct vm_page));
478 		}
479 	}
480 	free(fma, M_TEMP);
481 	free(ma, M_TEMP);
482 
483 	return ((void *)off);
484 }
485 
486 void
vunmap(void * addr)487 vunmap(void *addr)
488 {
489 	struct vmmap *vmmap;
490 
491 	vmmap = vmmap_remove(addr);
492 	if (vmmap == NULL)
493 		return;
494 	pmap_qremove((vm_offset_t)addr, vmmap->vm_size / PAGE_SIZE);
495 	kva_free((vm_offset_t)addr, vmmap->vm_size);
496 	kfree(vmmap);
497 }
498 
499 vm_fault_t
lkpi_vmf_insert_pfn_prot_locked(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot)500 lkpi_vmf_insert_pfn_prot_locked(struct vm_area_struct *vma, unsigned long addr,
501     unsigned long pfn, pgprot_t prot)
502 {
503 	struct pctrie_iter pages;
504 	vm_object_t vm_obj = vma->vm_obj;
505 	vm_object_t tmp_obj;
506 	vm_page_t page;
507 	vm_pindex_t pindex;
508 
509 	VM_OBJECT_ASSERT_WLOCKED(vm_obj);
510 	vm_page_iter_init(&pages, vm_obj);
511 	pindex = OFF_TO_IDX(addr - vma->vm_start);
512 	if (vma->vm_pfn_count == 0)
513 		vma->vm_pfn_first = pindex;
514 	MPASS(pindex <= OFF_TO_IDX(vma->vm_end));
515 
516 retry:
517 	page = vm_page_grab_iter(vm_obj, pindex, VM_ALLOC_NOCREAT, &pages);
518 	if (page == NULL) {
519 		page = PHYS_TO_VM_PAGE(IDX_TO_OFF(pfn));
520 		if (page == NULL)
521 			return (VM_FAULT_SIGBUS);
522 		if (!vm_page_busy_acquire(page, VM_ALLOC_WAITFAIL)) {
523 			pctrie_iter_reset(&pages);
524 			goto retry;
525 		}
526 		if (page->object != NULL) {
527 			tmp_obj = page->object;
528 			vm_page_xunbusy(page);
529 			VM_OBJECT_WUNLOCK(vm_obj);
530 			VM_OBJECT_WLOCK(tmp_obj);
531 			if (page->object == tmp_obj &&
532 			    vm_page_busy_acquire(page, VM_ALLOC_WAITFAIL)) {
533 				KASSERT(page->object == tmp_obj,
534 				    ("page has changed identity"));
535 				KASSERT((page->oflags & VPO_UNMANAGED) == 0,
536 				    ("page does not belong to shmem"));
537 				vm_pager_page_unswapped(page);
538 				if (pmap_page_is_mapped(page)) {
539 					vm_page_xunbusy(page);
540 					VM_OBJECT_WUNLOCK(tmp_obj);
541 					printf("%s: page rename failed: page "
542 					    "is mapped\n", __func__);
543 					VM_OBJECT_WLOCK(vm_obj);
544 					return (VM_FAULT_NOPAGE);
545 				}
546 				vm_page_remove(page);
547 			}
548 			VM_OBJECT_WUNLOCK(tmp_obj);
549 			pctrie_iter_reset(&pages);
550 			VM_OBJECT_WLOCK(vm_obj);
551 			goto retry;
552 		}
553 		if (vm_page_iter_insert(page, vm_obj, pindex, &pages) != 0) {
554 			vm_page_xunbusy(page);
555 			return (VM_FAULT_OOM);
556 		}
557 		vm_page_valid(page);
558 	}
559 	pmap_page_set_memattr(page, pgprot2cachemode(prot));
560 	vma->vm_pfn_count++;
561 
562 	return (VM_FAULT_NOPAGE);
563 }
564 
565 int
lkpi_remap_pfn_range(struct vm_area_struct * vma,unsigned long start_addr,unsigned long start_pfn,unsigned long size,pgprot_t prot)566 lkpi_remap_pfn_range(struct vm_area_struct *vma, unsigned long start_addr,
567     unsigned long start_pfn, unsigned long size, pgprot_t prot)
568 {
569 	vm_object_t vm_obj;
570 	unsigned long addr, pfn;
571 	int err = 0;
572 
573 	vm_obj = vma->vm_obj;
574 
575 	VM_OBJECT_WLOCK(vm_obj);
576 	for (addr = start_addr, pfn = start_pfn;
577 	    addr < start_addr + size;
578 	    addr += PAGE_SIZE) {
579 		vm_fault_t ret;
580 retry:
581 		ret = lkpi_vmf_insert_pfn_prot_locked(vma, addr, pfn, prot);
582 
583 		if ((ret & VM_FAULT_OOM) != 0) {
584 			VM_OBJECT_WUNLOCK(vm_obj);
585 			vm_wait(NULL);
586 			VM_OBJECT_WLOCK(vm_obj);
587 			goto retry;
588 		}
589 
590 		if ((ret & VM_FAULT_ERROR) != 0) {
591 			err = -EFAULT;
592 			break;
593 		}
594 
595 		pfn++;
596 	}
597 	VM_OBJECT_WUNLOCK(vm_obj);
598 
599 	if (unlikely(err)) {
600 		zap_vma_ptes(vma, start_addr,
601 		    (pfn - start_pfn) << PAGE_SHIFT);
602 		return (err);
603 	}
604 
605 	return (0);
606 }
607 
608 int
lkpi_io_mapping_map_user(struct io_mapping * iomap,struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size)609 lkpi_io_mapping_map_user(struct io_mapping *iomap,
610     struct vm_area_struct *vma, unsigned long addr,
611     unsigned long pfn, unsigned long size)
612 {
613 	pgprot_t prot;
614 	int ret;
615 
616 	prot = cachemode2protval(iomap->attr);
617 	ret = lkpi_remap_pfn_range(vma, addr, pfn, size, prot);
618 
619 	return (ret);
620 }
621 
622 /*
623  * Although FreeBSD version of unmap_mapping_range has semantics and types of
624  * parameters compatible with Linux version, the values passed in are different
625  * @obj should match to vm_private_data field of vm_area_struct returned by
626  *      mmap file operation handler, see linux_file_mmap_single() sources
627  * @holelen should match to size of area to be munmapped.
628  */
629 void
lkpi_unmap_mapping_range(void * obj,loff_t const holebegin __unused,loff_t const holelen __unused,int even_cows __unused)630 lkpi_unmap_mapping_range(void *obj, loff_t const holebegin __unused,
631     loff_t const holelen __unused, int even_cows __unused)
632 {
633 	vm_object_t devobj;
634 
635 	devobj = cdev_pager_lookup(obj);
636 	if (devobj != NULL) {
637 		cdev_mgtdev_pager_free_pages(devobj);
638 		vm_object_deallocate(devobj);
639 	}
640 }
641 
642 int
lkpi_arch_phys_wc_add(unsigned long base,unsigned long size)643 lkpi_arch_phys_wc_add(unsigned long base, unsigned long size)
644 {
645 #ifdef __i386__
646 	struct mem_range_desc *mrdesc;
647 	int error, id, act;
648 
649 	/* If PAT is available, do nothing */
650 	if (pat_works)
651 		return (0);
652 
653 	mrdesc = malloc(sizeof(*mrdesc), M_LKMTRR, M_WAITOK);
654 	mrdesc->mr_base = base;
655 	mrdesc->mr_len = size;
656 	mrdesc->mr_flags = MDF_WRITECOMBINE;
657 	strlcpy(mrdesc->mr_owner, "drm", sizeof(mrdesc->mr_owner));
658 	act = MEMRANGE_SET_UPDATE;
659 	error = mem_range_attr_set(mrdesc, &act);
660 	if (error == 0) {
661 		error = idr_get_new(&mtrr_idr, mrdesc, &id);
662 		MPASS(idr_find(&mtrr_idr, id) == mrdesc);
663 		if (error != 0) {
664 			act = MEMRANGE_SET_REMOVE;
665 			mem_range_attr_set(mrdesc, &act);
666 		}
667 	}
668 	if (error != 0) {
669 		free(mrdesc, M_LKMTRR);
670 		pr_warn(
671 		    "Failed to add WC MTRR for [%p-%p]: %d; "
672 		    "performance may suffer\n",
673 		    (void *)base, (void *)(base + size - 1), error);
674 	} else
675 		pr_warn("Successfully added WC MTRR for [%p-%p]\n",
676 		    (void *)base, (void *)(base + size - 1));
677 
678 	return (error != 0 ? -error : id + __MTRR_ID_BASE);
679 #else
680 	return (0);
681 #endif
682 }
683 
684 void
lkpi_arch_phys_wc_del(int reg)685 lkpi_arch_phys_wc_del(int reg)
686 {
687 #ifdef __i386__
688 	struct mem_range_desc *mrdesc;
689 	int act;
690 
691 	/* Check if arch_phys_wc_add() failed. */
692 	if (reg < __MTRR_ID_BASE)
693 		return;
694 
695 	mrdesc = idr_find(&mtrr_idr, reg - __MTRR_ID_BASE);
696 	MPASS(mrdesc != NULL);
697 	idr_remove(&mtrr_idr, reg - __MTRR_ID_BASE);
698 	act = MEMRANGE_SET_REMOVE;
699 	mem_range_attr_set(mrdesc, &act);
700 	free(mrdesc, M_LKMTRR);
701 #endif
702 }
703 
704 /*
705  * This is a highly simplified version of the Linux page_frag_cache.
706  * We only support up-to 1 single page as fragment size and we will
707  * always return a full page.  This may be wasteful on small objects
708  * but the only known consumer (mt76) is either asking for a half-page
709  * or a full page.  If this was to become a problem we can implement
710  * a more elaborate version.
711  */
712 void *
linuxkpi_page_frag_alloc(struct page_frag_cache * pfc,size_t fragsz,gfp_t gfp)713 linuxkpi_page_frag_alloc(struct page_frag_cache *pfc,
714     size_t fragsz, gfp_t gfp)
715 {
716 	vm_page_t pages;
717 
718 	if (fragsz == 0)
719 		return (NULL);
720 
721 	KASSERT(fragsz <= PAGE_SIZE, ("%s: fragsz %zu > PAGE_SIZE not yet "
722 	    "supported", __func__, fragsz));
723 
724 	pages = alloc_pages(gfp, flsl(howmany(fragsz, PAGE_SIZE) - 1));
725 	if (pages == NULL)
726 		return (NULL);
727 	pfc->va = linux_page_address(pages);
728 
729 	/* Passed in as "count" to __page_frag_cache_drain(). Unused by us. */
730 	pfc->pagecnt_bias = 0;
731 
732 	return (pfc->va);
733 }
734 
735 void
linuxkpi_page_frag_free(void * addr)736 linuxkpi_page_frag_free(void *addr)
737 {
738 	vm_page_t page;
739 
740 	page = virt_to_page(addr);
741 	linux_free_pages(page, 0);
742 }
743 
744 void
linuxkpi__page_frag_cache_drain(struct page * page,size_t count __unused)745 linuxkpi__page_frag_cache_drain(struct page *page, size_t count __unused)
746 {
747 
748 	linux_free_pages(page, 0);
749 }
750 
751 static void
lkpi_page_init(void * arg)752 lkpi_page_init(void *arg)
753 {
754 	int i;
755 
756 	mtx_init(&vmmaplock, "IO Map lock", NULL, MTX_DEF);
757 	for (i = 0; i < VMMAP_HASH_SIZE; i++)
758 		LIST_INIT(&vmmaphead[i]);
759 }
760 SYSINIT(lkpi_page, SI_SUB_DRIVERS, SI_ORDER_SECOND, lkpi_page_init, NULL);
761 
762 static void
lkpi_page_uninit(void * arg)763 lkpi_page_uninit(void *arg)
764 {
765 	mtx_destroy(&vmmaplock);
766 }
767 SYSUNINIT(lkpi_page, SI_SUB_DRIVERS, SI_ORDER_SECOND, lkpi_page_uninit, NULL);
768