1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 *
22 */
23 /*
24 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
25 * Use is subject to license terms.
26 */
27
28 /*
29 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
30 */
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/cpuset.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/kmem.h>
38 #include <sys/proc.h>
39 #include <sys/smp.h>
40 #include <sys/dtrace_impl.h>
41 #include <sys/dtrace_bsd.h>
42 #include <cddl/dev/dtrace/dtrace_cddl.h>
43 #include <machine/clock.h>
44 #include <machine/cpufunc.h>
45 #include <machine/frame.h>
46 #include <machine/psl.h>
47 #include <machine/trap.h>
48 #include <vm/pmap.h>
49
50 extern uintptr_t kernelbase;
51
52 extern void dtrace_getnanotime(struct timespec *tsp);
53 extern int (*dtrace_invop_jump_addr)(struct trapframe *);
54
55 int dtrace_invop(uintptr_t, struct trapframe *, uintptr_t);
56 int dtrace_invop_start(struct trapframe *frame);
57 void dtrace_invop_init(void);
58 void dtrace_invop_uninit(void);
59
60 typedef struct dtrace_invop_hdlr {
61 int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t);
62 struct dtrace_invop_hdlr *dtih_next;
63 } dtrace_invop_hdlr_t;
64
65 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
66
67 int
dtrace_invop(uintptr_t addr,struct trapframe * frame,uintptr_t eax)68 dtrace_invop(uintptr_t addr, struct trapframe *frame, uintptr_t eax)
69 {
70 struct thread *td;
71 dtrace_invop_hdlr_t *hdlr;
72 int rval;
73
74 rval = 0;
75 td = curthread;
76 td->t_dtrace_trapframe = frame;
77 for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next)
78 if ((rval = hdlr->dtih_func(addr, frame, eax)) != 0)
79 break;
80 td->t_dtrace_trapframe = NULL;
81 return (rval);
82 }
83
84 void
dtrace_invop_add(int (* func)(uintptr_t,struct trapframe *,uintptr_t))85 dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
86 {
87 dtrace_invop_hdlr_t *hdlr;
88
89 hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
90 hdlr->dtih_func = func;
91 hdlr->dtih_next = dtrace_invop_hdlr;
92 dtrace_invop_hdlr = hdlr;
93 }
94
95 void
dtrace_invop_remove(int (* func)(uintptr_t,struct trapframe *,uintptr_t))96 dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t))
97 {
98 dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
99
100 for (;;) {
101 if (hdlr == NULL)
102 panic("attempt to remove non-existent invop handler");
103
104 if (hdlr->dtih_func == func)
105 break;
106
107 prev = hdlr;
108 hdlr = hdlr->dtih_next;
109 }
110
111 if (prev == NULL) {
112 ASSERT(dtrace_invop_hdlr == hdlr);
113 dtrace_invop_hdlr = hdlr->dtih_next;
114 } else {
115 ASSERT(dtrace_invop_hdlr != hdlr);
116 prev->dtih_next = hdlr->dtih_next;
117 }
118
119 kmem_free(hdlr, 0);
120 }
121
122 void
dtrace_invop_init(void)123 dtrace_invop_init(void)
124 {
125
126 dtrace_invop_jump_addr = dtrace_invop_start;
127 }
128
129 void
dtrace_invop_uninit(void)130 dtrace_invop_uninit(void)
131 {
132
133 dtrace_invop_jump_addr = NULL;
134 }
135
136 void
dtrace_toxic_ranges(void (* func)(uintptr_t base,uintptr_t limit))137 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
138 {
139 (*func)(0, kernelbase);
140 }
141
142 void
dtrace_xcall(processorid_t cpu,dtrace_xcall_t func,void * arg)143 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
144 {
145 cpuset_t cpus;
146
147 if (cpu == DTRACE_CPUALL)
148 cpus = all_cpus;
149 else
150 CPU_SETOF(cpu, &cpus);
151
152 smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func,
153 smp_no_rendezvous_barrier, arg);
154 }
155
156 static void
dtrace_sync_func(void)157 dtrace_sync_func(void)
158 {
159 }
160
161 void
dtrace_sync(void)162 dtrace_sync(void)
163 {
164 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
165 }
166
167 #ifdef notyet
168 void
dtrace_safe_synchronous_signal(void)169 dtrace_safe_synchronous_signal(void)
170 {
171 kthread_t *t = curthread;
172 struct regs *rp = lwptoregs(ttolwp(t));
173 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
174
175 ASSERT(t->t_dtrace_on);
176
177 /*
178 * If we're not in the range of scratch addresses, we're not actually
179 * tracing user instructions so turn off the flags. If the instruction
180 * we copied out caused a synchonous trap, reset the pc back to its
181 * original value and turn off the flags.
182 */
183 if (rp->r_pc < t->t_dtrace_scrpc ||
184 rp->r_pc > t->t_dtrace_astpc + isz) {
185 t->t_dtrace_ft = 0;
186 } else if (rp->r_pc == t->t_dtrace_scrpc ||
187 rp->r_pc == t->t_dtrace_astpc) {
188 rp->r_pc = t->t_dtrace_pc;
189 t->t_dtrace_ft = 0;
190 }
191 }
192
193 int
dtrace_safe_defer_signal(void)194 dtrace_safe_defer_signal(void)
195 {
196 kthread_t *t = curthread;
197 struct regs *rp = lwptoregs(ttolwp(t));
198 size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
199
200 ASSERT(t->t_dtrace_on);
201
202 /*
203 * If we're not in the range of scratch addresses, we're not actually
204 * tracing user instructions so turn off the flags.
205 */
206 if (rp->r_pc < t->t_dtrace_scrpc ||
207 rp->r_pc > t->t_dtrace_astpc + isz) {
208 t->t_dtrace_ft = 0;
209 return (0);
210 }
211
212 /*
213 * If we have executed the original instruction, but we have performed
214 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
215 * registers used to emulate %rip-relative instructions in 64-bit mode,
216 * we'll save ourselves some effort by doing that here and taking the
217 * signal right away. We detect this condition by seeing if the program
218 * counter is the range [scrpc + isz, astpc).
219 */
220 if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
221 rp->r_pc < t->t_dtrace_astpc) {
222 #ifdef __amd64
223 /*
224 * If there is a scratch register and we're on the
225 * instruction immediately after the modified instruction,
226 * restore the value of that scratch register.
227 */
228 if (t->t_dtrace_reg != 0 &&
229 rp->r_pc == t->t_dtrace_scrpc + isz) {
230 switch (t->t_dtrace_reg) {
231 case REG_RAX:
232 rp->r_rax = t->t_dtrace_regv;
233 break;
234 case REG_RCX:
235 rp->r_rcx = t->t_dtrace_regv;
236 break;
237 case REG_R8:
238 rp->r_r8 = t->t_dtrace_regv;
239 break;
240 case REG_R9:
241 rp->r_r9 = t->t_dtrace_regv;
242 break;
243 }
244 }
245 #endif
246 rp->r_pc = t->t_dtrace_npc;
247 t->t_dtrace_ft = 0;
248 return (0);
249 }
250
251 /*
252 * Otherwise, make sure we'll return to the kernel after executing
253 * the copied out instruction and defer the signal.
254 */
255 if (!t->t_dtrace_step) {
256 ASSERT(rp->r_pc < t->t_dtrace_astpc);
257 rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
258 t->t_dtrace_step = 1;
259 }
260
261 t->t_dtrace_ast = 1;
262
263 return (1);
264 }
265 #endif
266
267 static int64_t tgt_cpu_tsc;
268 static int64_t hst_cpu_tsc;
269 static int64_t tsc_skew[MAXCPU];
270 static uint64_t nsec_scale;
271
272 /* See below for the explanation of this macro. */
273 #define SCALE_SHIFT 28
274
275 static void
dtrace_gethrtime_init_cpu(void * arg)276 dtrace_gethrtime_init_cpu(void *arg)
277 {
278 uintptr_t cpu = (uintptr_t) arg;
279
280 if (cpu == curcpu)
281 tgt_cpu_tsc = rdtsc();
282 else
283 hst_cpu_tsc = rdtsc();
284 }
285
286 static void
dtrace_gethrtime_init(void * arg)287 dtrace_gethrtime_init(void *arg)
288 {
289 struct pcpu *pc;
290 uint64_t tsc_f;
291 cpuset_t map;
292 int i;
293
294 /*
295 * Get TSC frequency known at this moment.
296 * This should be constant if TSC is invariant.
297 * Otherwise tick->time conversion will be inaccurate, but
298 * will preserve monotonic property of TSC.
299 */
300 tsc_f = atomic_load_acq_64(&tsc_freq);
301
302 /*
303 * The following line checks that nsec_scale calculated below
304 * doesn't overflow 32-bit unsigned integer, so that it can multiply
305 * another 32-bit integer without overflowing 64-bit.
306 * Thus minimum supported TSC frequency is 62.5MHz.
307 */
308 KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)),
309 ("TSC frequency is too low"));
310
311 /*
312 * We scale up NANOSEC/tsc_f ratio to preserve as much precision
313 * as possible.
314 * 2^28 factor was chosen quite arbitrarily from practical
315 * considerations:
316 * - it supports TSC frequencies as low as 62.5MHz (see above);
317 * - it provides quite good precision (e < 0.01%) up to THz
318 * (terahertz) values;
319 */
320 nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f;
321
322 if (vm_guest != VM_GUEST_NO)
323 return;
324
325 /* The current CPU is the reference one. */
326 sched_pin();
327 tsc_skew[curcpu] = 0;
328 CPU_FOREACH(i) {
329 if (i == curcpu)
330 continue;
331
332 pc = pcpu_find(i);
333 CPU_SETOF(PCPU_GET(cpuid), &map);
334 CPU_SET(pc->pc_cpuid, &map);
335
336 smp_rendezvous_cpus(map, NULL,
337 dtrace_gethrtime_init_cpu,
338 smp_no_rendezvous_barrier, (void *)(uintptr_t) i);
339
340 tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc;
341 }
342 sched_unpin();
343 }
344 SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY,
345 dtrace_gethrtime_init, NULL);
346
347 /*
348 * DTrace needs a high resolution time function which can
349 * be called from a probe context and guaranteed not to have
350 * instrumented with probes itself.
351 *
352 * Returns nanoseconds since boot.
353 */
354 uint64_t
dtrace_gethrtime(void)355 dtrace_gethrtime(void)
356 {
357 uint64_t tsc;
358 uint32_t lo, hi;
359 register_t eflags;
360
361 /*
362 * We split TSC value into lower and higher 32-bit halves and separately
363 * scale them with nsec_scale, then we scale them down by 2^28
364 * (see nsec_scale calculations) taking into account 32-bit shift of
365 * the higher half and finally add.
366 */
367 eflags = intr_disable();
368 tsc = rdtsc() - tsc_skew[curcpu];
369 intr_restore(eflags);
370
371 lo = tsc;
372 hi = tsc >> 32;
373 return (((lo * nsec_scale) >> SCALE_SHIFT) +
374 ((hi * nsec_scale) << (32 - SCALE_SHIFT)));
375 }
376
377 uint64_t
dtrace_gethrestime(void)378 dtrace_gethrestime(void)
379 {
380 struct timespec current_time;
381
382 dtrace_getnanotime(¤t_time);
383
384 return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec);
385 }
386
387 /* Function to handle DTrace traps during probes. See i386/i386/trap.c */
388 int
dtrace_trap(struct trapframe * frame,u_int type)389 dtrace_trap(struct trapframe *frame, u_int type)
390 {
391 uint16_t nofault;
392
393 /*
394 * A trap can occur while DTrace executes a probe. Before
395 * executing the probe, DTrace blocks re-scheduling and sets
396 * a flag in its per-cpu flags to indicate that it doesn't
397 * want to fault. On returning from the probe, the no-fault
398 * flag is cleared and finally re-scheduling is enabled.
399 *
400 * Check if DTrace has enabled 'no-fault' mode:
401 */
402 sched_pin();
403 nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT;
404 sched_unpin();
405 if (nofault) {
406 KASSERT((read_eflags() & PSL_I) == 0, ("interrupts enabled"));
407
408 /*
409 * There are only a couple of trap types that are expected.
410 * All the rest will be handled in the usual way.
411 */
412 switch (type) {
413 /* General protection fault. */
414 case T_PROTFLT:
415 /* Flag an illegal operation. */
416 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
417
418 /*
419 * Offset the instruction pointer to the instruction
420 * following the one causing the fault.
421 */
422 frame->tf_eip += dtrace_instr_size((uint8_t *) frame->tf_eip);
423 return (1);
424 /* Page fault. */
425 case T_PAGEFLT:
426 /* Flag a bad address. */
427 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR;
428 cpu_core[curcpu].cpuc_dtrace_illval = rcr2();
429
430 /*
431 * Offset the instruction pointer to the instruction
432 * following the one causing the fault.
433 */
434 frame->tf_eip += dtrace_instr_size((uint8_t *) frame->tf_eip);
435 return (1);
436 default:
437 /* Handle all other traps in the usual way. */
438 break;
439 }
440 }
441
442 /* Handle the trap in the usual way. */
443 return (0);
444 }
445