xref: /freebsd/crypto/openssl/crypto/bn/bn_gf2m.c (revision 0d0c8621fd181e507f0fb50ffcca606faf66a8c2)
1 /*
2  * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4  *
5  * Licensed under the Apache License 2.0 (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  */
10 
11 #include <assert.h>
12 #include <limits.h>
13 #include <stdio.h>
14 #include "internal/cryptlib.h"
15 #include "bn_local.h"
16 
17 #ifndef OPENSSL_NO_EC2M
18 # include <openssl/ec.h>
19 
20 /*
21  * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
22  * fail.
23  */
24 # define MAX_ITERATIONS 50
25 
26 # define SQR_nibble(w)   ((((w) & 8) << 3) \
27                        |  (((w) & 4) << 2) \
28                        |  (((w) & 2) << 1) \
29                        |   ((w) & 1))
30 
31 
32 /* Platform-specific macros to accelerate squaring. */
33 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
34 #  define SQR1(w) \
35     SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \
36     SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \
37     SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \
38     SQR_nibble((w) >> 36) <<  8 | SQR_nibble((w) >> 32)
39 #  define SQR0(w) \
40     SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \
41     SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \
42     SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >>  8) << 16 | \
43     SQR_nibble((w) >>  4) <<  8 | SQR_nibble((w)      )
44 # endif
45 # ifdef THIRTY_TWO_BIT
46 #  define SQR1(w) \
47     SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \
48     SQR_nibble((w) >> 20) <<  8 | SQR_nibble((w) >> 16)
49 #  define SQR0(w) \
50     SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >>  8) << 16 | \
51     SQR_nibble((w) >>  4) <<  8 | SQR_nibble((w)      )
52 # endif
53 
54 # if !defined(OPENSSL_BN_ASM_GF2m)
55 /*
56  * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
57  * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
58  * the variables have the right amount of space allocated.
59  */
60 #  ifdef THIRTY_TWO_BIT
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)61 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
62                             const BN_ULONG b)
63 {
64     register BN_ULONG h, l, s;
65     BN_ULONG tab[8], top2b = a >> 30;
66     register BN_ULONG a1, a2, a4;
67 
68     a1 = a & (0x3FFFFFFF);
69     a2 = a1 << 1;
70     a4 = a2 << 1;
71 
72     tab[0] = 0;
73     tab[1] = a1;
74     tab[2] = a2;
75     tab[3] = a1 ^ a2;
76     tab[4] = a4;
77     tab[5] = a1 ^ a4;
78     tab[6] = a2 ^ a4;
79     tab[7] = a1 ^ a2 ^ a4;
80 
81     s = tab[b & 0x7];
82     l = s;
83     s = tab[b >> 3 & 0x7];
84     l ^= s << 3;
85     h = s >> 29;
86     s = tab[b >> 6 & 0x7];
87     l ^= s << 6;
88     h ^= s >> 26;
89     s = tab[b >> 9 & 0x7];
90     l ^= s << 9;
91     h ^= s >> 23;
92     s = tab[b >> 12 & 0x7];
93     l ^= s << 12;
94     h ^= s >> 20;
95     s = tab[b >> 15 & 0x7];
96     l ^= s << 15;
97     h ^= s >> 17;
98     s = tab[b >> 18 & 0x7];
99     l ^= s << 18;
100     h ^= s >> 14;
101     s = tab[b >> 21 & 0x7];
102     l ^= s << 21;
103     h ^= s >> 11;
104     s = tab[b >> 24 & 0x7];
105     l ^= s << 24;
106     h ^= s >> 8;
107     s = tab[b >> 27 & 0x7];
108     l ^= s << 27;
109     h ^= s >> 5;
110     s = tab[b >> 30];
111     l ^= s << 30;
112     h ^= s >> 2;
113 
114     /* compensate for the top two bits of a */
115 
116     if (top2b & 01) {
117         l ^= b << 30;
118         h ^= b >> 2;
119     }
120     if (top2b & 02) {
121         l ^= b << 31;
122         h ^= b >> 1;
123     }
124 
125     *r1 = h;
126     *r0 = l;
127 }
128 #  endif
129 #  if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)130 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
131                             const BN_ULONG b)
132 {
133     register BN_ULONG h, l, s;
134     BN_ULONG tab[16], top3b = a >> 61;
135     register BN_ULONG a1, a2, a4, a8;
136 
137     a1 = a & (0x1FFFFFFFFFFFFFFFULL);
138     a2 = a1 << 1;
139     a4 = a2 << 1;
140     a8 = a4 << 1;
141 
142     tab[0] = 0;
143     tab[1] = a1;
144     tab[2] = a2;
145     tab[3] = a1 ^ a2;
146     tab[4] = a4;
147     tab[5] = a1 ^ a4;
148     tab[6] = a2 ^ a4;
149     tab[7] = a1 ^ a2 ^ a4;
150     tab[8] = a8;
151     tab[9] = a1 ^ a8;
152     tab[10] = a2 ^ a8;
153     tab[11] = a1 ^ a2 ^ a8;
154     tab[12] = a4 ^ a8;
155     tab[13] = a1 ^ a4 ^ a8;
156     tab[14] = a2 ^ a4 ^ a8;
157     tab[15] = a1 ^ a2 ^ a4 ^ a8;
158 
159     s = tab[b & 0xF];
160     l = s;
161     s = tab[b >> 4 & 0xF];
162     l ^= s << 4;
163     h = s >> 60;
164     s = tab[b >> 8 & 0xF];
165     l ^= s << 8;
166     h ^= s >> 56;
167     s = tab[b >> 12 & 0xF];
168     l ^= s << 12;
169     h ^= s >> 52;
170     s = tab[b >> 16 & 0xF];
171     l ^= s << 16;
172     h ^= s >> 48;
173     s = tab[b >> 20 & 0xF];
174     l ^= s << 20;
175     h ^= s >> 44;
176     s = tab[b >> 24 & 0xF];
177     l ^= s << 24;
178     h ^= s >> 40;
179     s = tab[b >> 28 & 0xF];
180     l ^= s << 28;
181     h ^= s >> 36;
182     s = tab[b >> 32 & 0xF];
183     l ^= s << 32;
184     h ^= s >> 32;
185     s = tab[b >> 36 & 0xF];
186     l ^= s << 36;
187     h ^= s >> 28;
188     s = tab[b >> 40 & 0xF];
189     l ^= s << 40;
190     h ^= s >> 24;
191     s = tab[b >> 44 & 0xF];
192     l ^= s << 44;
193     h ^= s >> 20;
194     s = tab[b >> 48 & 0xF];
195     l ^= s << 48;
196     h ^= s >> 16;
197     s = tab[b >> 52 & 0xF];
198     l ^= s << 52;
199     h ^= s >> 12;
200     s = tab[b >> 56 & 0xF];
201     l ^= s << 56;
202     h ^= s >> 8;
203     s = tab[b >> 60];
204     l ^= s << 60;
205     h ^= s >> 4;
206 
207     /* compensate for the top three bits of a */
208 
209     if (top3b & 01) {
210         l ^= b << 61;
211         h ^= b >> 3;
212     }
213     if (top3b & 02) {
214         l ^= b << 62;
215         h ^= b >> 2;
216     }
217     if (top3b & 04) {
218         l ^= b << 63;
219         h ^= b >> 1;
220     }
221 
222     *r1 = h;
223     *r0 = l;
224 }
225 #  endif
226 
227 /*
228  * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
229  * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
230  * ensure that the variables have the right amount of space allocated.
231  */
bn_GF2m_mul_2x2(BN_ULONG * r,const BN_ULONG a1,const BN_ULONG a0,const BN_ULONG b1,const BN_ULONG b0)232 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
233                             const BN_ULONG b1, const BN_ULONG b0)
234 {
235     BN_ULONG m1, m0;
236     /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
237     bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
238     bn_GF2m_mul_1x1(r + 1, r, a0, b0);
239     bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
240     /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
241     r[2] ^= m1 ^ r[1] ^ r[3];   /* h0 ^= m1 ^ l1 ^ h1; */
242     r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
243 }
244 # else
245 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
246                      BN_ULONG b0);
247 # endif
248 
249 /*
250  * Add polynomials a and b and store result in r; r could be a or b, a and b
251  * could be equal; r is the bitwise XOR of a and b.
252  */
BN_GF2m_add(BIGNUM * r,const BIGNUM * a,const BIGNUM * b)253 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
254 {
255     int i;
256     const BIGNUM *at, *bt;
257 
258     bn_check_top(a);
259     bn_check_top(b);
260 
261     if (a->top < b->top) {
262         at = b;
263         bt = a;
264     } else {
265         at = a;
266         bt = b;
267     }
268 
269     if (bn_wexpand(r, at->top) == NULL)
270         return 0;
271 
272     for (i = 0; i < bt->top; i++) {
273         r->d[i] = at->d[i] ^ bt->d[i];
274     }
275     for (; i < at->top; i++) {
276         r->d[i] = at->d[i];
277     }
278 
279     r->top = at->top;
280     bn_correct_top(r);
281 
282     return 1;
283 }
284 
285 /*-
286  * Some functions allow for representation of the irreducible polynomials
287  * as an int[], say p.  The irreducible f(t) is then of the form:
288  *     t^p[0] + t^p[1] + ... + t^p[k]
289  * where m = p[0] > p[1] > ... > p[k] = 0.
290  */
291 
292 /* Performs modular reduction of a and store result in r.  r could be a. */
BN_GF2m_mod_arr(BIGNUM * r,const BIGNUM * a,const int p[])293 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
294 {
295     int j, k;
296     int n, dN, d0, d1;
297     BN_ULONG zz, *z;
298 
299     bn_check_top(a);
300 
301     if (p[0] == 0) {
302         /* reduction mod 1 => return 0 */
303         BN_zero(r);
304         return 1;
305     }
306 
307     /*
308      * Since the algorithm does reduction in the r value, if a != r, copy the
309      * contents of a into r so we can do reduction in r.
310      */
311     if (a != r) {
312         if (!bn_wexpand(r, a->top))
313             return 0;
314         for (j = 0; j < a->top; j++) {
315             r->d[j] = a->d[j];
316         }
317         r->top = a->top;
318     }
319     z = r->d;
320 
321     /* start reduction */
322     dN = p[0] / BN_BITS2;
323     for (j = r->top - 1; j > dN;) {
324         zz = z[j];
325         if (z[j] == 0) {
326             j--;
327             continue;
328         }
329         z[j] = 0;
330 
331         for (k = 1; p[k] != 0; k++) {
332             /* reducing component t^p[k] */
333             n = p[0] - p[k];
334             d0 = n % BN_BITS2;
335             d1 = BN_BITS2 - d0;
336             n /= BN_BITS2;
337             z[j - n] ^= (zz >> d0);
338             if (d0)
339                 z[j - n - 1] ^= (zz << d1);
340         }
341 
342         /* reducing component t^0 */
343         n = dN;
344         d0 = p[0] % BN_BITS2;
345         d1 = BN_BITS2 - d0;
346         z[j - n] ^= (zz >> d0);
347         if (d0)
348             z[j - n - 1] ^= (zz << d1);
349     }
350 
351     /* final round of reduction */
352     while (j == dN) {
353 
354         d0 = p[0] % BN_BITS2;
355         zz = z[dN] >> d0;
356         if (zz == 0)
357             break;
358         d1 = BN_BITS2 - d0;
359 
360         /* clear up the top d1 bits */
361         if (d0)
362             z[dN] = (z[dN] << d1) >> d1;
363         else
364             z[dN] = 0;
365         z[0] ^= zz;             /* reduction t^0 component */
366 
367         for (k = 1; p[k] != 0; k++) {
368             BN_ULONG tmp_ulong;
369 
370             /* reducing component t^p[k] */
371             n = p[k] / BN_BITS2;
372             d0 = p[k] % BN_BITS2;
373             d1 = BN_BITS2 - d0;
374             z[n] ^= (zz << d0);
375             if (d0 && (tmp_ulong = zz >> d1))
376                 z[n + 1] ^= tmp_ulong;
377         }
378 
379     }
380 
381     bn_correct_top(r);
382     return 1;
383 }
384 
385 /*
386  * Performs modular reduction of a by p and store result in r.  r could be a.
387  * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
388  * function is only provided for convenience; for best performance, use the
389  * BN_GF2m_mod_arr function.
390  */
BN_GF2m_mod(BIGNUM * r,const BIGNUM * a,const BIGNUM * p)391 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
392 {
393     int ret = 0;
394     int arr[6];
395     bn_check_top(a);
396     bn_check_top(p);
397     ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
398     if (!ret || ret > (int)OSSL_NELEM(arr)) {
399         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
400         return 0;
401     }
402     ret = BN_GF2m_mod_arr(r, a, arr);
403     bn_check_top(r);
404     return ret;
405 }
406 
407 /*
408  * Compute the product of two polynomials a and b, reduce modulo p, and store
409  * the result in r.  r could be a or b; a could be b.
410  */
BN_GF2m_mod_mul_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const int p[],BN_CTX * ctx)411 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
412                         const int p[], BN_CTX *ctx)
413 {
414     int zlen, i, j, k, ret = 0;
415     BIGNUM *s;
416     BN_ULONG x1, x0, y1, y0, zz[4];
417 
418     bn_check_top(a);
419     bn_check_top(b);
420 
421     if (a == b) {
422         return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
423     }
424 
425     BN_CTX_start(ctx);
426     if ((s = BN_CTX_get(ctx)) == NULL)
427         goto err;
428 
429     zlen = a->top + b->top + 4;
430     if (!bn_wexpand(s, zlen))
431         goto err;
432     s->top = zlen;
433 
434     for (i = 0; i < zlen; i++)
435         s->d[i] = 0;
436 
437     for (j = 0; j < b->top; j += 2) {
438         y0 = b->d[j];
439         y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
440         for (i = 0; i < a->top; i += 2) {
441             x0 = a->d[i];
442             x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
443             bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
444             for (k = 0; k < 4; k++)
445                 s->d[i + j + k] ^= zz[k];
446         }
447     }
448 
449     bn_correct_top(s);
450     if (BN_GF2m_mod_arr(r, s, p))
451         ret = 1;
452     bn_check_top(r);
453 
454  err:
455     BN_CTX_end(ctx);
456     return ret;
457 }
458 
459 /*
460  * Compute the product of two polynomials a and b, reduce modulo p, and store
461  * the result in r.  r could be a or b; a could equal b. This function calls
462  * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
463  * only provided for convenience; for best performance, use the
464  * BN_GF2m_mod_mul_arr function.
465  */
BN_GF2m_mod_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)466 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
467                     const BIGNUM *p, BN_CTX *ctx)
468 {
469     int ret = 0;
470     const int max = BN_num_bits(p) + 1;
471     int *arr;
472 
473     bn_check_top(a);
474     bn_check_top(b);
475     bn_check_top(p);
476 
477     arr = OPENSSL_malloc(sizeof(*arr) * max);
478     if (arr == NULL) {
479         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
480         return 0;
481     }
482     ret = BN_GF2m_poly2arr(p, arr, max);
483     if (!ret || ret > max) {
484         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
485         goto err;
486     }
487     ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
488     bn_check_top(r);
489  err:
490     OPENSSL_free(arr);
491     return ret;
492 }
493 
494 /* Square a, reduce the result mod p, and store it in a.  r could be a. */
BN_GF2m_mod_sqr_arr(BIGNUM * r,const BIGNUM * a,const int p[],BN_CTX * ctx)495 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
496                         BN_CTX *ctx)
497 {
498     int i, ret = 0;
499     BIGNUM *s;
500 
501     bn_check_top(a);
502     BN_CTX_start(ctx);
503     if ((s = BN_CTX_get(ctx)) == NULL)
504         goto err;
505     if (!bn_wexpand(s, 2 * a->top))
506         goto err;
507 
508     for (i = a->top - 1; i >= 0; i--) {
509         s->d[2 * i + 1] = SQR1(a->d[i]);
510         s->d[2 * i] = SQR0(a->d[i]);
511     }
512 
513     s->top = 2 * a->top;
514     bn_correct_top(s);
515     if (!BN_GF2m_mod_arr(r, s, p))
516         goto err;
517     bn_check_top(r);
518     ret = 1;
519  err:
520     BN_CTX_end(ctx);
521     return ret;
522 }
523 
524 /*
525  * Square a, reduce the result mod p, and store it in a.  r could be a. This
526  * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
527  * wrapper function is only provided for convenience; for best performance,
528  * use the BN_GF2m_mod_sqr_arr function.
529  */
BN_GF2m_mod_sqr(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)530 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
531 {
532     int ret = 0;
533     const int max = BN_num_bits(p) + 1;
534     int *arr;
535 
536     bn_check_top(a);
537     bn_check_top(p);
538 
539     arr = OPENSSL_malloc(sizeof(*arr) * max);
540     if (arr == NULL) {
541         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
542         return 0;
543     }
544     ret = BN_GF2m_poly2arr(p, arr, max);
545     if (!ret || ret > max) {
546         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
547         goto err;
548     }
549     ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
550     bn_check_top(r);
551  err:
552     OPENSSL_free(arr);
553     return ret;
554 }
555 
556 /*
557  * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
558  * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
559  * Hernandez, J.L., and Menezes, A.  "Software Implementation of Elliptic
560  * Curve Cryptography Over Binary Fields".
561  */
BN_GF2m_mod_inv_vartime(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)562 static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a,
563                                    const BIGNUM *p, BN_CTX *ctx)
564 {
565     BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
566     int ret = 0;
567 
568     bn_check_top(a);
569     bn_check_top(p);
570 
571     BN_CTX_start(ctx);
572 
573     b = BN_CTX_get(ctx);
574     c = BN_CTX_get(ctx);
575     u = BN_CTX_get(ctx);
576     v = BN_CTX_get(ctx);
577     if (v == NULL)
578         goto err;
579 
580     if (!BN_GF2m_mod(u, a, p))
581         goto err;
582     if (BN_is_zero(u))
583         goto err;
584 
585     if (!BN_copy(v, p))
586         goto err;
587 # if 0
588     if (!BN_one(b))
589         goto err;
590 
591     while (1) {
592         while (!BN_is_odd(u)) {
593             if (BN_is_zero(u))
594                 goto err;
595             if (!BN_rshift1(u, u))
596                 goto err;
597             if (BN_is_odd(b)) {
598                 if (!BN_GF2m_add(b, b, p))
599                     goto err;
600             }
601             if (!BN_rshift1(b, b))
602                 goto err;
603         }
604 
605         if (BN_abs_is_word(u, 1))
606             break;
607 
608         if (BN_num_bits(u) < BN_num_bits(v)) {
609             tmp = u;
610             u = v;
611             v = tmp;
612             tmp = b;
613             b = c;
614             c = tmp;
615         }
616 
617         if (!BN_GF2m_add(u, u, v))
618             goto err;
619         if (!BN_GF2m_add(b, b, c))
620             goto err;
621     }
622 # else
623     {
624         int i;
625         int ubits = BN_num_bits(u);
626         int vbits = BN_num_bits(v); /* v is copy of p */
627         int top = p->top;
628         BN_ULONG *udp, *bdp, *vdp, *cdp;
629 
630         if (!bn_wexpand(u, top))
631             goto err;
632         udp = u->d;
633         for (i = u->top; i < top; i++)
634             udp[i] = 0;
635         u->top = top;
636         if (!bn_wexpand(b, top))
637           goto err;
638         bdp = b->d;
639         bdp[0] = 1;
640         for (i = 1; i < top; i++)
641             bdp[i] = 0;
642         b->top = top;
643         if (!bn_wexpand(c, top))
644           goto err;
645         cdp = c->d;
646         for (i = 0; i < top; i++)
647             cdp[i] = 0;
648         c->top = top;
649         vdp = v->d;             /* It pays off to "cache" *->d pointers,
650                                  * because it allows optimizer to be more
651                                  * aggressive. But we don't have to "cache"
652                                  * p->d, because *p is declared 'const'... */
653         while (1) {
654             while (ubits && !(udp[0] & 1)) {
655                 BN_ULONG u0, u1, b0, b1, mask;
656 
657                 u0 = udp[0];
658                 b0 = bdp[0];
659                 mask = (BN_ULONG)0 - (b0 & 1);
660                 b0 ^= p->d[0] & mask;
661                 for (i = 0; i < top - 1; i++) {
662                     u1 = udp[i + 1];
663                     udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
664                     u0 = u1;
665                     b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
666                     bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
667                     b0 = b1;
668                 }
669                 udp[i] = u0 >> 1;
670                 bdp[i] = b0 >> 1;
671                 ubits--;
672             }
673 
674             if (ubits <= BN_BITS2) {
675                 if (udp[0] == 0) /* poly was reducible */
676                     goto err;
677                 if (udp[0] == 1)
678                     break;
679             }
680 
681             if (ubits < vbits) {
682                 i = ubits;
683                 ubits = vbits;
684                 vbits = i;
685                 tmp = u;
686                 u = v;
687                 v = tmp;
688                 tmp = b;
689                 b = c;
690                 c = tmp;
691                 udp = vdp;
692                 vdp = v->d;
693                 bdp = cdp;
694                 cdp = c->d;
695             }
696             for (i = 0; i < top; i++) {
697                 udp[i] ^= vdp[i];
698                 bdp[i] ^= cdp[i];
699             }
700             if (ubits == vbits) {
701                 BN_ULONG ul;
702                 int utop = (ubits - 1) / BN_BITS2;
703 
704                 while ((ul = udp[utop]) == 0 && utop)
705                     utop--;
706                 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
707             }
708         }
709         bn_correct_top(b);
710     }
711 # endif
712 
713     if (!BN_copy(r, b))
714         goto err;
715     bn_check_top(r);
716     ret = 1;
717 
718  err:
719 # ifdef BN_DEBUG
720     /* BN_CTX_end would complain about the expanded form */
721     bn_correct_top(c);
722     bn_correct_top(u);
723     bn_correct_top(v);
724 # endif
725     BN_CTX_end(ctx);
726     return ret;
727 }
728 
729 /*-
730  * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling.
731  * This is not constant time.
732  * But it does eliminate first order deduction on the input.
733  */
BN_GF2m_mod_inv(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)734 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
735 {
736     BIGNUM *b = NULL;
737     int ret = 0;
738     int numbits;
739 
740     BN_CTX_start(ctx);
741     if ((b = BN_CTX_get(ctx)) == NULL)
742         goto err;
743 
744     /* Fail on a non-sensical input p value */
745     numbits = BN_num_bits(p);
746     if (numbits <= 1)
747         goto err;
748 
749     /* generate blinding value */
750     do {
751         if (!BN_priv_rand_ex(b, numbits - 1,
752                              BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx))
753             goto err;
754     } while (BN_is_zero(b));
755 
756     /* r := a * b */
757     if (!BN_GF2m_mod_mul(r, a, b, p, ctx))
758         goto err;
759 
760     /* r := 1/(a * b) */
761     if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx))
762         goto err;
763 
764     /* r := b/(a * b) = 1/a */
765     if (!BN_GF2m_mod_mul(r, r, b, p, ctx))
766         goto err;
767 
768     ret = 1;
769 
770  err:
771     BN_CTX_end(ctx);
772     return ret;
773 }
774 
775 /*
776  * Invert xx, reduce modulo p, and store the result in r. r could be xx.
777  * This function calls down to the BN_GF2m_mod_inv implementation; this
778  * wrapper function is only provided for convenience; for best performance,
779  * use the BN_GF2m_mod_inv function.
780  */
BN_GF2m_mod_inv_arr(BIGNUM * r,const BIGNUM * xx,const int p[],BN_CTX * ctx)781 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
782                         BN_CTX *ctx)
783 {
784     BIGNUM *field;
785     int ret = 0;
786 
787     bn_check_top(xx);
788     BN_CTX_start(ctx);
789     if ((field = BN_CTX_get(ctx)) == NULL)
790         goto err;
791     if (!BN_GF2m_arr2poly(p, field))
792         goto err;
793 
794     ret = BN_GF2m_mod_inv(r, xx, field, ctx);
795     bn_check_top(r);
796 
797  err:
798     BN_CTX_end(ctx);
799     return ret;
800 }
801 
802 /*
803  * Divide y by x, reduce modulo p, and store the result in r. r could be x
804  * or y, x could equal y.
805  */
BN_GF2m_mod_div(BIGNUM * r,const BIGNUM * y,const BIGNUM * x,const BIGNUM * p,BN_CTX * ctx)806 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
807                     const BIGNUM *p, BN_CTX *ctx)
808 {
809     BIGNUM *xinv = NULL;
810     int ret = 0;
811 
812     bn_check_top(y);
813     bn_check_top(x);
814     bn_check_top(p);
815 
816     BN_CTX_start(ctx);
817     xinv = BN_CTX_get(ctx);
818     if (xinv == NULL)
819         goto err;
820 
821     if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
822         goto err;
823     if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
824         goto err;
825     bn_check_top(r);
826     ret = 1;
827 
828  err:
829     BN_CTX_end(ctx);
830     return ret;
831 }
832 
833 /*
834  * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
835  * * or yy, xx could equal yy. This function calls down to the
836  * BN_GF2m_mod_div implementation; this wrapper function is only provided for
837  * convenience; for best performance, use the BN_GF2m_mod_div function.
838  */
BN_GF2m_mod_div_arr(BIGNUM * r,const BIGNUM * yy,const BIGNUM * xx,const int p[],BN_CTX * ctx)839 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
840                         const int p[], BN_CTX *ctx)
841 {
842     BIGNUM *field;
843     int ret = 0;
844 
845     bn_check_top(yy);
846     bn_check_top(xx);
847 
848     BN_CTX_start(ctx);
849     if ((field = BN_CTX_get(ctx)) == NULL)
850         goto err;
851     if (!BN_GF2m_arr2poly(p, field))
852         goto err;
853 
854     ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
855     bn_check_top(r);
856 
857  err:
858     BN_CTX_end(ctx);
859     return ret;
860 }
861 
862 /*
863  * Compute the bth power of a, reduce modulo p, and store the result in r.  r
864  * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
865  * P1363.
866  */
BN_GF2m_mod_exp_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const int p[],BN_CTX * ctx)867 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
868                         const int p[], BN_CTX *ctx)
869 {
870     int ret = 0, i, n;
871     BIGNUM *u;
872 
873     bn_check_top(a);
874     bn_check_top(b);
875 
876     if (BN_is_zero(b))
877         return BN_one(r);
878 
879     if (BN_abs_is_word(b, 1))
880         return (BN_copy(r, a) != NULL);
881 
882     BN_CTX_start(ctx);
883     if ((u = BN_CTX_get(ctx)) == NULL)
884         goto err;
885 
886     if (!BN_GF2m_mod_arr(u, a, p))
887         goto err;
888 
889     n = BN_num_bits(b) - 1;
890     for (i = n - 1; i >= 0; i--) {
891         if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
892             goto err;
893         if (BN_is_bit_set(b, i)) {
894             if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
895                 goto err;
896         }
897     }
898     if (!BN_copy(r, u))
899         goto err;
900     bn_check_top(r);
901     ret = 1;
902  err:
903     BN_CTX_end(ctx);
904     return ret;
905 }
906 
907 /*
908  * Compute the bth power of a, reduce modulo p, and store the result in r.  r
909  * could be a. This function calls down to the BN_GF2m_mod_exp_arr
910  * implementation; this wrapper function is only provided for convenience;
911  * for best performance, use the BN_GF2m_mod_exp_arr function.
912  */
BN_GF2m_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)913 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
914                     const BIGNUM *p, BN_CTX *ctx)
915 {
916     int ret = 0;
917     const int max = BN_num_bits(p) + 1;
918     int *arr;
919 
920     bn_check_top(a);
921     bn_check_top(b);
922     bn_check_top(p);
923 
924     arr = OPENSSL_malloc(sizeof(*arr) * max);
925     if (arr == NULL) {
926         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
927         return 0;
928     }
929     ret = BN_GF2m_poly2arr(p, arr, max);
930     if (!ret || ret > max) {
931         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
932         goto err;
933     }
934     ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
935     bn_check_top(r);
936  err:
937     OPENSSL_free(arr);
938     return ret;
939 }
940 
941 /*
942  * Compute the square root of a, reduce modulo p, and store the result in r.
943  * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
944  */
BN_GF2m_mod_sqrt_arr(BIGNUM * r,const BIGNUM * a,const int p[],BN_CTX * ctx)945 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
946                          BN_CTX *ctx)
947 {
948     int ret = 0;
949     BIGNUM *u;
950 
951     bn_check_top(a);
952 
953     if (p[0] == 0) {
954         /* reduction mod 1 => return 0 */
955         BN_zero(r);
956         return 1;
957     }
958 
959     BN_CTX_start(ctx);
960     if ((u = BN_CTX_get(ctx)) == NULL)
961         goto err;
962 
963     if (!BN_set_bit(u, p[0] - 1))
964         goto err;
965     ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
966     bn_check_top(r);
967 
968  err:
969     BN_CTX_end(ctx);
970     return ret;
971 }
972 
973 /*
974  * Compute the square root of a, reduce modulo p, and store the result in r.
975  * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
976  * implementation; this wrapper function is only provided for convenience;
977  * for best performance, use the BN_GF2m_mod_sqrt_arr function.
978  */
BN_GF2m_mod_sqrt(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)979 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
980 {
981     int ret = 0;
982     const int max = BN_num_bits(p) + 1;
983     int *arr;
984 
985     bn_check_top(a);
986     bn_check_top(p);
987 
988     arr = OPENSSL_malloc(sizeof(*arr) * max);
989     if (arr == NULL) {
990         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
991         return 0;
992     }
993     ret = BN_GF2m_poly2arr(p, arr, max);
994     if (!ret || ret > max) {
995         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
996         goto err;
997     }
998     ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
999     bn_check_top(r);
1000  err:
1001     OPENSSL_free(arr);
1002     return ret;
1003 }
1004 
1005 /*
1006  * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns
1007  * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1008  */
BN_GF2m_mod_solve_quad_arr(BIGNUM * r,const BIGNUM * a_,const int p[],BN_CTX * ctx)1009 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1010                                BN_CTX *ctx)
1011 {
1012     int ret = 0, count = 0, j;
1013     BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1014 
1015     bn_check_top(a_);
1016 
1017     if (p[0] == 0) {
1018         /* reduction mod 1 => return 0 */
1019         BN_zero(r);
1020         return 1;
1021     }
1022 
1023     BN_CTX_start(ctx);
1024     a = BN_CTX_get(ctx);
1025     z = BN_CTX_get(ctx);
1026     w = BN_CTX_get(ctx);
1027     if (w == NULL)
1028         goto err;
1029 
1030     if (!BN_GF2m_mod_arr(a, a_, p))
1031         goto err;
1032 
1033     if (BN_is_zero(a)) {
1034         BN_zero(r);
1035         ret = 1;
1036         goto err;
1037     }
1038 
1039     if (p[0] & 0x1) {           /* m is odd */
1040         /* compute half-trace of a */
1041         if (!BN_copy(z, a))
1042             goto err;
1043         for (j = 1; j <= (p[0] - 1) / 2; j++) {
1044             if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1045                 goto err;
1046             if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1047                 goto err;
1048             if (!BN_GF2m_add(z, z, a))
1049                 goto err;
1050         }
1051 
1052     } else {                    /* m is even */
1053 
1054         rho = BN_CTX_get(ctx);
1055         w2 = BN_CTX_get(ctx);
1056         tmp = BN_CTX_get(ctx);
1057         if (tmp == NULL)
1058             goto err;
1059         do {
1060             if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY,
1061                                  0, ctx))
1062                 goto err;
1063             if (!BN_GF2m_mod_arr(rho, rho, p))
1064                 goto err;
1065             BN_zero(z);
1066             if (!BN_copy(w, rho))
1067                 goto err;
1068             for (j = 1; j <= p[0] - 1; j++) {
1069                 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1070                     goto err;
1071                 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1072                     goto err;
1073                 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1074                     goto err;
1075                 if (!BN_GF2m_add(z, z, tmp))
1076                     goto err;
1077                 if (!BN_GF2m_add(w, w2, rho))
1078                     goto err;
1079             }
1080             count++;
1081         } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1082         if (BN_is_zero(w)) {
1083             ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);
1084             goto err;
1085         }
1086     }
1087 
1088     if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1089         goto err;
1090     if (!BN_GF2m_add(w, z, w))
1091         goto err;
1092     if (BN_GF2m_cmp(w, a)) {
1093         ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION);
1094         goto err;
1095     }
1096 
1097     if (!BN_copy(r, z))
1098         goto err;
1099     bn_check_top(r);
1100 
1101     ret = 1;
1102 
1103  err:
1104     BN_CTX_end(ctx);
1105     return ret;
1106 }
1107 
1108 /*
1109  * Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns
1110  * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1111  * implementation; this wrapper function is only provided for convenience;
1112  * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1113  */
BN_GF2m_mod_solve_quad(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)1114 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1115                            BN_CTX *ctx)
1116 {
1117     int ret = 0;
1118     const int max = BN_num_bits(p) + 1;
1119     int *arr;
1120 
1121     bn_check_top(a);
1122     bn_check_top(p);
1123 
1124     arr = OPENSSL_malloc(sizeof(*arr) * max);
1125     if (arr == NULL) {
1126         ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
1127         goto err;
1128     }
1129     ret = BN_GF2m_poly2arr(p, arr, max);
1130     if (!ret || ret > max) {
1131         ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
1132         goto err;
1133     }
1134     ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1135     bn_check_top(r);
1136  err:
1137     OPENSSL_free(arr);
1138     return ret;
1139 }
1140 
1141 /*
1142  * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1143  * x^i) into an array of integers corresponding to the bits with non-zero
1144  * coefficient.  The array is intended to be suitable for use with
1145  * `BN_GF2m_mod_arr()`, and so the constant term of the polynomial must not be
1146  * zero.  This translates to a requirement that the input BIGNUM `a` is odd.
1147  *
1148  * Given sufficient room, the array is terminated with -1.  Up to max elements
1149  * of the array will be filled.
1150  *
1151  * The return value is total number of array elements that would be filled if
1152  * array was large enough, including the terminating `-1`.  It is `0` when `a`
1153  * is not odd or the constant term is zero contrary to requirement.
1154  *
1155  * The return value is also `0` when the leading exponent exceeds
1156  * `OPENSSL_ECC_MAX_FIELD_BITS`, this guards against CPU exhaustion attacks,
1157  */
BN_GF2m_poly2arr(const BIGNUM * a,int p[],int max)1158 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1159 {
1160     int i, j, k = 0;
1161     BN_ULONG mask;
1162 
1163     if (!BN_is_odd(a))
1164         return 0;
1165 
1166     for (i = a->top - 1; i >= 0; i--) {
1167         if (!a->d[i])
1168             /* skip word if a->d[i] == 0 */
1169             continue;
1170         mask = BN_TBIT;
1171         for (j = BN_BITS2 - 1; j >= 0; j--) {
1172             if (a->d[i] & mask) {
1173                 if (k < max)
1174                     p[k] = BN_BITS2 * i + j;
1175                 k++;
1176             }
1177             mask >>= 1;
1178         }
1179     }
1180 
1181     if (k > 0 && p[0] > OPENSSL_ECC_MAX_FIELD_BITS)
1182         return 0;
1183 
1184     if (k < max)
1185         p[k] = -1;
1186 
1187     return k + 1;
1188 }
1189 
1190 /*
1191  * Convert the coefficient array representation of a polynomial to a
1192  * bit-string.  The array must be terminated by -1.
1193  */
BN_GF2m_arr2poly(const int p[],BIGNUM * a)1194 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1195 {
1196     int i;
1197 
1198     bn_check_top(a);
1199     BN_zero(a);
1200     for (i = 0; p[i] != -1; i++) {
1201         if (BN_set_bit(a, p[i]) == 0)
1202             return 0;
1203     }
1204     bn_check_top(a);
1205 
1206     return 1;
1207 }
1208 
1209 #endif
1210