1 /*
2 * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 #include <assert.h>
12 #include <limits.h>
13 #include <stdio.h>
14 #include "internal/cryptlib.h"
15 #include "bn_local.h"
16
17 #ifndef OPENSSL_NO_EC2M
18 # include <openssl/ec.h>
19
20 /*
21 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
22 * fail.
23 */
24 # define MAX_ITERATIONS 50
25
26 # define SQR_nibble(w) ((((w) & 8) << 3) \
27 | (((w) & 4) << 2) \
28 | (((w) & 2) << 1) \
29 | ((w) & 1))
30
31
32 /* Platform-specific macros to accelerate squaring. */
33 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
34 # define SQR1(w) \
35 SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \
36 SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \
37 SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \
38 SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32)
39 # define SQR0(w) \
40 SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \
41 SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \
42 SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
43 SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
44 # endif
45 # ifdef THIRTY_TWO_BIT
46 # define SQR1(w) \
47 SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \
48 SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16)
49 # define SQR0(w) \
50 SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
51 SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
52 # endif
53
54 # if !defined(OPENSSL_BN_ASM_GF2m)
55 /*
56 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
57 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
58 * the variables have the right amount of space allocated.
59 */
60 # ifdef THIRTY_TWO_BIT
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)61 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
62 const BN_ULONG b)
63 {
64 register BN_ULONG h, l, s;
65 BN_ULONG tab[8], top2b = a >> 30;
66 register BN_ULONG a1, a2, a4;
67
68 a1 = a & (0x3FFFFFFF);
69 a2 = a1 << 1;
70 a4 = a2 << 1;
71
72 tab[0] = 0;
73 tab[1] = a1;
74 tab[2] = a2;
75 tab[3] = a1 ^ a2;
76 tab[4] = a4;
77 tab[5] = a1 ^ a4;
78 tab[6] = a2 ^ a4;
79 tab[7] = a1 ^ a2 ^ a4;
80
81 s = tab[b & 0x7];
82 l = s;
83 s = tab[b >> 3 & 0x7];
84 l ^= s << 3;
85 h = s >> 29;
86 s = tab[b >> 6 & 0x7];
87 l ^= s << 6;
88 h ^= s >> 26;
89 s = tab[b >> 9 & 0x7];
90 l ^= s << 9;
91 h ^= s >> 23;
92 s = tab[b >> 12 & 0x7];
93 l ^= s << 12;
94 h ^= s >> 20;
95 s = tab[b >> 15 & 0x7];
96 l ^= s << 15;
97 h ^= s >> 17;
98 s = tab[b >> 18 & 0x7];
99 l ^= s << 18;
100 h ^= s >> 14;
101 s = tab[b >> 21 & 0x7];
102 l ^= s << 21;
103 h ^= s >> 11;
104 s = tab[b >> 24 & 0x7];
105 l ^= s << 24;
106 h ^= s >> 8;
107 s = tab[b >> 27 & 0x7];
108 l ^= s << 27;
109 h ^= s >> 5;
110 s = tab[b >> 30];
111 l ^= s << 30;
112 h ^= s >> 2;
113
114 /* compensate for the top two bits of a */
115
116 if (top2b & 01) {
117 l ^= b << 30;
118 h ^= b >> 2;
119 }
120 if (top2b & 02) {
121 l ^= b << 31;
122 h ^= b >> 1;
123 }
124
125 *r1 = h;
126 *r0 = l;
127 }
128 # endif
129 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)130 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
131 const BN_ULONG b)
132 {
133 register BN_ULONG h, l, s;
134 BN_ULONG tab[16], top3b = a >> 61;
135 register BN_ULONG a1, a2, a4, a8;
136
137 a1 = a & (0x1FFFFFFFFFFFFFFFULL);
138 a2 = a1 << 1;
139 a4 = a2 << 1;
140 a8 = a4 << 1;
141
142 tab[0] = 0;
143 tab[1] = a1;
144 tab[2] = a2;
145 tab[3] = a1 ^ a2;
146 tab[4] = a4;
147 tab[5] = a1 ^ a4;
148 tab[6] = a2 ^ a4;
149 tab[7] = a1 ^ a2 ^ a4;
150 tab[8] = a8;
151 tab[9] = a1 ^ a8;
152 tab[10] = a2 ^ a8;
153 tab[11] = a1 ^ a2 ^ a8;
154 tab[12] = a4 ^ a8;
155 tab[13] = a1 ^ a4 ^ a8;
156 tab[14] = a2 ^ a4 ^ a8;
157 tab[15] = a1 ^ a2 ^ a4 ^ a8;
158
159 s = tab[b & 0xF];
160 l = s;
161 s = tab[b >> 4 & 0xF];
162 l ^= s << 4;
163 h = s >> 60;
164 s = tab[b >> 8 & 0xF];
165 l ^= s << 8;
166 h ^= s >> 56;
167 s = tab[b >> 12 & 0xF];
168 l ^= s << 12;
169 h ^= s >> 52;
170 s = tab[b >> 16 & 0xF];
171 l ^= s << 16;
172 h ^= s >> 48;
173 s = tab[b >> 20 & 0xF];
174 l ^= s << 20;
175 h ^= s >> 44;
176 s = tab[b >> 24 & 0xF];
177 l ^= s << 24;
178 h ^= s >> 40;
179 s = tab[b >> 28 & 0xF];
180 l ^= s << 28;
181 h ^= s >> 36;
182 s = tab[b >> 32 & 0xF];
183 l ^= s << 32;
184 h ^= s >> 32;
185 s = tab[b >> 36 & 0xF];
186 l ^= s << 36;
187 h ^= s >> 28;
188 s = tab[b >> 40 & 0xF];
189 l ^= s << 40;
190 h ^= s >> 24;
191 s = tab[b >> 44 & 0xF];
192 l ^= s << 44;
193 h ^= s >> 20;
194 s = tab[b >> 48 & 0xF];
195 l ^= s << 48;
196 h ^= s >> 16;
197 s = tab[b >> 52 & 0xF];
198 l ^= s << 52;
199 h ^= s >> 12;
200 s = tab[b >> 56 & 0xF];
201 l ^= s << 56;
202 h ^= s >> 8;
203 s = tab[b >> 60];
204 l ^= s << 60;
205 h ^= s >> 4;
206
207 /* compensate for the top three bits of a */
208
209 if (top3b & 01) {
210 l ^= b << 61;
211 h ^= b >> 3;
212 }
213 if (top3b & 02) {
214 l ^= b << 62;
215 h ^= b >> 2;
216 }
217 if (top3b & 04) {
218 l ^= b << 63;
219 h ^= b >> 1;
220 }
221
222 *r1 = h;
223 *r0 = l;
224 }
225 # endif
226
227 /*
228 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
229 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
230 * ensure that the variables have the right amount of space allocated.
231 */
bn_GF2m_mul_2x2(BN_ULONG * r,const BN_ULONG a1,const BN_ULONG a0,const BN_ULONG b1,const BN_ULONG b0)232 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
233 const BN_ULONG b1, const BN_ULONG b0)
234 {
235 BN_ULONG m1, m0;
236 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
237 bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
238 bn_GF2m_mul_1x1(r + 1, r, a0, b0);
239 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
240 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
241 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
242 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
243 }
244 # else
245 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
246 BN_ULONG b0);
247 # endif
248
249 /*
250 * Add polynomials a and b and store result in r; r could be a or b, a and b
251 * could be equal; r is the bitwise XOR of a and b.
252 */
BN_GF2m_add(BIGNUM * r,const BIGNUM * a,const BIGNUM * b)253 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
254 {
255 int i;
256 const BIGNUM *at, *bt;
257
258 bn_check_top(a);
259 bn_check_top(b);
260
261 if (a->top < b->top) {
262 at = b;
263 bt = a;
264 } else {
265 at = a;
266 bt = b;
267 }
268
269 if (bn_wexpand(r, at->top) == NULL)
270 return 0;
271
272 for (i = 0; i < bt->top; i++) {
273 r->d[i] = at->d[i] ^ bt->d[i];
274 }
275 for (; i < at->top; i++) {
276 r->d[i] = at->d[i];
277 }
278
279 r->top = at->top;
280 bn_correct_top(r);
281
282 return 1;
283 }
284
285 /*-
286 * Some functions allow for representation of the irreducible polynomials
287 * as an int[], say p. The irreducible f(t) is then of the form:
288 * t^p[0] + t^p[1] + ... + t^p[k]
289 * where m = p[0] > p[1] > ... > p[k] = 0.
290 */
291
292 /* Performs modular reduction of a and store result in r. r could be a. */
BN_GF2m_mod_arr(BIGNUM * r,const BIGNUM * a,const int p[])293 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
294 {
295 int j, k;
296 int n, dN, d0, d1;
297 BN_ULONG zz, *z;
298
299 bn_check_top(a);
300
301 if (p[0] == 0) {
302 /* reduction mod 1 => return 0 */
303 BN_zero(r);
304 return 1;
305 }
306
307 /*
308 * Since the algorithm does reduction in the r value, if a != r, copy the
309 * contents of a into r so we can do reduction in r.
310 */
311 if (a != r) {
312 if (!bn_wexpand(r, a->top))
313 return 0;
314 for (j = 0; j < a->top; j++) {
315 r->d[j] = a->d[j];
316 }
317 r->top = a->top;
318 }
319 z = r->d;
320
321 /* start reduction */
322 dN = p[0] / BN_BITS2;
323 for (j = r->top - 1; j > dN;) {
324 zz = z[j];
325 if (z[j] == 0) {
326 j--;
327 continue;
328 }
329 z[j] = 0;
330
331 for (k = 1; p[k] != 0; k++) {
332 /* reducing component t^p[k] */
333 n = p[0] - p[k];
334 d0 = n % BN_BITS2;
335 d1 = BN_BITS2 - d0;
336 n /= BN_BITS2;
337 z[j - n] ^= (zz >> d0);
338 if (d0)
339 z[j - n - 1] ^= (zz << d1);
340 }
341
342 /* reducing component t^0 */
343 n = dN;
344 d0 = p[0] % BN_BITS2;
345 d1 = BN_BITS2 - d0;
346 z[j - n] ^= (zz >> d0);
347 if (d0)
348 z[j - n - 1] ^= (zz << d1);
349 }
350
351 /* final round of reduction */
352 while (j == dN) {
353
354 d0 = p[0] % BN_BITS2;
355 zz = z[dN] >> d0;
356 if (zz == 0)
357 break;
358 d1 = BN_BITS2 - d0;
359
360 /* clear up the top d1 bits */
361 if (d0)
362 z[dN] = (z[dN] << d1) >> d1;
363 else
364 z[dN] = 0;
365 z[0] ^= zz; /* reduction t^0 component */
366
367 for (k = 1; p[k] != 0; k++) {
368 BN_ULONG tmp_ulong;
369
370 /* reducing component t^p[k] */
371 n = p[k] / BN_BITS2;
372 d0 = p[k] % BN_BITS2;
373 d1 = BN_BITS2 - d0;
374 z[n] ^= (zz << d0);
375 if (d0 && (tmp_ulong = zz >> d1))
376 z[n + 1] ^= tmp_ulong;
377 }
378
379 }
380
381 bn_correct_top(r);
382 return 1;
383 }
384
385 /*
386 * Performs modular reduction of a by p and store result in r. r could be a.
387 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
388 * function is only provided for convenience; for best performance, use the
389 * BN_GF2m_mod_arr function.
390 */
BN_GF2m_mod(BIGNUM * r,const BIGNUM * a,const BIGNUM * p)391 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
392 {
393 int ret = 0;
394 int arr[6];
395 bn_check_top(a);
396 bn_check_top(p);
397 ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
398 if (!ret || ret > (int)OSSL_NELEM(arr)) {
399 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
400 return 0;
401 }
402 ret = BN_GF2m_mod_arr(r, a, arr);
403 bn_check_top(r);
404 return ret;
405 }
406
407 /*
408 * Compute the product of two polynomials a and b, reduce modulo p, and store
409 * the result in r. r could be a or b; a could be b.
410 */
BN_GF2m_mod_mul_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const int p[],BN_CTX * ctx)411 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
412 const int p[], BN_CTX *ctx)
413 {
414 int zlen, i, j, k, ret = 0;
415 BIGNUM *s;
416 BN_ULONG x1, x0, y1, y0, zz[4];
417
418 bn_check_top(a);
419 bn_check_top(b);
420
421 if (a == b) {
422 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
423 }
424
425 BN_CTX_start(ctx);
426 if ((s = BN_CTX_get(ctx)) == NULL)
427 goto err;
428
429 zlen = a->top + b->top + 4;
430 if (!bn_wexpand(s, zlen))
431 goto err;
432 s->top = zlen;
433
434 for (i = 0; i < zlen; i++)
435 s->d[i] = 0;
436
437 for (j = 0; j < b->top; j += 2) {
438 y0 = b->d[j];
439 y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
440 for (i = 0; i < a->top; i += 2) {
441 x0 = a->d[i];
442 x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
443 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
444 for (k = 0; k < 4; k++)
445 s->d[i + j + k] ^= zz[k];
446 }
447 }
448
449 bn_correct_top(s);
450 if (BN_GF2m_mod_arr(r, s, p))
451 ret = 1;
452 bn_check_top(r);
453
454 err:
455 BN_CTX_end(ctx);
456 return ret;
457 }
458
459 /*
460 * Compute the product of two polynomials a and b, reduce modulo p, and store
461 * the result in r. r could be a or b; a could equal b. This function calls
462 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
463 * only provided for convenience; for best performance, use the
464 * BN_GF2m_mod_mul_arr function.
465 */
BN_GF2m_mod_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)466 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
467 const BIGNUM *p, BN_CTX *ctx)
468 {
469 int ret = 0;
470 const int max = BN_num_bits(p) + 1;
471 int *arr;
472
473 bn_check_top(a);
474 bn_check_top(b);
475 bn_check_top(p);
476
477 arr = OPENSSL_malloc(sizeof(*arr) * max);
478 if (arr == NULL) {
479 ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
480 return 0;
481 }
482 ret = BN_GF2m_poly2arr(p, arr, max);
483 if (!ret || ret > max) {
484 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
485 goto err;
486 }
487 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
488 bn_check_top(r);
489 err:
490 OPENSSL_free(arr);
491 return ret;
492 }
493
494 /* Square a, reduce the result mod p, and store it in a. r could be a. */
BN_GF2m_mod_sqr_arr(BIGNUM * r,const BIGNUM * a,const int p[],BN_CTX * ctx)495 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
496 BN_CTX *ctx)
497 {
498 int i, ret = 0;
499 BIGNUM *s;
500
501 bn_check_top(a);
502 BN_CTX_start(ctx);
503 if ((s = BN_CTX_get(ctx)) == NULL)
504 goto err;
505 if (!bn_wexpand(s, 2 * a->top))
506 goto err;
507
508 for (i = a->top - 1; i >= 0; i--) {
509 s->d[2 * i + 1] = SQR1(a->d[i]);
510 s->d[2 * i] = SQR0(a->d[i]);
511 }
512
513 s->top = 2 * a->top;
514 bn_correct_top(s);
515 if (!BN_GF2m_mod_arr(r, s, p))
516 goto err;
517 bn_check_top(r);
518 ret = 1;
519 err:
520 BN_CTX_end(ctx);
521 return ret;
522 }
523
524 /*
525 * Square a, reduce the result mod p, and store it in a. r could be a. This
526 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
527 * wrapper function is only provided for convenience; for best performance,
528 * use the BN_GF2m_mod_sqr_arr function.
529 */
BN_GF2m_mod_sqr(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)530 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
531 {
532 int ret = 0;
533 const int max = BN_num_bits(p) + 1;
534 int *arr;
535
536 bn_check_top(a);
537 bn_check_top(p);
538
539 arr = OPENSSL_malloc(sizeof(*arr) * max);
540 if (arr == NULL) {
541 ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
542 return 0;
543 }
544 ret = BN_GF2m_poly2arr(p, arr, max);
545 if (!ret || ret > max) {
546 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
547 goto err;
548 }
549 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
550 bn_check_top(r);
551 err:
552 OPENSSL_free(arr);
553 return ret;
554 }
555
556 /*
557 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
558 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
559 * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
560 * Curve Cryptography Over Binary Fields".
561 */
BN_GF2m_mod_inv_vartime(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)562 static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a,
563 const BIGNUM *p, BN_CTX *ctx)
564 {
565 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
566 int ret = 0;
567
568 bn_check_top(a);
569 bn_check_top(p);
570
571 BN_CTX_start(ctx);
572
573 b = BN_CTX_get(ctx);
574 c = BN_CTX_get(ctx);
575 u = BN_CTX_get(ctx);
576 v = BN_CTX_get(ctx);
577 if (v == NULL)
578 goto err;
579
580 if (!BN_GF2m_mod(u, a, p))
581 goto err;
582 if (BN_is_zero(u))
583 goto err;
584
585 if (!BN_copy(v, p))
586 goto err;
587 # if 0
588 if (!BN_one(b))
589 goto err;
590
591 while (1) {
592 while (!BN_is_odd(u)) {
593 if (BN_is_zero(u))
594 goto err;
595 if (!BN_rshift1(u, u))
596 goto err;
597 if (BN_is_odd(b)) {
598 if (!BN_GF2m_add(b, b, p))
599 goto err;
600 }
601 if (!BN_rshift1(b, b))
602 goto err;
603 }
604
605 if (BN_abs_is_word(u, 1))
606 break;
607
608 if (BN_num_bits(u) < BN_num_bits(v)) {
609 tmp = u;
610 u = v;
611 v = tmp;
612 tmp = b;
613 b = c;
614 c = tmp;
615 }
616
617 if (!BN_GF2m_add(u, u, v))
618 goto err;
619 if (!BN_GF2m_add(b, b, c))
620 goto err;
621 }
622 # else
623 {
624 int i;
625 int ubits = BN_num_bits(u);
626 int vbits = BN_num_bits(v); /* v is copy of p */
627 int top = p->top;
628 BN_ULONG *udp, *bdp, *vdp, *cdp;
629
630 if (!bn_wexpand(u, top))
631 goto err;
632 udp = u->d;
633 for (i = u->top; i < top; i++)
634 udp[i] = 0;
635 u->top = top;
636 if (!bn_wexpand(b, top))
637 goto err;
638 bdp = b->d;
639 bdp[0] = 1;
640 for (i = 1; i < top; i++)
641 bdp[i] = 0;
642 b->top = top;
643 if (!bn_wexpand(c, top))
644 goto err;
645 cdp = c->d;
646 for (i = 0; i < top; i++)
647 cdp[i] = 0;
648 c->top = top;
649 vdp = v->d; /* It pays off to "cache" *->d pointers,
650 * because it allows optimizer to be more
651 * aggressive. But we don't have to "cache"
652 * p->d, because *p is declared 'const'... */
653 while (1) {
654 while (ubits && !(udp[0] & 1)) {
655 BN_ULONG u0, u1, b0, b1, mask;
656
657 u0 = udp[0];
658 b0 = bdp[0];
659 mask = (BN_ULONG)0 - (b0 & 1);
660 b0 ^= p->d[0] & mask;
661 for (i = 0; i < top - 1; i++) {
662 u1 = udp[i + 1];
663 udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
664 u0 = u1;
665 b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
666 bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
667 b0 = b1;
668 }
669 udp[i] = u0 >> 1;
670 bdp[i] = b0 >> 1;
671 ubits--;
672 }
673
674 if (ubits <= BN_BITS2) {
675 if (udp[0] == 0) /* poly was reducible */
676 goto err;
677 if (udp[0] == 1)
678 break;
679 }
680
681 if (ubits < vbits) {
682 i = ubits;
683 ubits = vbits;
684 vbits = i;
685 tmp = u;
686 u = v;
687 v = tmp;
688 tmp = b;
689 b = c;
690 c = tmp;
691 udp = vdp;
692 vdp = v->d;
693 bdp = cdp;
694 cdp = c->d;
695 }
696 for (i = 0; i < top; i++) {
697 udp[i] ^= vdp[i];
698 bdp[i] ^= cdp[i];
699 }
700 if (ubits == vbits) {
701 BN_ULONG ul;
702 int utop = (ubits - 1) / BN_BITS2;
703
704 while ((ul = udp[utop]) == 0 && utop)
705 utop--;
706 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
707 }
708 }
709 bn_correct_top(b);
710 }
711 # endif
712
713 if (!BN_copy(r, b))
714 goto err;
715 bn_check_top(r);
716 ret = 1;
717
718 err:
719 # ifdef BN_DEBUG
720 /* BN_CTX_end would complain about the expanded form */
721 bn_correct_top(c);
722 bn_correct_top(u);
723 bn_correct_top(v);
724 # endif
725 BN_CTX_end(ctx);
726 return ret;
727 }
728
729 /*-
730 * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling.
731 * This is not constant time.
732 * But it does eliminate first order deduction on the input.
733 */
BN_GF2m_mod_inv(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)734 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
735 {
736 BIGNUM *b = NULL;
737 int ret = 0;
738 int numbits;
739
740 BN_CTX_start(ctx);
741 if ((b = BN_CTX_get(ctx)) == NULL)
742 goto err;
743
744 /* Fail on a non-sensical input p value */
745 numbits = BN_num_bits(p);
746 if (numbits <= 1)
747 goto err;
748
749 /* generate blinding value */
750 do {
751 if (!BN_priv_rand_ex(b, numbits - 1,
752 BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx))
753 goto err;
754 } while (BN_is_zero(b));
755
756 /* r := a * b */
757 if (!BN_GF2m_mod_mul(r, a, b, p, ctx))
758 goto err;
759
760 /* r := 1/(a * b) */
761 if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx))
762 goto err;
763
764 /* r := b/(a * b) = 1/a */
765 if (!BN_GF2m_mod_mul(r, r, b, p, ctx))
766 goto err;
767
768 ret = 1;
769
770 err:
771 BN_CTX_end(ctx);
772 return ret;
773 }
774
775 /*
776 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
777 * This function calls down to the BN_GF2m_mod_inv implementation; this
778 * wrapper function is only provided for convenience; for best performance,
779 * use the BN_GF2m_mod_inv function.
780 */
BN_GF2m_mod_inv_arr(BIGNUM * r,const BIGNUM * xx,const int p[],BN_CTX * ctx)781 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
782 BN_CTX *ctx)
783 {
784 BIGNUM *field;
785 int ret = 0;
786
787 bn_check_top(xx);
788 BN_CTX_start(ctx);
789 if ((field = BN_CTX_get(ctx)) == NULL)
790 goto err;
791 if (!BN_GF2m_arr2poly(p, field))
792 goto err;
793
794 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
795 bn_check_top(r);
796
797 err:
798 BN_CTX_end(ctx);
799 return ret;
800 }
801
802 /*
803 * Divide y by x, reduce modulo p, and store the result in r. r could be x
804 * or y, x could equal y.
805 */
BN_GF2m_mod_div(BIGNUM * r,const BIGNUM * y,const BIGNUM * x,const BIGNUM * p,BN_CTX * ctx)806 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
807 const BIGNUM *p, BN_CTX *ctx)
808 {
809 BIGNUM *xinv = NULL;
810 int ret = 0;
811
812 bn_check_top(y);
813 bn_check_top(x);
814 bn_check_top(p);
815
816 BN_CTX_start(ctx);
817 xinv = BN_CTX_get(ctx);
818 if (xinv == NULL)
819 goto err;
820
821 if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
822 goto err;
823 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
824 goto err;
825 bn_check_top(r);
826 ret = 1;
827
828 err:
829 BN_CTX_end(ctx);
830 return ret;
831 }
832
833 /*
834 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
835 * * or yy, xx could equal yy. This function calls down to the
836 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
837 * convenience; for best performance, use the BN_GF2m_mod_div function.
838 */
BN_GF2m_mod_div_arr(BIGNUM * r,const BIGNUM * yy,const BIGNUM * xx,const int p[],BN_CTX * ctx)839 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
840 const int p[], BN_CTX *ctx)
841 {
842 BIGNUM *field;
843 int ret = 0;
844
845 bn_check_top(yy);
846 bn_check_top(xx);
847
848 BN_CTX_start(ctx);
849 if ((field = BN_CTX_get(ctx)) == NULL)
850 goto err;
851 if (!BN_GF2m_arr2poly(p, field))
852 goto err;
853
854 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
855 bn_check_top(r);
856
857 err:
858 BN_CTX_end(ctx);
859 return ret;
860 }
861
862 /*
863 * Compute the bth power of a, reduce modulo p, and store the result in r. r
864 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
865 * P1363.
866 */
BN_GF2m_mod_exp_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const int p[],BN_CTX * ctx)867 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
868 const int p[], BN_CTX *ctx)
869 {
870 int ret = 0, i, n;
871 BIGNUM *u;
872
873 bn_check_top(a);
874 bn_check_top(b);
875
876 if (BN_is_zero(b))
877 return BN_one(r);
878
879 if (BN_abs_is_word(b, 1))
880 return (BN_copy(r, a) != NULL);
881
882 BN_CTX_start(ctx);
883 if ((u = BN_CTX_get(ctx)) == NULL)
884 goto err;
885
886 if (!BN_GF2m_mod_arr(u, a, p))
887 goto err;
888
889 n = BN_num_bits(b) - 1;
890 for (i = n - 1; i >= 0; i--) {
891 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
892 goto err;
893 if (BN_is_bit_set(b, i)) {
894 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
895 goto err;
896 }
897 }
898 if (!BN_copy(r, u))
899 goto err;
900 bn_check_top(r);
901 ret = 1;
902 err:
903 BN_CTX_end(ctx);
904 return ret;
905 }
906
907 /*
908 * Compute the bth power of a, reduce modulo p, and store the result in r. r
909 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
910 * implementation; this wrapper function is only provided for convenience;
911 * for best performance, use the BN_GF2m_mod_exp_arr function.
912 */
BN_GF2m_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)913 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
914 const BIGNUM *p, BN_CTX *ctx)
915 {
916 int ret = 0;
917 const int max = BN_num_bits(p) + 1;
918 int *arr;
919
920 bn_check_top(a);
921 bn_check_top(b);
922 bn_check_top(p);
923
924 arr = OPENSSL_malloc(sizeof(*arr) * max);
925 if (arr == NULL) {
926 ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
927 return 0;
928 }
929 ret = BN_GF2m_poly2arr(p, arr, max);
930 if (!ret || ret > max) {
931 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
932 goto err;
933 }
934 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
935 bn_check_top(r);
936 err:
937 OPENSSL_free(arr);
938 return ret;
939 }
940
941 /*
942 * Compute the square root of a, reduce modulo p, and store the result in r.
943 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
944 */
BN_GF2m_mod_sqrt_arr(BIGNUM * r,const BIGNUM * a,const int p[],BN_CTX * ctx)945 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
946 BN_CTX *ctx)
947 {
948 int ret = 0;
949 BIGNUM *u;
950
951 bn_check_top(a);
952
953 if (p[0] == 0) {
954 /* reduction mod 1 => return 0 */
955 BN_zero(r);
956 return 1;
957 }
958
959 BN_CTX_start(ctx);
960 if ((u = BN_CTX_get(ctx)) == NULL)
961 goto err;
962
963 if (!BN_set_bit(u, p[0] - 1))
964 goto err;
965 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
966 bn_check_top(r);
967
968 err:
969 BN_CTX_end(ctx);
970 return ret;
971 }
972
973 /*
974 * Compute the square root of a, reduce modulo p, and store the result in r.
975 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
976 * implementation; this wrapper function is only provided for convenience;
977 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
978 */
BN_GF2m_mod_sqrt(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)979 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
980 {
981 int ret = 0;
982 const int max = BN_num_bits(p) + 1;
983 int *arr;
984
985 bn_check_top(a);
986 bn_check_top(p);
987
988 arr = OPENSSL_malloc(sizeof(*arr) * max);
989 if (arr == NULL) {
990 ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
991 return 0;
992 }
993 ret = BN_GF2m_poly2arr(p, arr, max);
994 if (!ret || ret > max) {
995 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
996 goto err;
997 }
998 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
999 bn_check_top(r);
1000 err:
1001 OPENSSL_free(arr);
1002 return ret;
1003 }
1004
1005 /*
1006 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1007 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1008 */
BN_GF2m_mod_solve_quad_arr(BIGNUM * r,const BIGNUM * a_,const int p[],BN_CTX * ctx)1009 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1010 BN_CTX *ctx)
1011 {
1012 int ret = 0, count = 0, j;
1013 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1014
1015 bn_check_top(a_);
1016
1017 if (p[0] == 0) {
1018 /* reduction mod 1 => return 0 */
1019 BN_zero(r);
1020 return 1;
1021 }
1022
1023 BN_CTX_start(ctx);
1024 a = BN_CTX_get(ctx);
1025 z = BN_CTX_get(ctx);
1026 w = BN_CTX_get(ctx);
1027 if (w == NULL)
1028 goto err;
1029
1030 if (!BN_GF2m_mod_arr(a, a_, p))
1031 goto err;
1032
1033 if (BN_is_zero(a)) {
1034 BN_zero(r);
1035 ret = 1;
1036 goto err;
1037 }
1038
1039 if (p[0] & 0x1) { /* m is odd */
1040 /* compute half-trace of a */
1041 if (!BN_copy(z, a))
1042 goto err;
1043 for (j = 1; j <= (p[0] - 1) / 2; j++) {
1044 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1045 goto err;
1046 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1047 goto err;
1048 if (!BN_GF2m_add(z, z, a))
1049 goto err;
1050 }
1051
1052 } else { /* m is even */
1053
1054 rho = BN_CTX_get(ctx);
1055 w2 = BN_CTX_get(ctx);
1056 tmp = BN_CTX_get(ctx);
1057 if (tmp == NULL)
1058 goto err;
1059 do {
1060 if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY,
1061 0, ctx))
1062 goto err;
1063 if (!BN_GF2m_mod_arr(rho, rho, p))
1064 goto err;
1065 BN_zero(z);
1066 if (!BN_copy(w, rho))
1067 goto err;
1068 for (j = 1; j <= p[0] - 1; j++) {
1069 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1070 goto err;
1071 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1072 goto err;
1073 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1074 goto err;
1075 if (!BN_GF2m_add(z, z, tmp))
1076 goto err;
1077 if (!BN_GF2m_add(w, w2, rho))
1078 goto err;
1079 }
1080 count++;
1081 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1082 if (BN_is_zero(w)) {
1083 ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);
1084 goto err;
1085 }
1086 }
1087
1088 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1089 goto err;
1090 if (!BN_GF2m_add(w, z, w))
1091 goto err;
1092 if (BN_GF2m_cmp(w, a)) {
1093 ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION);
1094 goto err;
1095 }
1096
1097 if (!BN_copy(r, z))
1098 goto err;
1099 bn_check_top(r);
1100
1101 ret = 1;
1102
1103 err:
1104 BN_CTX_end(ctx);
1105 return ret;
1106 }
1107
1108 /*
1109 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1110 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1111 * implementation; this wrapper function is only provided for convenience;
1112 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1113 */
BN_GF2m_mod_solve_quad(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)1114 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1115 BN_CTX *ctx)
1116 {
1117 int ret = 0;
1118 const int max = BN_num_bits(p) + 1;
1119 int *arr;
1120
1121 bn_check_top(a);
1122 bn_check_top(p);
1123
1124 arr = OPENSSL_malloc(sizeof(*arr) * max);
1125 if (arr == NULL) {
1126 ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
1127 goto err;
1128 }
1129 ret = BN_GF2m_poly2arr(p, arr, max);
1130 if (!ret || ret > max) {
1131 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
1132 goto err;
1133 }
1134 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1135 bn_check_top(r);
1136 err:
1137 OPENSSL_free(arr);
1138 return ret;
1139 }
1140
1141 /*
1142 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1143 * x^i) into an array of integers corresponding to the bits with non-zero
1144 * coefficient. The array is intended to be suitable for use with
1145 * `BN_GF2m_mod_arr()`, and so the constant term of the polynomial must not be
1146 * zero. This translates to a requirement that the input BIGNUM `a` is odd.
1147 *
1148 * Given sufficient room, the array is terminated with -1. Up to max elements
1149 * of the array will be filled.
1150 *
1151 * The return value is total number of array elements that would be filled if
1152 * array was large enough, including the terminating `-1`. It is `0` when `a`
1153 * is not odd or the constant term is zero contrary to requirement.
1154 *
1155 * The return value is also `0` when the leading exponent exceeds
1156 * `OPENSSL_ECC_MAX_FIELD_BITS`, this guards against CPU exhaustion attacks,
1157 */
BN_GF2m_poly2arr(const BIGNUM * a,int p[],int max)1158 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1159 {
1160 int i, j, k = 0;
1161 BN_ULONG mask;
1162
1163 if (!BN_is_odd(a))
1164 return 0;
1165
1166 for (i = a->top - 1; i >= 0; i--) {
1167 if (!a->d[i])
1168 /* skip word if a->d[i] == 0 */
1169 continue;
1170 mask = BN_TBIT;
1171 for (j = BN_BITS2 - 1; j >= 0; j--) {
1172 if (a->d[i] & mask) {
1173 if (k < max)
1174 p[k] = BN_BITS2 * i + j;
1175 k++;
1176 }
1177 mask >>= 1;
1178 }
1179 }
1180
1181 if (k > 0 && p[0] > OPENSSL_ECC_MAX_FIELD_BITS)
1182 return 0;
1183
1184 if (k < max)
1185 p[k] = -1;
1186
1187 return k + 1;
1188 }
1189
1190 /*
1191 * Convert the coefficient array representation of a polynomial to a
1192 * bit-string. The array must be terminated by -1.
1193 */
BN_GF2m_arr2poly(const int p[],BIGNUM * a)1194 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1195 {
1196 int i;
1197
1198 bn_check_top(a);
1199 BN_zero(a);
1200 for (i = 0; p[i] != -1; i++) {
1201 if (BN_set_bit(a, p[i]) == 0)
1202 return 0;
1203 }
1204 bn_check_top(a);
1205
1206 return 1;
1207 }
1208
1209 #endif
1210