xref: /freebsd/sys/arm64/arm64/gic_v3.c (revision f8c90b704189c94275d22d7cc204d1d74e821d86)
1 /*-
2  * Copyright (c) 2015-2016 The FreeBSD Foundation
3  *
4  * This software was developed by Andrew Turner under
5  * the sponsorship of the FreeBSD Foundation.
6  *
7  * This software was developed by Semihalf under
8  * the sponsorship of the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_acpi.h"
33 #include "opt_platform.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bitstring.h>
38 #include <sys/bus.h>
39 #include <sys/kernel.h>
40 #include <sys/ktr.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/rman.h>
44 #include <sys/pcpu.h>
45 #include <sys/proc.h>
46 #include <sys/cpuset.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/smp.h>
50 #include <sys/interrupt.h>
51 
52 #include <vm/vm.h>
53 #include <vm/pmap.h>
54 
55 #include <machine/bus.h>
56 #include <machine/cpu.h>
57 #include <machine/intr.h>
58 
59 #ifdef FDT
60 #include <dev/fdt/fdt_intr.h>
61 #include <dev/ofw/ofw_bus_subr.h>
62 #endif
63 
64 #ifdef DEV_ACPI
65 #include <contrib/dev/acpica/include/acpi.h>
66 #include <dev/acpica/acpivar.h>
67 #endif
68 
69 #include "gic_if.h"
70 #include "pic_if.h"
71 #include "msi_if.h"
72 
73 #include <arm/arm/gic_common.h>
74 #include "gic_v3_reg.h"
75 #include "gic_v3_var.h"
76 
77 static bus_print_child_t gic_v3_print_child;
78 static bus_get_domain_t gic_v3_get_domain;
79 static bus_read_ivar_t gic_v3_read_ivar;
80 static bus_write_ivar_t gic_v3_write_ivar;
81 static bus_alloc_resource_t gic_v3_alloc_resource;
82 
83 static pic_disable_intr_t gic_v3_disable_intr;
84 static pic_enable_intr_t gic_v3_enable_intr;
85 static pic_map_intr_t gic_v3_map_intr;
86 static pic_setup_intr_t gic_v3_setup_intr;
87 static pic_teardown_intr_t gic_v3_teardown_intr;
88 static pic_post_filter_t gic_v3_post_filter;
89 static pic_post_ithread_t gic_v3_post_ithread;
90 static pic_pre_ithread_t gic_v3_pre_ithread;
91 static pic_bind_intr_t gic_v3_bind_intr;
92 #ifdef SMP
93 static pic_init_secondary_t gic_v3_init_secondary;
94 static pic_ipi_send_t gic_v3_ipi_send;
95 static pic_ipi_setup_t gic_v3_ipi_setup;
96 #endif
97 
98 static gic_reserve_msi_range_t gic_v3_reserve_msi_range;
99 static gic_alloc_msi_t gic_v3_gic_alloc_msi;
100 static gic_release_msi_t gic_v3_gic_release_msi;
101 static gic_alloc_msix_t gic_v3_gic_alloc_msix;
102 static gic_release_msix_t gic_v3_gic_release_msix;
103 
104 static msi_alloc_msi_t gic_v3_alloc_msi;
105 static msi_release_msi_t gic_v3_release_msi;
106 static msi_alloc_msix_t gic_v3_alloc_msix;
107 static msi_release_msix_t gic_v3_release_msix;
108 static msi_map_msi_t gic_v3_map_msi;
109 
110 static u_int gic_irq_cpu;
111 #ifdef SMP
112 static u_int sgi_to_ipi[GIC_LAST_SGI - GIC_FIRST_SGI + 1];
113 static u_int sgi_first_unused = GIC_FIRST_SGI;
114 #endif
115 
116 static device_method_t gic_v3_methods[] = {
117 	/* Device interface */
118 	DEVMETHOD(device_detach,	gic_v3_detach),
119 
120 	/* Bus interface */
121 	DEVMETHOD(bus_print_child,	gic_v3_print_child),
122 	DEVMETHOD(bus_get_domain,	gic_v3_get_domain),
123 	DEVMETHOD(bus_read_ivar,	gic_v3_read_ivar),
124 	DEVMETHOD(bus_write_ivar,	gic_v3_write_ivar),
125 	DEVMETHOD(bus_alloc_resource,	gic_v3_alloc_resource),
126 	DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
127 
128 	/* Interrupt controller interface */
129 	DEVMETHOD(pic_disable_intr,	gic_v3_disable_intr),
130 	DEVMETHOD(pic_enable_intr,	gic_v3_enable_intr),
131 	DEVMETHOD(pic_map_intr,		gic_v3_map_intr),
132 	DEVMETHOD(pic_setup_intr,	gic_v3_setup_intr),
133 	DEVMETHOD(pic_teardown_intr,	gic_v3_teardown_intr),
134 	DEVMETHOD(pic_post_filter,	gic_v3_post_filter),
135 	DEVMETHOD(pic_post_ithread,	gic_v3_post_ithread),
136 	DEVMETHOD(pic_pre_ithread,	gic_v3_pre_ithread),
137 #ifdef SMP
138 	DEVMETHOD(pic_bind_intr,	gic_v3_bind_intr),
139 	DEVMETHOD(pic_init_secondary,	gic_v3_init_secondary),
140 	DEVMETHOD(pic_ipi_send,		gic_v3_ipi_send),
141 	DEVMETHOD(pic_ipi_setup,	gic_v3_ipi_setup),
142 #endif
143 
144 	/* MSI/MSI-X */
145 	DEVMETHOD(msi_alloc_msi,        gic_v3_alloc_msi),
146 	DEVMETHOD(msi_release_msi,      gic_v3_release_msi),
147 	DEVMETHOD(msi_alloc_msix,       gic_v3_alloc_msix),
148 	DEVMETHOD(msi_release_msix,     gic_v3_release_msix),
149 	DEVMETHOD(msi_map_msi,          gic_v3_map_msi),
150 
151 	/* GIC */
152 	DEVMETHOD(gic_reserve_msi_range, gic_v3_reserve_msi_range),
153 	DEVMETHOD(gic_alloc_msi,	gic_v3_gic_alloc_msi),
154 	DEVMETHOD(gic_release_msi,	gic_v3_gic_release_msi),
155 	DEVMETHOD(gic_alloc_msix,	gic_v3_gic_alloc_msix),
156 	DEVMETHOD(gic_release_msix,	gic_v3_gic_release_msix),
157 
158 	/* End */
159 	DEVMETHOD_END
160 };
161 
162 DEFINE_CLASS_0(gic, gic_v3_driver, gic_v3_methods,
163     sizeof(struct gic_v3_softc));
164 
165 /*
166  * Driver-specific definitions.
167  */
168 MALLOC_DEFINE(M_GIC_V3, "GICv3", GIC_V3_DEVSTR);
169 
170 /*
171  * Helper functions and definitions.
172  */
173 /* Destination registers, either Distributor or Re-Distributor */
174 enum gic_v3_xdist {
175 	DIST = 0,
176 	REDIST,
177 };
178 
179 struct gic_v3_irqsrc {
180 	struct intr_irqsrc	gi_isrc;
181 	uint32_t		gi_irq;
182 	enum intr_polarity	gi_pol;
183 	enum intr_trigger	gi_trig;
184 #define GI_FLAG_MSI		(1 << 1) /* This interrupt source should only */
185 					 /* be used for MSI/MSI-X interrupts */
186 #define GI_FLAG_MSI_USED	(1 << 2) /* This irq is already allocated */
187 					 /* for a MSI/MSI-X interrupt */
188 	u_int			gi_flags;
189 };
190 
191 /* Helper routines starting with gic_v3_ */
192 static int gic_v3_dist_init(struct gic_v3_softc *);
193 static int gic_v3_redist_alloc(struct gic_v3_softc *);
194 static int gic_v3_redist_find(struct gic_v3_softc *);
195 static int gic_v3_redist_init(struct gic_v3_softc *);
196 static int gic_v3_cpu_init(struct gic_v3_softc *);
197 static void gic_v3_wait_for_rwp(struct gic_v3_softc *, enum gic_v3_xdist);
198 
199 /* A sequence of init functions for primary (boot) CPU */
200 typedef int (*gic_v3_initseq_t) (struct gic_v3_softc *);
201 /* Primary CPU initialization sequence */
202 static gic_v3_initseq_t gic_v3_primary_init[] = {
203 	gic_v3_dist_init,
204 	gic_v3_redist_alloc,
205 	gic_v3_redist_init,
206 	gic_v3_cpu_init,
207 	NULL
208 };
209 
210 #ifdef SMP
211 /* Secondary CPU initialization sequence */
212 static gic_v3_initseq_t gic_v3_secondary_init[] = {
213 	gic_v3_redist_init,
214 	gic_v3_cpu_init,
215 	NULL
216 };
217 #endif
218 
219 uint32_t
220 gic_r_read_4(device_t dev, bus_size_t offset)
221 {
222 	struct gic_v3_softc *sc;
223 	struct resource *rdist;
224 
225 	sc = device_get_softc(dev);
226 	rdist = sc->gic_redists.pcpu[PCPU_GET(cpuid)].res;
227 	offset += sc->gic_redists.pcpu[PCPU_GET(cpuid)].offset;
228 	return (bus_read_4(rdist, offset));
229 }
230 
231 uint64_t
232 gic_r_read_8(device_t dev, bus_size_t offset)
233 {
234 	struct gic_v3_softc *sc;
235 	struct resource *rdist;
236 
237 	sc = device_get_softc(dev);
238 	rdist = sc->gic_redists.pcpu[PCPU_GET(cpuid)].res;
239 	offset += sc->gic_redists.pcpu[PCPU_GET(cpuid)].offset;
240 	return (bus_read_8(rdist, offset));
241 }
242 
243 void
244 gic_r_write_4(device_t dev, bus_size_t offset, uint32_t val)
245 {
246 	struct gic_v3_softc *sc;
247 	struct resource *rdist;
248 
249 	sc = device_get_softc(dev);
250 	rdist = sc->gic_redists.pcpu[PCPU_GET(cpuid)].res;
251 	offset += sc->gic_redists.pcpu[PCPU_GET(cpuid)].offset;
252 	bus_write_4(rdist, offset, val);
253 }
254 
255 void
256 gic_r_write_8(device_t dev, bus_size_t offset, uint64_t val)
257 {
258 	struct gic_v3_softc *sc;
259 	struct resource *rdist;
260 
261 	sc = device_get_softc(dev);
262 	rdist = sc->gic_redists.pcpu[PCPU_GET(cpuid)].res;
263 	offset += sc->gic_redists.pcpu[PCPU_GET(cpuid)].offset;
264 	bus_write_8(rdist, offset, val);
265 }
266 
267 static void
268 gic_v3_reserve_msi_range(device_t dev, u_int start, u_int count)
269 {
270 	struct gic_v3_softc *sc;
271 	int i;
272 
273 	sc = device_get_softc(dev);
274 
275 	KASSERT((start + count) < sc->gic_nirqs,
276 	    ("%s: Trying to allocate too many MSI IRQs: %d + %d > %d", __func__,
277 	    start, count, sc->gic_nirqs));
278 	for (i = 0; i < count; i++) {
279 		KASSERT(sc->gic_irqs[start + i].gi_isrc.isrc_handlers == 0,
280 		    ("%s: MSI interrupt %d already has a handler", __func__,
281 		    count + i));
282 		KASSERT(sc->gic_irqs[start + i].gi_pol == INTR_POLARITY_CONFORM,
283 		    ("%s: MSI interrupt %d already has a polarity", __func__,
284 		    count + i));
285 		KASSERT(sc->gic_irqs[start + i].gi_trig == INTR_TRIGGER_CONFORM,
286 		    ("%s: MSI interrupt %d already has a trigger", __func__,
287 		    count + i));
288 		sc->gic_irqs[start + i].gi_pol = INTR_POLARITY_HIGH;
289 		sc->gic_irqs[start + i].gi_trig = INTR_TRIGGER_EDGE;
290 		sc->gic_irqs[start + i].gi_flags |= GI_FLAG_MSI;
291 	}
292 }
293 
294 /*
295  * Device interface.
296  */
297 int
298 gic_v3_attach(device_t dev)
299 {
300 	struct gic_v3_softc *sc;
301 	gic_v3_initseq_t *init_func;
302 	uint32_t typer;
303 	int rid;
304 	int err;
305 	size_t i;
306 	u_int irq;
307 	const char *name;
308 
309 	sc = device_get_softc(dev);
310 	sc->gic_registered = FALSE;
311 	sc->dev = dev;
312 	err = 0;
313 
314 	/* Initialize mutex */
315 	mtx_init(&sc->gic_mtx, "GICv3 lock", NULL, MTX_SPIN);
316 
317 	/*
318 	 * Allocate array of struct resource.
319 	 * One entry for Distributor and all remaining for Re-Distributor.
320 	 */
321 	sc->gic_res = malloc(
322 	    sizeof(*sc->gic_res) * (sc->gic_redists.nregions + 1),
323 	    M_GIC_V3, M_WAITOK);
324 
325 	/* Now allocate corresponding resources */
326 	for (i = 0, rid = 0; i < (sc->gic_redists.nregions + 1); i++, rid++) {
327 		sc->gic_res[rid] = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
328 		    &rid, RF_ACTIVE);
329 		if (sc->gic_res[rid] == NULL)
330 			return (ENXIO);
331 	}
332 
333 	/*
334 	 * Distributor interface
335 	 */
336 	sc->gic_dist = sc->gic_res[0];
337 
338 	/*
339 	 * Re-Dristributor interface
340 	 */
341 	/* Allocate space under region descriptions */
342 	sc->gic_redists.regions = malloc(
343 	    sizeof(*sc->gic_redists.regions) * sc->gic_redists.nregions,
344 	    M_GIC_V3, M_WAITOK);
345 
346 	/* Fill-up bus_space information for each region. */
347 	for (i = 0, rid = 1; i < sc->gic_redists.nregions; i++, rid++)
348 		sc->gic_redists.regions[i] = sc->gic_res[rid];
349 
350 	/* Get the number of supported SPI interrupts */
351 	typer = gic_d_read(sc, 4, GICD_TYPER);
352 	sc->gic_nirqs = GICD_TYPER_I_NUM(typer);
353 	if (sc->gic_nirqs > GIC_I_NUM_MAX)
354 		sc->gic_nirqs = GIC_I_NUM_MAX;
355 
356 	sc->gic_irqs = malloc(sizeof(*sc->gic_irqs) * sc->gic_nirqs,
357 	    M_GIC_V3, M_WAITOK | M_ZERO);
358 	name = device_get_nameunit(dev);
359 	for (irq = 0; irq < sc->gic_nirqs; irq++) {
360 		struct intr_irqsrc *isrc;
361 
362 		sc->gic_irqs[irq].gi_irq = irq;
363 		sc->gic_irqs[irq].gi_pol = INTR_POLARITY_CONFORM;
364 		sc->gic_irqs[irq].gi_trig = INTR_TRIGGER_CONFORM;
365 
366 		isrc = &sc->gic_irqs[irq].gi_isrc;
367 		if (irq <= GIC_LAST_SGI) {
368 			err = intr_isrc_register(isrc, sc->dev,
369 			    INTR_ISRCF_IPI, "%s,i%u", name, irq - GIC_FIRST_SGI);
370 		} else if (irq <= GIC_LAST_PPI) {
371 			err = intr_isrc_register(isrc, sc->dev,
372 			    INTR_ISRCF_PPI, "%s,p%u", name, irq - GIC_FIRST_PPI);
373 		} else {
374 			err = intr_isrc_register(isrc, sc->dev, 0,
375 			    "%s,s%u", name, irq - GIC_FIRST_SPI);
376 		}
377 		if (err != 0) {
378 			/* XXX call intr_isrc_deregister() */
379 			free(sc->gic_irqs, M_DEVBUF);
380 			return (err);
381 		}
382 	}
383 
384 	mtx_init(&sc->gic_mbi_mtx, "GICv3 mbi lock", NULL, MTX_DEF);
385 	if (sc->gic_mbi_start > 0) {
386 		if (!sc->gic_mbi_end) {
387 			/*
388 			 * This is to address SPI based msi ranges, where
389 			 * SPI range is not specified in ACPI
390 			 */
391 			sc->gic_mbi_end = sc->gic_nirqs - 1;
392 		}
393 		gic_v3_reserve_msi_range(dev, sc->gic_mbi_start,
394 		    sc->gic_mbi_end - sc->gic_mbi_start);
395 
396 		if (bootverbose) {
397 			device_printf(dev, "using spi %u to %u\n", sc->gic_mbi_start,
398 					sc->gic_mbi_end);
399 		}
400 	}
401 
402 	/*
403 	 * Read the Peripheral ID2 register. This is an implementation
404 	 * defined register, but seems to be implemented in all GICv3
405 	 * parts and Linux expects it to be there.
406 	 */
407 	sc->gic_pidr2 = gic_d_read(sc, 4, GICD_PIDR2);
408 
409 	/* Get the number of supported interrupt identifier bits */
410 	sc->gic_idbits = GICD_TYPER_IDBITS(typer);
411 
412 	if (bootverbose) {
413 		device_printf(dev, "SPIs: %u, IDs: %u\n",
414 		    sc->gic_nirqs, (1 << sc->gic_idbits) - 1);
415 	}
416 
417 	/* Train init sequence for boot CPU */
418 	for (init_func = gic_v3_primary_init; *init_func != NULL; init_func++) {
419 		err = (*init_func)(sc);
420 		if (err != 0)
421 			return (err);
422 	}
423 
424 	return (0);
425 }
426 
427 int
428 gic_v3_detach(device_t dev)
429 {
430 	struct gic_v3_softc *sc;
431 	int rid;
432 
433 	sc = device_get_softc(dev);
434 
435 	if (device_is_attached(dev)) {
436 		/*
437 		 * XXX: We should probably deregister PIC
438 		 */
439 		if (sc->gic_registered)
440 			panic("Trying to detach registered PIC");
441 	}
442 	for (rid = 0; rid < (sc->gic_redists.nregions + 1); rid++)
443 		bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->gic_res[rid]);
444 
445 	free(sc->gic_redists.pcpu, M_GIC_V3);
446 
447 	free(sc->ranges, M_GIC_V3);
448 	free(sc->gic_res, M_GIC_V3);
449 	free(sc->gic_redists.regions, M_GIC_V3);
450 
451 	return (0);
452 }
453 
454 static int
455 gic_v3_print_child(device_t bus, device_t child)
456 {
457 	struct resource_list *rl;
458 	int retval = 0;
459 
460 	rl = BUS_GET_RESOURCE_LIST(bus, child);
461 	KASSERT(rl != NULL, ("%s: No resource list", __func__));
462 	retval += bus_print_child_header(bus, child);
463 	retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx");
464 	retval += bus_print_child_footer(bus, child);
465 
466 	return (retval);
467 }
468 
469 static int
470 gic_v3_get_domain(device_t dev, device_t child, int *domain)
471 {
472 	struct gic_v3_devinfo *di;
473 
474 	di = device_get_ivars(child);
475 	if (di->gic_domain < 0)
476 		return (ENOENT);
477 
478 	*domain = di->gic_domain;
479 	return (0);
480 }
481 
482 static int
483 gic_v3_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
484 {
485 	struct gic_v3_softc *sc;
486 	struct gic_v3_devinfo *di;
487 
488 	sc = device_get_softc(dev);
489 
490 	switch (which) {
491 	case GICV3_IVAR_NIRQS:
492 		*result = (intr_nirq - sc->gic_nirqs) / sc->gic_nchildren;
493 		return (0);
494 	case GICV3_IVAR_REDIST:
495 		*result = (uintptr_t)&sc->gic_redists.pcpu[PCPU_GET(cpuid)];
496 		return (0);
497 	case GICV3_IVAR_SUPPORT_LPIS:
498 		*result =
499 		    (gic_d_read(sc, 4, GICD_TYPER) & GICD_TYPER_LPIS) != 0;
500 		return (0);
501 	case GIC_IVAR_HW_REV:
502 		KASSERT(
503 		    GICR_PIDR2_ARCH(sc->gic_pidr2) == GICR_PIDR2_ARCH_GICv3 ||
504 		    GICR_PIDR2_ARCH(sc->gic_pidr2) == GICR_PIDR2_ARCH_GICv4,
505 		    ("gic_v3_read_ivar: Invalid GIC architecture: %d (%.08X)",
506 		     GICR_PIDR2_ARCH(sc->gic_pidr2), sc->gic_pidr2));
507 		*result = GICR_PIDR2_ARCH(sc->gic_pidr2);
508 		return (0);
509 	case GIC_IVAR_BUS:
510 		KASSERT(sc->gic_bus != GIC_BUS_UNKNOWN,
511 		    ("gic_v3_read_ivar: Unknown bus type"));
512 		KASSERT(sc->gic_bus <= GIC_BUS_MAX,
513 		    ("gic_v3_read_ivar: Invalid bus type %u", sc->gic_bus));
514 		*result = sc->gic_bus;
515 		return (0);
516 	case GIC_IVAR_VGIC:
517 		di = device_get_ivars(child);
518 		if (di == NULL)
519 			return (EINVAL);
520 		*result = di->is_vgic;
521 		return (0);
522 	}
523 
524 	return (ENOENT);
525 }
526 
527 static int
528 gic_v3_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
529 {
530 	switch(which) {
531 	case GICV3_IVAR_NIRQS:
532 	case GICV3_IVAR_REDIST:
533 	case GIC_IVAR_HW_REV:
534 	case GIC_IVAR_BUS:
535 		return (EINVAL);
536 	}
537 
538 	return (ENOENT);
539 }
540 
541 static struct resource *
542 gic_v3_alloc_resource(device_t bus, device_t child, int type, int *rid,
543     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
544 {
545 	struct gic_v3_softc *sc;
546 	struct resource_list_entry *rle;
547 	struct resource_list *rl;
548 	int j;
549 
550 	/* We only allocate memory */
551 	if (type != SYS_RES_MEMORY)
552 		return (NULL);
553 
554 	sc = device_get_softc(bus);
555 
556 	if (RMAN_IS_DEFAULT_RANGE(start, end)) {
557 		rl = BUS_GET_RESOURCE_LIST(bus, child);
558 		if (rl == NULL)
559 			return (NULL);
560 
561 		/* Find defaults for this rid */
562 		rle = resource_list_find(rl, type, *rid);
563 		if (rle == NULL)
564 			return (NULL);
565 
566 		start = rle->start;
567 		end = rle->end;
568 		count = rle->count;
569 	}
570 
571 	/* Remap through ranges property */
572 	for (j = 0; j < sc->nranges; j++) {
573 		if (start >= sc->ranges[j].bus && end <
574 		    sc->ranges[j].bus + sc->ranges[j].size) {
575 			start -= sc->ranges[j].bus;
576 			start += sc->ranges[j].host;
577 			end -= sc->ranges[j].bus;
578 			end += sc->ranges[j].host;
579 			break;
580 		}
581 	}
582 	if (j == sc->nranges && sc->nranges != 0) {
583 		if (bootverbose)
584 			device_printf(bus, "Could not map resource "
585 			    "%#jx-%#jx\n", (uintmax_t)start, (uintmax_t)end);
586 
587 		return (NULL);
588 	}
589 
590 	return (bus_generic_alloc_resource(bus, child, type, rid, start, end,
591 	    count, flags));
592 }
593 
594 int
595 arm_gic_v3_intr(void *arg)
596 {
597 	struct gic_v3_softc *sc = arg;
598 	struct gic_v3_irqsrc *gi;
599 	struct intr_pic *pic;
600 	uint64_t active_irq;
601 	struct trapframe *tf;
602 
603 	pic = sc->gic_pic;
604 
605 	while (1) {
606 		if (CPU_MATCH_ERRATA_CAVIUM_THUNDERX_1_1) {
607 			/*
608 			 * Hardware:		Cavium ThunderX
609 			 * Chip revision:	Pass 1.0 (early version)
610 			 *			Pass 1.1 (production)
611 			 * ERRATUM:		22978, 23154
612 			 */
613 			__asm __volatile(
614 			    "nop;nop;nop;nop;nop;nop;nop;nop;	\n"
615 			    "mrs %0, ICC_IAR1_EL1		\n"
616 			    "nop;nop;nop;nop;			\n"
617 			    "dsb sy				\n"
618 			    : "=&r" (active_irq));
619 		} else {
620 			active_irq = gic_icc_read(IAR1);
621 		}
622 
623 		if (active_irq >= GIC_FIRST_LPI) {
624 			intr_child_irq_handler(pic, active_irq);
625 			continue;
626 		}
627 
628 		if (__predict_false(active_irq >= sc->gic_nirqs))
629 			return (FILTER_HANDLED);
630 
631 		tf = curthread->td_intr_frame;
632 		gi = &sc->gic_irqs[active_irq];
633 		if (active_irq <= GIC_LAST_SGI) {
634 			/* Call EOI for all IPI before dispatch. */
635 			gic_icc_write(EOIR1, (uint64_t)active_irq);
636 #ifdef SMP
637 			intr_ipi_dispatch(sgi_to_ipi[gi->gi_irq]);
638 #else
639 			device_printf(sc->dev, "SGI %ju on UP system detected\n",
640 			    (uintmax_t)(active_irq - GIC_FIRST_SGI));
641 #endif
642 		} else if (active_irq >= GIC_FIRST_PPI &&
643 		    active_irq <= GIC_LAST_SPI) {
644 			if (gi->gi_trig == INTR_TRIGGER_EDGE)
645 				gic_icc_write(EOIR1, gi->gi_irq);
646 
647 			if (intr_isrc_dispatch(&gi->gi_isrc, tf) != 0) {
648 				if (gi->gi_trig != INTR_TRIGGER_EDGE)
649 					gic_icc_write(EOIR1, gi->gi_irq);
650 				gic_v3_disable_intr(sc->dev, &gi->gi_isrc);
651 				device_printf(sc->dev,
652 				    "Stray irq %lu disabled\n", active_irq);
653 			}
654 		}
655 	}
656 }
657 
658 #ifdef FDT
659 static int
660 gic_map_fdt(device_t dev, u_int ncells, pcell_t *cells, u_int *irqp,
661     enum intr_polarity *polp, enum intr_trigger *trigp)
662 {
663 	u_int irq;
664 
665 	if (ncells < 3)
666 		return (EINVAL);
667 
668 	/*
669 	 * The 1st cell is the interrupt type:
670 	 *	0 = SPI
671 	 *	1 = PPI
672 	 * The 2nd cell contains the interrupt number:
673 	 *	[0 - 987] for SPI
674 	 *	[0 -  15] for PPI
675 	 * The 3rd cell is the flags, encoded as follows:
676 	 *   bits[3:0] trigger type and level flags
677 	 *	1 = edge triggered
678 	 *      2 = edge triggered (PPI only)
679 	 *	4 = level-sensitive
680 	 *	8 = level-sensitive (PPI only)
681 	 */
682 	switch (cells[0]) {
683 	case 0:
684 		irq = GIC_FIRST_SPI + cells[1];
685 		/* SPI irq is checked later. */
686 		break;
687 	case 1:
688 		irq = GIC_FIRST_PPI + cells[1];
689 		if (irq > GIC_LAST_PPI) {
690 			device_printf(dev, "unsupported PPI interrupt "
691 			    "number %u\n", cells[1]);
692 			return (EINVAL);
693 		}
694 		break;
695 	default:
696 		device_printf(dev, "unsupported interrupt type "
697 		    "configuration %u\n", cells[0]);
698 		return (EINVAL);
699 	}
700 
701 	switch (cells[2] & FDT_INTR_MASK) {
702 	case FDT_INTR_EDGE_RISING:
703 		*trigp = INTR_TRIGGER_EDGE;
704 		*polp = INTR_POLARITY_HIGH;
705 		break;
706 	case FDT_INTR_EDGE_FALLING:
707 		*trigp = INTR_TRIGGER_EDGE;
708 		*polp = INTR_POLARITY_LOW;
709 		break;
710 	case FDT_INTR_LEVEL_HIGH:
711 		*trigp = INTR_TRIGGER_LEVEL;
712 		*polp = INTR_POLARITY_HIGH;
713 		break;
714 	case FDT_INTR_LEVEL_LOW:
715 		*trigp = INTR_TRIGGER_LEVEL;
716 		*polp = INTR_POLARITY_LOW;
717 		break;
718 	default:
719 		device_printf(dev, "unsupported trigger/polarity "
720 		    "configuration 0x%02x\n", cells[2]);
721 		return (EINVAL);
722 	}
723 
724 	/* Check the interrupt is valid */
725 	if (irq >= GIC_FIRST_SPI && *polp != INTR_POLARITY_HIGH)
726 		return (EINVAL);
727 
728 	*irqp = irq;
729 	return (0);
730 }
731 #endif
732 
733 static int
734 gic_map_msi(device_t dev, struct intr_map_data_msi *msi_data, u_int *irqp,
735     enum intr_polarity *polp, enum intr_trigger *trigp)
736 {
737 	struct gic_v3_irqsrc *gi;
738 
739 	/* SPI-mapped MSI */
740 	gi = (struct gic_v3_irqsrc *)msi_data->isrc;
741 	if (gi == NULL)
742 		return (ENXIO);
743 
744 	*irqp = gi->gi_irq;
745 
746 	/* MSI/MSI-X interrupts are always edge triggered with high polarity */
747 	*polp = INTR_POLARITY_HIGH;
748 	*trigp = INTR_TRIGGER_EDGE;
749 
750 	return (0);
751 }
752 
753 static int
754 do_gic_v3_map_intr(device_t dev, struct intr_map_data *data, u_int *irqp,
755     enum intr_polarity *polp, enum intr_trigger *trigp)
756 {
757 	struct gic_v3_softc *sc;
758 	enum intr_polarity pol;
759 	enum intr_trigger trig;
760 	struct intr_map_data_msi *dam;
761 #ifdef FDT
762 	struct intr_map_data_fdt *daf;
763 #endif
764 #ifdef DEV_ACPI
765 	struct intr_map_data_acpi *daa;
766 #endif
767 	u_int irq;
768 
769 	sc = device_get_softc(dev);
770 
771 	switch (data->type) {
772 #ifdef FDT
773 	case INTR_MAP_DATA_FDT:
774 		daf = (struct intr_map_data_fdt *)data;
775 		if (gic_map_fdt(dev, daf->ncells, daf->cells, &irq, &pol,
776 		    &trig) != 0)
777 			return (EINVAL);
778 		break;
779 #endif
780 #ifdef DEV_ACPI
781 	case INTR_MAP_DATA_ACPI:
782 		daa = (struct intr_map_data_acpi *)data;
783 		irq = daa->irq;
784 		pol = daa->pol;
785 		trig = daa->trig;
786 		break;
787 #endif
788 	case INTR_MAP_DATA_MSI:
789 		/* SPI-mapped MSI */
790 		dam = (struct intr_map_data_msi *)data;
791 		if (gic_map_msi(dev, dam, &irq, &pol, &trig) != 0)
792 			return (EINVAL);
793 		break;
794 	default:
795 		return (EINVAL);
796 	}
797 
798 	if (irq >= sc->gic_nirqs)
799 		return (EINVAL);
800 	switch (pol) {
801 	case INTR_POLARITY_CONFORM:
802 	case INTR_POLARITY_LOW:
803 	case INTR_POLARITY_HIGH:
804 		break;
805 	default:
806 		return (EINVAL);
807 	}
808 	switch (trig) {
809 	case INTR_TRIGGER_CONFORM:
810 	case INTR_TRIGGER_EDGE:
811 	case INTR_TRIGGER_LEVEL:
812 		break;
813 	default:
814 		return (EINVAL);
815 	}
816 
817 	*irqp = irq;
818 	if (polp != NULL)
819 		*polp = pol;
820 	if (trigp != NULL)
821 		*trigp = trig;
822 	return (0);
823 }
824 
825 static int
826 gic_v3_map_intr(device_t dev, struct intr_map_data *data,
827     struct intr_irqsrc **isrcp)
828 {
829 	struct gic_v3_softc *sc;
830 	int error;
831 	u_int irq;
832 
833 	error = do_gic_v3_map_intr(dev, data, &irq, NULL, NULL);
834 	if (error == 0) {
835 		sc = device_get_softc(dev);
836 		*isrcp = GIC_INTR_ISRC(sc, irq);
837 	}
838 	return (error);
839 }
840 
841 struct gic_v3_setup_periph_args {
842 	device_t		 dev;
843 	struct intr_irqsrc	*isrc;
844 };
845 
846 static void
847 gic_v3_setup_intr_periph(void *argp)
848 {
849 	struct gic_v3_setup_periph_args *args = argp;
850 	struct intr_irqsrc *isrc = args->isrc;
851 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
852 	device_t dev = args->dev;
853 	u_int irq = gi->gi_irq;
854 	struct gic_v3_softc *sc = device_get_softc(dev);
855 	uint32_t reg;
856 
857 	MPASS(irq <= GIC_LAST_SPI);
858 
859 	/*
860 	 * We need the lock for both SGIs and PPIs for an atomic CPU_SET() at a
861 	 * minimum, but we also need it below for SPIs.
862 	 */
863 	mtx_lock_spin(&sc->gic_mtx);
864 
865 	if (isrc->isrc_flags & INTR_ISRCF_PPI)
866 		CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu);
867 
868 	if (irq >= GIC_FIRST_PPI && irq <= GIC_LAST_SPI) {
869 		/* Set the trigger and polarity */
870 		if (irq <= GIC_LAST_PPI)
871 			reg = gic_r_read(sc, 4,
872 			    GICR_SGI_BASE_SIZE + GICD_ICFGR(irq));
873 		else
874 			reg = gic_d_read(sc, 4, GICD_ICFGR(irq));
875 		if (gi->gi_trig == INTR_TRIGGER_LEVEL)
876 			reg &= ~(2 << ((irq % 16) * 2));
877 		else
878 			reg |= 2 << ((irq % 16) * 2);
879 
880 		if (irq <= GIC_LAST_PPI) {
881 			gic_r_write(sc, 4,
882 			    GICR_SGI_BASE_SIZE + GICD_ICFGR(irq), reg);
883 			gic_v3_wait_for_rwp(sc, REDIST);
884 		} else {
885 			gic_d_write(sc, 4, GICD_ICFGR(irq), reg);
886 			gic_v3_wait_for_rwp(sc, DIST);
887 		}
888 	}
889 
890 	mtx_unlock_spin(&sc->gic_mtx);
891 }
892 
893 static int
894 gic_v3_setup_intr(device_t dev, struct intr_irqsrc *isrc,
895     struct resource *res, struct intr_map_data *data)
896 {
897 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
898 	struct gic_v3_setup_periph_args pargs;
899 	enum intr_trigger trig;
900 	enum intr_polarity pol;
901 	u_int irq;
902 	int error;
903 
904 	if (data == NULL)
905 		return (ENOTSUP);
906 
907 	error = do_gic_v3_map_intr(dev, data, &irq, &pol, &trig);
908 	if (error != 0)
909 		return (error);
910 
911 	if (gi->gi_irq != irq || pol == INTR_POLARITY_CONFORM ||
912 	    trig == INTR_TRIGGER_CONFORM)
913 		return (EINVAL);
914 
915 	/* Compare config if this is not first setup. */
916 	if (isrc->isrc_handlers != 0) {
917 		if (pol != gi->gi_pol || trig != gi->gi_trig)
918 			return (EINVAL);
919 		else
920 			return (0);
921 	}
922 
923 	/* For MSI/MSI-X we should have already configured these */
924 	if ((gi->gi_flags & GI_FLAG_MSI) == 0) {
925 		gi->gi_pol = pol;
926 		gi->gi_trig = trig;
927 	}
928 
929 	pargs.dev = dev;
930 	pargs.isrc = isrc;
931 
932 	if (isrc->isrc_flags & INTR_ISRCF_PPI) {
933 		/*
934 		 * If APs haven't been fired up yet, smp_rendezvous() will just
935 		 * execute it on the single CPU and gic_v3_init_secondary() will
936 		 * clean up afterwards.
937 		 */
938 		smp_rendezvous(NULL, gic_v3_setup_intr_periph, NULL, &pargs);
939 	} else if (irq >= GIC_FIRST_SPI && irq <= GIC_LAST_SPI) {
940 		gic_v3_setup_intr_periph(&pargs);
941 		gic_v3_bind_intr(dev, isrc);
942 	}
943 
944 	return (0);
945 }
946 
947 static int
948 gic_v3_teardown_intr(device_t dev, struct intr_irqsrc *isrc,
949     struct resource *res, struct intr_map_data *data)
950 {
951 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
952 
953 	if (isrc->isrc_handlers == 0 && (gi->gi_flags & GI_FLAG_MSI) == 0) {
954 		gi->gi_pol = INTR_POLARITY_CONFORM;
955 		gi->gi_trig = INTR_TRIGGER_CONFORM;
956 	}
957 
958 	return (0);
959 }
960 
961 static void
962 gic_v3_disable_intr(device_t dev, struct intr_irqsrc *isrc)
963 {
964 	struct gic_v3_softc *sc;
965 	struct gic_v3_irqsrc *gi;
966 	u_int irq;
967 
968 	sc = device_get_softc(dev);
969 	gi = (struct gic_v3_irqsrc *)isrc;
970 	irq = gi->gi_irq;
971 
972 	if (irq <= GIC_LAST_PPI) {
973 		/* SGIs and PPIs in corresponding Re-Distributor */
974 		gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_ICENABLER(irq),
975 		    GICD_I_MASK(irq));
976 		gic_v3_wait_for_rwp(sc, REDIST);
977 	} else if (irq >= GIC_FIRST_SPI && irq <= GIC_LAST_SPI) {
978 		/* SPIs in distributor */
979 		gic_d_write(sc, 4, GICD_ICENABLER(irq), GICD_I_MASK(irq));
980 		gic_v3_wait_for_rwp(sc, DIST);
981 	} else
982 		panic("%s: Unsupported IRQ %u", __func__, irq);
983 }
984 
985 static void
986 gic_v3_enable_intr_periph(void *argp)
987 {
988 	struct gic_v3_setup_periph_args *args = argp;
989 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)args->isrc;
990 	device_t dev = args->dev;
991 	struct gic_v3_softc *sc = device_get_softc(dev);
992 	u_int irq = gi->gi_irq;
993 
994 	/* SGIs and PPIs in corresponding Re-Distributor */
995 	gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_ISENABLER(irq),
996 	    GICD_I_MASK(irq));
997 	gic_v3_wait_for_rwp(sc, REDIST);
998 }
999 
1000 static void
1001 gic_v3_enable_intr(device_t dev, struct intr_irqsrc *isrc)
1002 {
1003 	struct gic_v3_setup_periph_args pargs;
1004 	struct gic_v3_softc *sc;
1005 	struct gic_v3_irqsrc *gi;
1006 	u_int irq;
1007 
1008 	gi = (struct gic_v3_irqsrc *)isrc;
1009 	irq = gi->gi_irq;
1010 	pargs.isrc = isrc;
1011 	pargs.dev = dev;
1012 
1013 	if (irq <= GIC_LAST_PPI) {
1014 		/*
1015 		 * SGIs only need configured on the current AP.  We'll setup and
1016 		 * enable IPIs as APs come online.
1017 		 */
1018 		if (irq <= GIC_LAST_SGI)
1019 			gic_v3_enable_intr_periph(&pargs);
1020 		else
1021 			smp_rendezvous(NULL, gic_v3_enable_intr_periph, NULL,
1022 			    &pargs);
1023 		return;
1024 	}
1025 
1026 	sc = device_get_softc(dev);
1027 
1028 	if (irq >= GIC_FIRST_SPI && irq <= GIC_LAST_SPI) {
1029 		/* SPIs in distributor */
1030 		gic_d_write(sc, 4, GICD_ISENABLER(irq), GICD_I_MASK(irq));
1031 		gic_v3_wait_for_rwp(sc, DIST);
1032 	} else
1033 		panic("%s: Unsupported IRQ %u", __func__, irq);
1034 }
1035 
1036 static void
1037 gic_v3_pre_ithread(device_t dev, struct intr_irqsrc *isrc)
1038 {
1039 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
1040 
1041 	gic_v3_disable_intr(dev, isrc);
1042 	gic_icc_write(EOIR1, gi->gi_irq);
1043 }
1044 
1045 static void
1046 gic_v3_post_ithread(device_t dev, struct intr_irqsrc *isrc)
1047 {
1048 
1049 	gic_v3_enable_intr(dev, isrc);
1050 }
1051 
1052 static void
1053 gic_v3_post_filter(device_t dev, struct intr_irqsrc *isrc)
1054 {
1055 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
1056 
1057 	if (gi->gi_trig == INTR_TRIGGER_EDGE)
1058 		return;
1059 
1060 	gic_icc_write(EOIR1, gi->gi_irq);
1061 }
1062 
1063 static int
1064 gic_v3_bind_intr(device_t dev, struct intr_irqsrc *isrc)
1065 {
1066 	struct gic_v3_softc *sc;
1067 	struct gic_v3_irqsrc *gi;
1068 	int cpu;
1069 
1070 	gi = (struct gic_v3_irqsrc *)isrc;
1071 
1072 	KASSERT(gi->gi_irq >= GIC_FIRST_SPI && gi->gi_irq <= GIC_LAST_SPI,
1073 	    ("%s: Attempting to bind an invalid IRQ", __func__));
1074 
1075 	sc = device_get_softc(dev);
1076 
1077 	if (CPU_EMPTY(&isrc->isrc_cpu)) {
1078 		gic_irq_cpu = intr_irq_next_cpu(gic_irq_cpu, &all_cpus);
1079 		CPU_SETOF(gic_irq_cpu, &isrc->isrc_cpu);
1080 		gic_d_write(sc, 8, GICD_IROUTER(gi->gi_irq),
1081 		    CPU_AFFINITY(gic_irq_cpu));
1082 	} else {
1083 		/*
1084 		 * We can only bind to a single CPU so select
1085 		 * the first CPU found.
1086 		 */
1087 		cpu = CPU_FFS(&isrc->isrc_cpu) - 1;
1088 		gic_d_write(sc, 8, GICD_IROUTER(gi->gi_irq), CPU_AFFINITY(cpu));
1089 	}
1090 
1091 	return (0);
1092 }
1093 
1094 #ifdef SMP
1095 static void
1096 gic_v3_init_secondary(device_t dev, uint32_t rootnum)
1097 {
1098 	struct gic_v3_setup_periph_args pargs;
1099 	device_t child;
1100 	struct gic_v3_softc *sc;
1101 	gic_v3_initseq_t *init_func;
1102 	struct intr_irqsrc *isrc;
1103 	u_int cpu, irq;
1104 	int err, i;
1105 
1106 	sc = device_get_softc(dev);
1107 	cpu = PCPU_GET(cpuid);
1108 
1109 	/* Train init sequence for boot CPU */
1110 	for (init_func = gic_v3_secondary_init; *init_func != NULL;
1111 	    init_func++) {
1112 		err = (*init_func)(sc);
1113 		if (err != 0) {
1114 			device_printf(dev,
1115 			    "Could not initialize GIC for CPU%u\n", cpu);
1116 			return;
1117 		}
1118 	}
1119 
1120 	pargs.dev = dev;
1121 
1122 	/* Unmask attached SGI interrupts. */
1123 	for (irq = GIC_FIRST_SGI; irq <= GIC_LAST_SGI; irq++) {
1124 		isrc = GIC_INTR_ISRC(sc, irq);
1125 		if (intr_isrc_init_on_cpu(isrc, cpu)) {
1126 			pargs.isrc = isrc;
1127 			gic_v3_enable_intr_periph(&pargs);
1128 		}
1129 	}
1130 
1131 	/* Unmask attached PPI interrupts. */
1132 	for (irq = GIC_FIRST_PPI; irq <= GIC_LAST_PPI; irq++) {
1133 		isrc = GIC_INTR_ISRC(sc, irq);
1134 		if (intr_isrc_init_on_cpu(isrc, cpu)) {
1135 			pargs.isrc = isrc;
1136 			gic_v3_setup_intr_periph(&pargs);
1137 			gic_v3_enable_intr_periph(&pargs);
1138 		}
1139 	}
1140 
1141 	for (i = 0; i < sc->gic_nchildren; i++) {
1142 		child = sc->gic_children[i];
1143 		PIC_INIT_SECONDARY(child, rootnum);
1144 	}
1145 }
1146 
1147 static void
1148 gic_v3_ipi_send(device_t dev, struct intr_irqsrc *isrc, cpuset_t cpus,
1149     u_int ipi)
1150 {
1151 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
1152 	uint64_t aff, val, irq;
1153 	int i;
1154 
1155 #define	GIC_AFF_MASK	(CPU_AFF3_MASK | CPU_AFF2_MASK | CPU_AFF1_MASK)
1156 #define	GIC_AFFINITY(i)	(CPU_AFFINITY(i) & GIC_AFF_MASK)
1157 	aff = GIC_AFFINITY(0);
1158 	irq = gi->gi_irq;
1159 	val = 0;
1160 
1161 	/* Iterate through all CPUs in set */
1162 	for (i = 0; i <= mp_maxid; i++) {
1163 		/* Move to the next affinity group */
1164 		if (aff != GIC_AFFINITY(i)) {
1165 			/* Send the IPI */
1166 			if (val != 0) {
1167 				gic_icc_write(SGI1R, val);
1168 				val = 0;
1169 			}
1170 			aff = GIC_AFFINITY(i);
1171 		}
1172 
1173 		/* Send the IPI to this cpu */
1174 		if (CPU_ISSET(i, &cpus)) {
1175 #define	ICC_SGI1R_AFFINITY(aff)					\
1176     (((uint64_t)CPU_AFF3(aff) << ICC_SGI1R_EL1_AFF3_SHIFT) |	\
1177      ((uint64_t)CPU_AFF2(aff) << ICC_SGI1R_EL1_AFF2_SHIFT) |	\
1178      ((uint64_t)CPU_AFF1(aff) << ICC_SGI1R_EL1_AFF1_SHIFT))
1179 			/* Set the affinity when the first at this level */
1180 			if (val == 0)
1181 				val = ICC_SGI1R_AFFINITY(aff) |
1182 				    irq << ICC_SGI1R_EL1_SGIID_SHIFT;
1183 			/* Set the bit to send the IPI to te CPU */
1184 			val |= 1 << CPU_AFF0(CPU_AFFINITY(i));
1185 		}
1186 	}
1187 
1188 	/* Send the IPI to the last cpu affinity group */
1189 	if (val != 0)
1190 		gic_icc_write(SGI1R, val);
1191 #undef GIC_AFF_MASK
1192 #undef GIC_AFFINITY
1193 }
1194 
1195 static int
1196 gic_v3_ipi_setup(device_t dev, u_int ipi, struct intr_irqsrc **isrcp)
1197 {
1198 	struct intr_irqsrc *isrc;
1199 	struct gic_v3_softc *sc = device_get_softc(dev);
1200 
1201 	if (sgi_first_unused > GIC_LAST_SGI)
1202 		return (ENOSPC);
1203 
1204 	isrc = GIC_INTR_ISRC(sc, sgi_first_unused);
1205 	sgi_to_ipi[sgi_first_unused++] = ipi;
1206 
1207 	CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu);
1208 
1209 	*isrcp = isrc;
1210 	return (0);
1211 }
1212 #endif /* SMP */
1213 
1214 /*
1215  * Helper routines
1216  */
1217 static void
1218 gic_v3_wait_for_rwp(struct gic_v3_softc *sc, enum gic_v3_xdist xdist)
1219 {
1220 	struct resource *res;
1221 	bus_size_t offset;
1222 	u_int cpuid;
1223 	size_t us_left = 1000000;
1224 
1225 	cpuid = PCPU_GET(cpuid);
1226 
1227 	switch (xdist) {
1228 	case DIST:
1229 		res = sc->gic_dist;
1230 		offset = 0;
1231 		break;
1232 	case REDIST:
1233 		res = sc->gic_redists.pcpu[cpuid].res;
1234 		offset = sc->gic_redists.pcpu[PCPU_GET(cpuid)].offset;
1235 		break;
1236 	default:
1237 		KASSERT(0, ("%s: Attempt to wait for unknown RWP", __func__));
1238 		return;
1239 	}
1240 
1241 	while ((bus_read_4(res, offset + GICD_CTLR) & GICD_CTLR_RWP) != 0) {
1242 		DELAY(1);
1243 		if (us_left-- == 0)
1244 			panic("GICD Register write pending for too long");
1245 	}
1246 }
1247 
1248 /* CPU interface. */
1249 static __inline void
1250 gic_v3_cpu_priority(uint64_t mask)
1251 {
1252 
1253 	/* Set prority mask */
1254 	gic_icc_write(PMR, mask & ICC_PMR_EL1_PRIO_MASK);
1255 }
1256 
1257 static int
1258 gic_v3_cpu_enable_sre(struct gic_v3_softc *sc)
1259 {
1260 	uint64_t sre;
1261 	u_int cpuid;
1262 
1263 	cpuid = PCPU_GET(cpuid);
1264 	/*
1265 	 * Set the SRE bit to enable access to GIC CPU interface
1266 	 * via system registers.
1267 	 */
1268 	sre = READ_SPECIALREG(icc_sre_el1);
1269 	sre |= ICC_SRE_EL1_SRE;
1270 	WRITE_SPECIALREG(icc_sre_el1, sre);
1271 	isb();
1272 	/*
1273 	 * Now ensure that the bit is set.
1274 	 */
1275 	sre = READ_SPECIALREG(icc_sre_el1);
1276 	if ((sre & ICC_SRE_EL1_SRE) == 0) {
1277 		/* We are done. This was disabled in EL2 */
1278 		device_printf(sc->dev, "ERROR: CPU%u cannot enable CPU interface "
1279 		    "via system registers\n", cpuid);
1280 		return (ENXIO);
1281 	} else if (bootverbose) {
1282 		device_printf(sc->dev,
1283 		    "CPU%u enabled CPU interface via system registers\n",
1284 		    cpuid);
1285 	}
1286 
1287 	return (0);
1288 }
1289 
1290 static int
1291 gic_v3_cpu_init(struct gic_v3_softc *sc)
1292 {
1293 	int err;
1294 
1295 	/* Enable access to CPU interface via system registers */
1296 	err = gic_v3_cpu_enable_sre(sc);
1297 	if (err != 0)
1298 		return (err);
1299 	/* Priority mask to minimum - accept all interrupts */
1300 	gic_v3_cpu_priority(GIC_PRIORITY_MIN);
1301 	/* Disable EOI mode */
1302 	gic_icc_clear(CTLR, ICC_CTLR_EL1_EOIMODE);
1303 	/* Enable group 1 (insecure) interrups */
1304 	gic_icc_set(IGRPEN1, ICC_IGRPEN0_EL1_EN);
1305 
1306 	return (0);
1307 }
1308 
1309 /* Distributor */
1310 static int
1311 gic_v3_dist_init(struct gic_v3_softc *sc)
1312 {
1313 	uint64_t aff;
1314 	u_int i;
1315 
1316 	/*
1317 	 * 1. Disable the Distributor
1318 	 */
1319 	gic_d_write(sc, 4, GICD_CTLR, 0);
1320 	gic_v3_wait_for_rwp(sc, DIST);
1321 
1322 	/*
1323 	 * 2. Configure the Distributor
1324 	 */
1325 	/* Set all SPIs to be Group 1 Non-secure */
1326 	for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_IGROUPRn)
1327 		gic_d_write(sc, 4, GICD_IGROUPR(i), 0xFFFFFFFF);
1328 
1329 	/* Set all global interrupts to be level triggered, active low. */
1330 	for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_ICFGRn)
1331 		gic_d_write(sc, 4, GICD_ICFGR(i), 0x00000000);
1332 
1333 	/* Set priority to all shared interrupts */
1334 	for (i = GIC_FIRST_SPI;
1335 	    i < sc->gic_nirqs; i += GICD_I_PER_IPRIORITYn) {
1336 		/* Set highest priority */
1337 		gic_d_write(sc, 4, GICD_IPRIORITYR(i), GIC_PRIORITY_MAX);
1338 	}
1339 
1340 	/*
1341 	 * Disable all interrupts. Leave PPI and SGIs as they are enabled in
1342 	 * Re-Distributor registers.
1343 	 */
1344 	for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_ISENABLERn)
1345 		gic_d_write(sc, 4, GICD_ICENABLER(i), 0xFFFFFFFF);
1346 
1347 	gic_v3_wait_for_rwp(sc, DIST);
1348 
1349 	/*
1350 	 * 3. Enable Distributor
1351 	 */
1352 	/* Enable Distributor with ARE, Group 1 */
1353 	gic_d_write(sc, 4, GICD_CTLR, GICD_CTLR_ARE_NS | GICD_CTLR_G1A |
1354 	    GICD_CTLR_G1);
1355 
1356 	/*
1357 	 * 4. Route all interrupts to boot CPU.
1358 	 */
1359 	aff = CPU_AFFINITY(0);
1360 	for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i++)
1361 		gic_d_write(sc, 8, GICD_IROUTER(i), aff);
1362 
1363 	return (0);
1364 }
1365 
1366 /* Re-Distributor */
1367 static int
1368 gic_v3_redist_alloc(struct gic_v3_softc *sc)
1369 {
1370 	sc->gic_redists.pcpu = mallocarray(mp_maxid + 1,
1371 	    sizeof(sc->gic_redists.pcpu[0]), M_GIC_V3, M_WAITOK);
1372 	return (0);
1373 }
1374 
1375 static int
1376 gic_v3_redist_find(struct gic_v3_softc *sc)
1377 {
1378 	struct resource *r_res;
1379 	bus_size_t offset;
1380 	uint64_t aff;
1381 	uint64_t typer;
1382 	uint32_t pidr2;
1383 	u_int cpuid;
1384 	size_t i;
1385 
1386 	cpuid = PCPU_GET(cpuid);
1387 
1388 	aff = CPU_AFFINITY(cpuid);
1389 	/* Affinity in format for comparison with typer */
1390 	aff = (CPU_AFF3(aff) << 24) | (CPU_AFF2(aff) << 16) |
1391 	    (CPU_AFF1(aff) << 8) | CPU_AFF0(aff);
1392 
1393 	if (bootverbose) {
1394 		device_printf(sc->dev,
1395 		    "Start searching for Re-Distributor\n");
1396 	}
1397 	/* Iterate through Re-Distributor regions */
1398 	for (i = 0; i < sc->gic_redists.nregions; i++) {
1399 		/* Take a copy of the region's resource */
1400 		r_res = sc->gic_redists.regions[i];
1401 
1402 		pidr2 = bus_read_4(r_res, GICR_PIDR2);
1403 		switch (GICR_PIDR2_ARCH(pidr2)) {
1404 		case GICR_PIDR2_ARCH_GICv3: /* fall through */
1405 		case GICR_PIDR2_ARCH_GICv4:
1406 			break;
1407 		default:
1408 			device_printf(sc->dev,
1409 			    "No Re-Distributor found for CPU%u\n", cpuid);
1410 			return (ENODEV);
1411 		}
1412 
1413 		offset = 0;
1414 		do {
1415 			typer = bus_read_8(r_res, offset + GICR_TYPER);
1416 			if ((typer >> GICR_TYPER_AFF_SHIFT) == aff) {
1417 				KASSERT(cpuid <= mp_maxid,
1418 				    ("Invalid pointer to per-CPU redistributor"));
1419 				/* Copy res contents to its final destination */
1420 				sc->gic_redists.pcpu[cpuid].res = r_res;
1421 				sc->gic_redists.pcpu[cpuid].offset = offset;
1422 				sc->gic_redists.pcpu[cpuid].lpi_enabled = false;
1423 				if (bootverbose) {
1424 					device_printf(sc->dev,
1425 					    "CPU%u Re-Distributor has been found\n",
1426 					    cpuid);
1427 				}
1428 				return (0);
1429 			}
1430 
1431 			offset += (GICR_RD_BASE_SIZE + GICR_SGI_BASE_SIZE);
1432 			if ((typer & GICR_TYPER_VLPIS) != 0) {
1433 				offset +=
1434 				    (GICR_VLPI_BASE_SIZE + GICR_RESERVED_SIZE);
1435 			}
1436 		} while (offset < rman_get_size(r_res) &&
1437 		    !sc->gic_redists.single && (typer & GICR_TYPER_LAST) == 0);
1438 	}
1439 
1440 	device_printf(sc->dev, "No Re-Distributor found for CPU%u\n", cpuid);
1441 	return (ENXIO);
1442 }
1443 
1444 static int
1445 gic_v3_redist_wake(struct gic_v3_softc *sc)
1446 {
1447 	uint32_t waker;
1448 	size_t us_left = 1000000;
1449 
1450 	waker = gic_r_read(sc, 4, GICR_WAKER);
1451 	/* Wake up Re-Distributor for this CPU */
1452 	waker &= ~GICR_WAKER_PS;
1453 	gic_r_write(sc, 4, GICR_WAKER, waker);
1454 	/*
1455 	 * When clearing ProcessorSleep bit it is required to wait for
1456 	 * ChildrenAsleep to become zero following the processor power-on.
1457 	 */
1458 	while ((gic_r_read(sc, 4, GICR_WAKER) & GICR_WAKER_CA) != 0) {
1459 		DELAY(1);
1460 		if (us_left-- == 0) {
1461 			panic("Could not wake Re-Distributor for CPU%u",
1462 			    PCPU_GET(cpuid));
1463 		}
1464 	}
1465 
1466 	if (bootverbose) {
1467 		device_printf(sc->dev, "CPU%u Re-Distributor woke up\n",
1468 		    PCPU_GET(cpuid));
1469 	}
1470 
1471 	return (0);
1472 }
1473 
1474 static int
1475 gic_v3_redist_init(struct gic_v3_softc *sc)
1476 {
1477 	int err;
1478 	size_t i;
1479 
1480 	err = gic_v3_redist_find(sc);
1481 	if (err != 0)
1482 		return (err);
1483 
1484 	err = gic_v3_redist_wake(sc);
1485 	if (err != 0)
1486 		return (err);
1487 
1488 	/* Configure SGIs and PPIs to be Group1 Non-secure */
1489 	gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_IGROUPR0,
1490 	    0xFFFFFFFF);
1491 
1492 	/* Disable SPIs */
1493 	gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_ICENABLER0,
1494 	    GICR_I_ENABLER_PPI_MASK);
1495 	/* Enable SGIs */
1496 	gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_ISENABLER0,
1497 	    GICR_I_ENABLER_SGI_MASK);
1498 
1499 	/* Set priority for SGIs and PPIs */
1500 	for (i = 0; i <= GIC_LAST_PPI; i += GICR_I_PER_IPRIORITYn) {
1501 		gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_IPRIORITYR(i),
1502 		    GIC_PRIORITY_MAX);
1503 	}
1504 
1505 	gic_v3_wait_for_rwp(sc, REDIST);
1506 
1507 	return (0);
1508 }
1509 
1510 /*
1511  * SPI-mapped Message Based Interrupts -- a GICv3 MSI/MSI-X controller.
1512  */
1513 
1514 static int
1515 gic_v3_gic_alloc_msi(device_t dev, u_int mbi_start, u_int mbi_count,
1516     int count, int maxcount, struct intr_irqsrc **isrc)
1517 {
1518 	struct gic_v3_softc *sc;
1519 	int i, irq, end_irq;
1520 	bool found;
1521 
1522 	KASSERT(powerof2(count), ("%s: bad count", __func__));
1523 	KASSERT(powerof2(maxcount), ("%s: bad maxcount", __func__));
1524 
1525 	sc = device_get_softc(dev);
1526 
1527 	mtx_lock(&sc->gic_mbi_mtx);
1528 
1529 	found = false;
1530 	for (irq = mbi_start; irq < mbi_start + mbi_count; irq++) {
1531 		/* Start on an aligned interrupt */
1532 		if ((irq & (maxcount - 1)) != 0)
1533 			continue;
1534 
1535 		/* Assume we found a valid range until shown otherwise */
1536 		found = true;
1537 
1538 		/* Check this range is valid */
1539 		for (end_irq = irq; end_irq != irq + count; end_irq++) {
1540 			/* No free interrupts */
1541 			if (end_irq == mbi_start + mbi_count) {
1542 				found = false;
1543 				break;
1544 			}
1545 
1546 			KASSERT((sc->gic_irqs[end_irq].gi_flags & GI_FLAG_MSI)!= 0,
1547 			    ("%s: Non-MSI interrupt found", __func__));
1548 
1549 			/* This is already used */
1550 			if ((sc->gic_irqs[end_irq].gi_flags & GI_FLAG_MSI_USED) ==
1551 			    GI_FLAG_MSI_USED) {
1552 				found = false;
1553 				break;
1554 			}
1555 		}
1556 		if (found)
1557 			break;
1558 	}
1559 
1560 	/* Not enough interrupts were found */
1561 	if (!found || irq == mbi_start + mbi_count) {
1562 		mtx_unlock(&sc->gic_mbi_mtx);
1563 		return (ENXIO);
1564 	}
1565 
1566 	for (i = 0; i < count; i++) {
1567 		/* Mark the interrupt as used */
1568 		sc->gic_irqs[irq + i].gi_flags |= GI_FLAG_MSI_USED;
1569 	}
1570 	mtx_unlock(&sc->gic_mbi_mtx);
1571 
1572 	for (i = 0; i < count; i++)
1573 		isrc[i] = (struct intr_irqsrc *)&sc->gic_irqs[irq + i];
1574 
1575 	return (0);
1576 }
1577 
1578 static int
1579 gic_v3_gic_release_msi(device_t dev, int count, struct intr_irqsrc **isrc)
1580 {
1581 	struct gic_v3_softc *sc;
1582 	struct gic_v3_irqsrc *gi;
1583 	int i;
1584 
1585 	sc = device_get_softc(dev);
1586 
1587 	mtx_lock(&sc->gic_mbi_mtx);
1588 	for (i = 0; i < count; i++) {
1589 		gi = (struct gic_v3_irqsrc *)isrc[i];
1590 
1591 		KASSERT((gi->gi_flags & GI_FLAG_MSI_USED) == GI_FLAG_MSI_USED,
1592 		    ("%s: Trying to release an unused MSI-X interrupt",
1593 		    __func__));
1594 
1595 		gi->gi_flags &= ~GI_FLAG_MSI_USED;
1596 	}
1597 	mtx_unlock(&sc->gic_mbi_mtx);
1598 
1599 	return (0);
1600 }
1601 
1602 static int
1603 gic_v3_gic_alloc_msix(device_t dev, u_int mbi_start, u_int mbi_count,
1604     struct intr_irqsrc **isrcp)
1605 {
1606 	struct gic_v3_softc *sc;
1607 	int irq;
1608 
1609 	sc = device_get_softc(dev);
1610 
1611 	mtx_lock(&sc->gic_mbi_mtx);
1612 	/* Find an unused interrupt */
1613 	for (irq = mbi_start; irq < mbi_start + mbi_count; irq++) {
1614 		KASSERT((sc->gic_irqs[irq].gi_flags & GI_FLAG_MSI) != 0,
1615 		    ("%s: Non-MSI interrupt found", __func__));
1616 		if ((sc->gic_irqs[irq].gi_flags & GI_FLAG_MSI_USED) == 0)
1617 			break;
1618 	}
1619 	/* No free interrupt was found */
1620 	if (irq == mbi_start + mbi_count) {
1621 		mtx_unlock(&sc->gic_mbi_mtx);
1622 		return (ENXIO);
1623 	}
1624 
1625 	/* Mark the interrupt as used */
1626 	sc->gic_irqs[irq].gi_flags |= GI_FLAG_MSI_USED;
1627 	mtx_unlock(&sc->gic_mbi_mtx);
1628 
1629 	*isrcp = (struct intr_irqsrc *)&sc->gic_irqs[irq];
1630 
1631 	return (0);
1632 }
1633 
1634 static int
1635 gic_v3_gic_release_msix(device_t dev, struct intr_irqsrc *isrc)
1636 {
1637 	struct gic_v3_softc *sc;
1638 	struct gic_v3_irqsrc *gi;
1639 
1640 	sc = device_get_softc(dev);
1641 	gi = (struct gic_v3_irqsrc *)isrc;
1642 
1643 	KASSERT((gi->gi_flags & GI_FLAG_MSI_USED) == GI_FLAG_MSI_USED,
1644 	    ("%s: Trying to release an unused MSI-X interrupt", __func__));
1645 
1646 	mtx_lock(&sc->gic_mbi_mtx);
1647 	gi->gi_flags &= ~GI_FLAG_MSI_USED;
1648 	mtx_unlock(&sc->gic_mbi_mtx);
1649 
1650 	return (0);
1651 }
1652 
1653 static int
1654 gic_v3_alloc_msi(device_t dev, device_t child, int count, int maxcount,
1655     device_t *pic, struct intr_irqsrc **isrc)
1656 {
1657 	struct gic_v3_softc *sc;
1658 	int error;
1659 
1660 	sc = device_get_softc(dev);
1661 	error = gic_v3_gic_alloc_msi(dev, sc->gic_mbi_start,
1662 	    sc->gic_mbi_end - sc->gic_mbi_start, count, maxcount, isrc);
1663 	if (error != 0)
1664 		return (error);
1665 
1666 	*pic = dev;
1667 	return (0);
1668 }
1669 
1670 static int
1671 gic_v3_release_msi(device_t dev, device_t child, int count,
1672     struct intr_irqsrc **isrc)
1673 {
1674 	return (gic_v3_gic_release_msi(dev, count, isrc));
1675 }
1676 
1677 static int
1678 gic_v3_alloc_msix(device_t dev, device_t child, device_t *pic,
1679     struct intr_irqsrc **isrc)
1680 {
1681 	struct gic_v3_softc *sc;
1682 	int error;
1683 
1684 	sc = device_get_softc(dev);
1685 	error = gic_v3_gic_alloc_msix(dev, sc->gic_mbi_start,
1686 	    sc->gic_mbi_end - sc->gic_mbi_start, isrc);
1687 	if (error != 0)
1688 		return (error);
1689 
1690 	*pic = dev;
1691 
1692 	return (0);
1693 }
1694 
1695 static int
1696 gic_v3_release_msix(device_t dev, device_t child, struct intr_irqsrc *isrc)
1697 {
1698 	return (gic_v3_gic_release_msix(dev, isrc));
1699 }
1700 
1701 static int
1702 gic_v3_map_msi(device_t dev, device_t child, struct intr_irqsrc *isrc,
1703     uint64_t *addr, uint32_t *data)
1704 {
1705 	struct gic_v3_softc *sc = device_get_softc(dev);
1706 	struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc;
1707 
1708 	*addr = vtophys(rman_get_virtual(sc->gic_dist)) + GICD_SETSPI_NSR;
1709 	*data = gi->gi_irq;
1710 
1711 	return (0);
1712 }
1713