1 /*- 2 * Copyright (c) 2015-2016 The FreeBSD Foundation 3 * 4 * This software was developed by Andrew Turner under 5 * the sponsorship of the FreeBSD Foundation. 6 * 7 * This software was developed by Semihalf under 8 * the sponsorship of the FreeBSD Foundation. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include "opt_acpi.h" 33 #include "opt_platform.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/bitstring.h> 38 #include <sys/bus.h> 39 #include <sys/kernel.h> 40 #include <sys/ktr.h> 41 #include <sys/malloc.h> 42 #include <sys/module.h> 43 #include <sys/rman.h> 44 #include <sys/pcpu.h> 45 #include <sys/proc.h> 46 #include <sys/cpuset.h> 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/smp.h> 50 #include <sys/interrupt.h> 51 52 #include <vm/vm.h> 53 #include <vm/pmap.h> 54 55 #include <machine/bus.h> 56 #include <machine/cpu.h> 57 #include <machine/intr.h> 58 59 #ifdef FDT 60 #include <dev/fdt/fdt_intr.h> 61 #include <dev/ofw/ofw_bus_subr.h> 62 #endif 63 64 #ifdef DEV_ACPI 65 #include <contrib/dev/acpica/include/acpi.h> 66 #include <dev/acpica/acpivar.h> 67 #endif 68 69 #include "gic_if.h" 70 #include "pic_if.h" 71 #include "msi_if.h" 72 73 #include <arm/arm/gic_common.h> 74 #include "gic_v3_reg.h" 75 #include "gic_v3_var.h" 76 77 static bus_print_child_t gic_v3_print_child; 78 static bus_get_domain_t gic_v3_get_domain; 79 static bus_read_ivar_t gic_v3_read_ivar; 80 static bus_write_ivar_t gic_v3_write_ivar; 81 static bus_alloc_resource_t gic_v3_alloc_resource; 82 83 static pic_disable_intr_t gic_v3_disable_intr; 84 static pic_enable_intr_t gic_v3_enable_intr; 85 static pic_map_intr_t gic_v3_map_intr; 86 static pic_setup_intr_t gic_v3_setup_intr; 87 static pic_teardown_intr_t gic_v3_teardown_intr; 88 static pic_post_filter_t gic_v3_post_filter; 89 static pic_post_ithread_t gic_v3_post_ithread; 90 static pic_pre_ithread_t gic_v3_pre_ithread; 91 static pic_bind_intr_t gic_v3_bind_intr; 92 #ifdef SMP 93 static pic_init_secondary_t gic_v3_init_secondary; 94 static pic_ipi_send_t gic_v3_ipi_send; 95 static pic_ipi_setup_t gic_v3_ipi_setup; 96 #endif 97 98 static gic_reserve_msi_range_t gic_v3_reserve_msi_range; 99 static gic_alloc_msi_t gic_v3_gic_alloc_msi; 100 static gic_release_msi_t gic_v3_gic_release_msi; 101 static gic_alloc_msix_t gic_v3_gic_alloc_msix; 102 static gic_release_msix_t gic_v3_gic_release_msix; 103 104 static msi_alloc_msi_t gic_v3_alloc_msi; 105 static msi_release_msi_t gic_v3_release_msi; 106 static msi_alloc_msix_t gic_v3_alloc_msix; 107 static msi_release_msix_t gic_v3_release_msix; 108 static msi_map_msi_t gic_v3_map_msi; 109 110 static u_int gic_irq_cpu; 111 #ifdef SMP 112 static u_int sgi_to_ipi[GIC_LAST_SGI - GIC_FIRST_SGI + 1]; 113 static u_int sgi_first_unused = GIC_FIRST_SGI; 114 #endif 115 116 static device_method_t gic_v3_methods[] = { 117 /* Device interface */ 118 DEVMETHOD(device_detach, gic_v3_detach), 119 120 /* Bus interface */ 121 DEVMETHOD(bus_print_child, gic_v3_print_child), 122 DEVMETHOD(bus_get_domain, gic_v3_get_domain), 123 DEVMETHOD(bus_read_ivar, gic_v3_read_ivar), 124 DEVMETHOD(bus_write_ivar, gic_v3_write_ivar), 125 DEVMETHOD(bus_alloc_resource, gic_v3_alloc_resource), 126 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), 127 128 /* Interrupt controller interface */ 129 DEVMETHOD(pic_disable_intr, gic_v3_disable_intr), 130 DEVMETHOD(pic_enable_intr, gic_v3_enable_intr), 131 DEVMETHOD(pic_map_intr, gic_v3_map_intr), 132 DEVMETHOD(pic_setup_intr, gic_v3_setup_intr), 133 DEVMETHOD(pic_teardown_intr, gic_v3_teardown_intr), 134 DEVMETHOD(pic_post_filter, gic_v3_post_filter), 135 DEVMETHOD(pic_post_ithread, gic_v3_post_ithread), 136 DEVMETHOD(pic_pre_ithread, gic_v3_pre_ithread), 137 #ifdef SMP 138 DEVMETHOD(pic_bind_intr, gic_v3_bind_intr), 139 DEVMETHOD(pic_init_secondary, gic_v3_init_secondary), 140 DEVMETHOD(pic_ipi_send, gic_v3_ipi_send), 141 DEVMETHOD(pic_ipi_setup, gic_v3_ipi_setup), 142 #endif 143 144 /* MSI/MSI-X */ 145 DEVMETHOD(msi_alloc_msi, gic_v3_alloc_msi), 146 DEVMETHOD(msi_release_msi, gic_v3_release_msi), 147 DEVMETHOD(msi_alloc_msix, gic_v3_alloc_msix), 148 DEVMETHOD(msi_release_msix, gic_v3_release_msix), 149 DEVMETHOD(msi_map_msi, gic_v3_map_msi), 150 151 /* GIC */ 152 DEVMETHOD(gic_reserve_msi_range, gic_v3_reserve_msi_range), 153 DEVMETHOD(gic_alloc_msi, gic_v3_gic_alloc_msi), 154 DEVMETHOD(gic_release_msi, gic_v3_gic_release_msi), 155 DEVMETHOD(gic_alloc_msix, gic_v3_gic_alloc_msix), 156 DEVMETHOD(gic_release_msix, gic_v3_gic_release_msix), 157 158 /* End */ 159 DEVMETHOD_END 160 }; 161 162 DEFINE_CLASS_0(gic, gic_v3_driver, gic_v3_methods, 163 sizeof(struct gic_v3_softc)); 164 165 /* 166 * Driver-specific definitions. 167 */ 168 MALLOC_DEFINE(M_GIC_V3, "GICv3", GIC_V3_DEVSTR); 169 170 /* 171 * Helper functions and definitions. 172 */ 173 /* Destination registers, either Distributor or Re-Distributor */ 174 enum gic_v3_xdist { 175 DIST = 0, 176 REDIST, 177 }; 178 179 struct gic_v3_irqsrc { 180 struct intr_irqsrc gi_isrc; 181 uint32_t gi_irq; 182 enum intr_polarity gi_pol; 183 enum intr_trigger gi_trig; 184 #define GI_FLAG_MSI (1 << 1) /* This interrupt source should only */ 185 /* be used for MSI/MSI-X interrupts */ 186 #define GI_FLAG_MSI_USED (1 << 2) /* This irq is already allocated */ 187 /* for a MSI/MSI-X interrupt */ 188 u_int gi_flags; 189 }; 190 191 /* Helper routines starting with gic_v3_ */ 192 static int gic_v3_dist_init(struct gic_v3_softc *); 193 static int gic_v3_redist_alloc(struct gic_v3_softc *); 194 static int gic_v3_redist_find(struct gic_v3_softc *); 195 static int gic_v3_redist_init(struct gic_v3_softc *); 196 static int gic_v3_cpu_init(struct gic_v3_softc *); 197 static void gic_v3_wait_for_rwp(struct gic_v3_softc *, enum gic_v3_xdist); 198 199 /* A sequence of init functions for primary (boot) CPU */ 200 typedef int (*gic_v3_initseq_t) (struct gic_v3_softc *); 201 /* Primary CPU initialization sequence */ 202 static gic_v3_initseq_t gic_v3_primary_init[] = { 203 gic_v3_dist_init, 204 gic_v3_redist_alloc, 205 gic_v3_redist_init, 206 gic_v3_cpu_init, 207 NULL 208 }; 209 210 #ifdef SMP 211 /* Secondary CPU initialization sequence */ 212 static gic_v3_initseq_t gic_v3_secondary_init[] = { 213 gic_v3_redist_init, 214 gic_v3_cpu_init, 215 NULL 216 }; 217 #endif 218 219 uint32_t 220 gic_r_read_4(device_t dev, bus_size_t offset) 221 { 222 struct gic_v3_softc *sc; 223 struct resource *rdist; 224 225 sc = device_get_softc(dev); 226 rdist = sc->gic_redists.pcpu[PCPU_GET(cpuid)].res; 227 offset += sc->gic_redists.pcpu[PCPU_GET(cpuid)].offset; 228 return (bus_read_4(rdist, offset)); 229 } 230 231 uint64_t 232 gic_r_read_8(device_t dev, bus_size_t offset) 233 { 234 struct gic_v3_softc *sc; 235 struct resource *rdist; 236 237 sc = device_get_softc(dev); 238 rdist = sc->gic_redists.pcpu[PCPU_GET(cpuid)].res; 239 offset += sc->gic_redists.pcpu[PCPU_GET(cpuid)].offset; 240 return (bus_read_8(rdist, offset)); 241 } 242 243 void 244 gic_r_write_4(device_t dev, bus_size_t offset, uint32_t val) 245 { 246 struct gic_v3_softc *sc; 247 struct resource *rdist; 248 249 sc = device_get_softc(dev); 250 rdist = sc->gic_redists.pcpu[PCPU_GET(cpuid)].res; 251 offset += sc->gic_redists.pcpu[PCPU_GET(cpuid)].offset; 252 bus_write_4(rdist, offset, val); 253 } 254 255 void 256 gic_r_write_8(device_t dev, bus_size_t offset, uint64_t val) 257 { 258 struct gic_v3_softc *sc; 259 struct resource *rdist; 260 261 sc = device_get_softc(dev); 262 rdist = sc->gic_redists.pcpu[PCPU_GET(cpuid)].res; 263 offset += sc->gic_redists.pcpu[PCPU_GET(cpuid)].offset; 264 bus_write_8(rdist, offset, val); 265 } 266 267 static void 268 gic_v3_reserve_msi_range(device_t dev, u_int start, u_int count) 269 { 270 struct gic_v3_softc *sc; 271 int i; 272 273 sc = device_get_softc(dev); 274 275 KASSERT((start + count) < sc->gic_nirqs, 276 ("%s: Trying to allocate too many MSI IRQs: %d + %d > %d", __func__, 277 start, count, sc->gic_nirqs)); 278 for (i = 0; i < count; i++) { 279 KASSERT(sc->gic_irqs[start + i].gi_isrc.isrc_handlers == 0, 280 ("%s: MSI interrupt %d already has a handler", __func__, 281 count + i)); 282 KASSERT(sc->gic_irqs[start + i].gi_pol == INTR_POLARITY_CONFORM, 283 ("%s: MSI interrupt %d already has a polarity", __func__, 284 count + i)); 285 KASSERT(sc->gic_irqs[start + i].gi_trig == INTR_TRIGGER_CONFORM, 286 ("%s: MSI interrupt %d already has a trigger", __func__, 287 count + i)); 288 sc->gic_irqs[start + i].gi_pol = INTR_POLARITY_HIGH; 289 sc->gic_irqs[start + i].gi_trig = INTR_TRIGGER_EDGE; 290 sc->gic_irqs[start + i].gi_flags |= GI_FLAG_MSI; 291 } 292 } 293 294 /* 295 * Device interface. 296 */ 297 int 298 gic_v3_attach(device_t dev) 299 { 300 struct gic_v3_softc *sc; 301 gic_v3_initseq_t *init_func; 302 uint32_t typer; 303 int rid; 304 int err; 305 size_t i; 306 u_int irq; 307 const char *name; 308 309 sc = device_get_softc(dev); 310 sc->gic_registered = FALSE; 311 sc->dev = dev; 312 err = 0; 313 314 /* Initialize mutex */ 315 mtx_init(&sc->gic_mtx, "GICv3 lock", NULL, MTX_SPIN); 316 317 /* 318 * Allocate array of struct resource. 319 * One entry for Distributor and all remaining for Re-Distributor. 320 */ 321 sc->gic_res = malloc( 322 sizeof(*sc->gic_res) * (sc->gic_redists.nregions + 1), 323 M_GIC_V3, M_WAITOK); 324 325 /* Now allocate corresponding resources */ 326 for (i = 0, rid = 0; i < (sc->gic_redists.nregions + 1); i++, rid++) { 327 sc->gic_res[rid] = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 328 &rid, RF_ACTIVE); 329 if (sc->gic_res[rid] == NULL) 330 return (ENXIO); 331 } 332 333 /* 334 * Distributor interface 335 */ 336 sc->gic_dist = sc->gic_res[0]; 337 338 /* 339 * Re-Dristributor interface 340 */ 341 /* Allocate space under region descriptions */ 342 sc->gic_redists.regions = malloc( 343 sizeof(*sc->gic_redists.regions) * sc->gic_redists.nregions, 344 M_GIC_V3, M_WAITOK); 345 346 /* Fill-up bus_space information for each region. */ 347 for (i = 0, rid = 1; i < sc->gic_redists.nregions; i++, rid++) 348 sc->gic_redists.regions[i] = sc->gic_res[rid]; 349 350 /* Get the number of supported SPI interrupts */ 351 typer = gic_d_read(sc, 4, GICD_TYPER); 352 sc->gic_nirqs = GICD_TYPER_I_NUM(typer); 353 if (sc->gic_nirqs > GIC_I_NUM_MAX) 354 sc->gic_nirqs = GIC_I_NUM_MAX; 355 356 sc->gic_irqs = malloc(sizeof(*sc->gic_irqs) * sc->gic_nirqs, 357 M_GIC_V3, M_WAITOK | M_ZERO); 358 name = device_get_nameunit(dev); 359 for (irq = 0; irq < sc->gic_nirqs; irq++) { 360 struct intr_irqsrc *isrc; 361 362 sc->gic_irqs[irq].gi_irq = irq; 363 sc->gic_irqs[irq].gi_pol = INTR_POLARITY_CONFORM; 364 sc->gic_irqs[irq].gi_trig = INTR_TRIGGER_CONFORM; 365 366 isrc = &sc->gic_irqs[irq].gi_isrc; 367 if (irq <= GIC_LAST_SGI) { 368 err = intr_isrc_register(isrc, sc->dev, 369 INTR_ISRCF_IPI, "%s,i%u", name, irq - GIC_FIRST_SGI); 370 } else if (irq <= GIC_LAST_PPI) { 371 err = intr_isrc_register(isrc, sc->dev, 372 INTR_ISRCF_PPI, "%s,p%u", name, irq - GIC_FIRST_PPI); 373 } else { 374 err = intr_isrc_register(isrc, sc->dev, 0, 375 "%s,s%u", name, irq - GIC_FIRST_SPI); 376 } 377 if (err != 0) { 378 /* XXX call intr_isrc_deregister() */ 379 free(sc->gic_irqs, M_DEVBUF); 380 return (err); 381 } 382 } 383 384 mtx_init(&sc->gic_mbi_mtx, "GICv3 mbi lock", NULL, MTX_DEF); 385 if (sc->gic_mbi_start > 0) { 386 if (!sc->gic_mbi_end) { 387 /* 388 * This is to address SPI based msi ranges, where 389 * SPI range is not specified in ACPI 390 */ 391 sc->gic_mbi_end = sc->gic_nirqs - 1; 392 } 393 gic_v3_reserve_msi_range(dev, sc->gic_mbi_start, 394 sc->gic_mbi_end - sc->gic_mbi_start); 395 396 if (bootverbose) { 397 device_printf(dev, "using spi %u to %u\n", sc->gic_mbi_start, 398 sc->gic_mbi_end); 399 } 400 } 401 402 /* 403 * Read the Peripheral ID2 register. This is an implementation 404 * defined register, but seems to be implemented in all GICv3 405 * parts and Linux expects it to be there. 406 */ 407 sc->gic_pidr2 = gic_d_read(sc, 4, GICD_PIDR2); 408 409 /* Get the number of supported interrupt identifier bits */ 410 sc->gic_idbits = GICD_TYPER_IDBITS(typer); 411 412 if (bootverbose) { 413 device_printf(dev, "SPIs: %u, IDs: %u\n", 414 sc->gic_nirqs, (1 << sc->gic_idbits) - 1); 415 } 416 417 /* Train init sequence for boot CPU */ 418 for (init_func = gic_v3_primary_init; *init_func != NULL; init_func++) { 419 err = (*init_func)(sc); 420 if (err != 0) 421 return (err); 422 } 423 424 return (0); 425 } 426 427 int 428 gic_v3_detach(device_t dev) 429 { 430 struct gic_v3_softc *sc; 431 int rid; 432 433 sc = device_get_softc(dev); 434 435 if (device_is_attached(dev)) { 436 /* 437 * XXX: We should probably deregister PIC 438 */ 439 if (sc->gic_registered) 440 panic("Trying to detach registered PIC"); 441 } 442 for (rid = 0; rid < (sc->gic_redists.nregions + 1); rid++) 443 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->gic_res[rid]); 444 445 free(sc->gic_redists.pcpu, M_GIC_V3); 446 447 free(sc->ranges, M_GIC_V3); 448 free(sc->gic_res, M_GIC_V3); 449 free(sc->gic_redists.regions, M_GIC_V3); 450 451 return (0); 452 } 453 454 static int 455 gic_v3_print_child(device_t bus, device_t child) 456 { 457 struct resource_list *rl; 458 int retval = 0; 459 460 rl = BUS_GET_RESOURCE_LIST(bus, child); 461 KASSERT(rl != NULL, ("%s: No resource list", __func__)); 462 retval += bus_print_child_header(bus, child); 463 retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx"); 464 retval += bus_print_child_footer(bus, child); 465 466 return (retval); 467 } 468 469 static int 470 gic_v3_get_domain(device_t dev, device_t child, int *domain) 471 { 472 struct gic_v3_devinfo *di; 473 474 di = device_get_ivars(child); 475 if (di->gic_domain < 0) 476 return (ENOENT); 477 478 *domain = di->gic_domain; 479 return (0); 480 } 481 482 static int 483 gic_v3_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) 484 { 485 struct gic_v3_softc *sc; 486 struct gic_v3_devinfo *di; 487 488 sc = device_get_softc(dev); 489 490 switch (which) { 491 case GICV3_IVAR_NIRQS: 492 *result = (intr_nirq - sc->gic_nirqs) / sc->gic_nchildren; 493 return (0); 494 case GICV3_IVAR_REDIST: 495 *result = (uintptr_t)&sc->gic_redists.pcpu[PCPU_GET(cpuid)]; 496 return (0); 497 case GICV3_IVAR_SUPPORT_LPIS: 498 *result = 499 (gic_d_read(sc, 4, GICD_TYPER) & GICD_TYPER_LPIS) != 0; 500 return (0); 501 case GIC_IVAR_HW_REV: 502 KASSERT( 503 GICR_PIDR2_ARCH(sc->gic_pidr2) == GICR_PIDR2_ARCH_GICv3 || 504 GICR_PIDR2_ARCH(sc->gic_pidr2) == GICR_PIDR2_ARCH_GICv4, 505 ("gic_v3_read_ivar: Invalid GIC architecture: %d (%.08X)", 506 GICR_PIDR2_ARCH(sc->gic_pidr2), sc->gic_pidr2)); 507 *result = GICR_PIDR2_ARCH(sc->gic_pidr2); 508 return (0); 509 case GIC_IVAR_BUS: 510 KASSERT(sc->gic_bus != GIC_BUS_UNKNOWN, 511 ("gic_v3_read_ivar: Unknown bus type")); 512 KASSERT(sc->gic_bus <= GIC_BUS_MAX, 513 ("gic_v3_read_ivar: Invalid bus type %u", sc->gic_bus)); 514 *result = sc->gic_bus; 515 return (0); 516 case GIC_IVAR_VGIC: 517 di = device_get_ivars(child); 518 if (di == NULL) 519 return (EINVAL); 520 *result = di->is_vgic; 521 return (0); 522 } 523 524 return (ENOENT); 525 } 526 527 static int 528 gic_v3_write_ivar(device_t dev, device_t child, int which, uintptr_t value) 529 { 530 switch(which) { 531 case GICV3_IVAR_NIRQS: 532 case GICV3_IVAR_REDIST: 533 case GIC_IVAR_HW_REV: 534 case GIC_IVAR_BUS: 535 return (EINVAL); 536 } 537 538 return (ENOENT); 539 } 540 541 static struct resource * 542 gic_v3_alloc_resource(device_t bus, device_t child, int type, int *rid, 543 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) 544 { 545 struct gic_v3_softc *sc; 546 struct resource_list_entry *rle; 547 struct resource_list *rl; 548 int j; 549 550 /* We only allocate memory */ 551 if (type != SYS_RES_MEMORY) 552 return (NULL); 553 554 sc = device_get_softc(bus); 555 556 if (RMAN_IS_DEFAULT_RANGE(start, end)) { 557 rl = BUS_GET_RESOURCE_LIST(bus, child); 558 if (rl == NULL) 559 return (NULL); 560 561 /* Find defaults for this rid */ 562 rle = resource_list_find(rl, type, *rid); 563 if (rle == NULL) 564 return (NULL); 565 566 start = rle->start; 567 end = rle->end; 568 count = rle->count; 569 } 570 571 /* Remap through ranges property */ 572 for (j = 0; j < sc->nranges; j++) { 573 if (start >= sc->ranges[j].bus && end < 574 sc->ranges[j].bus + sc->ranges[j].size) { 575 start -= sc->ranges[j].bus; 576 start += sc->ranges[j].host; 577 end -= sc->ranges[j].bus; 578 end += sc->ranges[j].host; 579 break; 580 } 581 } 582 if (j == sc->nranges && sc->nranges != 0) { 583 if (bootverbose) 584 device_printf(bus, "Could not map resource " 585 "%#jx-%#jx\n", (uintmax_t)start, (uintmax_t)end); 586 587 return (NULL); 588 } 589 590 return (bus_generic_alloc_resource(bus, child, type, rid, start, end, 591 count, flags)); 592 } 593 594 int 595 arm_gic_v3_intr(void *arg) 596 { 597 struct gic_v3_softc *sc = arg; 598 struct gic_v3_irqsrc *gi; 599 struct intr_pic *pic; 600 uint64_t active_irq; 601 struct trapframe *tf; 602 603 pic = sc->gic_pic; 604 605 while (1) { 606 if (CPU_MATCH_ERRATA_CAVIUM_THUNDERX_1_1) { 607 /* 608 * Hardware: Cavium ThunderX 609 * Chip revision: Pass 1.0 (early version) 610 * Pass 1.1 (production) 611 * ERRATUM: 22978, 23154 612 */ 613 __asm __volatile( 614 "nop;nop;nop;nop;nop;nop;nop;nop; \n" 615 "mrs %0, ICC_IAR1_EL1 \n" 616 "nop;nop;nop;nop; \n" 617 "dsb sy \n" 618 : "=&r" (active_irq)); 619 } else { 620 active_irq = gic_icc_read(IAR1); 621 } 622 623 if (active_irq >= GIC_FIRST_LPI) { 624 intr_child_irq_handler(pic, active_irq); 625 continue; 626 } 627 628 if (__predict_false(active_irq >= sc->gic_nirqs)) 629 return (FILTER_HANDLED); 630 631 tf = curthread->td_intr_frame; 632 gi = &sc->gic_irqs[active_irq]; 633 if (active_irq <= GIC_LAST_SGI) { 634 /* Call EOI for all IPI before dispatch. */ 635 gic_icc_write(EOIR1, (uint64_t)active_irq); 636 #ifdef SMP 637 intr_ipi_dispatch(sgi_to_ipi[gi->gi_irq]); 638 #else 639 device_printf(sc->dev, "SGI %ju on UP system detected\n", 640 (uintmax_t)(active_irq - GIC_FIRST_SGI)); 641 #endif 642 } else if (active_irq >= GIC_FIRST_PPI && 643 active_irq <= GIC_LAST_SPI) { 644 if (gi->gi_trig == INTR_TRIGGER_EDGE) 645 gic_icc_write(EOIR1, gi->gi_irq); 646 647 if (intr_isrc_dispatch(&gi->gi_isrc, tf) != 0) { 648 if (gi->gi_trig != INTR_TRIGGER_EDGE) 649 gic_icc_write(EOIR1, gi->gi_irq); 650 gic_v3_disable_intr(sc->dev, &gi->gi_isrc); 651 device_printf(sc->dev, 652 "Stray irq %lu disabled\n", active_irq); 653 } 654 } 655 } 656 } 657 658 #ifdef FDT 659 static int 660 gic_map_fdt(device_t dev, u_int ncells, pcell_t *cells, u_int *irqp, 661 enum intr_polarity *polp, enum intr_trigger *trigp) 662 { 663 u_int irq; 664 665 if (ncells < 3) 666 return (EINVAL); 667 668 /* 669 * The 1st cell is the interrupt type: 670 * 0 = SPI 671 * 1 = PPI 672 * The 2nd cell contains the interrupt number: 673 * [0 - 987] for SPI 674 * [0 - 15] for PPI 675 * The 3rd cell is the flags, encoded as follows: 676 * bits[3:0] trigger type and level flags 677 * 1 = edge triggered 678 * 2 = edge triggered (PPI only) 679 * 4 = level-sensitive 680 * 8 = level-sensitive (PPI only) 681 */ 682 switch (cells[0]) { 683 case 0: 684 irq = GIC_FIRST_SPI + cells[1]; 685 /* SPI irq is checked later. */ 686 break; 687 case 1: 688 irq = GIC_FIRST_PPI + cells[1]; 689 if (irq > GIC_LAST_PPI) { 690 device_printf(dev, "unsupported PPI interrupt " 691 "number %u\n", cells[1]); 692 return (EINVAL); 693 } 694 break; 695 default: 696 device_printf(dev, "unsupported interrupt type " 697 "configuration %u\n", cells[0]); 698 return (EINVAL); 699 } 700 701 switch (cells[2] & FDT_INTR_MASK) { 702 case FDT_INTR_EDGE_RISING: 703 *trigp = INTR_TRIGGER_EDGE; 704 *polp = INTR_POLARITY_HIGH; 705 break; 706 case FDT_INTR_EDGE_FALLING: 707 *trigp = INTR_TRIGGER_EDGE; 708 *polp = INTR_POLARITY_LOW; 709 break; 710 case FDT_INTR_LEVEL_HIGH: 711 *trigp = INTR_TRIGGER_LEVEL; 712 *polp = INTR_POLARITY_HIGH; 713 break; 714 case FDT_INTR_LEVEL_LOW: 715 *trigp = INTR_TRIGGER_LEVEL; 716 *polp = INTR_POLARITY_LOW; 717 break; 718 default: 719 device_printf(dev, "unsupported trigger/polarity " 720 "configuration 0x%02x\n", cells[2]); 721 return (EINVAL); 722 } 723 724 /* Check the interrupt is valid */ 725 if (irq >= GIC_FIRST_SPI && *polp != INTR_POLARITY_HIGH) 726 return (EINVAL); 727 728 *irqp = irq; 729 return (0); 730 } 731 #endif 732 733 static int 734 gic_map_msi(device_t dev, struct intr_map_data_msi *msi_data, u_int *irqp, 735 enum intr_polarity *polp, enum intr_trigger *trigp) 736 { 737 struct gic_v3_irqsrc *gi; 738 739 /* SPI-mapped MSI */ 740 gi = (struct gic_v3_irqsrc *)msi_data->isrc; 741 if (gi == NULL) 742 return (ENXIO); 743 744 *irqp = gi->gi_irq; 745 746 /* MSI/MSI-X interrupts are always edge triggered with high polarity */ 747 *polp = INTR_POLARITY_HIGH; 748 *trigp = INTR_TRIGGER_EDGE; 749 750 return (0); 751 } 752 753 static int 754 do_gic_v3_map_intr(device_t dev, struct intr_map_data *data, u_int *irqp, 755 enum intr_polarity *polp, enum intr_trigger *trigp) 756 { 757 struct gic_v3_softc *sc; 758 enum intr_polarity pol; 759 enum intr_trigger trig; 760 struct intr_map_data_msi *dam; 761 #ifdef FDT 762 struct intr_map_data_fdt *daf; 763 #endif 764 #ifdef DEV_ACPI 765 struct intr_map_data_acpi *daa; 766 #endif 767 u_int irq; 768 769 sc = device_get_softc(dev); 770 771 switch (data->type) { 772 #ifdef FDT 773 case INTR_MAP_DATA_FDT: 774 daf = (struct intr_map_data_fdt *)data; 775 if (gic_map_fdt(dev, daf->ncells, daf->cells, &irq, &pol, 776 &trig) != 0) 777 return (EINVAL); 778 break; 779 #endif 780 #ifdef DEV_ACPI 781 case INTR_MAP_DATA_ACPI: 782 daa = (struct intr_map_data_acpi *)data; 783 irq = daa->irq; 784 pol = daa->pol; 785 trig = daa->trig; 786 break; 787 #endif 788 case INTR_MAP_DATA_MSI: 789 /* SPI-mapped MSI */ 790 dam = (struct intr_map_data_msi *)data; 791 if (gic_map_msi(dev, dam, &irq, &pol, &trig) != 0) 792 return (EINVAL); 793 break; 794 default: 795 return (EINVAL); 796 } 797 798 if (irq >= sc->gic_nirqs) 799 return (EINVAL); 800 switch (pol) { 801 case INTR_POLARITY_CONFORM: 802 case INTR_POLARITY_LOW: 803 case INTR_POLARITY_HIGH: 804 break; 805 default: 806 return (EINVAL); 807 } 808 switch (trig) { 809 case INTR_TRIGGER_CONFORM: 810 case INTR_TRIGGER_EDGE: 811 case INTR_TRIGGER_LEVEL: 812 break; 813 default: 814 return (EINVAL); 815 } 816 817 *irqp = irq; 818 if (polp != NULL) 819 *polp = pol; 820 if (trigp != NULL) 821 *trigp = trig; 822 return (0); 823 } 824 825 static int 826 gic_v3_map_intr(device_t dev, struct intr_map_data *data, 827 struct intr_irqsrc **isrcp) 828 { 829 struct gic_v3_softc *sc; 830 int error; 831 u_int irq; 832 833 error = do_gic_v3_map_intr(dev, data, &irq, NULL, NULL); 834 if (error == 0) { 835 sc = device_get_softc(dev); 836 *isrcp = GIC_INTR_ISRC(sc, irq); 837 } 838 return (error); 839 } 840 841 struct gic_v3_setup_periph_args { 842 device_t dev; 843 struct intr_irqsrc *isrc; 844 }; 845 846 static void 847 gic_v3_setup_intr_periph(void *argp) 848 { 849 struct gic_v3_setup_periph_args *args = argp; 850 struct intr_irqsrc *isrc = args->isrc; 851 struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc; 852 device_t dev = args->dev; 853 u_int irq = gi->gi_irq; 854 struct gic_v3_softc *sc = device_get_softc(dev); 855 uint32_t reg; 856 857 MPASS(irq <= GIC_LAST_SPI); 858 859 /* 860 * We need the lock for both SGIs and PPIs for an atomic CPU_SET() at a 861 * minimum, but we also need it below for SPIs. 862 */ 863 mtx_lock_spin(&sc->gic_mtx); 864 865 if (isrc->isrc_flags & INTR_ISRCF_PPI) 866 CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu); 867 868 if (irq >= GIC_FIRST_PPI && irq <= GIC_LAST_SPI) { 869 /* Set the trigger and polarity */ 870 if (irq <= GIC_LAST_PPI) 871 reg = gic_r_read(sc, 4, 872 GICR_SGI_BASE_SIZE + GICD_ICFGR(irq)); 873 else 874 reg = gic_d_read(sc, 4, GICD_ICFGR(irq)); 875 if (gi->gi_trig == INTR_TRIGGER_LEVEL) 876 reg &= ~(2 << ((irq % 16) * 2)); 877 else 878 reg |= 2 << ((irq % 16) * 2); 879 880 if (irq <= GIC_LAST_PPI) { 881 gic_r_write(sc, 4, 882 GICR_SGI_BASE_SIZE + GICD_ICFGR(irq), reg); 883 gic_v3_wait_for_rwp(sc, REDIST); 884 } else { 885 gic_d_write(sc, 4, GICD_ICFGR(irq), reg); 886 gic_v3_wait_for_rwp(sc, DIST); 887 } 888 } 889 890 mtx_unlock_spin(&sc->gic_mtx); 891 } 892 893 static int 894 gic_v3_setup_intr(device_t dev, struct intr_irqsrc *isrc, 895 struct resource *res, struct intr_map_data *data) 896 { 897 struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc; 898 struct gic_v3_setup_periph_args pargs; 899 enum intr_trigger trig; 900 enum intr_polarity pol; 901 u_int irq; 902 int error; 903 904 if (data == NULL) 905 return (ENOTSUP); 906 907 error = do_gic_v3_map_intr(dev, data, &irq, &pol, &trig); 908 if (error != 0) 909 return (error); 910 911 if (gi->gi_irq != irq || pol == INTR_POLARITY_CONFORM || 912 trig == INTR_TRIGGER_CONFORM) 913 return (EINVAL); 914 915 /* Compare config if this is not first setup. */ 916 if (isrc->isrc_handlers != 0) { 917 if (pol != gi->gi_pol || trig != gi->gi_trig) 918 return (EINVAL); 919 else 920 return (0); 921 } 922 923 /* For MSI/MSI-X we should have already configured these */ 924 if ((gi->gi_flags & GI_FLAG_MSI) == 0) { 925 gi->gi_pol = pol; 926 gi->gi_trig = trig; 927 } 928 929 pargs.dev = dev; 930 pargs.isrc = isrc; 931 932 if (isrc->isrc_flags & INTR_ISRCF_PPI) { 933 /* 934 * If APs haven't been fired up yet, smp_rendezvous() will just 935 * execute it on the single CPU and gic_v3_init_secondary() will 936 * clean up afterwards. 937 */ 938 smp_rendezvous(NULL, gic_v3_setup_intr_periph, NULL, &pargs); 939 } else if (irq >= GIC_FIRST_SPI && irq <= GIC_LAST_SPI) { 940 gic_v3_setup_intr_periph(&pargs); 941 gic_v3_bind_intr(dev, isrc); 942 } 943 944 return (0); 945 } 946 947 static int 948 gic_v3_teardown_intr(device_t dev, struct intr_irqsrc *isrc, 949 struct resource *res, struct intr_map_data *data) 950 { 951 struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc; 952 953 if (isrc->isrc_handlers == 0 && (gi->gi_flags & GI_FLAG_MSI) == 0) { 954 gi->gi_pol = INTR_POLARITY_CONFORM; 955 gi->gi_trig = INTR_TRIGGER_CONFORM; 956 } 957 958 return (0); 959 } 960 961 static void 962 gic_v3_disable_intr(device_t dev, struct intr_irqsrc *isrc) 963 { 964 struct gic_v3_softc *sc; 965 struct gic_v3_irqsrc *gi; 966 u_int irq; 967 968 sc = device_get_softc(dev); 969 gi = (struct gic_v3_irqsrc *)isrc; 970 irq = gi->gi_irq; 971 972 if (irq <= GIC_LAST_PPI) { 973 /* SGIs and PPIs in corresponding Re-Distributor */ 974 gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_ICENABLER(irq), 975 GICD_I_MASK(irq)); 976 gic_v3_wait_for_rwp(sc, REDIST); 977 } else if (irq >= GIC_FIRST_SPI && irq <= GIC_LAST_SPI) { 978 /* SPIs in distributor */ 979 gic_d_write(sc, 4, GICD_ICENABLER(irq), GICD_I_MASK(irq)); 980 gic_v3_wait_for_rwp(sc, DIST); 981 } else 982 panic("%s: Unsupported IRQ %u", __func__, irq); 983 } 984 985 static void 986 gic_v3_enable_intr_periph(void *argp) 987 { 988 struct gic_v3_setup_periph_args *args = argp; 989 struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)args->isrc; 990 device_t dev = args->dev; 991 struct gic_v3_softc *sc = device_get_softc(dev); 992 u_int irq = gi->gi_irq; 993 994 /* SGIs and PPIs in corresponding Re-Distributor */ 995 gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_ISENABLER(irq), 996 GICD_I_MASK(irq)); 997 gic_v3_wait_for_rwp(sc, REDIST); 998 } 999 1000 static void 1001 gic_v3_enable_intr(device_t dev, struct intr_irqsrc *isrc) 1002 { 1003 struct gic_v3_setup_periph_args pargs; 1004 struct gic_v3_softc *sc; 1005 struct gic_v3_irqsrc *gi; 1006 u_int irq; 1007 1008 gi = (struct gic_v3_irqsrc *)isrc; 1009 irq = gi->gi_irq; 1010 pargs.isrc = isrc; 1011 pargs.dev = dev; 1012 1013 if (irq <= GIC_LAST_PPI) { 1014 /* 1015 * SGIs only need configured on the current AP. We'll setup and 1016 * enable IPIs as APs come online. 1017 */ 1018 if (irq <= GIC_LAST_SGI) 1019 gic_v3_enable_intr_periph(&pargs); 1020 else 1021 smp_rendezvous(NULL, gic_v3_enable_intr_periph, NULL, 1022 &pargs); 1023 return; 1024 } 1025 1026 sc = device_get_softc(dev); 1027 1028 if (irq >= GIC_FIRST_SPI && irq <= GIC_LAST_SPI) { 1029 /* SPIs in distributor */ 1030 gic_d_write(sc, 4, GICD_ISENABLER(irq), GICD_I_MASK(irq)); 1031 gic_v3_wait_for_rwp(sc, DIST); 1032 } else 1033 panic("%s: Unsupported IRQ %u", __func__, irq); 1034 } 1035 1036 static void 1037 gic_v3_pre_ithread(device_t dev, struct intr_irqsrc *isrc) 1038 { 1039 struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc; 1040 1041 gic_v3_disable_intr(dev, isrc); 1042 gic_icc_write(EOIR1, gi->gi_irq); 1043 } 1044 1045 static void 1046 gic_v3_post_ithread(device_t dev, struct intr_irqsrc *isrc) 1047 { 1048 1049 gic_v3_enable_intr(dev, isrc); 1050 } 1051 1052 static void 1053 gic_v3_post_filter(device_t dev, struct intr_irqsrc *isrc) 1054 { 1055 struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc; 1056 1057 if (gi->gi_trig == INTR_TRIGGER_EDGE) 1058 return; 1059 1060 gic_icc_write(EOIR1, gi->gi_irq); 1061 } 1062 1063 static int 1064 gic_v3_bind_intr(device_t dev, struct intr_irqsrc *isrc) 1065 { 1066 struct gic_v3_softc *sc; 1067 struct gic_v3_irqsrc *gi; 1068 int cpu; 1069 1070 gi = (struct gic_v3_irqsrc *)isrc; 1071 1072 KASSERT(gi->gi_irq >= GIC_FIRST_SPI && gi->gi_irq <= GIC_LAST_SPI, 1073 ("%s: Attempting to bind an invalid IRQ", __func__)); 1074 1075 sc = device_get_softc(dev); 1076 1077 if (CPU_EMPTY(&isrc->isrc_cpu)) { 1078 gic_irq_cpu = intr_irq_next_cpu(gic_irq_cpu, &all_cpus); 1079 CPU_SETOF(gic_irq_cpu, &isrc->isrc_cpu); 1080 gic_d_write(sc, 8, GICD_IROUTER(gi->gi_irq), 1081 CPU_AFFINITY(gic_irq_cpu)); 1082 } else { 1083 /* 1084 * We can only bind to a single CPU so select 1085 * the first CPU found. 1086 */ 1087 cpu = CPU_FFS(&isrc->isrc_cpu) - 1; 1088 gic_d_write(sc, 8, GICD_IROUTER(gi->gi_irq), CPU_AFFINITY(cpu)); 1089 } 1090 1091 return (0); 1092 } 1093 1094 #ifdef SMP 1095 static void 1096 gic_v3_init_secondary(device_t dev, uint32_t rootnum) 1097 { 1098 struct gic_v3_setup_periph_args pargs; 1099 device_t child; 1100 struct gic_v3_softc *sc; 1101 gic_v3_initseq_t *init_func; 1102 struct intr_irqsrc *isrc; 1103 u_int cpu, irq; 1104 int err, i; 1105 1106 sc = device_get_softc(dev); 1107 cpu = PCPU_GET(cpuid); 1108 1109 /* Train init sequence for boot CPU */ 1110 for (init_func = gic_v3_secondary_init; *init_func != NULL; 1111 init_func++) { 1112 err = (*init_func)(sc); 1113 if (err != 0) { 1114 device_printf(dev, 1115 "Could not initialize GIC for CPU%u\n", cpu); 1116 return; 1117 } 1118 } 1119 1120 pargs.dev = dev; 1121 1122 /* Unmask attached SGI interrupts. */ 1123 for (irq = GIC_FIRST_SGI; irq <= GIC_LAST_SGI; irq++) { 1124 isrc = GIC_INTR_ISRC(sc, irq); 1125 if (intr_isrc_init_on_cpu(isrc, cpu)) { 1126 pargs.isrc = isrc; 1127 gic_v3_enable_intr_periph(&pargs); 1128 } 1129 } 1130 1131 /* Unmask attached PPI interrupts. */ 1132 for (irq = GIC_FIRST_PPI; irq <= GIC_LAST_PPI; irq++) { 1133 isrc = GIC_INTR_ISRC(sc, irq); 1134 if (intr_isrc_init_on_cpu(isrc, cpu)) { 1135 pargs.isrc = isrc; 1136 gic_v3_setup_intr_periph(&pargs); 1137 gic_v3_enable_intr_periph(&pargs); 1138 } 1139 } 1140 1141 for (i = 0; i < sc->gic_nchildren; i++) { 1142 child = sc->gic_children[i]; 1143 PIC_INIT_SECONDARY(child, rootnum); 1144 } 1145 } 1146 1147 static void 1148 gic_v3_ipi_send(device_t dev, struct intr_irqsrc *isrc, cpuset_t cpus, 1149 u_int ipi) 1150 { 1151 struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc; 1152 uint64_t aff, val, irq; 1153 int i; 1154 1155 #define GIC_AFF_MASK (CPU_AFF3_MASK | CPU_AFF2_MASK | CPU_AFF1_MASK) 1156 #define GIC_AFFINITY(i) (CPU_AFFINITY(i) & GIC_AFF_MASK) 1157 aff = GIC_AFFINITY(0); 1158 irq = gi->gi_irq; 1159 val = 0; 1160 1161 /* Iterate through all CPUs in set */ 1162 for (i = 0; i <= mp_maxid; i++) { 1163 /* Move to the next affinity group */ 1164 if (aff != GIC_AFFINITY(i)) { 1165 /* Send the IPI */ 1166 if (val != 0) { 1167 gic_icc_write(SGI1R, val); 1168 val = 0; 1169 } 1170 aff = GIC_AFFINITY(i); 1171 } 1172 1173 /* Send the IPI to this cpu */ 1174 if (CPU_ISSET(i, &cpus)) { 1175 #define ICC_SGI1R_AFFINITY(aff) \ 1176 (((uint64_t)CPU_AFF3(aff) << ICC_SGI1R_EL1_AFF3_SHIFT) | \ 1177 ((uint64_t)CPU_AFF2(aff) << ICC_SGI1R_EL1_AFF2_SHIFT) | \ 1178 ((uint64_t)CPU_AFF1(aff) << ICC_SGI1R_EL1_AFF1_SHIFT)) 1179 /* Set the affinity when the first at this level */ 1180 if (val == 0) 1181 val = ICC_SGI1R_AFFINITY(aff) | 1182 irq << ICC_SGI1R_EL1_SGIID_SHIFT; 1183 /* Set the bit to send the IPI to te CPU */ 1184 val |= 1 << CPU_AFF0(CPU_AFFINITY(i)); 1185 } 1186 } 1187 1188 /* Send the IPI to the last cpu affinity group */ 1189 if (val != 0) 1190 gic_icc_write(SGI1R, val); 1191 #undef GIC_AFF_MASK 1192 #undef GIC_AFFINITY 1193 } 1194 1195 static int 1196 gic_v3_ipi_setup(device_t dev, u_int ipi, struct intr_irqsrc **isrcp) 1197 { 1198 struct intr_irqsrc *isrc; 1199 struct gic_v3_softc *sc = device_get_softc(dev); 1200 1201 if (sgi_first_unused > GIC_LAST_SGI) 1202 return (ENOSPC); 1203 1204 isrc = GIC_INTR_ISRC(sc, sgi_first_unused); 1205 sgi_to_ipi[sgi_first_unused++] = ipi; 1206 1207 CPU_SET(PCPU_GET(cpuid), &isrc->isrc_cpu); 1208 1209 *isrcp = isrc; 1210 return (0); 1211 } 1212 #endif /* SMP */ 1213 1214 /* 1215 * Helper routines 1216 */ 1217 static void 1218 gic_v3_wait_for_rwp(struct gic_v3_softc *sc, enum gic_v3_xdist xdist) 1219 { 1220 struct resource *res; 1221 bus_size_t offset; 1222 u_int cpuid; 1223 size_t us_left = 1000000; 1224 1225 cpuid = PCPU_GET(cpuid); 1226 1227 switch (xdist) { 1228 case DIST: 1229 res = sc->gic_dist; 1230 offset = 0; 1231 break; 1232 case REDIST: 1233 res = sc->gic_redists.pcpu[cpuid].res; 1234 offset = sc->gic_redists.pcpu[PCPU_GET(cpuid)].offset; 1235 break; 1236 default: 1237 KASSERT(0, ("%s: Attempt to wait for unknown RWP", __func__)); 1238 return; 1239 } 1240 1241 while ((bus_read_4(res, offset + GICD_CTLR) & GICD_CTLR_RWP) != 0) { 1242 DELAY(1); 1243 if (us_left-- == 0) 1244 panic("GICD Register write pending for too long"); 1245 } 1246 } 1247 1248 /* CPU interface. */ 1249 static __inline void 1250 gic_v3_cpu_priority(uint64_t mask) 1251 { 1252 1253 /* Set prority mask */ 1254 gic_icc_write(PMR, mask & ICC_PMR_EL1_PRIO_MASK); 1255 } 1256 1257 static int 1258 gic_v3_cpu_enable_sre(struct gic_v3_softc *sc) 1259 { 1260 uint64_t sre; 1261 u_int cpuid; 1262 1263 cpuid = PCPU_GET(cpuid); 1264 /* 1265 * Set the SRE bit to enable access to GIC CPU interface 1266 * via system registers. 1267 */ 1268 sre = READ_SPECIALREG(icc_sre_el1); 1269 sre |= ICC_SRE_EL1_SRE; 1270 WRITE_SPECIALREG(icc_sre_el1, sre); 1271 isb(); 1272 /* 1273 * Now ensure that the bit is set. 1274 */ 1275 sre = READ_SPECIALREG(icc_sre_el1); 1276 if ((sre & ICC_SRE_EL1_SRE) == 0) { 1277 /* We are done. This was disabled in EL2 */ 1278 device_printf(sc->dev, "ERROR: CPU%u cannot enable CPU interface " 1279 "via system registers\n", cpuid); 1280 return (ENXIO); 1281 } else if (bootverbose) { 1282 device_printf(sc->dev, 1283 "CPU%u enabled CPU interface via system registers\n", 1284 cpuid); 1285 } 1286 1287 return (0); 1288 } 1289 1290 static int 1291 gic_v3_cpu_init(struct gic_v3_softc *sc) 1292 { 1293 int err; 1294 1295 /* Enable access to CPU interface via system registers */ 1296 err = gic_v3_cpu_enable_sre(sc); 1297 if (err != 0) 1298 return (err); 1299 /* Priority mask to minimum - accept all interrupts */ 1300 gic_v3_cpu_priority(GIC_PRIORITY_MIN); 1301 /* Disable EOI mode */ 1302 gic_icc_clear(CTLR, ICC_CTLR_EL1_EOIMODE); 1303 /* Enable group 1 (insecure) interrups */ 1304 gic_icc_set(IGRPEN1, ICC_IGRPEN0_EL1_EN); 1305 1306 return (0); 1307 } 1308 1309 /* Distributor */ 1310 static int 1311 gic_v3_dist_init(struct gic_v3_softc *sc) 1312 { 1313 uint64_t aff; 1314 u_int i; 1315 1316 /* 1317 * 1. Disable the Distributor 1318 */ 1319 gic_d_write(sc, 4, GICD_CTLR, 0); 1320 gic_v3_wait_for_rwp(sc, DIST); 1321 1322 /* 1323 * 2. Configure the Distributor 1324 */ 1325 /* Set all SPIs to be Group 1 Non-secure */ 1326 for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_IGROUPRn) 1327 gic_d_write(sc, 4, GICD_IGROUPR(i), 0xFFFFFFFF); 1328 1329 /* Set all global interrupts to be level triggered, active low. */ 1330 for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_ICFGRn) 1331 gic_d_write(sc, 4, GICD_ICFGR(i), 0x00000000); 1332 1333 /* Set priority to all shared interrupts */ 1334 for (i = GIC_FIRST_SPI; 1335 i < sc->gic_nirqs; i += GICD_I_PER_IPRIORITYn) { 1336 /* Set highest priority */ 1337 gic_d_write(sc, 4, GICD_IPRIORITYR(i), GIC_PRIORITY_MAX); 1338 } 1339 1340 /* 1341 * Disable all interrupts. Leave PPI and SGIs as they are enabled in 1342 * Re-Distributor registers. 1343 */ 1344 for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i += GICD_I_PER_ISENABLERn) 1345 gic_d_write(sc, 4, GICD_ICENABLER(i), 0xFFFFFFFF); 1346 1347 gic_v3_wait_for_rwp(sc, DIST); 1348 1349 /* 1350 * 3. Enable Distributor 1351 */ 1352 /* Enable Distributor with ARE, Group 1 */ 1353 gic_d_write(sc, 4, GICD_CTLR, GICD_CTLR_ARE_NS | GICD_CTLR_G1A | 1354 GICD_CTLR_G1); 1355 1356 /* 1357 * 4. Route all interrupts to boot CPU. 1358 */ 1359 aff = CPU_AFFINITY(0); 1360 for (i = GIC_FIRST_SPI; i < sc->gic_nirqs; i++) 1361 gic_d_write(sc, 8, GICD_IROUTER(i), aff); 1362 1363 return (0); 1364 } 1365 1366 /* Re-Distributor */ 1367 static int 1368 gic_v3_redist_alloc(struct gic_v3_softc *sc) 1369 { 1370 sc->gic_redists.pcpu = mallocarray(mp_maxid + 1, 1371 sizeof(sc->gic_redists.pcpu[0]), M_GIC_V3, M_WAITOK); 1372 return (0); 1373 } 1374 1375 static int 1376 gic_v3_redist_find(struct gic_v3_softc *sc) 1377 { 1378 struct resource *r_res; 1379 bus_size_t offset; 1380 uint64_t aff; 1381 uint64_t typer; 1382 uint32_t pidr2; 1383 u_int cpuid; 1384 size_t i; 1385 1386 cpuid = PCPU_GET(cpuid); 1387 1388 aff = CPU_AFFINITY(cpuid); 1389 /* Affinity in format for comparison with typer */ 1390 aff = (CPU_AFF3(aff) << 24) | (CPU_AFF2(aff) << 16) | 1391 (CPU_AFF1(aff) << 8) | CPU_AFF0(aff); 1392 1393 if (bootverbose) { 1394 device_printf(sc->dev, 1395 "Start searching for Re-Distributor\n"); 1396 } 1397 /* Iterate through Re-Distributor regions */ 1398 for (i = 0; i < sc->gic_redists.nregions; i++) { 1399 /* Take a copy of the region's resource */ 1400 r_res = sc->gic_redists.regions[i]; 1401 1402 pidr2 = bus_read_4(r_res, GICR_PIDR2); 1403 switch (GICR_PIDR2_ARCH(pidr2)) { 1404 case GICR_PIDR2_ARCH_GICv3: /* fall through */ 1405 case GICR_PIDR2_ARCH_GICv4: 1406 break; 1407 default: 1408 device_printf(sc->dev, 1409 "No Re-Distributor found for CPU%u\n", cpuid); 1410 return (ENODEV); 1411 } 1412 1413 offset = 0; 1414 do { 1415 typer = bus_read_8(r_res, offset + GICR_TYPER); 1416 if ((typer >> GICR_TYPER_AFF_SHIFT) == aff) { 1417 KASSERT(cpuid <= mp_maxid, 1418 ("Invalid pointer to per-CPU redistributor")); 1419 /* Copy res contents to its final destination */ 1420 sc->gic_redists.pcpu[cpuid].res = r_res; 1421 sc->gic_redists.pcpu[cpuid].offset = offset; 1422 sc->gic_redists.pcpu[cpuid].lpi_enabled = false; 1423 if (bootverbose) { 1424 device_printf(sc->dev, 1425 "CPU%u Re-Distributor has been found\n", 1426 cpuid); 1427 } 1428 return (0); 1429 } 1430 1431 offset += (GICR_RD_BASE_SIZE + GICR_SGI_BASE_SIZE); 1432 if ((typer & GICR_TYPER_VLPIS) != 0) { 1433 offset += 1434 (GICR_VLPI_BASE_SIZE + GICR_RESERVED_SIZE); 1435 } 1436 } while (offset < rman_get_size(r_res) && 1437 !sc->gic_redists.single && (typer & GICR_TYPER_LAST) == 0); 1438 } 1439 1440 device_printf(sc->dev, "No Re-Distributor found for CPU%u\n", cpuid); 1441 return (ENXIO); 1442 } 1443 1444 static int 1445 gic_v3_redist_wake(struct gic_v3_softc *sc) 1446 { 1447 uint32_t waker; 1448 size_t us_left = 1000000; 1449 1450 waker = gic_r_read(sc, 4, GICR_WAKER); 1451 /* Wake up Re-Distributor for this CPU */ 1452 waker &= ~GICR_WAKER_PS; 1453 gic_r_write(sc, 4, GICR_WAKER, waker); 1454 /* 1455 * When clearing ProcessorSleep bit it is required to wait for 1456 * ChildrenAsleep to become zero following the processor power-on. 1457 */ 1458 while ((gic_r_read(sc, 4, GICR_WAKER) & GICR_WAKER_CA) != 0) { 1459 DELAY(1); 1460 if (us_left-- == 0) { 1461 panic("Could not wake Re-Distributor for CPU%u", 1462 PCPU_GET(cpuid)); 1463 } 1464 } 1465 1466 if (bootverbose) { 1467 device_printf(sc->dev, "CPU%u Re-Distributor woke up\n", 1468 PCPU_GET(cpuid)); 1469 } 1470 1471 return (0); 1472 } 1473 1474 static int 1475 gic_v3_redist_init(struct gic_v3_softc *sc) 1476 { 1477 int err; 1478 size_t i; 1479 1480 err = gic_v3_redist_find(sc); 1481 if (err != 0) 1482 return (err); 1483 1484 err = gic_v3_redist_wake(sc); 1485 if (err != 0) 1486 return (err); 1487 1488 /* Configure SGIs and PPIs to be Group1 Non-secure */ 1489 gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_IGROUPR0, 1490 0xFFFFFFFF); 1491 1492 /* Disable SPIs */ 1493 gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_ICENABLER0, 1494 GICR_I_ENABLER_PPI_MASK); 1495 /* Enable SGIs */ 1496 gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICR_ISENABLER0, 1497 GICR_I_ENABLER_SGI_MASK); 1498 1499 /* Set priority for SGIs and PPIs */ 1500 for (i = 0; i <= GIC_LAST_PPI; i += GICR_I_PER_IPRIORITYn) { 1501 gic_r_write(sc, 4, GICR_SGI_BASE_SIZE + GICD_IPRIORITYR(i), 1502 GIC_PRIORITY_MAX); 1503 } 1504 1505 gic_v3_wait_for_rwp(sc, REDIST); 1506 1507 return (0); 1508 } 1509 1510 /* 1511 * SPI-mapped Message Based Interrupts -- a GICv3 MSI/MSI-X controller. 1512 */ 1513 1514 static int 1515 gic_v3_gic_alloc_msi(device_t dev, u_int mbi_start, u_int mbi_count, 1516 int count, int maxcount, struct intr_irqsrc **isrc) 1517 { 1518 struct gic_v3_softc *sc; 1519 int i, irq, end_irq; 1520 bool found; 1521 1522 KASSERT(powerof2(count), ("%s: bad count", __func__)); 1523 KASSERT(powerof2(maxcount), ("%s: bad maxcount", __func__)); 1524 1525 sc = device_get_softc(dev); 1526 1527 mtx_lock(&sc->gic_mbi_mtx); 1528 1529 found = false; 1530 for (irq = mbi_start; irq < mbi_start + mbi_count; irq++) { 1531 /* Start on an aligned interrupt */ 1532 if ((irq & (maxcount - 1)) != 0) 1533 continue; 1534 1535 /* Assume we found a valid range until shown otherwise */ 1536 found = true; 1537 1538 /* Check this range is valid */ 1539 for (end_irq = irq; end_irq != irq + count; end_irq++) { 1540 /* No free interrupts */ 1541 if (end_irq == mbi_start + mbi_count) { 1542 found = false; 1543 break; 1544 } 1545 1546 KASSERT((sc->gic_irqs[end_irq].gi_flags & GI_FLAG_MSI)!= 0, 1547 ("%s: Non-MSI interrupt found", __func__)); 1548 1549 /* This is already used */ 1550 if ((sc->gic_irqs[end_irq].gi_flags & GI_FLAG_MSI_USED) == 1551 GI_FLAG_MSI_USED) { 1552 found = false; 1553 break; 1554 } 1555 } 1556 if (found) 1557 break; 1558 } 1559 1560 /* Not enough interrupts were found */ 1561 if (!found || irq == mbi_start + mbi_count) { 1562 mtx_unlock(&sc->gic_mbi_mtx); 1563 return (ENXIO); 1564 } 1565 1566 for (i = 0; i < count; i++) { 1567 /* Mark the interrupt as used */ 1568 sc->gic_irqs[irq + i].gi_flags |= GI_FLAG_MSI_USED; 1569 } 1570 mtx_unlock(&sc->gic_mbi_mtx); 1571 1572 for (i = 0; i < count; i++) 1573 isrc[i] = (struct intr_irqsrc *)&sc->gic_irqs[irq + i]; 1574 1575 return (0); 1576 } 1577 1578 static int 1579 gic_v3_gic_release_msi(device_t dev, int count, struct intr_irqsrc **isrc) 1580 { 1581 struct gic_v3_softc *sc; 1582 struct gic_v3_irqsrc *gi; 1583 int i; 1584 1585 sc = device_get_softc(dev); 1586 1587 mtx_lock(&sc->gic_mbi_mtx); 1588 for (i = 0; i < count; i++) { 1589 gi = (struct gic_v3_irqsrc *)isrc[i]; 1590 1591 KASSERT((gi->gi_flags & GI_FLAG_MSI_USED) == GI_FLAG_MSI_USED, 1592 ("%s: Trying to release an unused MSI-X interrupt", 1593 __func__)); 1594 1595 gi->gi_flags &= ~GI_FLAG_MSI_USED; 1596 } 1597 mtx_unlock(&sc->gic_mbi_mtx); 1598 1599 return (0); 1600 } 1601 1602 static int 1603 gic_v3_gic_alloc_msix(device_t dev, u_int mbi_start, u_int mbi_count, 1604 struct intr_irqsrc **isrcp) 1605 { 1606 struct gic_v3_softc *sc; 1607 int irq; 1608 1609 sc = device_get_softc(dev); 1610 1611 mtx_lock(&sc->gic_mbi_mtx); 1612 /* Find an unused interrupt */ 1613 for (irq = mbi_start; irq < mbi_start + mbi_count; irq++) { 1614 KASSERT((sc->gic_irqs[irq].gi_flags & GI_FLAG_MSI) != 0, 1615 ("%s: Non-MSI interrupt found", __func__)); 1616 if ((sc->gic_irqs[irq].gi_flags & GI_FLAG_MSI_USED) == 0) 1617 break; 1618 } 1619 /* No free interrupt was found */ 1620 if (irq == mbi_start + mbi_count) { 1621 mtx_unlock(&sc->gic_mbi_mtx); 1622 return (ENXIO); 1623 } 1624 1625 /* Mark the interrupt as used */ 1626 sc->gic_irqs[irq].gi_flags |= GI_FLAG_MSI_USED; 1627 mtx_unlock(&sc->gic_mbi_mtx); 1628 1629 *isrcp = (struct intr_irqsrc *)&sc->gic_irqs[irq]; 1630 1631 return (0); 1632 } 1633 1634 static int 1635 gic_v3_gic_release_msix(device_t dev, struct intr_irqsrc *isrc) 1636 { 1637 struct gic_v3_softc *sc; 1638 struct gic_v3_irqsrc *gi; 1639 1640 sc = device_get_softc(dev); 1641 gi = (struct gic_v3_irqsrc *)isrc; 1642 1643 KASSERT((gi->gi_flags & GI_FLAG_MSI_USED) == GI_FLAG_MSI_USED, 1644 ("%s: Trying to release an unused MSI-X interrupt", __func__)); 1645 1646 mtx_lock(&sc->gic_mbi_mtx); 1647 gi->gi_flags &= ~GI_FLAG_MSI_USED; 1648 mtx_unlock(&sc->gic_mbi_mtx); 1649 1650 return (0); 1651 } 1652 1653 static int 1654 gic_v3_alloc_msi(device_t dev, device_t child, int count, int maxcount, 1655 device_t *pic, struct intr_irqsrc **isrc) 1656 { 1657 struct gic_v3_softc *sc; 1658 int error; 1659 1660 sc = device_get_softc(dev); 1661 error = gic_v3_gic_alloc_msi(dev, sc->gic_mbi_start, 1662 sc->gic_mbi_end - sc->gic_mbi_start, count, maxcount, isrc); 1663 if (error != 0) 1664 return (error); 1665 1666 *pic = dev; 1667 return (0); 1668 } 1669 1670 static int 1671 gic_v3_release_msi(device_t dev, device_t child, int count, 1672 struct intr_irqsrc **isrc) 1673 { 1674 return (gic_v3_gic_release_msi(dev, count, isrc)); 1675 } 1676 1677 static int 1678 gic_v3_alloc_msix(device_t dev, device_t child, device_t *pic, 1679 struct intr_irqsrc **isrc) 1680 { 1681 struct gic_v3_softc *sc; 1682 int error; 1683 1684 sc = device_get_softc(dev); 1685 error = gic_v3_gic_alloc_msix(dev, sc->gic_mbi_start, 1686 sc->gic_mbi_end - sc->gic_mbi_start, isrc); 1687 if (error != 0) 1688 return (error); 1689 1690 *pic = dev; 1691 1692 return (0); 1693 } 1694 1695 static int 1696 gic_v3_release_msix(device_t dev, device_t child, struct intr_irqsrc *isrc) 1697 { 1698 return (gic_v3_gic_release_msix(dev, isrc)); 1699 } 1700 1701 static int 1702 gic_v3_map_msi(device_t dev, device_t child, struct intr_irqsrc *isrc, 1703 uint64_t *addr, uint32_t *data) 1704 { 1705 struct gic_v3_softc *sc = device_get_softc(dev); 1706 struct gic_v3_irqsrc *gi = (struct gic_v3_irqsrc *)isrc; 1707 1708 *addr = vtophys(rman_get_virtual(sc->gic_dist)) + GICD_SETSPI_NSR; 1709 *data = gi->gi_irq; 1710 1711 return (0); 1712 } 1713