xref: /linux/arch/arm64/kernel/smp.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kgdb.h>
36 #include <linux/kvm_host.h>
37 #include <linux/nmi.h>
38 
39 #include <asm/alternative.h>
40 #include <asm/atomic.h>
41 #include <asm/cacheflush.h>
42 #include <asm/cpu.h>
43 #include <asm/cputype.h>
44 #include <asm/cpu_ops.h>
45 #include <asm/daifflags.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/processor.h>
50 #include <asm/smp_plat.h>
51 #include <asm/sections.h>
52 #include <asm/tlbflush.h>
53 #include <asm/ptrace.h>
54 #include <asm/virt.h>
55 
56 #include <trace/events/ipi.h>
57 
58 /*
59  * as from 2.5, kernels no longer have an init_tasks structure
60  * so we need some other way of telling a new secondary core
61  * where to place its SVC stack
62  */
63 struct secondary_data secondary_data;
64 /* Number of CPUs which aren't online, but looping in kernel text. */
65 static int cpus_stuck_in_kernel;
66 
67 static int ipi_irq_base __ro_after_init;
68 static int nr_ipi __ro_after_init = NR_IPI;
69 
70 struct ipi_descs {
71 	struct irq_desc *descs[MAX_IPI];
72 };
73 
74 static DEFINE_PER_CPU_READ_MOSTLY(struct ipi_descs, pcpu_ipi_desc);
75 
76 #define get_ipi_desc(__cpu, __ipi) (per_cpu_ptr(&pcpu_ipi_desc, __cpu)->descs[__ipi])
77 
78 static bool percpu_ipi_descs __ro_after_init;
79 
80 static bool crash_stop;
81 
82 static void ipi_setup(int cpu);
83 
84 #ifdef CONFIG_HOTPLUG_CPU
85 static void ipi_teardown(int cpu);
86 static int op_cpu_kill(unsigned int cpu);
87 #else
op_cpu_kill(unsigned int cpu)88 static inline int op_cpu_kill(unsigned int cpu)
89 {
90 	return -ENOSYS;
91 }
92 #endif
93 
94 
95 /*
96  * Boot a secondary CPU, and assign it the specified idle task.
97  * This also gives us the initial stack to use for this CPU.
98  */
boot_secondary(unsigned int cpu,struct task_struct * idle)99 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
100 {
101 	const struct cpu_operations *ops = get_cpu_ops(cpu);
102 
103 	if (ops->cpu_boot)
104 		return ops->cpu_boot(cpu);
105 
106 	return -EOPNOTSUPP;
107 }
108 
109 static DECLARE_COMPLETION(cpu_running);
110 
__cpu_up(unsigned int cpu,struct task_struct * idle)111 int __cpu_up(unsigned int cpu, struct task_struct *idle)
112 {
113 	int ret;
114 	long status;
115 
116 	/*
117 	 * We need to tell the secondary core where to find its stack and the
118 	 * page tables.
119 	 */
120 	secondary_data.task = idle;
121 	update_cpu_boot_status(CPU_MMU_OFF);
122 
123 	/* Now bring the CPU into our world */
124 	ret = boot_secondary(cpu, idle);
125 	if (ret) {
126 		if (ret != -EPERM)
127 			pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
128 		return ret;
129 	}
130 
131 	/*
132 	 * CPU was successfully started, wait for it to come online or
133 	 * time out.
134 	 */
135 	wait_for_completion_timeout(&cpu_running,
136 				    msecs_to_jiffies(5000));
137 	if (cpu_online(cpu))
138 		return 0;
139 
140 	pr_crit("CPU%u: failed to come online\n", cpu);
141 	secondary_data.task = NULL;
142 	status = READ_ONCE(secondary_data.status);
143 	if (status == CPU_MMU_OFF)
144 		status = READ_ONCE(__early_cpu_boot_status);
145 
146 	switch (status & CPU_BOOT_STATUS_MASK) {
147 	default:
148 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
149 		       cpu, status);
150 		cpus_stuck_in_kernel++;
151 		break;
152 	case CPU_KILL_ME:
153 		if (!op_cpu_kill(cpu)) {
154 			pr_crit("CPU%u: died during early boot\n", cpu);
155 			break;
156 		}
157 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
158 		fallthrough;
159 	case CPU_STUCK_IN_KERNEL:
160 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
161 		if (status & CPU_STUCK_REASON_52_BIT_VA)
162 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
163 		if (status & CPU_STUCK_REASON_NO_GRAN) {
164 			pr_crit("CPU%u: does not support %luK granule\n",
165 				cpu, PAGE_SIZE / SZ_1K);
166 		}
167 		cpus_stuck_in_kernel++;
168 		break;
169 	case CPU_PANIC_KERNEL:
170 		panic("CPU%u detected unsupported configuration\n", cpu);
171 	}
172 
173 	return -EIO;
174 }
175 
init_gic_priority_masking(void)176 static void init_gic_priority_masking(void)
177 {
178 	u32 cpuflags;
179 
180 	if (WARN_ON(!gic_enable_sre()))
181 		return;
182 
183 	cpuflags = read_sysreg(daif);
184 
185 	WARN_ON(!(cpuflags & PSR_I_BIT));
186 	WARN_ON(!(cpuflags & PSR_F_BIT));
187 
188 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
189 }
190 
191 /*
192  * This is the secondary CPU boot entry.  We're using this CPUs
193  * idle thread stack, but a set of temporary page tables.
194  */
secondary_start_kernel(void)195 asmlinkage notrace void secondary_start_kernel(void)
196 {
197 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
198 	struct mm_struct *mm = &init_mm;
199 	const struct cpu_operations *ops;
200 	unsigned int cpu = smp_processor_id();
201 
202 	/*
203 	 * All kernel threads share the same mm context; grab a
204 	 * reference and switch to it.
205 	 */
206 	mmgrab(mm);
207 	current->active_mm = mm;
208 
209 	/*
210 	 * TTBR0 is only used for the identity mapping at this stage. Make it
211 	 * point to zero page to avoid speculatively fetching new entries.
212 	 */
213 	cpu_uninstall_idmap();
214 
215 	if (system_uses_irq_prio_masking())
216 		init_gic_priority_masking();
217 
218 	rcutree_report_cpu_starting(cpu);
219 	trace_hardirqs_off();
220 
221 	/*
222 	 * If the system has established the capabilities, make sure
223 	 * this CPU ticks all of those. If it doesn't, the CPU will
224 	 * fail to come online.
225 	 */
226 	check_local_cpu_capabilities();
227 
228 	ops = get_cpu_ops(cpu);
229 	if (ops->cpu_postboot)
230 		ops->cpu_postboot();
231 
232 	/*
233 	 * Log the CPU info before it is marked online and might get read.
234 	 */
235 	cpuinfo_store_cpu();
236 	store_cpu_topology(cpu);
237 
238 	/*
239 	 * Enable GIC and timers.
240 	 */
241 	notify_cpu_starting(cpu);
242 
243 	ipi_setup(cpu);
244 
245 	numa_add_cpu(cpu);
246 
247 	/*
248 	 * OK, now it's safe to let the boot CPU continue.  Wait for
249 	 * the CPU migration code to notice that the CPU is online
250 	 * before we continue.
251 	 */
252 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
253 					 cpu, (unsigned long)mpidr,
254 					 read_cpuid_id());
255 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
256 	set_cpu_online(cpu, true);
257 	complete(&cpu_running);
258 
259 	/*
260 	 * Secondary CPUs enter the kernel with all DAIF exceptions masked.
261 	 *
262 	 * As with setup_arch() we must unmask Debug and SError exceptions, and
263 	 * as the root irqchip has already been detected and initialized we can
264 	 * unmask IRQ and FIQ at the same time.
265 	 */
266 	local_daif_restore(DAIF_PROCCTX);
267 
268 	/*
269 	 * OK, it's off to the idle thread for us
270 	 */
271 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
272 }
273 
274 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)275 static int op_cpu_disable(unsigned int cpu)
276 {
277 	const struct cpu_operations *ops = get_cpu_ops(cpu);
278 
279 	/*
280 	 * If we don't have a cpu_die method, abort before we reach the point
281 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
282 	 */
283 	if (!ops || !ops->cpu_die)
284 		return -EOPNOTSUPP;
285 
286 	/*
287 	 * We may need to abort a hot unplug for some other mechanism-specific
288 	 * reason.
289 	 */
290 	if (ops->cpu_disable)
291 		return ops->cpu_disable(cpu);
292 
293 	return 0;
294 }
295 
296 /*
297  * __cpu_disable runs on the processor to be shutdown.
298  */
__cpu_disable(void)299 int __cpu_disable(void)
300 {
301 	unsigned int cpu = smp_processor_id();
302 	int ret;
303 
304 	ret = op_cpu_disable(cpu);
305 	if (ret)
306 		return ret;
307 
308 	remove_cpu_topology(cpu);
309 	numa_remove_cpu(cpu);
310 
311 	/*
312 	 * Take this CPU offline.  Once we clear this, we can't return,
313 	 * and we must not schedule until we're ready to give up the cpu.
314 	 */
315 	set_cpu_online(cpu, false);
316 	ipi_teardown(cpu);
317 
318 	/*
319 	 * OK - migrate IRQs away from this CPU
320 	 */
321 	irq_migrate_all_off_this_cpu();
322 
323 	return 0;
324 }
325 
op_cpu_kill(unsigned int cpu)326 static int op_cpu_kill(unsigned int cpu)
327 {
328 	const struct cpu_operations *ops = get_cpu_ops(cpu);
329 
330 	/*
331 	 * If we have no means of synchronising with the dying CPU, then assume
332 	 * that it is really dead. We can only wait for an arbitrary length of
333 	 * time and hope that it's dead, so let's skip the wait and just hope.
334 	 */
335 	if (!ops->cpu_kill)
336 		return 0;
337 
338 	return ops->cpu_kill(cpu);
339 }
340 
341 /*
342  * Called on the thread which is asking for a CPU to be shutdown after the
343  * shutdown completed.
344  */
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)345 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
346 {
347 	int err;
348 
349 	pr_debug("CPU%u: shutdown\n", cpu);
350 
351 	/*
352 	 * Now that the dying CPU is beyond the point of no return w.r.t.
353 	 * in-kernel synchronisation, try to get the firwmare to help us to
354 	 * verify that it has really left the kernel before we consider
355 	 * clobbering anything it might still be using.
356 	 */
357 	err = op_cpu_kill(cpu);
358 	if (err)
359 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
360 }
361 
362 /*
363  * Called from the idle thread for the CPU which has been shutdown.
364  *
365  */
cpu_die(void)366 void __noreturn cpu_die(void)
367 {
368 	unsigned int cpu = smp_processor_id();
369 	const struct cpu_operations *ops = get_cpu_ops(cpu);
370 
371 	idle_task_exit();
372 
373 	local_daif_mask();
374 
375 	/* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
376 	cpuhp_ap_report_dead();
377 
378 	/*
379 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
380 	 * mechanism must perform all required cache maintenance to ensure that
381 	 * no dirty lines are lost in the process of shutting down the CPU.
382 	 */
383 	ops->cpu_die(cpu);
384 
385 	BUG();
386 }
387 #endif
388 
__cpu_try_die(int cpu)389 static void __cpu_try_die(int cpu)
390 {
391 #ifdef CONFIG_HOTPLUG_CPU
392 	const struct cpu_operations *ops = get_cpu_ops(cpu);
393 
394 	if (ops && ops->cpu_die)
395 		ops->cpu_die(cpu);
396 #endif
397 }
398 
399 /*
400  * Kill the calling secondary CPU, early in bringup before it is turned
401  * online.
402  */
cpu_die_early(void)403 void __noreturn cpu_die_early(void)
404 {
405 	int cpu = smp_processor_id();
406 
407 	pr_crit("CPU%d: will not boot\n", cpu);
408 
409 	/* Mark this CPU absent */
410 	set_cpu_present(cpu, 0);
411 	rcutree_report_cpu_dead();
412 
413 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
414 		update_cpu_boot_status(CPU_KILL_ME);
415 		__cpu_try_die(cpu);
416 	}
417 
418 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
419 
420 	cpu_park_loop();
421 }
422 
hyp_mode_check(void)423 static void __init hyp_mode_check(void)
424 {
425 	if (is_hyp_mode_available())
426 		pr_info("CPU: All CPU(s) started at EL2\n");
427 	else if (is_hyp_mode_mismatched())
428 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
429 			   "CPU: CPUs started in inconsistent modes");
430 	else
431 		pr_info("CPU: All CPU(s) started at EL1\n");
432 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
433 		kvm_compute_layout();
434 		kvm_apply_hyp_relocations();
435 	}
436 }
437 
smp_cpus_done(unsigned int max_cpus)438 void __init smp_cpus_done(unsigned int max_cpus)
439 {
440 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
441 	hyp_mode_check();
442 	setup_system_features();
443 	setup_user_features();
444 	mark_linear_text_alias_ro();
445 }
446 
smp_prepare_boot_cpu(void)447 void __init smp_prepare_boot_cpu(void)
448 {
449 	/*
450 	 * The runtime per-cpu areas have been allocated by
451 	 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
452 	 * freed shortly, so we must move over to the runtime per-cpu area.
453 	 */
454 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
455 
456 	cpuinfo_store_boot_cpu();
457 	setup_boot_cpu_features();
458 
459 	/* Conditionally switch to GIC PMR for interrupt masking */
460 	if (system_uses_irq_prio_masking())
461 		init_gic_priority_masking();
462 
463 	kasan_init_hw_tags();
464 	/* Init percpu seeds for random tags after cpus are set up. */
465 	kasan_init_sw_tags();
466 }
467 
468 /*
469  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
470  * entries and check for duplicates. If any is found just ignore the
471  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
472  * matching valid MPIDR values.
473  */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)474 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
475 {
476 	unsigned int i;
477 
478 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
479 		if (cpu_logical_map(i) == hwid)
480 			return true;
481 	return false;
482 }
483 
484 /*
485  * Initialize cpu operations for a logical cpu and
486  * set it in the possible mask on success
487  */
smp_cpu_setup(int cpu)488 static int __init smp_cpu_setup(int cpu)
489 {
490 	const struct cpu_operations *ops;
491 
492 	if (init_cpu_ops(cpu))
493 		return -ENODEV;
494 
495 	ops = get_cpu_ops(cpu);
496 	if (ops->cpu_init(cpu))
497 		return -ENODEV;
498 
499 	set_cpu_possible(cpu, true);
500 
501 	return 0;
502 }
503 
504 static bool bootcpu_valid __initdata;
505 static unsigned int cpu_count = 1;
506 
arch_register_cpu(int cpu)507 int arch_register_cpu(int cpu)
508 {
509 	acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
510 	struct cpu *c = &per_cpu(cpu_devices, cpu);
511 
512 	if (!acpi_disabled && !acpi_handle &&
513 	    IS_ENABLED(CONFIG_ACPI_HOTPLUG_CPU))
514 		return -EPROBE_DEFER;
515 
516 #ifdef CONFIG_ACPI_HOTPLUG_CPU
517 	/* For now block anything that looks like physical CPU Hotplug */
518 	if (invalid_logical_cpuid(cpu) || !cpu_present(cpu)) {
519 		pr_err_once("Changing CPU present bit is not supported\n");
520 		return -ENODEV;
521 	}
522 #endif
523 
524 	/*
525 	 * Availability of the acpi handle is sufficient to establish
526 	 * that _STA has aleady been checked. No need to recheck here.
527 	 */
528 	c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
529 
530 	return register_cpu(c, cpu);
531 }
532 
533 #ifdef CONFIG_ACPI_HOTPLUG_CPU
arch_unregister_cpu(int cpu)534 void arch_unregister_cpu(int cpu)
535 {
536 	acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
537 	struct cpu *c = &per_cpu(cpu_devices, cpu);
538 	acpi_status status;
539 	unsigned long long sta;
540 
541 	if (!acpi_handle) {
542 		pr_err_once("Removing a CPU without associated ACPI handle\n");
543 		return;
544 	}
545 
546 	status = acpi_evaluate_integer(acpi_handle, "_STA", NULL, &sta);
547 	if (ACPI_FAILURE(status))
548 		return;
549 
550 	/* For now do not allow anything that looks like physical CPU HP */
551 	if (cpu_present(cpu) && !(sta & ACPI_STA_DEVICE_PRESENT)) {
552 		pr_err_once("Changing CPU present bit is not supported\n");
553 		return;
554 	}
555 
556 	unregister_cpu(c);
557 }
558 #endif /* CONFIG_ACPI_HOTPLUG_CPU */
559 
560 #ifdef CONFIG_ACPI
561 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
562 
acpi_cpu_get_madt_gicc(int cpu)563 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
564 {
565 	return &cpu_madt_gicc[cpu];
566 }
567 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
568 
569 /*
570  * acpi_map_gic_cpu_interface - parse processor MADT entry
571  *
572  * Carry out sanity checks on MADT processor entry and initialize
573  * cpu_logical_map on success
574  */
575 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)576 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
577 {
578 	u64 hwid = processor->arm_mpidr;
579 
580 	if (!(processor->flags &
581 	      (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) {
582 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
583 		return;
584 	}
585 
586 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
587 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
588 		return;
589 	}
590 
591 	if (is_mpidr_duplicate(cpu_count, hwid)) {
592 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
593 		return;
594 	}
595 
596 	/* Check if GICC structure of boot CPU is available in the MADT */
597 	if (cpu_logical_map(0) == hwid) {
598 		if (bootcpu_valid) {
599 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
600 			       hwid);
601 			return;
602 		}
603 		bootcpu_valid = true;
604 		cpu_madt_gicc[0] = *processor;
605 		return;
606 	}
607 
608 	if (cpu_count >= NR_CPUS)
609 		return;
610 
611 	/* map the logical cpu id to cpu MPIDR */
612 	set_cpu_logical_map(cpu_count, hwid);
613 
614 	cpu_madt_gicc[cpu_count] = *processor;
615 
616 	/*
617 	 * Set-up the ACPI parking protocol cpu entries
618 	 * while initializing the cpu_logical_map to
619 	 * avoid parsing MADT entries multiple times for
620 	 * nothing (ie a valid cpu_logical_map entry should
621 	 * contain a valid parking protocol data set to
622 	 * initialize the cpu if the parking protocol is
623 	 * the only available enable method).
624 	 */
625 	acpi_set_mailbox_entry(cpu_count, processor);
626 
627 	cpu_count++;
628 }
629 
630 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)631 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
632 			     const unsigned long end)
633 {
634 	struct acpi_madt_generic_interrupt *processor;
635 
636 	processor = (struct acpi_madt_generic_interrupt *)header;
637 	if (BAD_MADT_GICC_ENTRY(processor, end))
638 		return -EINVAL;
639 
640 	acpi_table_print_madt_entry(&header->common);
641 
642 	acpi_map_gic_cpu_interface(processor);
643 
644 	return 0;
645 }
646 
acpi_parse_and_init_cpus(void)647 static void __init acpi_parse_and_init_cpus(void)
648 {
649 	int i;
650 
651 	/*
652 	 * do a walk of MADT to determine how many CPUs
653 	 * we have including disabled CPUs, and get information
654 	 * we need for SMP init.
655 	 */
656 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
657 				      acpi_parse_gic_cpu_interface, 0);
658 
659 	/*
660 	 * In ACPI, SMP and CPU NUMA information is provided in separate
661 	 * static tables, namely the MADT and the SRAT.
662 	 *
663 	 * Thus, it is simpler to first create the cpu logical map through
664 	 * an MADT walk and then map the logical cpus to their node ids
665 	 * as separate steps.
666 	 */
667 	acpi_map_cpus_to_nodes();
668 
669 	for (i = 0; i < nr_cpu_ids; i++)
670 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
671 }
672 #else
673 #define acpi_parse_and_init_cpus(...)	do { } while (0)
674 #endif
675 
676 /*
677  * Enumerate the possible CPU set from the device tree and build the
678  * cpu logical map array containing MPIDR values related to logical
679  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
680  */
of_parse_and_init_cpus(void)681 static void __init of_parse_and_init_cpus(void)
682 {
683 	struct device_node *dn;
684 
685 	for_each_of_cpu_node(dn) {
686 		u64 hwid = of_get_cpu_hwid(dn, 0);
687 
688 		if (hwid & ~MPIDR_HWID_BITMASK)
689 			goto next;
690 
691 		if (is_mpidr_duplicate(cpu_count, hwid)) {
692 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
693 				dn);
694 			goto next;
695 		}
696 
697 		/*
698 		 * The numbering scheme requires that the boot CPU
699 		 * must be assigned logical id 0. Record it so that
700 		 * the logical map built from DT is validated and can
701 		 * be used.
702 		 */
703 		if (hwid == cpu_logical_map(0)) {
704 			if (bootcpu_valid) {
705 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
706 					dn);
707 				goto next;
708 			}
709 
710 			bootcpu_valid = true;
711 			early_map_cpu_to_node(0, of_node_to_nid(dn));
712 
713 			/*
714 			 * cpu_logical_map has already been
715 			 * initialized and the boot cpu doesn't need
716 			 * the enable-method so continue without
717 			 * incrementing cpu.
718 			 */
719 			continue;
720 		}
721 
722 		if (cpu_count >= NR_CPUS)
723 			goto next;
724 
725 		pr_debug("cpu logical map 0x%llx\n", hwid);
726 		set_cpu_logical_map(cpu_count, hwid);
727 
728 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
729 next:
730 		cpu_count++;
731 	}
732 }
733 
734 /*
735  * Enumerate the possible CPU set from the device tree or ACPI and build the
736  * cpu logical map array containing MPIDR values related to logical
737  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
738  */
smp_init_cpus(void)739 void __init smp_init_cpus(void)
740 {
741 	int i;
742 
743 	if (acpi_disabled)
744 		of_parse_and_init_cpus();
745 	else
746 		acpi_parse_and_init_cpus();
747 
748 	if (cpu_count > nr_cpu_ids)
749 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
750 			cpu_count, nr_cpu_ids);
751 
752 	if (!bootcpu_valid) {
753 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
754 		return;
755 	}
756 
757 	/*
758 	 * We need to set the cpu_logical_map entries before enabling
759 	 * the cpus so that cpu processor description entries (DT cpu nodes
760 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
761 	 * with entries in cpu_logical_map while initializing the cpus.
762 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
763 	 */
764 	for (i = 1; i < nr_cpu_ids; i++) {
765 		if (cpu_logical_map(i) != INVALID_HWID) {
766 			if (smp_cpu_setup(i))
767 				set_cpu_logical_map(i, INVALID_HWID);
768 		}
769 	}
770 }
771 
smp_prepare_cpus(unsigned int max_cpus)772 void __init smp_prepare_cpus(unsigned int max_cpus)
773 {
774 	const struct cpu_operations *ops;
775 	int err;
776 	unsigned int cpu;
777 	unsigned int this_cpu;
778 
779 	init_cpu_topology();
780 
781 	this_cpu = smp_processor_id();
782 	store_cpu_topology(this_cpu);
783 	numa_store_cpu_info(this_cpu);
784 	numa_add_cpu(this_cpu);
785 
786 	/*
787 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
788 	 * secondary CPUs present.
789 	 */
790 	if (max_cpus == 0)
791 		return;
792 
793 	/*
794 	 * Initialise the present map (which describes the set of CPUs
795 	 * actually populated at the present time) and release the
796 	 * secondaries from the bootloader.
797 	 */
798 	for_each_possible_cpu(cpu) {
799 
800 		if (cpu == smp_processor_id())
801 			continue;
802 
803 		ops = get_cpu_ops(cpu);
804 		if (!ops)
805 			continue;
806 
807 		err = ops->cpu_prepare(cpu);
808 		if (err)
809 			continue;
810 
811 		set_cpu_present(cpu, true);
812 		numa_store_cpu_info(cpu);
813 	}
814 }
815 
816 static const char *ipi_types[MAX_IPI] __tracepoint_string = {
817 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
818 	[IPI_CALL_FUNC]		= "Function call interrupts",
819 	[IPI_CPU_STOP]		= "CPU stop interrupts",
820 	[IPI_CPU_STOP_NMI]	= "CPU stop NMIs",
821 	[IPI_TIMER]		= "Timer broadcast interrupts",
822 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
823 	[IPI_CPU_BACKTRACE]	= "CPU backtrace interrupts",
824 	[IPI_KGDB_ROUNDUP]	= "KGDB roundup interrupts",
825 };
826 
827 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
828 
829 unsigned long irq_err_count;
830 
arch_show_interrupts(struct seq_file * p,int prec)831 int arch_show_interrupts(struct seq_file *p, int prec)
832 {
833 	unsigned int cpu, i;
834 
835 	for (i = 0; i < MAX_IPI; i++) {
836 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
837 			   prec >= 4 ? " " : "");
838 		for_each_online_cpu(cpu)
839 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(get_ipi_desc(cpu, i), cpu));
840 		seq_printf(p, "      %s\n", ipi_types[i]);
841 	}
842 
843 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
844 	return 0;
845 }
846 
arch_send_call_function_ipi_mask(const struct cpumask * mask)847 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
848 {
849 	smp_cross_call(mask, IPI_CALL_FUNC);
850 }
851 
arch_send_call_function_single_ipi(int cpu)852 void arch_send_call_function_single_ipi(int cpu)
853 {
854 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
855 }
856 
857 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)858 void arch_irq_work_raise(void)
859 {
860 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
861 }
862 #endif
863 
local_cpu_stop(unsigned int cpu)864 static void __noreturn local_cpu_stop(unsigned int cpu)
865 {
866 	set_cpu_online(cpu, false);
867 
868 	local_daif_mask();
869 	sdei_mask_local_cpu();
870 	cpu_park_loop();
871 }
872 
873 /*
874  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
875  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
876  * CPUs that have already stopped themselves.
877  */
panic_smp_self_stop(void)878 void __noreturn panic_smp_self_stop(void)
879 {
880 	local_cpu_stop(smp_processor_id());
881 }
882 
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)883 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
884 {
885 #ifdef CONFIG_KEXEC_CORE
886 	/*
887 	 * Use local_daif_mask() instead of local_irq_disable() to make sure
888 	 * that pseudo-NMIs are disabled. The "crash stop" code starts with
889 	 * an IRQ and falls back to NMI (which might be pseudo). If the IRQ
890 	 * finally goes through right as we're timing out then the NMI could
891 	 * interrupt us. It's better to prevent the NMI and let the IRQ
892 	 * finish since the pt_regs will be better.
893 	 */
894 	local_daif_mask();
895 
896 	crash_save_cpu(regs, cpu);
897 
898 	set_cpu_online(cpu, false);
899 
900 	sdei_mask_local_cpu();
901 
902 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
903 		__cpu_try_die(cpu);
904 
905 	/* just in case */
906 	cpu_park_loop();
907 #else
908 	BUG();
909 #endif
910 }
911 
arm64_send_ipi(const cpumask_t * mask,unsigned int nr)912 static void arm64_send_ipi(const cpumask_t *mask, unsigned int nr)
913 {
914 	unsigned int cpu;
915 
916 	if (!percpu_ipi_descs)
917 		__ipi_send_mask(get_ipi_desc(0, nr), mask);
918 	else
919 		for_each_cpu(cpu, mask)
920 			__ipi_send_single(get_ipi_desc(cpu, nr), cpu);
921 }
922 
arm64_backtrace_ipi(cpumask_t * mask)923 static void arm64_backtrace_ipi(cpumask_t *mask)
924 {
925 	arm64_send_ipi(mask, IPI_CPU_BACKTRACE);
926 }
927 
arch_trigger_cpumask_backtrace(const cpumask_t * mask,int exclude_cpu)928 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
929 {
930 	/*
931 	 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name,
932 	 * nothing about it truly needs to be implemented using an NMI, it's
933 	 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi()
934 	 * returned false our backtrace attempt will just use a regular IPI.
935 	 */
936 	nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi);
937 }
938 
939 #ifdef CONFIG_KGDB
kgdb_roundup_cpus(void)940 void kgdb_roundup_cpus(void)
941 {
942 	int this_cpu = raw_smp_processor_id();
943 	int cpu;
944 
945 	for_each_online_cpu(cpu) {
946 		/* No need to roundup ourselves */
947 		if (cpu == this_cpu)
948 			continue;
949 
950 		__ipi_send_single(get_ipi_desc(cpu, IPI_KGDB_ROUNDUP), cpu);
951 	}
952 }
953 #endif
954 
955 /*
956  * Main handler for inter-processor interrupts
957  */
do_handle_IPI(int ipinr)958 static void do_handle_IPI(int ipinr)
959 {
960 	unsigned int cpu = smp_processor_id();
961 
962 	if ((unsigned)ipinr < NR_IPI)
963 		trace_ipi_entry(ipi_types[ipinr]);
964 
965 	switch (ipinr) {
966 	case IPI_RESCHEDULE:
967 		scheduler_ipi();
968 		break;
969 
970 	case IPI_CALL_FUNC:
971 		generic_smp_call_function_interrupt();
972 		break;
973 
974 	case IPI_CPU_STOP:
975 	case IPI_CPU_STOP_NMI:
976 		if (IS_ENABLED(CONFIG_KEXEC_CORE) && crash_stop) {
977 			ipi_cpu_crash_stop(cpu, get_irq_regs());
978 			unreachable();
979 		} else {
980 			local_cpu_stop(cpu);
981 		}
982 		break;
983 
984 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
985 	case IPI_TIMER:
986 		tick_receive_broadcast();
987 		break;
988 #endif
989 
990 #ifdef CONFIG_IRQ_WORK
991 	case IPI_IRQ_WORK:
992 		irq_work_run();
993 		break;
994 #endif
995 
996 	case IPI_CPU_BACKTRACE:
997 		/*
998 		 * NOTE: in some cases this _won't_ be NMI context. See the
999 		 * comment in arch_trigger_cpumask_backtrace().
1000 		 */
1001 		nmi_cpu_backtrace(get_irq_regs());
1002 		break;
1003 
1004 	case IPI_KGDB_ROUNDUP:
1005 		kgdb_nmicallback(cpu, get_irq_regs());
1006 		break;
1007 
1008 	default:
1009 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
1010 		break;
1011 	}
1012 
1013 	if ((unsigned)ipinr < NR_IPI)
1014 		trace_ipi_exit(ipi_types[ipinr]);
1015 }
1016 
ipi_handler(int irq,void * data)1017 static irqreturn_t ipi_handler(int irq, void *data)
1018 {
1019 	unsigned int ipi = (irq - ipi_irq_base) % nr_ipi;
1020 
1021 	do_handle_IPI(ipi);
1022 	return IRQ_HANDLED;
1023 }
1024 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)1025 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
1026 {
1027 	trace_ipi_raise(target, ipi_types[ipinr]);
1028 	arm64_send_ipi(target, ipinr);
1029 }
1030 
ipi_should_be_nmi(enum ipi_msg_type ipi)1031 static bool ipi_should_be_nmi(enum ipi_msg_type ipi)
1032 {
1033 	if (!system_uses_irq_prio_masking())
1034 		return false;
1035 
1036 	switch (ipi) {
1037 	case IPI_CPU_STOP_NMI:
1038 	case IPI_CPU_BACKTRACE:
1039 	case IPI_KGDB_ROUNDUP:
1040 		return true;
1041 	default:
1042 		return false;
1043 	}
1044 }
1045 
ipi_setup(int cpu)1046 static void ipi_setup(int cpu)
1047 {
1048 	int i;
1049 
1050 	if (WARN_ON_ONCE(!ipi_irq_base))
1051 		return;
1052 
1053 	for (i = 0; i < nr_ipi; i++) {
1054 		if (!percpu_ipi_descs) {
1055 			if (ipi_should_be_nmi(i)) {
1056 				prepare_percpu_nmi(ipi_irq_base + i);
1057 				enable_percpu_nmi(ipi_irq_base + i, 0);
1058 			} else {
1059 				enable_percpu_irq(ipi_irq_base + i, 0);
1060 			}
1061 		} else {
1062 			enable_irq(irq_desc_get_irq(get_ipi_desc(cpu, i)));
1063 		}
1064 	}
1065 }
1066 
1067 #ifdef CONFIG_HOTPLUG_CPU
ipi_teardown(int cpu)1068 static void ipi_teardown(int cpu)
1069 {
1070 	int i;
1071 
1072 	if (WARN_ON_ONCE(!ipi_irq_base))
1073 		return;
1074 
1075 	for (i = 0; i < nr_ipi; i++) {
1076 		if (!percpu_ipi_descs) {
1077 			if (ipi_should_be_nmi(i)) {
1078 				disable_percpu_nmi(ipi_irq_base + i);
1079 				teardown_percpu_nmi(ipi_irq_base + i);
1080 			} else {
1081 				disable_percpu_irq(ipi_irq_base + i);
1082 			}
1083 		} else {
1084 			disable_irq(irq_desc_get_irq(get_ipi_desc(cpu, i)));
1085 		}
1086 	}
1087 }
1088 #endif
1089 
ipi_setup_sgi(int ipi)1090 static void ipi_setup_sgi(int ipi)
1091 {
1092 	int err, irq, cpu;
1093 
1094 	irq = ipi_irq_base + ipi;
1095 
1096 	if (ipi_should_be_nmi(ipi)) {
1097 		err = request_percpu_nmi(irq, ipi_handler, "IPI", &irq_stat);
1098 		WARN(err, "Could not request IRQ %d as NMI, err=%d\n", irq, err);
1099 	} else {
1100 		err = request_percpu_irq(irq, ipi_handler, "IPI", &irq_stat);
1101 		WARN(err, "Could not request IRQ %d as IRQ, err=%d\n", irq, err);
1102 	}
1103 
1104 	for_each_possible_cpu(cpu)
1105 		get_ipi_desc(cpu, ipi) = irq_to_desc(irq);
1106 
1107 	irq_set_status_flags(irq, IRQ_HIDDEN);
1108 }
1109 
ipi_setup_lpi(int ipi,int ncpus)1110 static void ipi_setup_lpi(int ipi, int ncpus)
1111 {
1112 	for (int cpu = 0; cpu < ncpus; cpu++) {
1113 		int err, irq;
1114 
1115 		irq = ipi_irq_base + (cpu * nr_ipi) + ipi;
1116 
1117 		err = irq_force_affinity(irq, cpumask_of(cpu));
1118 		WARN(err, "Could not force affinity IRQ %d, err=%d\n", irq, err);
1119 
1120 		err = request_irq(irq, ipi_handler, IRQF_NO_AUTOEN, "IPI",
1121 				  NULL);
1122 		WARN(err, "Could not request IRQ %d, err=%d\n", irq, err);
1123 
1124 		irq_set_status_flags(irq, (IRQ_HIDDEN | IRQ_NO_BALANCING_MASK));
1125 
1126 		get_ipi_desc(cpu, ipi) = irq_to_desc(irq);
1127 	}
1128 }
1129 
set_smp_ipi_range_percpu(int ipi_base,int n,int ncpus)1130 void __init set_smp_ipi_range_percpu(int ipi_base, int n, int ncpus)
1131 {
1132 	int i;
1133 
1134 	WARN_ON(n < MAX_IPI);
1135 	nr_ipi = min(n, MAX_IPI);
1136 
1137 	percpu_ipi_descs = !!ncpus;
1138 	ipi_irq_base = ipi_base;
1139 
1140 	for (i = 0; i < nr_ipi; i++) {
1141 		if (!percpu_ipi_descs)
1142 			ipi_setup_sgi(i);
1143 		else
1144 			ipi_setup_lpi(i, ncpus);
1145 	}
1146 
1147 	/* Setup the boot CPU immediately */
1148 	ipi_setup(smp_processor_id());
1149 }
1150 
arch_smp_send_reschedule(int cpu)1151 void arch_smp_send_reschedule(int cpu)
1152 {
1153 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1154 }
1155 
1156 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi(unsigned int cpu)1157 void arch_send_wakeup_ipi(unsigned int cpu)
1158 {
1159 	/*
1160 	 * We use a scheduler IPI to wake the CPU as this avoids the need for a
1161 	 * dedicated IPI and we can safely handle spurious scheduler IPIs.
1162 	 */
1163 	smp_send_reschedule(cpu);
1164 }
1165 #endif
1166 
1167 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)1168 void tick_broadcast(const struct cpumask *mask)
1169 {
1170 	smp_cross_call(mask, IPI_TIMER);
1171 }
1172 #endif
1173 
1174 /*
1175  * The number of CPUs online, not counting this CPU (which may not be
1176  * fully online and so not counted in num_online_cpus()).
1177  */
num_other_online_cpus(void)1178 static inline unsigned int num_other_online_cpus(void)
1179 {
1180 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1181 
1182 	return num_online_cpus() - this_cpu_online;
1183 }
1184 
smp_send_stop(void)1185 void smp_send_stop(void)
1186 {
1187 	static unsigned long stop_in_progress;
1188 	static cpumask_t mask;
1189 	unsigned long timeout;
1190 
1191 	/*
1192 	 * If this cpu is the only one alive at this point in time, online or
1193 	 * not, there are no stop messages to be sent around, so just back out.
1194 	 */
1195 	if (num_other_online_cpus() == 0)
1196 		goto skip_ipi;
1197 
1198 	/* Only proceed if this is the first CPU to reach this code */
1199 	if (test_and_set_bit(0, &stop_in_progress))
1200 		return;
1201 
1202 	/*
1203 	 * Send an IPI to all currently online CPUs except the CPU running
1204 	 * this code.
1205 	 *
1206 	 * NOTE: we don't do anything here to prevent other CPUs from coming
1207 	 * online after we snapshot `cpu_online_mask`. Ideally, the calling code
1208 	 * should do something to prevent other CPUs from coming up. This code
1209 	 * can be called in the panic path and thus it doesn't seem wise to
1210 	 * grab the CPU hotplug mutex ourselves. Worst case:
1211 	 * - If a CPU comes online as we're running, we'll likely notice it
1212 	 *   during the 1 second wait below and then we'll catch it when we try
1213 	 *   with an NMI (assuming NMIs are enabled) since we re-snapshot the
1214 	 *   mask before sending an NMI.
1215 	 * - If we leave the function and see that CPUs are still online we'll
1216 	 *   at least print a warning. Especially without NMIs this function
1217 	 *   isn't foolproof anyway so calling code will just have to accept
1218 	 *   the fact that there could be cases where a CPU can't be stopped.
1219 	 */
1220 	cpumask_copy(&mask, cpu_online_mask);
1221 	cpumask_clear_cpu(smp_processor_id(), &mask);
1222 
1223 	if (system_state <= SYSTEM_RUNNING)
1224 		pr_crit("SMP: stopping secondary CPUs\n");
1225 
1226 	/*
1227 	 * Start with a normal IPI and wait up to one second for other CPUs to
1228 	 * stop. We do this first because it gives other processors a chance
1229 	 * to exit critical sections / drop locks and makes the rest of the
1230 	 * stop process (especially console flush) more robust.
1231 	 */
1232 	smp_cross_call(&mask, IPI_CPU_STOP);
1233 	timeout = USEC_PER_SEC;
1234 	while (num_other_online_cpus() && timeout--)
1235 		udelay(1);
1236 
1237 	/*
1238 	 * If CPUs are still online, try an NMI. There's no excuse for this to
1239 	 * be slow, so we only give them an extra 10 ms to respond.
1240 	 */
1241 	if (num_other_online_cpus() && ipi_should_be_nmi(IPI_CPU_STOP_NMI)) {
1242 		smp_rmb();
1243 		cpumask_copy(&mask, cpu_online_mask);
1244 		cpumask_clear_cpu(smp_processor_id(), &mask);
1245 
1246 		pr_info("SMP: retry stop with NMI for CPUs %*pbl\n",
1247 			cpumask_pr_args(&mask));
1248 
1249 		smp_cross_call(&mask, IPI_CPU_STOP_NMI);
1250 		timeout = USEC_PER_MSEC * 10;
1251 		while (num_other_online_cpus() && timeout--)
1252 			udelay(1);
1253 	}
1254 
1255 	if (num_other_online_cpus()) {
1256 		smp_rmb();
1257 		cpumask_copy(&mask, cpu_online_mask);
1258 		cpumask_clear_cpu(smp_processor_id(), &mask);
1259 
1260 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1261 			cpumask_pr_args(&mask));
1262 	}
1263 
1264 skip_ipi:
1265 	sdei_mask_local_cpu();
1266 }
1267 
1268 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)1269 void crash_smp_send_stop(void)
1270 {
1271 	/*
1272 	 * This function can be called twice in panic path, but obviously
1273 	 * we execute this only once.
1274 	 *
1275 	 * We use this same boolean to tell whether the IPI we send was a
1276 	 * stop or a "crash stop".
1277 	 */
1278 	if (crash_stop)
1279 		return;
1280 	crash_stop = 1;
1281 
1282 	smp_send_stop();
1283 
1284 	sdei_handler_abort();
1285 }
1286 
smp_crash_stop_failed(void)1287 bool smp_crash_stop_failed(void)
1288 {
1289 	return num_other_online_cpus() != 0;
1290 }
1291 #endif
1292 
have_cpu_die(void)1293 static bool have_cpu_die(void)
1294 {
1295 #ifdef CONFIG_HOTPLUG_CPU
1296 	int any_cpu = raw_smp_processor_id();
1297 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1298 
1299 	if (ops && ops->cpu_die)
1300 		return true;
1301 #endif
1302 	return false;
1303 }
1304 
cpus_are_stuck_in_kernel(void)1305 bool cpus_are_stuck_in_kernel(void)
1306 {
1307 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1308 
1309 	return !!cpus_stuck_in_kernel || smp_spin_tables ||
1310 		is_protected_kvm_enabled();
1311 }
1312