1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SMP initialisation and IPI support
4 * Based on arch/arm/kernel/smp.c
5 *
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kgdb.h>
36 #include <linux/kvm_host.h>
37 #include <linux/nmi.h>
38
39 #include <asm/alternative.h>
40 #include <asm/atomic.h>
41 #include <asm/cacheflush.h>
42 #include <asm/cpu.h>
43 #include <asm/cputype.h>
44 #include <asm/cpu_ops.h>
45 #include <asm/daifflags.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/processor.h>
50 #include <asm/smp_plat.h>
51 #include <asm/sections.h>
52 #include <asm/tlbflush.h>
53 #include <asm/ptrace.h>
54 #include <asm/virt.h>
55
56 #include <trace/events/ipi.h>
57
58 /*
59 * as from 2.5, kernels no longer have an init_tasks structure
60 * so we need some other way of telling a new secondary core
61 * where to place its SVC stack
62 */
63 struct secondary_data secondary_data;
64 /* Number of CPUs which aren't online, but looping in kernel text. */
65 static int cpus_stuck_in_kernel;
66
67 static int ipi_irq_base __ro_after_init;
68 static int nr_ipi __ro_after_init = NR_IPI;
69
70 struct ipi_descs {
71 struct irq_desc *descs[MAX_IPI];
72 };
73
74 static DEFINE_PER_CPU_READ_MOSTLY(struct ipi_descs, pcpu_ipi_desc);
75
76 #define get_ipi_desc(__cpu, __ipi) (per_cpu_ptr(&pcpu_ipi_desc, __cpu)->descs[__ipi])
77
78 static bool percpu_ipi_descs __ro_after_init;
79
80 static bool crash_stop;
81
82 static void ipi_setup(int cpu);
83
84 #ifdef CONFIG_HOTPLUG_CPU
85 static void ipi_teardown(int cpu);
86 static int op_cpu_kill(unsigned int cpu);
87 #else
op_cpu_kill(unsigned int cpu)88 static inline int op_cpu_kill(unsigned int cpu)
89 {
90 return -ENOSYS;
91 }
92 #endif
93
94
95 /*
96 * Boot a secondary CPU, and assign it the specified idle task.
97 * This also gives us the initial stack to use for this CPU.
98 */
boot_secondary(unsigned int cpu,struct task_struct * idle)99 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
100 {
101 const struct cpu_operations *ops = get_cpu_ops(cpu);
102
103 if (ops->cpu_boot)
104 return ops->cpu_boot(cpu);
105
106 return -EOPNOTSUPP;
107 }
108
109 static DECLARE_COMPLETION(cpu_running);
110
__cpu_up(unsigned int cpu,struct task_struct * idle)111 int __cpu_up(unsigned int cpu, struct task_struct *idle)
112 {
113 int ret;
114 long status;
115
116 /*
117 * We need to tell the secondary core where to find its stack and the
118 * page tables.
119 */
120 secondary_data.task = idle;
121 update_cpu_boot_status(CPU_MMU_OFF);
122
123 /* Now bring the CPU into our world */
124 ret = boot_secondary(cpu, idle);
125 if (ret) {
126 if (ret != -EPERM)
127 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
128 return ret;
129 }
130
131 /*
132 * CPU was successfully started, wait for it to come online or
133 * time out.
134 */
135 wait_for_completion_timeout(&cpu_running,
136 msecs_to_jiffies(5000));
137 if (cpu_online(cpu))
138 return 0;
139
140 pr_crit("CPU%u: failed to come online\n", cpu);
141 secondary_data.task = NULL;
142 status = READ_ONCE(secondary_data.status);
143 if (status == CPU_MMU_OFF)
144 status = READ_ONCE(__early_cpu_boot_status);
145
146 switch (status & CPU_BOOT_STATUS_MASK) {
147 default:
148 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
149 cpu, status);
150 cpus_stuck_in_kernel++;
151 break;
152 case CPU_KILL_ME:
153 if (!op_cpu_kill(cpu)) {
154 pr_crit("CPU%u: died during early boot\n", cpu);
155 break;
156 }
157 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
158 fallthrough;
159 case CPU_STUCK_IN_KERNEL:
160 pr_crit("CPU%u: is stuck in kernel\n", cpu);
161 if (status & CPU_STUCK_REASON_52_BIT_VA)
162 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
163 if (status & CPU_STUCK_REASON_NO_GRAN) {
164 pr_crit("CPU%u: does not support %luK granule\n",
165 cpu, PAGE_SIZE / SZ_1K);
166 }
167 cpus_stuck_in_kernel++;
168 break;
169 case CPU_PANIC_KERNEL:
170 panic("CPU%u detected unsupported configuration\n", cpu);
171 }
172
173 return -EIO;
174 }
175
init_gic_priority_masking(void)176 static void init_gic_priority_masking(void)
177 {
178 u32 cpuflags;
179
180 if (WARN_ON(!gic_enable_sre()))
181 return;
182
183 cpuflags = read_sysreg(daif);
184
185 WARN_ON(!(cpuflags & PSR_I_BIT));
186 WARN_ON(!(cpuflags & PSR_F_BIT));
187
188 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
189 }
190
191 /*
192 * This is the secondary CPU boot entry. We're using this CPUs
193 * idle thread stack, but a set of temporary page tables.
194 */
secondary_start_kernel(void)195 asmlinkage notrace void secondary_start_kernel(void)
196 {
197 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
198 struct mm_struct *mm = &init_mm;
199 const struct cpu_operations *ops;
200 unsigned int cpu = smp_processor_id();
201
202 /*
203 * All kernel threads share the same mm context; grab a
204 * reference and switch to it.
205 */
206 mmgrab(mm);
207 current->active_mm = mm;
208
209 /*
210 * TTBR0 is only used for the identity mapping at this stage. Make it
211 * point to zero page to avoid speculatively fetching new entries.
212 */
213 cpu_uninstall_idmap();
214
215 if (system_uses_irq_prio_masking())
216 init_gic_priority_masking();
217
218 rcutree_report_cpu_starting(cpu);
219 trace_hardirqs_off();
220
221 /*
222 * If the system has established the capabilities, make sure
223 * this CPU ticks all of those. If it doesn't, the CPU will
224 * fail to come online.
225 */
226 check_local_cpu_capabilities();
227
228 ops = get_cpu_ops(cpu);
229 if (ops->cpu_postboot)
230 ops->cpu_postboot();
231
232 /*
233 * Log the CPU info before it is marked online and might get read.
234 */
235 cpuinfo_store_cpu();
236 store_cpu_topology(cpu);
237
238 /*
239 * Enable GIC and timers.
240 */
241 notify_cpu_starting(cpu);
242
243 ipi_setup(cpu);
244
245 numa_add_cpu(cpu);
246
247 /*
248 * OK, now it's safe to let the boot CPU continue. Wait for
249 * the CPU migration code to notice that the CPU is online
250 * before we continue.
251 */
252 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
253 cpu, (unsigned long)mpidr,
254 read_cpuid_id());
255 update_cpu_boot_status(CPU_BOOT_SUCCESS);
256 set_cpu_online(cpu, true);
257 complete(&cpu_running);
258
259 /*
260 * Secondary CPUs enter the kernel with all DAIF exceptions masked.
261 *
262 * As with setup_arch() we must unmask Debug and SError exceptions, and
263 * as the root irqchip has already been detected and initialized we can
264 * unmask IRQ and FIQ at the same time.
265 */
266 local_daif_restore(DAIF_PROCCTX);
267
268 /*
269 * OK, it's off to the idle thread for us
270 */
271 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
272 }
273
274 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)275 static int op_cpu_disable(unsigned int cpu)
276 {
277 const struct cpu_operations *ops = get_cpu_ops(cpu);
278
279 /*
280 * If we don't have a cpu_die method, abort before we reach the point
281 * of no return. CPU0 may not have an cpu_ops, so test for it.
282 */
283 if (!ops || !ops->cpu_die)
284 return -EOPNOTSUPP;
285
286 /*
287 * We may need to abort a hot unplug for some other mechanism-specific
288 * reason.
289 */
290 if (ops->cpu_disable)
291 return ops->cpu_disable(cpu);
292
293 return 0;
294 }
295
296 /*
297 * __cpu_disable runs on the processor to be shutdown.
298 */
__cpu_disable(void)299 int __cpu_disable(void)
300 {
301 unsigned int cpu = smp_processor_id();
302 int ret;
303
304 ret = op_cpu_disable(cpu);
305 if (ret)
306 return ret;
307
308 remove_cpu_topology(cpu);
309 numa_remove_cpu(cpu);
310
311 /*
312 * Take this CPU offline. Once we clear this, we can't return,
313 * and we must not schedule until we're ready to give up the cpu.
314 */
315 set_cpu_online(cpu, false);
316 ipi_teardown(cpu);
317
318 /*
319 * OK - migrate IRQs away from this CPU
320 */
321 irq_migrate_all_off_this_cpu();
322
323 return 0;
324 }
325
op_cpu_kill(unsigned int cpu)326 static int op_cpu_kill(unsigned int cpu)
327 {
328 const struct cpu_operations *ops = get_cpu_ops(cpu);
329
330 /*
331 * If we have no means of synchronising with the dying CPU, then assume
332 * that it is really dead. We can only wait for an arbitrary length of
333 * time and hope that it's dead, so let's skip the wait and just hope.
334 */
335 if (!ops->cpu_kill)
336 return 0;
337
338 return ops->cpu_kill(cpu);
339 }
340
341 /*
342 * Called on the thread which is asking for a CPU to be shutdown after the
343 * shutdown completed.
344 */
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)345 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
346 {
347 int err;
348
349 pr_debug("CPU%u: shutdown\n", cpu);
350
351 /*
352 * Now that the dying CPU is beyond the point of no return w.r.t.
353 * in-kernel synchronisation, try to get the firwmare to help us to
354 * verify that it has really left the kernel before we consider
355 * clobbering anything it might still be using.
356 */
357 err = op_cpu_kill(cpu);
358 if (err)
359 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
360 }
361
362 /*
363 * Called from the idle thread for the CPU which has been shutdown.
364 *
365 */
cpu_die(void)366 void __noreturn cpu_die(void)
367 {
368 unsigned int cpu = smp_processor_id();
369 const struct cpu_operations *ops = get_cpu_ops(cpu);
370
371 idle_task_exit();
372
373 local_daif_mask();
374
375 /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
376 cpuhp_ap_report_dead();
377
378 /*
379 * Actually shutdown the CPU. This must never fail. The specific hotplug
380 * mechanism must perform all required cache maintenance to ensure that
381 * no dirty lines are lost in the process of shutting down the CPU.
382 */
383 ops->cpu_die(cpu);
384
385 BUG();
386 }
387 #endif
388
__cpu_try_die(int cpu)389 static void __cpu_try_die(int cpu)
390 {
391 #ifdef CONFIG_HOTPLUG_CPU
392 const struct cpu_operations *ops = get_cpu_ops(cpu);
393
394 if (ops && ops->cpu_die)
395 ops->cpu_die(cpu);
396 #endif
397 }
398
399 /*
400 * Kill the calling secondary CPU, early in bringup before it is turned
401 * online.
402 */
cpu_die_early(void)403 void __noreturn cpu_die_early(void)
404 {
405 int cpu = smp_processor_id();
406
407 pr_crit("CPU%d: will not boot\n", cpu);
408
409 /* Mark this CPU absent */
410 set_cpu_present(cpu, 0);
411 rcutree_report_cpu_dead();
412
413 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
414 update_cpu_boot_status(CPU_KILL_ME);
415 __cpu_try_die(cpu);
416 }
417
418 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
419
420 cpu_park_loop();
421 }
422
hyp_mode_check(void)423 static void __init hyp_mode_check(void)
424 {
425 if (is_hyp_mode_available())
426 pr_info("CPU: All CPU(s) started at EL2\n");
427 else if (is_hyp_mode_mismatched())
428 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
429 "CPU: CPUs started in inconsistent modes");
430 else
431 pr_info("CPU: All CPU(s) started at EL1\n");
432 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
433 kvm_compute_layout();
434 kvm_apply_hyp_relocations();
435 }
436 }
437
smp_cpus_done(unsigned int max_cpus)438 void __init smp_cpus_done(unsigned int max_cpus)
439 {
440 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
441 hyp_mode_check();
442 setup_system_features();
443 setup_user_features();
444 mark_linear_text_alias_ro();
445 }
446
smp_prepare_boot_cpu(void)447 void __init smp_prepare_boot_cpu(void)
448 {
449 /*
450 * The runtime per-cpu areas have been allocated by
451 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
452 * freed shortly, so we must move over to the runtime per-cpu area.
453 */
454 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
455
456 cpuinfo_store_boot_cpu();
457 setup_boot_cpu_features();
458
459 /* Conditionally switch to GIC PMR for interrupt masking */
460 if (system_uses_irq_prio_masking())
461 init_gic_priority_masking();
462
463 kasan_init_hw_tags();
464 /* Init percpu seeds for random tags after cpus are set up. */
465 kasan_init_sw_tags();
466 }
467
468 /*
469 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
470 * entries and check for duplicates. If any is found just ignore the
471 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
472 * matching valid MPIDR values.
473 */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)474 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
475 {
476 unsigned int i;
477
478 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
479 if (cpu_logical_map(i) == hwid)
480 return true;
481 return false;
482 }
483
484 /*
485 * Initialize cpu operations for a logical cpu and
486 * set it in the possible mask on success
487 */
smp_cpu_setup(int cpu)488 static int __init smp_cpu_setup(int cpu)
489 {
490 const struct cpu_operations *ops;
491
492 if (init_cpu_ops(cpu))
493 return -ENODEV;
494
495 ops = get_cpu_ops(cpu);
496 if (ops->cpu_init(cpu))
497 return -ENODEV;
498
499 set_cpu_possible(cpu, true);
500
501 return 0;
502 }
503
504 static bool bootcpu_valid __initdata;
505 static unsigned int cpu_count = 1;
506
arch_register_cpu(int cpu)507 int arch_register_cpu(int cpu)
508 {
509 acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
510 struct cpu *c = &per_cpu(cpu_devices, cpu);
511
512 if (!acpi_disabled && !acpi_handle &&
513 IS_ENABLED(CONFIG_ACPI_HOTPLUG_CPU))
514 return -EPROBE_DEFER;
515
516 #ifdef CONFIG_ACPI_HOTPLUG_CPU
517 /* For now block anything that looks like physical CPU Hotplug */
518 if (invalid_logical_cpuid(cpu) || !cpu_present(cpu)) {
519 pr_err_once("Changing CPU present bit is not supported\n");
520 return -ENODEV;
521 }
522 #endif
523
524 /*
525 * Availability of the acpi handle is sufficient to establish
526 * that _STA has aleady been checked. No need to recheck here.
527 */
528 c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
529
530 return register_cpu(c, cpu);
531 }
532
533 #ifdef CONFIG_ACPI_HOTPLUG_CPU
arch_unregister_cpu(int cpu)534 void arch_unregister_cpu(int cpu)
535 {
536 acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
537 struct cpu *c = &per_cpu(cpu_devices, cpu);
538 acpi_status status;
539 unsigned long long sta;
540
541 if (!acpi_handle) {
542 pr_err_once("Removing a CPU without associated ACPI handle\n");
543 return;
544 }
545
546 status = acpi_evaluate_integer(acpi_handle, "_STA", NULL, &sta);
547 if (ACPI_FAILURE(status))
548 return;
549
550 /* For now do not allow anything that looks like physical CPU HP */
551 if (cpu_present(cpu) && !(sta & ACPI_STA_DEVICE_PRESENT)) {
552 pr_err_once("Changing CPU present bit is not supported\n");
553 return;
554 }
555
556 unregister_cpu(c);
557 }
558 #endif /* CONFIG_ACPI_HOTPLUG_CPU */
559
560 #ifdef CONFIG_ACPI
561 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
562
acpi_cpu_get_madt_gicc(int cpu)563 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
564 {
565 return &cpu_madt_gicc[cpu];
566 }
567 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
568
569 /*
570 * acpi_map_gic_cpu_interface - parse processor MADT entry
571 *
572 * Carry out sanity checks on MADT processor entry and initialize
573 * cpu_logical_map on success
574 */
575 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)576 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
577 {
578 u64 hwid = processor->arm_mpidr;
579
580 if (!(processor->flags &
581 (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) {
582 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
583 return;
584 }
585
586 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
587 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
588 return;
589 }
590
591 if (is_mpidr_duplicate(cpu_count, hwid)) {
592 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
593 return;
594 }
595
596 /* Check if GICC structure of boot CPU is available in the MADT */
597 if (cpu_logical_map(0) == hwid) {
598 if (bootcpu_valid) {
599 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
600 hwid);
601 return;
602 }
603 bootcpu_valid = true;
604 cpu_madt_gicc[0] = *processor;
605 return;
606 }
607
608 if (cpu_count >= NR_CPUS)
609 return;
610
611 /* map the logical cpu id to cpu MPIDR */
612 set_cpu_logical_map(cpu_count, hwid);
613
614 cpu_madt_gicc[cpu_count] = *processor;
615
616 /*
617 * Set-up the ACPI parking protocol cpu entries
618 * while initializing the cpu_logical_map to
619 * avoid parsing MADT entries multiple times for
620 * nothing (ie a valid cpu_logical_map entry should
621 * contain a valid parking protocol data set to
622 * initialize the cpu if the parking protocol is
623 * the only available enable method).
624 */
625 acpi_set_mailbox_entry(cpu_count, processor);
626
627 cpu_count++;
628 }
629
630 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)631 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
632 const unsigned long end)
633 {
634 struct acpi_madt_generic_interrupt *processor;
635
636 processor = (struct acpi_madt_generic_interrupt *)header;
637 if (BAD_MADT_GICC_ENTRY(processor, end))
638 return -EINVAL;
639
640 acpi_table_print_madt_entry(&header->common);
641
642 acpi_map_gic_cpu_interface(processor);
643
644 return 0;
645 }
646
acpi_parse_and_init_cpus(void)647 static void __init acpi_parse_and_init_cpus(void)
648 {
649 int i;
650
651 /*
652 * do a walk of MADT to determine how many CPUs
653 * we have including disabled CPUs, and get information
654 * we need for SMP init.
655 */
656 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
657 acpi_parse_gic_cpu_interface, 0);
658
659 /*
660 * In ACPI, SMP and CPU NUMA information is provided in separate
661 * static tables, namely the MADT and the SRAT.
662 *
663 * Thus, it is simpler to first create the cpu logical map through
664 * an MADT walk and then map the logical cpus to their node ids
665 * as separate steps.
666 */
667 acpi_map_cpus_to_nodes();
668
669 for (i = 0; i < nr_cpu_ids; i++)
670 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
671 }
672 #else
673 #define acpi_parse_and_init_cpus(...) do { } while (0)
674 #endif
675
676 /*
677 * Enumerate the possible CPU set from the device tree and build the
678 * cpu logical map array containing MPIDR values related to logical
679 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
680 */
of_parse_and_init_cpus(void)681 static void __init of_parse_and_init_cpus(void)
682 {
683 struct device_node *dn;
684
685 for_each_of_cpu_node(dn) {
686 u64 hwid = of_get_cpu_hwid(dn, 0);
687
688 if (hwid & ~MPIDR_HWID_BITMASK)
689 goto next;
690
691 if (is_mpidr_duplicate(cpu_count, hwid)) {
692 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
693 dn);
694 goto next;
695 }
696
697 /*
698 * The numbering scheme requires that the boot CPU
699 * must be assigned logical id 0. Record it so that
700 * the logical map built from DT is validated and can
701 * be used.
702 */
703 if (hwid == cpu_logical_map(0)) {
704 if (bootcpu_valid) {
705 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
706 dn);
707 goto next;
708 }
709
710 bootcpu_valid = true;
711 early_map_cpu_to_node(0, of_node_to_nid(dn));
712
713 /*
714 * cpu_logical_map has already been
715 * initialized and the boot cpu doesn't need
716 * the enable-method so continue without
717 * incrementing cpu.
718 */
719 continue;
720 }
721
722 if (cpu_count >= NR_CPUS)
723 goto next;
724
725 pr_debug("cpu logical map 0x%llx\n", hwid);
726 set_cpu_logical_map(cpu_count, hwid);
727
728 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
729 next:
730 cpu_count++;
731 }
732 }
733
734 /*
735 * Enumerate the possible CPU set from the device tree or ACPI and build the
736 * cpu logical map array containing MPIDR values related to logical
737 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
738 */
smp_init_cpus(void)739 void __init smp_init_cpus(void)
740 {
741 int i;
742
743 if (acpi_disabled)
744 of_parse_and_init_cpus();
745 else
746 acpi_parse_and_init_cpus();
747
748 if (cpu_count > nr_cpu_ids)
749 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
750 cpu_count, nr_cpu_ids);
751
752 if (!bootcpu_valid) {
753 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
754 return;
755 }
756
757 /*
758 * We need to set the cpu_logical_map entries before enabling
759 * the cpus so that cpu processor description entries (DT cpu nodes
760 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
761 * with entries in cpu_logical_map while initializing the cpus.
762 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
763 */
764 for (i = 1; i < nr_cpu_ids; i++) {
765 if (cpu_logical_map(i) != INVALID_HWID) {
766 if (smp_cpu_setup(i))
767 set_cpu_logical_map(i, INVALID_HWID);
768 }
769 }
770 }
771
smp_prepare_cpus(unsigned int max_cpus)772 void __init smp_prepare_cpus(unsigned int max_cpus)
773 {
774 const struct cpu_operations *ops;
775 int err;
776 unsigned int cpu;
777 unsigned int this_cpu;
778
779 init_cpu_topology();
780
781 this_cpu = smp_processor_id();
782 store_cpu_topology(this_cpu);
783 numa_store_cpu_info(this_cpu);
784 numa_add_cpu(this_cpu);
785
786 /*
787 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
788 * secondary CPUs present.
789 */
790 if (max_cpus == 0)
791 return;
792
793 /*
794 * Initialise the present map (which describes the set of CPUs
795 * actually populated at the present time) and release the
796 * secondaries from the bootloader.
797 */
798 for_each_possible_cpu(cpu) {
799
800 if (cpu == smp_processor_id())
801 continue;
802
803 ops = get_cpu_ops(cpu);
804 if (!ops)
805 continue;
806
807 err = ops->cpu_prepare(cpu);
808 if (err)
809 continue;
810
811 set_cpu_present(cpu, true);
812 numa_store_cpu_info(cpu);
813 }
814 }
815
816 static const char *ipi_types[MAX_IPI] __tracepoint_string = {
817 [IPI_RESCHEDULE] = "Rescheduling interrupts",
818 [IPI_CALL_FUNC] = "Function call interrupts",
819 [IPI_CPU_STOP] = "CPU stop interrupts",
820 [IPI_CPU_STOP_NMI] = "CPU stop NMIs",
821 [IPI_TIMER] = "Timer broadcast interrupts",
822 [IPI_IRQ_WORK] = "IRQ work interrupts",
823 [IPI_CPU_BACKTRACE] = "CPU backtrace interrupts",
824 [IPI_KGDB_ROUNDUP] = "KGDB roundup interrupts",
825 };
826
827 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
828
829 unsigned long irq_err_count;
830
arch_show_interrupts(struct seq_file * p,int prec)831 int arch_show_interrupts(struct seq_file *p, int prec)
832 {
833 unsigned int cpu, i;
834
835 for (i = 0; i < MAX_IPI; i++) {
836 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
837 prec >= 4 ? " " : "");
838 for_each_online_cpu(cpu)
839 seq_printf(p, "%10u ", irq_desc_kstat_cpu(get_ipi_desc(cpu, i), cpu));
840 seq_printf(p, " %s\n", ipi_types[i]);
841 }
842
843 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
844 return 0;
845 }
846
arch_send_call_function_ipi_mask(const struct cpumask * mask)847 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
848 {
849 smp_cross_call(mask, IPI_CALL_FUNC);
850 }
851
arch_send_call_function_single_ipi(int cpu)852 void arch_send_call_function_single_ipi(int cpu)
853 {
854 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
855 }
856
857 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)858 void arch_irq_work_raise(void)
859 {
860 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
861 }
862 #endif
863
local_cpu_stop(unsigned int cpu)864 static void __noreturn local_cpu_stop(unsigned int cpu)
865 {
866 set_cpu_online(cpu, false);
867
868 local_daif_mask();
869 sdei_mask_local_cpu();
870 cpu_park_loop();
871 }
872
873 /*
874 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
875 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
876 * CPUs that have already stopped themselves.
877 */
panic_smp_self_stop(void)878 void __noreturn panic_smp_self_stop(void)
879 {
880 local_cpu_stop(smp_processor_id());
881 }
882
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)883 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
884 {
885 #ifdef CONFIG_KEXEC_CORE
886 /*
887 * Use local_daif_mask() instead of local_irq_disable() to make sure
888 * that pseudo-NMIs are disabled. The "crash stop" code starts with
889 * an IRQ and falls back to NMI (which might be pseudo). If the IRQ
890 * finally goes through right as we're timing out then the NMI could
891 * interrupt us. It's better to prevent the NMI and let the IRQ
892 * finish since the pt_regs will be better.
893 */
894 local_daif_mask();
895
896 crash_save_cpu(regs, cpu);
897
898 set_cpu_online(cpu, false);
899
900 sdei_mask_local_cpu();
901
902 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
903 __cpu_try_die(cpu);
904
905 /* just in case */
906 cpu_park_loop();
907 #else
908 BUG();
909 #endif
910 }
911
arm64_send_ipi(const cpumask_t * mask,unsigned int nr)912 static void arm64_send_ipi(const cpumask_t *mask, unsigned int nr)
913 {
914 unsigned int cpu;
915
916 if (!percpu_ipi_descs)
917 __ipi_send_mask(get_ipi_desc(0, nr), mask);
918 else
919 for_each_cpu(cpu, mask)
920 __ipi_send_single(get_ipi_desc(cpu, nr), cpu);
921 }
922
arm64_backtrace_ipi(cpumask_t * mask)923 static void arm64_backtrace_ipi(cpumask_t *mask)
924 {
925 arm64_send_ipi(mask, IPI_CPU_BACKTRACE);
926 }
927
arch_trigger_cpumask_backtrace(const cpumask_t * mask,int exclude_cpu)928 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
929 {
930 /*
931 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name,
932 * nothing about it truly needs to be implemented using an NMI, it's
933 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi()
934 * returned false our backtrace attempt will just use a regular IPI.
935 */
936 nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi);
937 }
938
939 #ifdef CONFIG_KGDB
kgdb_roundup_cpus(void)940 void kgdb_roundup_cpus(void)
941 {
942 int this_cpu = raw_smp_processor_id();
943 int cpu;
944
945 for_each_online_cpu(cpu) {
946 /* No need to roundup ourselves */
947 if (cpu == this_cpu)
948 continue;
949
950 __ipi_send_single(get_ipi_desc(cpu, IPI_KGDB_ROUNDUP), cpu);
951 }
952 }
953 #endif
954
955 /*
956 * Main handler for inter-processor interrupts
957 */
do_handle_IPI(int ipinr)958 static void do_handle_IPI(int ipinr)
959 {
960 unsigned int cpu = smp_processor_id();
961
962 if ((unsigned)ipinr < NR_IPI)
963 trace_ipi_entry(ipi_types[ipinr]);
964
965 switch (ipinr) {
966 case IPI_RESCHEDULE:
967 scheduler_ipi();
968 break;
969
970 case IPI_CALL_FUNC:
971 generic_smp_call_function_interrupt();
972 break;
973
974 case IPI_CPU_STOP:
975 case IPI_CPU_STOP_NMI:
976 if (IS_ENABLED(CONFIG_KEXEC_CORE) && crash_stop) {
977 ipi_cpu_crash_stop(cpu, get_irq_regs());
978 unreachable();
979 } else {
980 local_cpu_stop(cpu);
981 }
982 break;
983
984 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
985 case IPI_TIMER:
986 tick_receive_broadcast();
987 break;
988 #endif
989
990 #ifdef CONFIG_IRQ_WORK
991 case IPI_IRQ_WORK:
992 irq_work_run();
993 break;
994 #endif
995
996 case IPI_CPU_BACKTRACE:
997 /*
998 * NOTE: in some cases this _won't_ be NMI context. See the
999 * comment in arch_trigger_cpumask_backtrace().
1000 */
1001 nmi_cpu_backtrace(get_irq_regs());
1002 break;
1003
1004 case IPI_KGDB_ROUNDUP:
1005 kgdb_nmicallback(cpu, get_irq_regs());
1006 break;
1007
1008 default:
1009 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
1010 break;
1011 }
1012
1013 if ((unsigned)ipinr < NR_IPI)
1014 trace_ipi_exit(ipi_types[ipinr]);
1015 }
1016
ipi_handler(int irq,void * data)1017 static irqreturn_t ipi_handler(int irq, void *data)
1018 {
1019 unsigned int ipi = (irq - ipi_irq_base) % nr_ipi;
1020
1021 do_handle_IPI(ipi);
1022 return IRQ_HANDLED;
1023 }
1024
smp_cross_call(const struct cpumask * target,unsigned int ipinr)1025 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
1026 {
1027 trace_ipi_raise(target, ipi_types[ipinr]);
1028 arm64_send_ipi(target, ipinr);
1029 }
1030
ipi_should_be_nmi(enum ipi_msg_type ipi)1031 static bool ipi_should_be_nmi(enum ipi_msg_type ipi)
1032 {
1033 if (!system_uses_irq_prio_masking())
1034 return false;
1035
1036 switch (ipi) {
1037 case IPI_CPU_STOP_NMI:
1038 case IPI_CPU_BACKTRACE:
1039 case IPI_KGDB_ROUNDUP:
1040 return true;
1041 default:
1042 return false;
1043 }
1044 }
1045
ipi_setup(int cpu)1046 static void ipi_setup(int cpu)
1047 {
1048 int i;
1049
1050 if (WARN_ON_ONCE(!ipi_irq_base))
1051 return;
1052
1053 for (i = 0; i < nr_ipi; i++) {
1054 if (!percpu_ipi_descs) {
1055 if (ipi_should_be_nmi(i)) {
1056 prepare_percpu_nmi(ipi_irq_base + i);
1057 enable_percpu_nmi(ipi_irq_base + i, 0);
1058 } else {
1059 enable_percpu_irq(ipi_irq_base + i, 0);
1060 }
1061 } else {
1062 enable_irq(irq_desc_get_irq(get_ipi_desc(cpu, i)));
1063 }
1064 }
1065 }
1066
1067 #ifdef CONFIG_HOTPLUG_CPU
ipi_teardown(int cpu)1068 static void ipi_teardown(int cpu)
1069 {
1070 int i;
1071
1072 if (WARN_ON_ONCE(!ipi_irq_base))
1073 return;
1074
1075 for (i = 0; i < nr_ipi; i++) {
1076 if (!percpu_ipi_descs) {
1077 if (ipi_should_be_nmi(i)) {
1078 disable_percpu_nmi(ipi_irq_base + i);
1079 teardown_percpu_nmi(ipi_irq_base + i);
1080 } else {
1081 disable_percpu_irq(ipi_irq_base + i);
1082 }
1083 } else {
1084 disable_irq(irq_desc_get_irq(get_ipi_desc(cpu, i)));
1085 }
1086 }
1087 }
1088 #endif
1089
ipi_setup_sgi(int ipi)1090 static void ipi_setup_sgi(int ipi)
1091 {
1092 int err, irq, cpu;
1093
1094 irq = ipi_irq_base + ipi;
1095
1096 if (ipi_should_be_nmi(ipi)) {
1097 err = request_percpu_nmi(irq, ipi_handler, "IPI", &irq_stat);
1098 WARN(err, "Could not request IRQ %d as NMI, err=%d\n", irq, err);
1099 } else {
1100 err = request_percpu_irq(irq, ipi_handler, "IPI", &irq_stat);
1101 WARN(err, "Could not request IRQ %d as IRQ, err=%d\n", irq, err);
1102 }
1103
1104 for_each_possible_cpu(cpu)
1105 get_ipi_desc(cpu, ipi) = irq_to_desc(irq);
1106
1107 irq_set_status_flags(irq, IRQ_HIDDEN);
1108 }
1109
ipi_setup_lpi(int ipi,int ncpus)1110 static void ipi_setup_lpi(int ipi, int ncpus)
1111 {
1112 for (int cpu = 0; cpu < ncpus; cpu++) {
1113 int err, irq;
1114
1115 irq = ipi_irq_base + (cpu * nr_ipi) + ipi;
1116
1117 err = irq_force_affinity(irq, cpumask_of(cpu));
1118 WARN(err, "Could not force affinity IRQ %d, err=%d\n", irq, err);
1119
1120 err = request_irq(irq, ipi_handler, IRQF_NO_AUTOEN, "IPI",
1121 NULL);
1122 WARN(err, "Could not request IRQ %d, err=%d\n", irq, err);
1123
1124 irq_set_status_flags(irq, (IRQ_HIDDEN | IRQ_NO_BALANCING_MASK));
1125
1126 get_ipi_desc(cpu, ipi) = irq_to_desc(irq);
1127 }
1128 }
1129
set_smp_ipi_range_percpu(int ipi_base,int n,int ncpus)1130 void __init set_smp_ipi_range_percpu(int ipi_base, int n, int ncpus)
1131 {
1132 int i;
1133
1134 WARN_ON(n < MAX_IPI);
1135 nr_ipi = min(n, MAX_IPI);
1136
1137 percpu_ipi_descs = !!ncpus;
1138 ipi_irq_base = ipi_base;
1139
1140 for (i = 0; i < nr_ipi; i++) {
1141 if (!percpu_ipi_descs)
1142 ipi_setup_sgi(i);
1143 else
1144 ipi_setup_lpi(i, ncpus);
1145 }
1146
1147 /* Setup the boot CPU immediately */
1148 ipi_setup(smp_processor_id());
1149 }
1150
arch_smp_send_reschedule(int cpu)1151 void arch_smp_send_reschedule(int cpu)
1152 {
1153 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1154 }
1155
1156 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi(unsigned int cpu)1157 void arch_send_wakeup_ipi(unsigned int cpu)
1158 {
1159 /*
1160 * We use a scheduler IPI to wake the CPU as this avoids the need for a
1161 * dedicated IPI and we can safely handle spurious scheduler IPIs.
1162 */
1163 smp_send_reschedule(cpu);
1164 }
1165 #endif
1166
1167 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)1168 void tick_broadcast(const struct cpumask *mask)
1169 {
1170 smp_cross_call(mask, IPI_TIMER);
1171 }
1172 #endif
1173
1174 /*
1175 * The number of CPUs online, not counting this CPU (which may not be
1176 * fully online and so not counted in num_online_cpus()).
1177 */
num_other_online_cpus(void)1178 static inline unsigned int num_other_online_cpus(void)
1179 {
1180 unsigned int this_cpu_online = cpu_online(smp_processor_id());
1181
1182 return num_online_cpus() - this_cpu_online;
1183 }
1184
smp_send_stop(void)1185 void smp_send_stop(void)
1186 {
1187 static unsigned long stop_in_progress;
1188 static cpumask_t mask;
1189 unsigned long timeout;
1190
1191 /*
1192 * If this cpu is the only one alive at this point in time, online or
1193 * not, there are no stop messages to be sent around, so just back out.
1194 */
1195 if (num_other_online_cpus() == 0)
1196 goto skip_ipi;
1197
1198 /* Only proceed if this is the first CPU to reach this code */
1199 if (test_and_set_bit(0, &stop_in_progress))
1200 return;
1201
1202 /*
1203 * Send an IPI to all currently online CPUs except the CPU running
1204 * this code.
1205 *
1206 * NOTE: we don't do anything here to prevent other CPUs from coming
1207 * online after we snapshot `cpu_online_mask`. Ideally, the calling code
1208 * should do something to prevent other CPUs from coming up. This code
1209 * can be called in the panic path and thus it doesn't seem wise to
1210 * grab the CPU hotplug mutex ourselves. Worst case:
1211 * - If a CPU comes online as we're running, we'll likely notice it
1212 * during the 1 second wait below and then we'll catch it when we try
1213 * with an NMI (assuming NMIs are enabled) since we re-snapshot the
1214 * mask before sending an NMI.
1215 * - If we leave the function and see that CPUs are still online we'll
1216 * at least print a warning. Especially without NMIs this function
1217 * isn't foolproof anyway so calling code will just have to accept
1218 * the fact that there could be cases where a CPU can't be stopped.
1219 */
1220 cpumask_copy(&mask, cpu_online_mask);
1221 cpumask_clear_cpu(smp_processor_id(), &mask);
1222
1223 if (system_state <= SYSTEM_RUNNING)
1224 pr_crit("SMP: stopping secondary CPUs\n");
1225
1226 /*
1227 * Start with a normal IPI and wait up to one second for other CPUs to
1228 * stop. We do this first because it gives other processors a chance
1229 * to exit critical sections / drop locks and makes the rest of the
1230 * stop process (especially console flush) more robust.
1231 */
1232 smp_cross_call(&mask, IPI_CPU_STOP);
1233 timeout = USEC_PER_SEC;
1234 while (num_other_online_cpus() && timeout--)
1235 udelay(1);
1236
1237 /*
1238 * If CPUs are still online, try an NMI. There's no excuse for this to
1239 * be slow, so we only give them an extra 10 ms to respond.
1240 */
1241 if (num_other_online_cpus() && ipi_should_be_nmi(IPI_CPU_STOP_NMI)) {
1242 smp_rmb();
1243 cpumask_copy(&mask, cpu_online_mask);
1244 cpumask_clear_cpu(smp_processor_id(), &mask);
1245
1246 pr_info("SMP: retry stop with NMI for CPUs %*pbl\n",
1247 cpumask_pr_args(&mask));
1248
1249 smp_cross_call(&mask, IPI_CPU_STOP_NMI);
1250 timeout = USEC_PER_MSEC * 10;
1251 while (num_other_online_cpus() && timeout--)
1252 udelay(1);
1253 }
1254
1255 if (num_other_online_cpus()) {
1256 smp_rmb();
1257 cpumask_copy(&mask, cpu_online_mask);
1258 cpumask_clear_cpu(smp_processor_id(), &mask);
1259
1260 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1261 cpumask_pr_args(&mask));
1262 }
1263
1264 skip_ipi:
1265 sdei_mask_local_cpu();
1266 }
1267
1268 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)1269 void crash_smp_send_stop(void)
1270 {
1271 /*
1272 * This function can be called twice in panic path, but obviously
1273 * we execute this only once.
1274 *
1275 * We use this same boolean to tell whether the IPI we send was a
1276 * stop or a "crash stop".
1277 */
1278 if (crash_stop)
1279 return;
1280 crash_stop = 1;
1281
1282 smp_send_stop();
1283
1284 sdei_handler_abort();
1285 }
1286
smp_crash_stop_failed(void)1287 bool smp_crash_stop_failed(void)
1288 {
1289 return num_other_online_cpus() != 0;
1290 }
1291 #endif
1292
have_cpu_die(void)1293 static bool have_cpu_die(void)
1294 {
1295 #ifdef CONFIG_HOTPLUG_CPU
1296 int any_cpu = raw_smp_processor_id();
1297 const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1298
1299 if (ops && ops->cpu_die)
1300 return true;
1301 #endif
1302 return false;
1303 }
1304
cpus_are_stuck_in_kernel(void)1305 bool cpus_are_stuck_in_kernel(void)
1306 {
1307 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1308
1309 return !!cpus_stuck_in_kernel || smp_spin_tables ||
1310 is_protected_kvm_enabled();
1311 }
1312