1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ah_eeprom_v3.h"
25
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29
30 #define AH_5212_5413
31 #include "ar5212/ar5212.ini"
32
33 #define N(a) (sizeof(a)/sizeof(a[0]))
34
35 struct ar5413State {
36 RF_HAL_FUNCS base; /* public state, must be first */
37 uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
38
39 uint32_t Bank1Data[N(ar5212Bank1_5413)];
40 uint32_t Bank2Data[N(ar5212Bank2_5413)];
41 uint32_t Bank3Data[N(ar5212Bank3_5413)];
42 uint32_t Bank6Data[N(ar5212Bank6_5413)];
43 uint32_t Bank7Data[N(ar5212Bank7_5413)];
44
45 /*
46 * Private state for reduced stack usage.
47 */
48 /* filled out Vpd table for all pdGains (chanL) */
49 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50 [MAX_PWR_RANGE_IN_HALF_DB];
51 /* filled out Vpd table for all pdGains (chanR) */
52 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53 [MAX_PWR_RANGE_IN_HALF_DB];
54 /* filled out Vpd table for all pdGains (interpolated) */
55 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56 [MAX_PWR_RANGE_IN_HALF_DB];
57 };
58 #define AR5413(ah) ((struct ar5413State *) AH5212(ah)->ah_rfHal)
59
60 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63 static void
ar5413WriteRegs(struct ath_hal * ah,u_int modesIndex,u_int freqIndex,int writes)64 ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 int writes)
66 {
67 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
68 HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
69 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
70 }
71
72 /*
73 * Take the MHz channel value and set the Channel value
74 *
75 * ASSUMES: Writes enabled to analog bus
76 */
77 static HAL_BOOL
ar5413SetChannel(struct ath_hal * ah,const struct ieee80211_channel * chan)78 ar5413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79 {
80 uint16_t freq = ath_hal_gethwchannel(ah, chan);
81 uint32_t channelSel = 0;
82 uint32_t bModeSynth = 0;
83 uint32_t aModeRefSel = 0;
84 uint32_t reg32 = 0;
85
86 OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87
88 if (freq < 4800) {
89 uint32_t txctl;
90
91 if (((freq - 2192) % 5) == 0) {
92 channelSel = ((freq - 672) * 2 - 3040)/10;
93 bModeSynth = 0;
94 } else if (((freq - 2224) % 5) == 0) {
95 channelSel = ((freq - 704) * 2 - 3040) / 10;
96 bModeSynth = 1;
97 } else {
98 HALDEBUG(ah, HAL_DEBUG_ANY,
99 "%s: invalid channel %u MHz\n",
100 __func__, freq);
101 return AH_FALSE;
102 }
103
104 channelSel = (channelSel << 2) & 0xff;
105 channelSel = ath_hal_reverseBits(channelSel, 8);
106
107 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 if (freq == 2484) {
109 /* Enable channel spreading for channel 14 */
110 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 } else {
113 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 }
116 } else if (((freq % 5) == 2) && (freq <= 5435)) {
117 freq = freq - 2; /* Align to even 5MHz raster */
118 channelSel = ath_hal_reverseBits(
119 (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120 aModeRefSel = ath_hal_reverseBits(0, 2);
121 } else if ((freq % 20) == 0 && freq >= 5120) {
122 channelSel = ath_hal_reverseBits(
123 ((freq - 4800) / 20 << 2), 8);
124 aModeRefSel = ath_hal_reverseBits(1, 2);
125 } else if ((freq % 10) == 0) {
126 channelSel = ath_hal_reverseBits(
127 ((freq - 4800) / 10 << 1), 8);
128 aModeRefSel = ath_hal_reverseBits(1, 2);
129 } else if ((freq % 5) == 0) {
130 channelSel = ath_hal_reverseBits(
131 (freq - 4800) / 5, 8);
132 aModeRefSel = ath_hal_reverseBits(1, 2);
133 } else {
134 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 __func__, freq);
136 return AH_FALSE;
137 }
138
139 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 (1 << 12) | 0x1;
141 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143 reg32 >>= 8;
144 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146 AH_PRIVATE(ah)->ah_curchan = chan;
147 return AH_TRUE;
148 }
149
150 /*
151 * Reads EEPROM header info from device structure and programs
152 * all rf registers
153 *
154 * REQUIRES: Access to the analog rf device
155 */
156 static HAL_BOOL
ar5413SetRfRegs(struct ath_hal * ah,const struct ieee80211_channel * chan,uint16_t modesIndex,uint16_t * rfXpdGain)157 ar5413SetRfRegs(struct ath_hal *ah,
158 const struct ieee80211_channel *chan,
159 uint16_t modesIndex, uint16_t *rfXpdGain)
160 {
161 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
162 int i; \
163 for (i = 0; i < N(ar5212Bank##_ix##_5413); i++) \
164 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
165 } while (0)
166 struct ath_hal_5212 *ahp = AH5212(ah);
167 uint16_t freq = ath_hal_gethwchannel(ah, chan);
168 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
169 uint16_t ob5GHz = 0, db5GHz = 0;
170 uint16_t ob2GHz = 0, db2GHz = 0;
171 struct ar5413State *priv = AR5413(ah);
172 int regWrites = 0;
173
174 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
175 __func__, chan->ic_freq, chan->ic_flags, modesIndex);
176
177 HALASSERT(priv != AH_NULL);
178
179 /* Setup rf parameters */
180 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
181 case IEEE80211_CHAN_A:
182 if (freq > 4000 && freq < 5260) {
183 ob5GHz = ee->ee_ob1;
184 db5GHz = ee->ee_db1;
185 } else if (freq >= 5260 && freq < 5500) {
186 ob5GHz = ee->ee_ob2;
187 db5GHz = ee->ee_db2;
188 } else if (freq >= 5500 && freq < 5725) {
189 ob5GHz = ee->ee_ob3;
190 db5GHz = ee->ee_db3;
191 } else if (freq >= 5725) {
192 ob5GHz = ee->ee_ob4;
193 db5GHz = ee->ee_db4;
194 } else {
195 /* XXX else */
196 }
197 break;
198 case IEEE80211_CHAN_B:
199 ob2GHz = ee->ee_obFor24;
200 db2GHz = ee->ee_dbFor24;
201 break;
202 case IEEE80211_CHAN_G:
203 case IEEE80211_CHAN_PUREG: /* NB: really 108G */
204 ob2GHz = ee->ee_obFor24g;
205 db2GHz = ee->ee_dbFor24g;
206 break;
207 default:
208 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
209 __func__, chan->ic_flags);
210 return AH_FALSE;
211 }
212
213 /* Bank 1 Write */
214 RF_BANK_SETUP(priv, 1, 1);
215
216 /* Bank 2 Write */
217 RF_BANK_SETUP(priv, 2, modesIndex);
218
219 /* Bank 3 Write */
220 RF_BANK_SETUP(priv, 3, modesIndex);
221
222 /* Bank 6 Write */
223 RF_BANK_SETUP(priv, 6, modesIndex);
224
225 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
226 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
227 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
228 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
229
230 /* TODO - only for Eagle 1.0 2GHz - remove for production */
231 /* XXX: but without this bit G doesn't work. */
232 ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
233
234 /* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
235 if (AH_PRIVATE(ah)->ah_ispcie) {
236 ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
237 3, 131, 3);
238 }
239 } else {
240 ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
241 ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
242 }
243
244 /* Bank 7 Setup */
245 RF_BANK_SETUP(priv, 7, modesIndex);
246
247 /* Write Analog registers */
248 HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
249 HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
250 HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
251 HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
252 HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
253
254 /* Now that we have reprogrammed rfgain value, clear the flag. */
255 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
256
257 return AH_TRUE;
258 #undef RF_BANK_SETUP
259 }
260
261 /*
262 * Return a reference to the requested RF Bank.
263 */
264 static uint32_t *
ar5413GetRfBank(struct ath_hal * ah,int bank)265 ar5413GetRfBank(struct ath_hal *ah, int bank)
266 {
267 struct ar5413State *priv = AR5413(ah);
268
269 HALASSERT(priv != AH_NULL);
270 switch (bank) {
271 case 1: return priv->Bank1Data;
272 case 2: return priv->Bank2Data;
273 case 3: return priv->Bank3Data;
274 case 6: return priv->Bank6Data;
275 case 7: return priv->Bank7Data;
276 }
277 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
278 __func__, bank);
279 return AH_NULL;
280 }
281
282 /*
283 * Return indices surrounding the value in sorted integer lists.
284 *
285 * NB: the input list is assumed to be sorted in ascending order
286 */
287 static void
GetLowerUpperIndex(int16_t v,const uint16_t * lp,uint16_t listSize,uint32_t * vlo,uint32_t * vhi)288 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
289 uint32_t *vlo, uint32_t *vhi)
290 {
291 int16_t target = v;
292 const uint16_t *ep = lp+listSize;
293 const uint16_t *tp;
294
295 /*
296 * Check first and last elements for out-of-bounds conditions.
297 */
298 if (target < lp[0]) {
299 *vlo = *vhi = 0;
300 return;
301 }
302 if (target >= ep[-1]) {
303 *vlo = *vhi = listSize - 1;
304 return;
305 }
306
307 /* look for value being near or between 2 values in list */
308 for (tp = lp; tp < ep; tp++) {
309 /*
310 * If value is close to the current value of the list
311 * then target is not between values, it is one of the values
312 */
313 if (*tp == target) {
314 *vlo = *vhi = tp - (const uint16_t *) lp;
315 return;
316 }
317 /*
318 * Look for value being between current value and next value
319 * if so return these 2 values
320 */
321 if (target < tp[1]) {
322 *vlo = tp - (const uint16_t *) lp;
323 *vhi = *vlo + 1;
324 return;
325 }
326 }
327 }
328
329 /*
330 * Fill the Vpdlist for indices Pmax-Pmin
331 */
332 static HAL_BOOL
ar5413FillVpdTable(uint32_t pdGainIdx,int16_t Pmin,int16_t Pmax,const int16_t * pwrList,const uint16_t * VpdList,uint16_t numIntercepts,uint16_t retVpdList[][64])333 ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
334 const int16_t *pwrList, const uint16_t *VpdList,
335 uint16_t numIntercepts,
336 uint16_t retVpdList[][64])
337 {
338 uint16_t ii, jj, kk;
339 int16_t currPwr = (int16_t)(2*Pmin);
340 /* since Pmin is pwr*2 and pwrList is 4*pwr */
341 uint32_t idxL, idxR;
342
343 ii = 0;
344 jj = 0;
345
346 if (numIntercepts < 2)
347 return AH_FALSE;
348
349 while (ii <= (uint16_t)(Pmax - Pmin)) {
350 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
351 numIntercepts, &(idxL), &(idxR));
352 if (idxR < 1)
353 idxR = 1; /* extrapolate below */
354 if (idxL == (uint32_t)(numIntercepts - 1))
355 idxL = numIntercepts - 2; /* extrapolate above */
356 if (pwrList[idxL] == pwrList[idxR])
357 kk = VpdList[idxL];
358 else
359 kk = (uint16_t)
360 (((currPwr - pwrList[idxL])*VpdList[idxR]+
361 (pwrList[idxR] - currPwr)*VpdList[idxL])/
362 (pwrList[idxR] - pwrList[idxL]));
363 retVpdList[pdGainIdx][ii] = kk;
364 ii++;
365 currPwr += 2; /* half dB steps */
366 }
367
368 return AH_TRUE;
369 }
370
371 /*
372 * Returns interpolated or the scaled up interpolated value
373 */
374 static int16_t
interpolate_signed(uint16_t target,uint16_t srcLeft,uint16_t srcRight,int16_t targetLeft,int16_t targetRight)375 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
376 int16_t targetLeft, int16_t targetRight)
377 {
378 int16_t rv;
379
380 if (srcRight != srcLeft) {
381 rv = ((target - srcLeft)*targetRight +
382 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
383 } else {
384 rv = targetLeft;
385 }
386 return rv;
387 }
388
389 /*
390 * Uses the data points read from EEPROM to reconstruct the pdadc power table
391 * Called by ar5413SetPowerTable()
392 */
393 static int
ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal * ah,uint16_t channel,const RAW_DATA_STRUCT_2413 * pRawDataset,uint16_t pdGainOverlap_t2,int16_t * pMinCalPower,uint16_t pPdGainBoundaries[],uint16_t pPdGainValues[],uint16_t pPDADCValues[])394 ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
395 const RAW_DATA_STRUCT_2413 *pRawDataset,
396 uint16_t pdGainOverlap_t2,
397 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
398 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
399 {
400 struct ar5413State *priv = AR5413(ah);
401 #define VpdTable_L priv->vpdTable_L
402 #define VpdTable_R priv->vpdTable_R
403 #define VpdTable_I priv->vpdTable_I
404 uint32_t ii, jj, kk;
405 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
406 uint32_t idxL, idxR;
407 uint32_t numPdGainsUsed = 0;
408 /*
409 * If desired to support -ve power levels in future, just
410 * change pwr_I_0 to signed 5-bits.
411 */
412 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
413 /* to accommodate -ve power levels later on. */
414 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
415 /* to accommodate -ve power levels later on */
416 uint16_t numVpd = 0;
417 uint16_t Vpd_step;
418 int16_t tmpVal ;
419 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
420
421 /* Get upper lower index */
422 GetLowerUpperIndex(channel, pRawDataset->pChannels,
423 pRawDataset->numChannels, &(idxL), &(idxR));
424
425 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
426 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
427 /* work backwards 'cause highest pdGain for lowest power */
428 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
429 if (numVpd > 0) {
430 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
431 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
432 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
433 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
434 }
435 Pmin_t2[numPdGainsUsed] = (int16_t)
436 (Pmin_t2[numPdGainsUsed] / 2);
437 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
438 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
439 Pmax_t2[numPdGainsUsed] =
440 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
441 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
442 ar5413FillVpdTable(
443 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
444 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
445 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
446 );
447 ar5413FillVpdTable(
448 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
449 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
450 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
451 );
452 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
453 VpdTable_I[numPdGainsUsed][kk] =
454 interpolate_signed(
455 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
456 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
457 }
458 /* fill VpdTable_I for this pdGain */
459 numPdGainsUsed++;
460 }
461 /* if this pdGain is used */
462 }
463
464 *pMinCalPower = Pmin_t2[0];
465 kk = 0; /* index for the final table */
466 for (ii = 0; ii < numPdGainsUsed; ii++) {
467 if (ii == (numPdGainsUsed - 1))
468 pPdGainBoundaries[ii] = Pmax_t2[ii] +
469 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
470 else
471 pPdGainBoundaries[ii] = (uint16_t)
472 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
473 if (pPdGainBoundaries[ii] > 63) {
474 HALDEBUG(ah, HAL_DEBUG_ANY,
475 "%s: clamp pPdGainBoundaries[%d] %d\n",
476 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
477 pPdGainBoundaries[ii] = 63;
478 }
479
480 /* Find starting index for this pdGain */
481 if (ii == 0)
482 ss = 0; /* for the first pdGain, start from index 0 */
483 else
484 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
485 pdGainOverlap_t2;
486 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
487 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
488 /*
489 *-ve ss indicates need to extrapolate data below for this pdGain
490 */
491 while (ss < 0) {
492 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
493 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
494 ss++;
495 }
496
497 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
498 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
499 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
500
501 while (ss < (int16_t)maxIndex)
502 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
503
504 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
505 VpdTable_I[ii][sizeCurrVpdTable-2]);
506 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
507 /*
508 * for last gain, pdGainBoundary == Pmax_t2, so will
509 * have to extrapolate
510 */
511 if (tgtIndex > maxIndex) { /* need to extrapolate above */
512 while(ss < (int16_t)tgtIndex) {
513 tmpVal = (uint16_t)
514 (VpdTable_I[ii][sizeCurrVpdTable-1] +
515 (ss-maxIndex)*Vpd_step);
516 pPDADCValues[kk++] = (tmpVal > 127) ?
517 127 : tmpVal;
518 ss++;
519 }
520 } /* extrapolated above */
521 } /* for all pdGainUsed */
522
523 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
524 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
525 ii++;
526 }
527 while (kk < 128) {
528 pPDADCValues[kk] = pPDADCValues[kk-1];
529 kk++;
530 }
531
532 return numPdGainsUsed;
533 #undef VpdTable_L
534 #undef VpdTable_R
535 #undef VpdTable_I
536 }
537
538 static HAL_BOOL
ar5413SetPowerTable(struct ath_hal * ah,int16_t * minPower,int16_t * maxPower,const struct ieee80211_channel * chan,uint16_t * rfXpdGain)539 ar5413SetPowerTable(struct ath_hal *ah,
540 int16_t *minPower, int16_t *maxPower,
541 const struct ieee80211_channel *chan,
542 uint16_t *rfXpdGain)
543 {
544 struct ath_hal_5212 *ahp = AH5212(ah);
545 uint16_t freq = ath_hal_gethwchannel(ah, chan);
546 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
547 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
548 uint16_t pdGainOverlap_t2;
549 int16_t minCalPower5413_t2;
550 uint16_t *pdadcValues = ahp->ah_pcdacTable;
551 uint16_t gainBoundaries[4];
552 uint32_t reg32, regoffset;
553 int i, numPdGainsUsed;
554 #ifndef AH_USE_INIPDGAIN
555 uint32_t tpcrg1;
556 #endif
557
558 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
559 __func__, chan->ic_freq, chan->ic_flags);
560
561 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
562 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
563 else if (IEEE80211_IS_CHAN_B(chan))
564 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
565 else {
566 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
567 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
568 }
569
570 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
571 AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
572
573 numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
574 freq, pRawDataset, pdGainOverlap_t2,
575 &minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
576 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
577
578 #ifdef AH_USE_INIPDGAIN
579 /*
580 * Use pd_gains curve from eeprom; Atheros always uses
581 * the default curve from the ini file but some vendors
582 * (e.g. Zcomax) want to override this curve and not
583 * honoring their settings results in tx power 5dBm low.
584 */
585 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
586 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
587 #else
588 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
589 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
590 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
591 switch (numPdGainsUsed) {
592 case 3:
593 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
594 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
595 /* fall thru... */
596 case 2:
597 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
598 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
599 /* fall thru... */
600 case 1:
601 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
602 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
603 break;
604 }
605 #ifdef AH_DEBUG
606 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
607 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
608 "pd_gains (default 0x%x, calculated 0x%x)\n",
609 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
610 #endif
611 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
612 #endif
613
614 /*
615 * Note the pdadc table may not start at 0 dBm power, could be
616 * negative or greater than 0. Need to offset the power
617 * values by the amount of minPower for griffin
618 */
619 if (minCalPower5413_t2 != 0)
620 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
621 else
622 ahp->ah_txPowerIndexOffset = 0;
623
624 /* Finally, write the power values into the baseband power table */
625 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
626 for (i = 0; i < 32; i++) {
627 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
628 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
629 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
630 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
631 OS_REG_WRITE(ah, regoffset, reg32);
632 regoffset += 4;
633 }
634
635 OS_REG_WRITE(ah, AR_PHY_TPCRG5,
636 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
637 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
638 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
639 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
640 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
641
642 return AH_TRUE;
643 }
644
645 static int16_t
ar5413GetMinPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)646 ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
647 {
648 uint32_t ii,jj;
649 uint16_t Pmin=0,numVpd;
650
651 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
652 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
653 /* work backwards 'cause highest pdGain for lowest power */
654 numVpd = data->pDataPerPDGain[jj].numVpd;
655 if (numVpd > 0) {
656 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
657 return(Pmin);
658 }
659 }
660 return(Pmin);
661 }
662
663 static int16_t
ar5413GetMaxPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)664 ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
665 {
666 uint32_t ii;
667 uint16_t Pmax=0,numVpd;
668
669 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
670 /* work forwards cuase lowest pdGain for highest power */
671 numVpd = data->pDataPerPDGain[ii].numVpd;
672 if (numVpd > 0) {
673 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
674 return(Pmax);
675 }
676 }
677 return(Pmax);
678 }
679
680 static HAL_BOOL
ar5413GetChannelMaxMinPower(struct ath_hal * ah,const struct ieee80211_channel * chan,int16_t * maxPow,int16_t * minPow)681 ar5413GetChannelMaxMinPower(struct ath_hal *ah,
682 const struct ieee80211_channel *chan,
683 int16_t *maxPow, int16_t *minPow)
684 {
685 uint16_t freq = chan->ic_freq; /* NB: never mapped */
686 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
687 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
688 const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
689 uint16_t numChannels;
690 int totalD,totalF, totalMin,last, i;
691
692 *maxPow = 0;
693
694 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
695 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
696 else if (IEEE80211_IS_CHAN_B(chan))
697 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
698 else {
699 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
700 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
701 }
702
703 numChannels = pRawDataset->numChannels;
704 data = pRawDataset->pDataPerChannel;
705
706 /* Make sure the channel is in the range of the TP values
707 * (freq piers)
708 */
709 if (numChannels < 1)
710 return(AH_FALSE);
711
712 if ((freq < data[0].channelValue) ||
713 (freq > data[numChannels-1].channelValue)) {
714 if (freq < data[0].channelValue) {
715 *maxPow = ar5413GetMaxPower(ah, &data[0]);
716 *minPow = ar5413GetMinPower(ah, &data[0]);
717 return(AH_TRUE);
718 } else {
719 *maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
720 *minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
721 return(AH_TRUE);
722 }
723 }
724
725 /* Linearly interpolate the power value now */
726 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
727 last = i++);
728 totalD = data[i].channelValue - data[last].channelValue;
729 if (totalD > 0) {
730 totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
731 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
732 ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
733 totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
734 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
735 ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
736 return(AH_TRUE);
737 } else {
738 if (freq == data[i].channelValue) {
739 *maxPow = ar5413GetMaxPower(ah, &data[i]);
740 *minPow = ar5413GetMinPower(ah, &data[i]);
741 return(AH_TRUE);
742 } else
743 return(AH_FALSE);
744 }
745 }
746
747 /*
748 * Free memory for analog bank scratch buffers
749 */
750 static void
ar5413RfDetach(struct ath_hal * ah)751 ar5413RfDetach(struct ath_hal *ah)
752 {
753 struct ath_hal_5212 *ahp = AH5212(ah);
754
755 HALASSERT(ahp->ah_rfHal != AH_NULL);
756 ath_hal_free(ahp->ah_rfHal);
757 ahp->ah_rfHal = AH_NULL;
758 }
759
760 /*
761 * Allocate memory for analog bank scratch buffers
762 * Scratch Buffer will be reinitialized every reset so no need to zero now
763 */
764 static HAL_BOOL
ar5413RfAttach(struct ath_hal * ah,HAL_STATUS * status)765 ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
766 {
767 struct ath_hal_5212 *ahp = AH5212(ah);
768 struct ar5413State *priv;
769
770 HALASSERT(ah->ah_magic == AR5212_MAGIC);
771
772 HALASSERT(ahp->ah_rfHal == AH_NULL);
773 priv = ath_hal_malloc(sizeof(struct ar5413State));
774 if (priv == AH_NULL) {
775 HALDEBUG(ah, HAL_DEBUG_ANY,
776 "%s: cannot allocate private state\n", __func__);
777 *status = HAL_ENOMEM; /* XXX */
778 return AH_FALSE;
779 }
780 priv->base.rfDetach = ar5413RfDetach;
781 priv->base.writeRegs = ar5413WriteRegs;
782 priv->base.getRfBank = ar5413GetRfBank;
783 priv->base.setChannel = ar5413SetChannel;
784 priv->base.setRfRegs = ar5413SetRfRegs;
785 priv->base.setPowerTable = ar5413SetPowerTable;
786 priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
787 priv->base.getNfAdjust = ar5212GetNfAdjust;
788
789 ahp->ah_pcdacTable = priv->pcdacTable;
790 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
791 ahp->ah_rfHal = &priv->base;
792
793 return AH_TRUE;
794 }
795
796 static HAL_BOOL
ar5413Probe(struct ath_hal * ah)797 ar5413Probe(struct ath_hal *ah)
798 {
799 return IS_5413(ah);
800 }
801 AH_RF(RF5413, ar5413Probe, ar5413RfAttach);
802