xref: /freebsd/sys/amd64/amd64/fpu.c (revision f0d036cf665520cead4970b4337d72b077ed5eea)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990 William Jolitz.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/domainset.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/module.h>
41 #include <sys/mutex.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/sysctl.h>
45 #include <sys/sysent.h>
46 #include <sys/tslog.h>
47 #include <machine/bus.h>
48 #include <sys/rman.h>
49 #include <sys/signalvar.h>
50 #include <vm/uma.h>
51 
52 #include <machine/cputypes.h>
53 #include <machine/frame.h>
54 #include <machine/intr_machdep.h>
55 #include <machine/md_var.h>
56 #include <machine/pcb.h>
57 #include <machine/psl.h>
58 #include <machine/resource.h>
59 #include <machine/specialreg.h>
60 #include <machine/segments.h>
61 #include <machine/ucontext.h>
62 #include <x86/ifunc.h>
63 
64 /*
65  * Floating point support.
66  */
67 
68 #define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
69 #define	fnclex()		__asm __volatile("fnclex")
70 #define	fninit()		__asm __volatile("fninit")
71 #define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
72 #define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
73 #define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
74 #define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
75 #define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
76 #define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : "=m" (*(addr)))
77 
78 static __inline void
xrstor32(char * addr,uint64_t mask)79 xrstor32(char *addr, uint64_t mask)
80 {
81 	uint32_t low, hi;
82 
83 	low = mask;
84 	hi = mask >> 32;
85 	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
86 }
87 
88 static __inline void
xrstor64(char * addr,uint64_t mask)89 xrstor64(char *addr, uint64_t mask)
90 {
91 	uint32_t low, hi;
92 
93 	low = mask;
94 	hi = mask >> 32;
95 	__asm __volatile("xrstor64 %0" : : "m" (*addr), "a" (low), "d" (hi));
96 }
97 
98 static __inline void
xsave32(char * addr,uint64_t mask)99 xsave32(char *addr, uint64_t mask)
100 {
101 	uint32_t low, hi;
102 
103 	low = mask;
104 	hi = mask >> 32;
105 	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
106 	    "memory");
107 }
108 
109 static __inline void
xsave64(char * addr,uint64_t mask)110 xsave64(char *addr, uint64_t mask)
111 {
112 	uint32_t low, hi;
113 
114 	low = mask;
115 	hi = mask >> 32;
116 	__asm __volatile("xsave64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
117 	    "memory");
118 }
119 
120 static __inline void
xsaveopt32(char * addr,uint64_t mask)121 xsaveopt32(char *addr, uint64_t mask)
122 {
123 	uint32_t low, hi;
124 
125 	low = mask;
126 	hi = mask >> 32;
127 	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
128 	    "memory");
129 }
130 
131 static __inline void
xsaveopt64(char * addr,uint64_t mask)132 xsaveopt64(char *addr, uint64_t mask)
133 {
134 	uint32_t low, hi;
135 
136 	low = mask;
137 	hi = mask >> 32;
138 	__asm __volatile("xsaveopt64 %0" : "=m" (*addr) : "a" (low), "d" (hi) :
139 	    "memory");
140 }
141 
142 CTASSERT(sizeof(struct savefpu) == 512);
143 CTASSERT(sizeof(struct xstate_hdr) == 64);
144 CTASSERT(sizeof(struct savefpu_ymm) == 832);
145 
146 /*
147  * This requirement is to make it easier for asm code to calculate
148  * offset of the fpu save area from the pcb address. FPU save area
149  * must be 64-byte aligned.
150  */
151 CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
152 
153 /*
154  * Ensure the copy of XCR0 saved in a core is contained in the padding
155  * area.
156  */
157 CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
158     X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
159 
160 static	void	fpu_clean_state(void);
161 
162 SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
163     SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
164 
165 int use_xsave;			/* non-static for cpu_switch.S */
166 uint64_t xsave_mask;		/* the same */
167 static	uint64_t xsave_mask_supervisor;
168 static	uint64_t xsave_extensions;
169 static	uma_zone_t fpu_save_area_zone;
170 static	struct savefpu *fpu_initialstate;
171 
172 static struct xsave_area_elm_descr {
173 	u_int	offset;
174 	u_int	size;
175 	u_int	flags;
176 } *xsave_area_desc;
177 
178 static void
fpusave_xsaveopt64(void * addr)179 fpusave_xsaveopt64(void *addr)
180 {
181 	xsaveopt64((char *)addr, xsave_mask);
182 }
183 
184 static void
fpusave_xsaveopt3264(void * addr)185 fpusave_xsaveopt3264(void *addr)
186 {
187 	if (SV_CURPROC_FLAG(SV_ILP32))
188 		xsaveopt32((char *)addr, xsave_mask);
189 	else
190 		xsaveopt64((char *)addr, xsave_mask);
191 }
192 
193 static void
fpusave_xsave64(void * addr)194 fpusave_xsave64(void *addr)
195 {
196 	xsave64((char *)addr, xsave_mask);
197 }
198 
199 static void
fpusave_xsave3264(void * addr)200 fpusave_xsave3264(void *addr)
201 {
202 	if (SV_CURPROC_FLAG(SV_ILP32))
203 		xsave32((char *)addr, xsave_mask);
204 	else
205 		xsave64((char *)addr, xsave_mask);
206 }
207 
208 static void
fpurestore_xrstor64(void * addr)209 fpurestore_xrstor64(void *addr)
210 {
211 	xrstor64((char *)addr, xsave_mask);
212 }
213 
214 static void
fpurestore_xrstor3264(void * addr)215 fpurestore_xrstor3264(void *addr)
216 {
217 	if (SV_CURPROC_FLAG(SV_ILP32))
218 		xrstor32((char *)addr, xsave_mask);
219 	else
220 		xrstor64((char *)addr, xsave_mask);
221 }
222 
223 static void
fpusave_fxsave(void * addr)224 fpusave_fxsave(void *addr)
225 {
226 
227 	fxsave((char *)addr);
228 }
229 
230 static void
fpurestore_fxrstor(void * addr)231 fpurestore_fxrstor(void *addr)
232 {
233 
234 	fxrstor((char *)addr);
235 }
236 
237 DEFINE_IFUNC(, void, fpusave, (void *))
238 {
239 	u_int cp[4];
240 
241 	if (!use_xsave)
242 		return (fpusave_fxsave);
243 	cpuid_count(0xd, 0x1, cp);
244 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
245 		return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
246 		    fpusave_xsaveopt64 : fpusave_xsaveopt3264);
247 	}
248 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
249 	    fpusave_xsave64 : fpusave_xsave3264);
250 }
251 
252 DEFINE_IFUNC(, void, fpurestore, (void *))
253 {
254 	if (!use_xsave)
255 		return (fpurestore_fxrstor);
256 	return ((cpu_stdext_feature & CPUID_STDEXT_NFPUSG) != 0 ?
257 	    fpurestore_xrstor64 : fpurestore_xrstor3264);
258 }
259 
260 void
fpususpend(void * addr)261 fpususpend(void *addr)
262 {
263 	u_long cr0;
264 
265 	cr0 = rcr0();
266 	fpu_enable();
267 	fpusave(addr);
268 	load_cr0(cr0);
269 }
270 
271 void
fpuresume(void * addr)272 fpuresume(void *addr)
273 {
274 	u_long cr0;
275 
276 	cr0 = rcr0();
277 	fpu_enable();
278 	fninit();
279 	if (use_xsave)
280 		load_xcr(XCR0, xsave_mask);
281 	fpurestore(addr);
282 	load_cr0(cr0);
283 }
284 
285 /*
286  * Enable XSAVE if supported and allowed by user.
287  * Calculate the xsave_mask.
288  */
289 static void
fpuinit_bsp1(void)290 fpuinit_bsp1(void)
291 {
292 	u_int cp[4];
293 	uint64_t xsave_mask_user;
294 	bool old_wp;
295 
296 	if (!use_xsave)
297 		return;
298 	cpuid_count(0xd, 0x0, cp);
299 	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
300 	if ((cp[0] & xsave_mask) != xsave_mask)
301 		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
302 	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
303 	xsave_mask_user = xsave_mask;
304 	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
305 	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
306 	xsave_mask &= xsave_mask_user;
307 	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
308 		xsave_mask &= ~XFEATURE_AVX512;
309 	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
310 		xsave_mask &= ~XFEATURE_MPX;
311 
312 	cpuid_count(0xd, 0x1, cp);
313 	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
314 		/*
315 		 * Patch the XSAVE instruction in the cpu_switch code
316 		 * to XSAVEOPT.  We assume that XSAVE encoding used
317 		 * REX byte, and set the bit 4 of the r/m byte.
318 		 *
319 		 * It seems that some BIOSes give control to the OS
320 		 * with CR0.WP already set, making the kernel text
321 		 * read-only before cpu_startup().
322 		 */
323 		old_wp = disable_wp();
324 		ctx_switch_xsave32[3] |= 0x10;
325 		ctx_switch_xsave[3] |= 0x10;
326 		restore_wp(old_wp);
327 	}
328 	xsave_mask_supervisor = ((uint64_t)cp[3] << 32) | cp[2];
329 }
330 
331 /*
332  * Calculate the fpu save area size.
333  */
334 static void
fpuinit_bsp2(void)335 fpuinit_bsp2(void)
336 {
337 	u_int cp[4];
338 
339 	if (use_xsave) {
340 		cpuid_count(0xd, 0x0, cp);
341 		cpu_max_ext_state_size = cp[1];
342 
343 		/*
344 		 * Reload the cpu_feature2, since we enabled OSXSAVE.
345 		 */
346 		do_cpuid(1, cp);
347 		cpu_feature2 = cp[2];
348 	} else
349 		cpu_max_ext_state_size = sizeof(struct savefpu);
350 }
351 
352 /*
353  * Initialize the floating point unit.
354  */
355 void
fpuinit(void)356 fpuinit(void)
357 {
358 	register_t saveintr;
359 	uint64_t cr4;
360 	u_int mxcsr;
361 	u_short control;
362 
363 	TSENTER();
364 	if (IS_BSP())
365 		fpuinit_bsp1();
366 
367 	if (use_xsave) {
368 		cr4 = rcr4();
369 
370 		/*
371 		 * Revert enablement of PKRU if user disabled its
372 		 * saving on context switches by clearing the bit in
373 		 * the xsave mask.  Also redundantly clear the bit in
374 		 * cpu_stdext_feature2 to prevent pmap from ever
375 		 * trying to set the page table bits.
376 		 */
377 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0 &&
378 		    (xsave_mask & XFEATURE_ENABLED_PKRU) == 0) {
379 			cr4 &= ~CR4_PKE;
380 			cpu_stdext_feature2 &= ~CPUID_STDEXT2_PKU;
381 		}
382 
383 		load_cr4(cr4 | CR4_XSAVE);
384 		load_xcr(XCR0, xsave_mask);
385 	}
386 
387 	/*
388 	 * XCR0 shall be set up before CPU can report the save area size.
389 	 */
390 	if (IS_BSP())
391 		fpuinit_bsp2();
392 
393 	/*
394 	 * It is too early for critical_enter() to work on AP.
395 	 */
396 	saveintr = intr_disable();
397 	fpu_enable();
398 	fninit();
399 	control = __INITIAL_FPUCW__;
400 	fldcw(control);
401 	mxcsr = __INITIAL_MXCSR__;
402 	ldmxcsr(mxcsr);
403 	fpu_disable();
404 	intr_restore(saveintr);
405 	TSEXIT();
406 }
407 
408 /*
409  * On the boot CPU we generate a clean state that is used to
410  * initialize the floating point unit when it is first used by a
411  * process.
412  */
413 static void
fpuinitstate(void * arg __unused)414 fpuinitstate(void *arg __unused)
415 {
416 	uint64_t *xstate_bv;
417 	register_t saveintr;
418 	int cp[4], i, max_ext_n;
419 
420 	/* Do potentially blocking operations before disabling interrupts. */
421 	fpu_save_area_zone = uma_zcreate("FPU_save_area",
422 	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
423 	    XSAVE_AREA_ALIGN - 1, 0);
424 	fpu_initialstate = uma_zalloc(fpu_save_area_zone, M_WAITOK | M_ZERO);
425 	if (use_xsave) {
426 		max_ext_n = flsl(xsave_mask | xsave_mask_supervisor);
427 		xsave_area_desc = malloc(max_ext_n * sizeof(struct
428 		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
429 	}
430 
431 	cpu_thread_alloc(&thread0);
432 
433 	saveintr = intr_disable();
434 	fpu_enable();
435 
436 	fpusave_fxsave(fpu_initialstate);
437 	if (fpu_initialstate->sv_env.en_mxcsr_mask)
438 		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
439 	else
440 		cpu_mxcsr_mask = 0xFFBF;
441 
442 	/*
443 	 * The fninit instruction does not modify XMM registers or x87
444 	 * registers (MM/ST).  The fpusave call dumped the garbage
445 	 * contained in the registers after reset to the initial state
446 	 * saved.  Clear XMM and x87 registers file image to make the
447 	 * startup program state and signal handler XMM/x87 register
448 	 * content predictable.
449 	 */
450 	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
451 	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
452 
453 	/*
454 	 * Create a table describing the layout of the CPU Extended
455 	 * Save Area.  See Intel SDM rev. 075 Vol. 1 13.4.1 "Legacy
456 	 * Region of an XSAVE Area" for the source of offsets/sizes.
457 	 */
458 	if (use_xsave) {
459 		cpuid_count(0xd, 1, cp);
460 		xsave_extensions = cp[0];
461 
462 		xstate_bv = (uint64_t *)((char *)(fpu_initialstate + 1) +
463 		    offsetof(struct xstate_hdr, xstate_bv));
464 		*xstate_bv = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
465 
466 		/* x87 state */
467 		xsave_area_desc[0].offset = 0;
468 		xsave_area_desc[0].size = 160;
469 		/* XMM */
470 		xsave_area_desc[1].offset = 160;
471 		xsave_area_desc[1].size = 416 - 160;
472 
473 		for (i = 2; i < max_ext_n; i++) {
474 			cpuid_count(0xd, i, cp);
475 			xsave_area_desc[i].size = cp[0];
476 			xsave_area_desc[i].offset = cp[1];
477 			xsave_area_desc[i].flags = cp[2];
478 		}
479 	}
480 
481 	fpu_disable();
482 	intr_restore(saveintr);
483 }
484 /* EFIRT needs this to be initialized before we can enter our EFI environment */
485 SYSINIT(fpuinitstate, SI_SUB_CPU, SI_ORDER_ANY, fpuinitstate, NULL);
486 
487 /*
488  * Free coprocessor (if we have it).
489  */
490 void
fpuexit(struct thread * td)491 fpuexit(struct thread *td)
492 {
493 
494 	critical_enter();
495 	if (curthread == PCPU_GET(fpcurthread)) {
496 		fpu_enable();
497 		fpusave(curpcb->pcb_save);
498 		fpu_disable();
499 		PCPU_SET(fpcurthread, NULL);
500 	}
501 	critical_exit();
502 }
503 
504 int
fpuformat(void)505 fpuformat(void)
506 {
507 
508 	return (_MC_FPFMT_XMM);
509 }
510 
511 /*
512  * The following mechanism is used to ensure that the FPE_... value
513  * that is passed as a trapcode to the signal handler of the user
514  * process does not have more than one bit set.
515  *
516  * Multiple bits may be set if the user process modifies the control
517  * word while a status word bit is already set.  While this is a sign
518  * of bad coding, we have no choice than to narrow them down to one
519  * bit, since we must not send a trapcode that is not exactly one of
520  * the FPE_ macros.
521  *
522  * The mechanism has a static table with 127 entries.  Each combination
523  * of the 7 FPU status word exception bits directly translates to a
524  * position in this table, where a single FPE_... value is stored.
525  * This FPE_... value stored there is considered the "most important"
526  * of the exception bits and will be sent as the signal code.  The
527  * precedence of the bits is based upon Intel Document "Numerical
528  * Applications", Chapter "Special Computational Situations".
529  *
530  * The macro to choose one of these values does these steps: 1) Throw
531  * away status word bits that cannot be masked.  2) Throw away the bits
532  * currently masked in the control word, assuming the user isn't
533  * interested in them anymore.  3) Reinsert status word bit 7 (stack
534  * fault) if it is set, which cannot be masked but must be presered.
535  * 4) Use the remaining bits to point into the trapcode table.
536  *
537  * The 6 maskable bits in order of their preference, as stated in the
538  * above referenced Intel manual:
539  * 1  Invalid operation (FP_X_INV)
540  * 1a   Stack underflow
541  * 1b   Stack overflow
542  * 1c   Operand of unsupported format
543  * 1d   SNaN operand.
544  * 2  QNaN operand (not an exception, irrelavant here)
545  * 3  Any other invalid-operation not mentioned above or zero divide
546  *      (FP_X_INV, FP_X_DZ)
547  * 4  Denormal operand (FP_X_DNML)
548  * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
549  * 6  Inexact result (FP_X_IMP)
550  */
551 static char fpetable[128] = {
552 	0,
553 	FPE_FLTINV,	/*  1 - INV */
554 	FPE_FLTUND,	/*  2 - DNML */
555 	FPE_FLTINV,	/*  3 - INV | DNML */
556 	FPE_FLTDIV,	/*  4 - DZ */
557 	FPE_FLTINV,	/*  5 - INV | DZ */
558 	FPE_FLTDIV,	/*  6 - DNML | DZ */
559 	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
560 	FPE_FLTOVF,	/*  8 - OFL */
561 	FPE_FLTINV,	/*  9 - INV | OFL */
562 	FPE_FLTUND,	/*  A - DNML | OFL */
563 	FPE_FLTINV,	/*  B - INV | DNML | OFL */
564 	FPE_FLTDIV,	/*  C - DZ | OFL */
565 	FPE_FLTINV,	/*  D - INV | DZ | OFL */
566 	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
567 	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
568 	FPE_FLTUND,	/* 10 - UFL */
569 	FPE_FLTINV,	/* 11 - INV | UFL */
570 	FPE_FLTUND,	/* 12 - DNML | UFL */
571 	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
572 	FPE_FLTDIV,	/* 14 - DZ | UFL */
573 	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
574 	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
575 	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
576 	FPE_FLTOVF,	/* 18 - OFL | UFL */
577 	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
578 	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
579 	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
580 	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
581 	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
582 	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
583 	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
584 	FPE_FLTRES,	/* 20 - IMP */
585 	FPE_FLTINV,	/* 21 - INV | IMP */
586 	FPE_FLTUND,	/* 22 - DNML | IMP */
587 	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
588 	FPE_FLTDIV,	/* 24 - DZ | IMP */
589 	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
590 	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
591 	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
592 	FPE_FLTOVF,	/* 28 - OFL | IMP */
593 	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
594 	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
595 	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
596 	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
597 	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
598 	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
599 	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
600 	FPE_FLTUND,	/* 30 - UFL | IMP */
601 	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
602 	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
603 	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
604 	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
605 	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
606 	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
607 	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
608 	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
609 	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
610 	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
611 	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
612 	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
613 	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
614 	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
615 	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
616 	FPE_FLTSUB,	/* 40 - STK */
617 	FPE_FLTSUB,	/* 41 - INV | STK */
618 	FPE_FLTUND,	/* 42 - DNML | STK */
619 	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
620 	FPE_FLTDIV,	/* 44 - DZ | STK */
621 	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
622 	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
623 	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
624 	FPE_FLTOVF,	/* 48 - OFL | STK */
625 	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
626 	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
627 	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
628 	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
629 	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
630 	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
631 	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
632 	FPE_FLTUND,	/* 50 - UFL | STK */
633 	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
634 	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
635 	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
636 	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
637 	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
638 	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
639 	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
640 	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
641 	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
642 	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
643 	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
644 	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
645 	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
646 	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
647 	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
648 	FPE_FLTRES,	/* 60 - IMP | STK */
649 	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
650 	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
651 	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
652 	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
653 	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
654 	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
655 	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
656 	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
657 	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
658 	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
659 	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
660 	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
661 	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
662 	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
663 	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
664 	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
665 	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
666 	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
667 	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
668 	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
669 	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
670 	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
671 	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
672 	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
673 	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
674 	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
675 	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
676 	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
677 	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
678 	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
679 	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
680 };
681 
682 /*
683  * Read the FP status and control words, then generate si_code value
684  * for SIGFPE.  The error code chosen will be one of the
685  * FPE_... macros.  It will be sent as the second argument to old
686  * BSD-style signal handlers and as "siginfo_t->si_code" (second
687  * argument) to SA_SIGINFO signal handlers.
688  *
689  * Some time ago, we cleared the x87 exceptions with FNCLEX there.
690  * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
691  * usermode code which understands the FPU hardware enough to enable
692  * the exceptions, can also handle clearing the exception state in the
693  * handler.  The only consequence of not clearing the exception is the
694  * rethrow of the SIGFPE on return from the signal handler and
695  * reexecution of the corresponding instruction.
696  *
697  * For XMM traps, the exceptions were never cleared.
698  */
699 int
fputrap_x87(void)700 fputrap_x87(void)
701 {
702 	struct savefpu *pcb_save;
703 	u_short control, status;
704 
705 	critical_enter();
706 
707 	/*
708 	 * Interrupt handling (for another interrupt) may have pushed the
709 	 * state to memory.  Fetch the relevant parts of the state from
710 	 * wherever they are.
711 	 */
712 	if (PCPU_GET(fpcurthread) != curthread) {
713 		pcb_save = curpcb->pcb_save;
714 		control = pcb_save->sv_env.en_cw;
715 		status = pcb_save->sv_env.en_sw;
716 	} else {
717 		fnstcw(&control);
718 		fnstsw(&status);
719 	}
720 
721 	critical_exit();
722 	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
723 }
724 
725 int
fputrap_sse(void)726 fputrap_sse(void)
727 {
728 	u_int mxcsr;
729 
730 	critical_enter();
731 	if (PCPU_GET(fpcurthread) != curthread)
732 		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
733 	else
734 		stmxcsr(&mxcsr);
735 	critical_exit();
736 	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
737 }
738 
739 static void
restore_fpu_curthread(struct thread * td)740 restore_fpu_curthread(struct thread *td)
741 {
742 	struct pcb *pcb;
743 
744 	/*
745 	 * Record new context early in case frstor causes a trap.
746 	 */
747 	PCPU_SET(fpcurthread, td);
748 
749 	fpu_enable();
750 	fpu_clean_state();
751 	pcb = td->td_pcb;
752 
753 	if ((pcb->pcb_flags & PCB_FPUINITDONE) == 0) {
754 		/*
755 		 * This is the first time this thread has used the FPU or
756 		 * the PCB doesn't contain a clean FPU state.  Explicitly
757 		 * load an initial state.
758 		 *
759 		 * We prefer to restore the state from the actual save
760 		 * area in PCB instead of directly loading from
761 		 * fpu_initialstate, to ignite the XSAVEOPT
762 		 * tracking engine.
763 		 */
764 		bcopy(fpu_initialstate, pcb->pcb_save,
765 		    cpu_max_ext_state_size);
766 		fpurestore(pcb->pcb_save);
767 		if (pcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
768 			fldcw(pcb->pcb_initial_fpucw);
769 		if (PCB_USER_FPU(pcb))
770 			set_pcb_flags(pcb, PCB_FPUINITDONE |
771 			    PCB_USERFPUINITDONE);
772 		else
773 			set_pcb_flags(pcb, PCB_FPUINITDONE);
774 	} else
775 		fpurestore(pcb->pcb_save);
776 }
777 
778 /*
779  * Device Not Available (DNA, #NM) exception handler.
780  *
781  * It would be better to switch FP context here (if curthread !=
782  * fpcurthread) and not necessarily for every context switch, but it
783  * is too hard to access foreign pcb's.
784  */
785 void
fpudna(void)786 fpudna(void)
787 {
788 	struct thread *td;
789 
790 	td = curthread;
791 	/*
792 	 * This handler is entered with interrupts enabled, so context
793 	 * switches may occur before critical_enter() is executed.  If
794 	 * a context switch occurs, then when we regain control, our
795 	 * state will have been completely restored.  The CPU may
796 	 * change underneath us, but the only part of our context that
797 	 * lives in the CPU is CR0.TS and that will be "restored" by
798 	 * setting it on the new CPU.
799 	 */
800 	critical_enter();
801 
802 	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
803 	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
804 	if (__predict_false(PCPU_GET(fpcurthread) == td)) {
805 		/*
806 		 * Some virtual machines seems to set %cr0.TS at
807 		 * arbitrary moments.  Silently clear the TS bit
808 		 * regardless of the eager/lazy FPU context switch
809 		 * mode.
810 		 */
811 		fpu_enable();
812 	} else {
813 		if (__predict_false(PCPU_GET(fpcurthread) != NULL)) {
814 			panic(
815 		    "fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
816 			    PCPU_GET(fpcurthread),
817 			    PCPU_GET(fpcurthread)->td_tid, td, td->td_tid);
818 		}
819 		restore_fpu_curthread(td);
820 	}
821 	critical_exit();
822 }
823 
824 void fpu_activate_sw(struct thread *td); /* Called from the context switch */
825 void
fpu_activate_sw(struct thread * td)826 fpu_activate_sw(struct thread *td)
827 {
828 
829 	if ((td->td_pflags & TDP_KTHREAD) != 0 || !PCB_USER_FPU(td->td_pcb)) {
830 		PCPU_SET(fpcurthread, NULL);
831 		fpu_disable();
832 	} else if (PCPU_GET(fpcurthread) != td) {
833 		restore_fpu_curthread(td);
834 	}
835 }
836 
837 void
fpudrop(void)838 fpudrop(void)
839 {
840 	struct thread *td;
841 
842 	td = PCPU_GET(fpcurthread);
843 	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
844 	CRITICAL_ASSERT(td);
845 	PCPU_SET(fpcurthread, NULL);
846 	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
847 	fpu_disable();
848 }
849 
850 /*
851  * Get the user state of the FPU into pcb->pcb_user_save without
852  * dropping ownership (if possible).  It returns the FPU ownership
853  * status.
854  */
855 int
fpugetregs(struct thread * td)856 fpugetregs(struct thread *td)
857 {
858 	struct pcb *pcb;
859 	uint64_t *xstate_bv, bit;
860 	char *sa;
861 	struct savefpu *s;
862 	uint32_t mxcsr, mxcsr_mask;
863 	int max_ext_n, i, owned;
864 	bool do_mxcsr;
865 
866 	pcb = td->td_pcb;
867 	critical_enter();
868 	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
869 		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
870 		    cpu_max_ext_state_size);
871 		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
872 		    pcb->pcb_initial_fpucw;
873 		fpuuserinited(td);
874 		critical_exit();
875 		return (_MC_FPOWNED_PCB);
876 	}
877 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
878 		fpusave(get_pcb_user_save_pcb(pcb));
879 		owned = _MC_FPOWNED_FPU;
880 	} else {
881 		owned = _MC_FPOWNED_PCB;
882 	}
883 	if (use_xsave) {
884 		/*
885 		 * Handle partially saved state.
886 		 */
887 		sa = (char *)get_pcb_user_save_pcb(pcb);
888 		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
889 		    offsetof(struct xstate_hdr, xstate_bv));
890 		max_ext_n = flsl(xsave_mask);
891 		for (i = 0; i < max_ext_n; i++) {
892 			bit = 1ULL << i;
893 			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
894 				continue;
895 			do_mxcsr = false;
896 			if (i == 0 && (*xstate_bv & (XFEATURE_ENABLED_SSE |
897 			    XFEATURE_ENABLED_AVX)) != 0) {
898 				/*
899 				 * x87 area was not saved by XSAVEOPT,
900 				 * but one of XMM or AVX was.  Then we need
901 				 * to preserve MXCSR from being overwritten
902 				 * with the default value.
903 				 */
904 				s = (struct savefpu *)sa;
905 				mxcsr = s->sv_env.en_mxcsr;
906 				mxcsr_mask = s->sv_env.en_mxcsr_mask;
907 				do_mxcsr = true;
908 			}
909 			bcopy((char *)fpu_initialstate +
910 			    xsave_area_desc[i].offset,
911 			    sa + xsave_area_desc[i].offset,
912 			    xsave_area_desc[i].size);
913 			if (do_mxcsr) {
914 				s->sv_env.en_mxcsr = mxcsr;
915 				s->sv_env.en_mxcsr_mask = mxcsr_mask;
916 			}
917 			*xstate_bv |= bit;
918 		}
919 	}
920 	critical_exit();
921 	return (owned);
922 }
923 
924 void
fpuuserinited(struct thread * td)925 fpuuserinited(struct thread *td)
926 {
927 	struct pcb *pcb;
928 
929 	CRITICAL_ASSERT(td);
930 	pcb = td->td_pcb;
931 	if (PCB_USER_FPU(pcb))
932 		set_pcb_flags(pcb,
933 		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
934 	else
935 		set_pcb_flags(pcb, PCB_FPUINITDONE);
936 }
937 
938 int
fpusetxstate(struct thread * td,char * xfpustate,size_t xfpustate_size)939 fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
940 {
941 	struct xstate_hdr *hdr, *ehdr;
942 	size_t len, max_len;
943 	uint64_t bv;
944 
945 	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
946 	if (xfpustate == NULL)
947 		return (0);
948 	if (!use_xsave)
949 		return (EOPNOTSUPP);
950 
951 	len = xfpustate_size;
952 	if (len < sizeof(struct xstate_hdr))
953 		return (EINVAL);
954 	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
955 	if (len > max_len)
956 		return (EINVAL);
957 
958 	ehdr = (struct xstate_hdr *)xfpustate;
959 	bv = ehdr->xstate_bv;
960 
961 	/*
962 	 * Avoid #gp.
963 	 */
964 	if (bv & ~xsave_mask)
965 		return (EINVAL);
966 
967 	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
968 
969 	hdr->xstate_bv = bv;
970 	bcopy(xfpustate + sizeof(struct xstate_hdr),
971 	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
972 
973 	return (0);
974 }
975 
976 /*
977  * Set the state of the FPU.
978  */
979 int
fpusetregs(struct thread * td,struct savefpu * addr,char * xfpustate,size_t xfpustate_size)980 fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
981     size_t xfpustate_size)
982 {
983 	struct pcb *pcb;
984 	int error;
985 
986 	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
987 	pcb = td->td_pcb;
988 	error = 0;
989 	critical_enter();
990 	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
991 		error = fpusetxstate(td, xfpustate, xfpustate_size);
992 		if (error == 0) {
993 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
994 			fpurestore(get_pcb_user_save_td(td));
995 			set_pcb_flags(pcb, PCB_FPUINITDONE |
996 			    PCB_USERFPUINITDONE);
997 		}
998 	} else {
999 		error = fpusetxstate(td, xfpustate, xfpustate_size);
1000 		if (error == 0) {
1001 			bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1002 			fpuuserinited(td);
1003 		}
1004 	}
1005 	critical_exit();
1006 	return (error);
1007 }
1008 
1009 /*
1010  * On AuthenticAMD processors, the fxrstor instruction does not restore
1011  * the x87's stored last instruction pointer, last data pointer, and last
1012  * opcode values, except in the rare case in which the exception summary
1013  * (ES) bit in the x87 status word is set to 1.
1014  *
1015  * In order to avoid leaking this information across processes, we clean
1016  * these values by performing a dummy load before executing fxrstor().
1017  */
1018 static void
fpu_clean_state(void)1019 fpu_clean_state(void)
1020 {
1021 	static float dummy_variable = 0.0;
1022 	u_short status;
1023 
1024 	/*
1025 	 * Clear the ES bit in the x87 status word if it is currently
1026 	 * set, in order to avoid causing a fault in the upcoming load.
1027 	 */
1028 	fnstsw(&status);
1029 	if (status & 0x80)
1030 		fnclex();
1031 
1032 	/*
1033 	 * Load the dummy variable into the x87 stack.  This mangles
1034 	 * the x87 stack, but we don't care since we're about to call
1035 	 * fxrstor() anyway.
1036 	 */
1037 	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1038 }
1039 
1040 /*
1041  * This really sucks.  We want the acpi version only, but it requires
1042  * the isa_if.h file in order to get the definitions.
1043  */
1044 #include "opt_isa.h"
1045 #ifdef DEV_ISA
1046 #include <isa/isavar.h>
1047 /*
1048  * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1049  */
1050 static struct isa_pnp_id fpupnp_ids[] = {
1051 	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1052 	{ 0 }
1053 };
1054 
1055 static int
fpupnp_probe(device_t dev)1056 fpupnp_probe(device_t dev)
1057 {
1058 	int result;
1059 
1060 	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
1061 	if (result <= 0)
1062 		device_quiet(dev);
1063 	return (result);
1064 }
1065 
1066 static int
fpupnp_attach(device_t dev)1067 fpupnp_attach(device_t dev)
1068 {
1069 
1070 	return (0);
1071 }
1072 
1073 static device_method_t fpupnp_methods[] = {
1074 	/* Device interface */
1075 	DEVMETHOD(device_probe,		fpupnp_probe),
1076 	DEVMETHOD(device_attach,	fpupnp_attach),
1077 	{ 0, 0 }
1078 };
1079 
1080 static driver_t fpupnp_driver = {
1081 	"fpupnp",
1082 	fpupnp_methods,
1083 	1,			/* no softc */
1084 };
1085 
1086 DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, 0, 0);
1087 ISA_PNP_INFO(fpupnp_ids);
1088 #endif	/* DEV_ISA */
1089 
1090 static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1091     "Kernel contexts for FPU state");
1092 
1093 #define	FPU_KERN_CTX_FPUINITDONE 0x01
1094 #define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
1095 #define	FPU_KERN_CTX_INUSE	 0x04
1096 
1097 struct fpu_kern_ctx {
1098 	struct savefpu *prev;
1099 	uint32_t flags;
1100 	char hwstate1[];
1101 };
1102 
1103 static inline size_t __pure2
fpu_kern_alloc_sz(u_int max_est)1104 fpu_kern_alloc_sz(u_int max_est)
1105 {
1106 	return (sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN + max_est);
1107 }
1108 
1109 static inline int __pure2
fpu_kern_malloc_flags(u_int fpflags)1110 fpu_kern_malloc_flags(u_int fpflags)
1111 {
1112 	return (((fpflags & FPU_KERN_NOWAIT) ? M_NOWAIT : M_WAITOK) | M_ZERO);
1113 }
1114 
1115 struct fpu_kern_ctx *
fpu_kern_alloc_ctx_domain(int domain,u_int flags)1116 fpu_kern_alloc_ctx_domain(int domain, u_int flags)
1117 {
1118 	return (malloc_domainset(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1119 	    M_FPUKERN_CTX, DOMAINSET_PREF(domain),
1120 	    fpu_kern_malloc_flags(flags)));
1121 }
1122 
1123 struct fpu_kern_ctx *
fpu_kern_alloc_ctx(u_int flags)1124 fpu_kern_alloc_ctx(u_int flags)
1125 {
1126 	return (malloc(fpu_kern_alloc_sz(cpu_max_ext_state_size),
1127 	    M_FPUKERN_CTX, fpu_kern_malloc_flags(flags)));
1128 }
1129 
1130 void
fpu_kern_free_ctx(struct fpu_kern_ctx * ctx)1131 fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1132 {
1133 
1134 	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
1135 	/* XXXKIB clear the memory ? */
1136 	free(ctx, M_FPUKERN_CTX);
1137 }
1138 
1139 static struct savefpu *
fpu_kern_ctx_savefpu(struct fpu_kern_ctx * ctx)1140 fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1141 {
1142 	vm_offset_t p;
1143 
1144 	p = (vm_offset_t)&ctx->hwstate1;
1145 	p = roundup2(p, XSAVE_AREA_ALIGN);
1146 	return ((struct savefpu *)p);
1147 }
1148 
1149 void
fpu_kern_enter(struct thread * td,struct fpu_kern_ctx * ctx,u_int flags)1150 fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1151 {
1152 	struct pcb *pcb;
1153 
1154 	pcb = td->td_pcb;
1155 	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
1156 	    ("ctx is required when !FPU_KERN_NOCTX"));
1157 	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
1158 	    ("using inuse ctx"));
1159 	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
1160 	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
1161 
1162 	if ((flags & FPU_KERN_NOCTX) != 0) {
1163 		critical_enter();
1164 		fpu_enable();
1165 		if (curthread == PCPU_GET(fpcurthread)) {
1166 			fpusave(curpcb->pcb_save);
1167 			PCPU_SET(fpcurthread, NULL);
1168 		} else {
1169 			KASSERT(PCPU_GET(fpcurthread) == NULL,
1170 			    ("invalid fpcurthread"));
1171 		}
1172 
1173 		/*
1174 		 * This breaks XSAVEOPT tracker, but
1175 		 * PCB_FPUNOSAVE state is supposed to never need to
1176 		 * save FPU context at all.
1177 		 */
1178 		fpurestore(fpu_initialstate);
1179 		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
1180 		    PCB_FPUINITDONE);
1181 		return;
1182 	}
1183 	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1184 		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1185 		return;
1186 	}
1187 	critical_enter();
1188 	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1189 	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1190 	ctx->flags = FPU_KERN_CTX_INUSE;
1191 	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1192 		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1193 	fpuexit(td);
1194 	ctx->prev = pcb->pcb_save;
1195 	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1196 	set_pcb_flags(pcb, PCB_KERNFPU);
1197 	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1198 	critical_exit();
1199 }
1200 
1201 int
fpu_kern_leave(struct thread * td,struct fpu_kern_ctx * ctx)1202 fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1203 {
1204 	struct pcb *pcb;
1205 
1206 	pcb = td->td_pcb;
1207 
1208 	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1209 		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1210 		KASSERT(PCPU_GET(fpcurthread) == NULL,
1211 		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1212 		CRITICAL_ASSERT(td);
1213 
1214 		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1215 		fpu_disable();
1216 	} else {
1217 		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1218 		    ("leaving not inuse ctx"));
1219 		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1220 
1221 		if (is_fpu_kern_thread(0) &&
1222 		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1223 			return (0);
1224 		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1225 		    ("dummy ctx"));
1226 		critical_enter();
1227 		if (curthread == PCPU_GET(fpcurthread))
1228 			fpudrop();
1229 		pcb->pcb_save = ctx->prev;
1230 	}
1231 
1232 	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1233 		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1234 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1235 			if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1236 				clear_pcb_flags(pcb, PCB_KERNFPU);
1237 		} else if ((pcb->pcb_flags & PCB_KERNFPU_THR) == 0)
1238 			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1239 	} else {
1240 		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1241 			set_pcb_flags(pcb, PCB_FPUINITDONE);
1242 		else
1243 			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1244 		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1245 	}
1246 	critical_exit();
1247 	return (0);
1248 }
1249 
1250 int
fpu_kern_thread(u_int flags)1251 fpu_kern_thread(u_int flags)
1252 {
1253 
1254 	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1255 	    ("Only kthread may use fpu_kern_thread"));
1256 	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1257 	    ("mangled pcb_save"));
1258 	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1259 
1260 	set_pcb_flags(curpcb, PCB_KERNFPU | PCB_KERNFPU_THR);
1261 	return (0);
1262 }
1263 
1264 int
is_fpu_kern_thread(u_int flags)1265 is_fpu_kern_thread(u_int flags)
1266 {
1267 
1268 	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1269 		return (0);
1270 	return ((curpcb->pcb_flags & PCB_KERNFPU_THR) != 0);
1271 }
1272 
1273 /*
1274  * FPU save area alloc/free/init utility routines
1275  */
1276 struct savefpu *
fpu_save_area_alloc(void)1277 fpu_save_area_alloc(void)
1278 {
1279 
1280 	return (uma_zalloc(fpu_save_area_zone, M_WAITOK));
1281 }
1282 
1283 void
fpu_save_area_free(struct savefpu * fsa)1284 fpu_save_area_free(struct savefpu *fsa)
1285 {
1286 
1287 	uma_zfree(fpu_save_area_zone, fsa);
1288 }
1289 
1290 void
fpu_save_area_reset(struct savefpu * fsa)1291 fpu_save_area_reset(struct savefpu *fsa)
1292 {
1293 
1294 	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1295 }
1296 
1297 static __inline void
xsave_extfeature_check(uint64_t feature,bool supervisor)1298 xsave_extfeature_check(uint64_t feature, bool supervisor)
1299 {
1300 #ifdef INVARIANTS
1301 	uint64_t mask;
1302 
1303 	mask = supervisor ? xsave_mask_supervisor : xsave_mask;
1304 	KASSERT((feature & (feature - 1)) == 0,
1305 	    ("%s: invalid XFEATURE 0x%lx", __func__, feature));
1306 	KASSERT(ilog2(feature) <= ilog2(mask),
1307 	    ("%s: unsupported %s XFEATURE 0x%lx", __func__,
1308 	    supervisor ? "supervisor" : "user", feature));
1309 #endif
1310 }
1311 
1312 static __inline void
xsave_extstate_bv_check(uint64_t xstate_bv,bool supervisor)1313 xsave_extstate_bv_check(uint64_t xstate_bv, bool supervisor)
1314 {
1315 #ifdef INVARIANTS
1316 	uint64_t mask;
1317 
1318 	mask = supervisor ? xsave_mask_supervisor : xsave_mask;
1319 	KASSERT(xstate_bv != 0 && ilog2(xstate_bv) <= ilog2(mask),
1320 	    ("%s: invalid XSTATE_BV 0x%lx", __func__, xstate_bv));
1321 #endif
1322 }
1323 
1324 /*
1325  * Returns whether the XFEATURE 'feature' is supported as a user state
1326  * or supervisor state component.
1327  */
1328 bool
xsave_extfeature_supported(uint64_t feature,bool supervisor)1329 xsave_extfeature_supported(uint64_t feature, bool supervisor)
1330 {
1331 	int idx;
1332 	uint64_t mask;
1333 
1334 	KASSERT(use_xsave, ("%s: XSAVE not supported", __func__));
1335 	xsave_extfeature_check(feature, supervisor);
1336 
1337 	mask = supervisor ? xsave_mask_supervisor : xsave_mask;
1338 	if ((mask & feature) == 0)
1339 		return (false);
1340 	idx = ilog2(feature);
1341 	return (((xsave_area_desc[idx].flags & CPUID_EXTSTATE_SUPERVISOR) != 0) ==
1342 	    supervisor);
1343 }
1344 
1345 /*
1346  * Returns whether the given XSAVE extension is supported.
1347  */
1348 bool
xsave_extension_supported(uint64_t extension)1349 xsave_extension_supported(uint64_t extension)
1350 {
1351 	KASSERT(use_xsave, ("%s: XSAVE not supported", __func__));
1352 
1353 	return ((xsave_extensions & extension) != 0);
1354 }
1355 
1356 /*
1357  * Returns offset for XFEATURE 'feature' given the requested feature bitmap
1358  * 'xstate_bv', and extended region format ('compact').
1359  */
1360 size_t
xsave_area_offset(uint64_t xstate_bv,uint64_t feature,bool compact,bool supervisor)1361 xsave_area_offset(uint64_t xstate_bv, uint64_t feature,
1362     bool compact, bool supervisor)
1363 {
1364 	int i, idx;
1365 	size_t offs;
1366 	struct xsave_area_elm_descr *xep;
1367 
1368 	KASSERT(use_xsave, ("%s: XSAVE not supported", __func__));
1369 	xsave_extstate_bv_check(xstate_bv, supervisor);
1370 	xsave_extfeature_check(feature, supervisor);
1371 
1372 	idx = ilog2(feature);
1373 	if (!compact)
1374 		return (xsave_area_desc[idx].offset);
1375 	offs = sizeof(struct savefpu) + sizeof(struct xstate_hdr);
1376 	xstate_bv &= ~(XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE);
1377 	while ((i = ffs(xstate_bv) - 1) > 0 && i < idx) {
1378 		xep = &xsave_area_desc[i];
1379 		if ((xep->flags & CPUID_EXTSTATE_ALIGNED) != 0)
1380 			offs = roundup2(offs, 64);
1381 		offs += xep->size;
1382 		xstate_bv &= ~((uint64_t)1 << i);
1383 	}
1384 
1385 	return (offs);
1386 }
1387 
1388 /*
1389  * Returns the XSAVE area size for the requested feature bitmap
1390  * 'xstate_bv' and extended region format ('compact').
1391  */
1392 size_t
xsave_area_size(uint64_t xstate_bv,bool compact,bool supervisor)1393 xsave_area_size(uint64_t xstate_bv, bool compact, bool supervisor)
1394 {
1395 	int last_idx;
1396 
1397 	KASSERT(use_xsave, ("%s: XSAVE not supported", __func__));
1398 	xsave_extstate_bv_check(xstate_bv, supervisor);
1399 
1400 	last_idx = ilog2(xstate_bv);
1401 
1402 	return (xsave_area_offset(xstate_bv, (uint64_t)1 << last_idx, compact, supervisor) +
1403 	    xsave_area_desc[last_idx].size);
1404 }
1405 
1406 size_t
xsave_area_hdr_offset(void)1407 xsave_area_hdr_offset(void)
1408 {
1409 	return (sizeof(struct savefpu));
1410 }
1411