xref: /freebsd/crypto/libecc/src/curves/aff_pt_montgomery.c (revision f0865ec9906d5a18fa2a3b61381f22ce16e606ad)
1 /*
2  *  Copyright (C) 2021 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *
8  *  This software is licensed under a dual BSD and GPL v2 license.
9  *  See LICENSE file at the root folder of the project.
10  */
11 #include <libecc/curves/aff_pt.h>
12 
13 #define AFF_PT_MONTGOMERY_MAGIC ((word_t)(0x7390a9bc43d94598ULL))
14 
15 /* Verify that an affine point has already been initialized.
16  *
17  * Returns 0 on success, -1 on error.
18  */
aff_pt_montgomery_check_initialized(aff_pt_montgomery_src_t in)19 int aff_pt_montgomery_check_initialized(aff_pt_montgomery_src_t in)
20 {
21 	int ret;
22 
23 	MUST_HAVE(((in != NULL) && (in->magic == AFF_PT_MONTGOMERY_MAGIC)), ret, err);
24 	ret = ec_montgomery_crv_check_initialized(in->crv);
25 
26 err:
27 	return ret;
28 }
29 
30 /*
31  * Initialize pointed aff_pt_montgomery structure to make it usable by library
32  * function on given curve.
33  *
34  * Returns 0 on success, -1 on error.
35  */
aff_pt_montgomery_init(aff_pt_montgomery_t in,ec_montgomery_crv_src_t curve)36 int aff_pt_montgomery_init(aff_pt_montgomery_t in, ec_montgomery_crv_src_t curve)
37 {
38 	int ret;
39 
40 	MUST_HAVE((in != NULL), ret, err);
41 	ret = ec_montgomery_crv_check_initialized(curve); EG(ret, err);
42 
43 	ret = fp_init(&(in->u), curve->A.ctx); EG(ret, err);
44 	ret = fp_init(&(in->v), curve->A.ctx); EG(ret, err);
45 
46 	in->crv = curve;
47 	in->magic = AFF_PT_MONTGOMERY_MAGIC;
48 
49 err:
50 	return ret;
51 }
52 
53 /*
54  * Initialize pointed aff_pt_montgomery structure to make it usable by library
55  * function on given curve with explicit coordinates.
56  *
57  * Returns 0 on success, -1 on error.
58  */
aff_pt_montgomery_init_from_coords(aff_pt_montgomery_t in,ec_montgomery_crv_src_t curve,fp_src_t ucoord,fp_src_t vcoord)59 int aff_pt_montgomery_init_from_coords(aff_pt_montgomery_t in,
60 			     ec_montgomery_crv_src_t curve,
61 			     fp_src_t ucoord, fp_src_t vcoord)
62 {
63 	int ret;
64 
65 	ret = aff_pt_montgomery_init(in, curve); EG(ret, err);
66 	ret = fp_copy(&(in->u), ucoord); EG(ret, err);
67 	ret = fp_copy(&(in->v), vcoord);
68 
69 err:
70 	return ret;
71 }
72 
73 /*
74  * Uninitialize pointed affine point to prevent further use (magic field
75  * in the structure is zeroized) and zeroize associated storage space.
76  * Note that the curve context pointed to by the point element (passed
77  * during init) is left untouched.
78  *
79  */
aff_pt_montgomery_uninit(aff_pt_montgomery_t in)80 void aff_pt_montgomery_uninit(aff_pt_montgomery_t in)
81 {
82 	if ((in != NULL) && (in->magic == AFF_PT_MONTGOMERY_MAGIC) && (in->crv != NULL)) {
83 		fp_uninit(&(in->u));
84 		fp_uninit(&(in->v));
85 
86 		in->crv = NULL;
87 		in->magic = WORD(0);
88 	}
89 
90 	return;
91 }
92 
93 /*
94  * 'on_curve' set to 1 if the point of coordinates (u,v) is on the curve, i.e. if it
95  * verifies curve equation B*v^2 = u^3 + A*u^2 + u. It is set to 0 otherwise.
96  * 'on_curve' is not meaningful on error.
97  *
98  * Returns 0 on success, -1 on error.
99  */
is_on_montgomery_curve(fp_src_t u,fp_src_t v,ec_montgomery_crv_src_t curve,int * on_curve)100 int is_on_montgomery_curve(fp_src_t u, fp_src_t v, ec_montgomery_crv_src_t curve, int *on_curve)
101 {
102 	fp Bv2, u3, Au2, tmp;
103 	int ret, cmp;
104 	Bv2.magic = u3.magic = Au2.magic = tmp.magic = WORD(0);
105 
106 	MUST_HAVE((on_curve != NULL), ret, err);
107 	ret = ec_montgomery_crv_check_initialized(curve); EG(ret, err);
108 
109 	ret = fp_check_initialized(u); EG(ret, err);
110 	ret = fp_check_initialized(v); EG(ret, err);
111 
112 	MUST_HAVE((u->ctx == v->ctx), ret, err);
113 	MUST_HAVE((u->ctx == curve->A.ctx), ret, err);
114 
115 	ret = fp_init(&Bv2, v->ctx); EG(ret, err);
116 	ret = fp_sqr(&Bv2, v); EG(ret, err);
117 	ret = fp_mul(&Bv2, &(curve->B), &Bv2); EG(ret, err);
118 
119 	ret = fp_init(&Au2, u->ctx); EG(ret, err);
120 	ret = fp_sqr(&Au2, u); EG(ret, err);
121 	ret = fp_copy(&u3, &Au2); EG(ret, err);
122 	ret = fp_mul(&Au2, &(curve->A), &Au2); EG(ret, err);
123 
124 	ret = fp_mul(&u3, &u3, u); EG(ret, err);
125 
126 	ret = fp_init(&tmp, u->ctx); EG(ret, err);
127 	ret = fp_add(&tmp, &u3, &Au2); EG(ret, err);
128 	ret = fp_add(&tmp, &tmp, u); EG(ret, err);
129 
130 	ret = fp_cmp(&tmp, &Bv2, &cmp); EG(ret, err);
131 
132 	(*on_curve) = (!cmp);
133 
134 err:
135 	fp_uninit(&Bv2);
136 	fp_uninit(&u3);
137 	fp_uninit(&Au2);
138 	fp_uninit(&tmp);
139 
140 	return ret;
141 }
142 
143 /* Checks if affine coordinates point is on a Montgomery curve. 'on_curve' is set to 1 if yes,
144  * 0 if no. 'on_curve' is not meaningful in case of error.
145  *
146  * Returns 0 on success, -1 on error.
147  */
aff_pt_montgomery_is_on_curve(aff_pt_montgomery_src_t pt,int * on_curve)148 int aff_pt_montgomery_is_on_curve(aff_pt_montgomery_src_t pt, int *on_curve)
149 {
150 	int ret;
151 
152 	ret = aff_pt_montgomery_check_initialized(pt); EG(ret, err);
153 
154 	ret = is_on_montgomery_curve(&(pt->u), &(pt->v), pt->crv, on_curve);
155 
156 err:
157 	return ret;
158 }
159 
160 /* Copy a Montgomery affine point in an output. The output is initialized properly.
161  *
162  * Returns 0 on success, -1 on error.
163  */
ec_montgomery_aff_copy(aff_pt_montgomery_t out,aff_pt_montgomery_src_t in)164 int ec_montgomery_aff_copy(aff_pt_montgomery_t out, aff_pt_montgomery_src_t in)
165 {
166 	int ret;
167 
168 	ret = aff_pt_montgomery_check_initialized(in); EG(ret, err);
169 
170 	ret = aff_pt_montgomery_init(out, in->crv); EG(ret, err);
171 	ret = fp_copy(&(out->u), &(in->u)); EG(ret, err);
172 	ret = fp_copy(&(out->v), &(in->v));
173 
174 err:
175 	return ret;
176 }
177 
178 /*
179  * Compares two given affine points on a Montgomery curve, it returns 0 in input 'cmp' if
180  * they correspond or not 0 if not. 'cmp' is not meaningful on error.
181  *
182  * Returns 0 on success, -1 on error.
183  */
ec_montgomery_aff_cmp(aff_pt_montgomery_src_t in1,aff_pt_montgomery_src_t in2,int * cmp)184 int ec_montgomery_aff_cmp(aff_pt_montgomery_src_t in1, aff_pt_montgomery_src_t in2, int *cmp)
185 {
186 	int ret, cmp1, cmp2;
187 
188 	MUST_HAVE((cmp != NULL), ret, err);
189 	ret = aff_pt_montgomery_check_initialized(in1); EG(ret, err);
190 	ret = aff_pt_montgomery_check_initialized(in2); EG(ret, err);
191 	MUST_HAVE((in1->crv == in2->crv), ret, err);
192 
193 	ret = fp_cmp(&(in1->u), &(in2->u), &cmp1); EG(ret, err);
194 	ret = fp_cmp(&(in1->v), &(in2->v), &cmp2); EG(ret, err);
195 
196 	(*cmp) = (cmp1 | cmp2);
197 
198 err:
199 	return ret;
200 }
201 
202 /*
203  * Import an Montgomery affine point from a buffer with the following layout; the 2
204  * coordinates (elements of Fp) are each encoded on p_len bytes, where p_len
205  * is the size of p in bytes (e.g. 66 for a prime p of 521 bits). Each
206  * coordinate is encoded in big endian. Size of buffer must exactly match
207  * 2 * p_len.
208  *
209  * Returns 0 on success, -1 on error.
210  */
aff_pt_montgomery_import_from_buf(aff_pt_montgomery_t pt,const u8 * pt_buf,u16 pt_buf_len,ec_montgomery_crv_src_t crv)211 int aff_pt_montgomery_import_from_buf(aff_pt_montgomery_t pt,
212 			   const u8 *pt_buf,
213 			   u16 pt_buf_len, ec_montgomery_crv_src_t crv)
214 {
215 	fp_ctx_src_t ctx;
216 	u16 coord_len;
217 	int ret, on_curve;
218 
219 	ret = ec_montgomery_crv_check_initialized(crv); EG(ret, err);
220 	MUST_HAVE((pt_buf != NULL) && (pt != NULL), ret, err);
221 
222 	ctx = crv->A.ctx;
223 	coord_len = (u16)BYTECEIL(ctx->p_bitlen);
224 
225 	MUST_HAVE((pt_buf_len == (2 * coord_len)), ret, err);
226 
227 	ret = fp_init_from_buf(&(pt->u), ctx, pt_buf, coord_len); EG(ret, err);
228 	ret = fp_init_from_buf(&(pt->v), ctx, pt_buf + coord_len, coord_len); EG(ret, err);
229 
230 	/* Set the curve */
231 	pt->crv = crv;
232 
233 	/* Mark the point as initialized */
234 	pt->magic = AFF_PT_MONTGOMERY_MAGIC;
235 
236 	/* Check that the point is indeed on the provided curve, uninitialize it
237 	 * if this is not the case.
238 	 */
239 	ret = aff_pt_montgomery_is_on_curve(pt, &on_curve); EG(ret, err);
240 	if (!on_curve) {
241 		aff_pt_montgomery_uninit(pt);
242 		ret = -1;
243 	}
244 
245 err:
246 	return ret;
247 }
248 
249 
250 /* Export an Montgomery affine point to a buffer with the following layout; the 2
251  * coordinates (elements of Fp) are each encoded on p_len bytes, where p_len
252  * is the size of p in bytes (e.g. 66 for a prime p of 521 bits). Each
253  * coordinate is encoded in big endian. Size of buffer must exactly match
254  * 2 * p_len.
255  *
256  * Returns 0 on success, -1 on error.
257  */
aff_pt_montgomery_export_to_buf(aff_pt_montgomery_src_t pt,u8 * pt_buf,u32 pt_buf_len)258 int aff_pt_montgomery_export_to_buf(aff_pt_montgomery_src_t pt, u8 *pt_buf, u32 pt_buf_len)
259 {
260 	fp_ctx_src_t ctx;
261 	u16 coord_len;
262 	int ret, on_curve;
263 
264 	ret = aff_pt_montgomery_check_initialized(pt); EG(ret, err);
265 	MUST_HAVE((pt_buf != NULL), ret, err);
266 
267 	/* The point to be exported must be on the curve */
268 	ret = aff_pt_montgomery_is_on_curve(pt, &on_curve); EG(ret, err);
269 	MUST_HAVE(on_curve, ret, err);
270 
271 	ctx = pt->crv->A.ctx;
272 	coord_len = (u16)BYTECEIL(ctx->p_bitlen);
273 
274 	MUST_HAVE((pt_buf_len == (2 * coord_len)), ret, err);
275 
276 	/* Export the three coordinates */
277 	ret = fp_export_to_buf(pt_buf, coord_len, &(pt->u)); EG(ret, err);
278 	ret = fp_export_to_buf(pt_buf + coord_len, coord_len, &(pt->v));
279 
280 err:
281 	return ret;
282 }
283 
284 /**** Mappings between curves *************/
285 /*
286  * Mapping curves from Montgomery to short Weiertstrass.
287  *
288  *  M{A, B} is mapped to W{a, b} using the formula:
289  *    a = (3-A^2)/(3*B^2)
290  *    b = (2*A^3-9*A)/(27*B^3)
291  *
292  * Returns 0 on success, -1 on error.
293  */
curve_montgomery_to_shortw(ec_montgomery_crv_src_t montgomery_crv,ec_shortw_crv_t shortw_crv)294 int curve_montgomery_to_shortw(ec_montgomery_crv_src_t montgomery_crv, ec_shortw_crv_t shortw_crv)
295 {
296 	fp tmp, tmp2, a, b;
297 	int ret;
298 	tmp.magic = tmp2.magic = a.magic = b.magic = WORD(0);
299 
300 	ret = ec_montgomery_crv_check_initialized(montgomery_crv); EG(ret, err);
301 
302 	ret = fp_init(&tmp, montgomery_crv->A.ctx); EG(ret, err);
303 	ret = fp_init(&tmp2, montgomery_crv->A.ctx); EG(ret, err);
304 	ret = fp_init(&a, montgomery_crv->A.ctx); EG(ret, err);
305 	ret = fp_init(&b, montgomery_crv->A.ctx); EG(ret, err);
306 
307 	/* Compute a */
308 	ret = fp_sqr(&tmp, &(montgomery_crv->B)); EG(ret, err);
309 	ret = fp_set_word_value(&tmp2, WORD(3)); EG(ret, err);
310 	/* 3*B^2 */
311 	ret = fp_mul(&tmp, &tmp, &tmp2); EG(ret, err);
312 	/* (3*B^2)^-1 */
313 	ret = fp_inv(&tmp, &tmp); EG(ret, err);
314 
315 	/* (3-A^2) */
316 	ret = fp_sqr(&tmp2, &(montgomery_crv->A)); EG(ret, err);
317 	ret = fp_set_word_value(&a, WORD(3)); EG(ret, err);
318 	ret = fp_sub(&tmp2, &a, &tmp2); EG(ret, err);
319 
320 	ret = fp_mul(&a, &tmp2, &tmp); EG(ret, err);
321 
322 	/* Compute b */
323 	ret = fp_sqr(&tmp, &(montgomery_crv->B)); EG(ret, err);
324 	ret = fp_mul(&tmp, &tmp, &(montgomery_crv->B)); EG(ret, err);
325 	ret = fp_set_word_value(&tmp2, WORD(27)); EG(ret, err);
326 	/* (27*B^3) */
327 	ret = fp_mul(&tmp, &tmp, &tmp2); EG(ret, err);
328 	/* (27*B^3)^-1 */
329 	ret = fp_inv(&tmp, &tmp); EG(ret, err);
330 
331 	/* (2*A^3-9*A) */
332 	ret = fp_set_word_value(&tmp2, WORD(2)); EG(ret, err);
333 	ret = fp_mul(&tmp2, &tmp2, &(montgomery_crv->A)); EG(ret, err);
334 	ret = fp_mul(&tmp2, &tmp2, &(montgomery_crv->A)); EG(ret, err);
335 	ret = fp_mul(&tmp2, &tmp2, &(montgomery_crv->A)); EG(ret, err);
336 
337 	ret = fp_set_word_value(&b, WORD(9)); EG(ret, err);
338 	ret = fp_mul(&b, &b, &(montgomery_crv->A)); EG(ret, err);
339 	ret = fp_sub(&b, &tmp2, &b); EG(ret, err);
340 
341 	ret = fp_mul(&b, &b, &tmp); EG(ret, err);
342 
343 	/* Initialize our short Weiertstrass curve */
344 	ret = ec_shortw_crv_init(shortw_crv, &a, &b, &(montgomery_crv->order));
345 
346 err:
347 	fp_uninit(&a);
348 	fp_uninit(&b);
349 	fp_uninit(&tmp);
350 	fp_uninit(&tmp2);
351 
352 	return ret;
353 }
354 
355 /*
356  * Checks that a short Weiertstrass curve and Montgomery curve are compatible.
357  *
358  * Returns 0 on success, -1 on error.
359  */
curve_montgomery_shortw_check(ec_montgomery_crv_src_t montgomery_crv,ec_shortw_crv_src_t shortw_crv)360 int curve_montgomery_shortw_check(ec_montgomery_crv_src_t montgomery_crv,
361 				  ec_shortw_crv_src_t shortw_crv)
362 {
363 	int ret, cmp;
364 	ec_shortw_crv check;
365 	check.magic = WORD(0);
366 
367 	ret = ec_shortw_crv_check_initialized(shortw_crv); EG(ret, err);
368 	ret = curve_montgomery_to_shortw(montgomery_crv, &check); EG(ret, err);
369 
370 	/* Check elements */
371 	MUST_HAVE((!fp_cmp(&(check.a), &(shortw_crv->a), &cmp)) && (!cmp), ret, err);
372 	MUST_HAVE((!fp_cmp(&(check.b), &(shortw_crv->b), &cmp)) && (!cmp), ret, err);
373 	MUST_HAVE((!nn_cmp(&(check.order), &(shortw_crv->order), &cmp)) && (!cmp), ret, err);
374 
375 err:
376 	ec_shortw_crv_uninit(&check);
377 
378 	return ret;
379 }
380 
381 /*
382  * Mapping curves from short Weiertstrass to Montgomery
383  *
384  *  W{a, b} is mapped to M{A, B} using the formula:
385  *    A = 3 * alpha / gamma
386  *    B = 1 / gamma
387  *  with gamma square root of c = a + 3 * alpha**2
388  *
389  * Returns 0 on success, -1 on error.
390  */
curve_shortw_to_montgomery(ec_shortw_crv_src_t shortw_crv,ec_montgomery_crv_t montgomery_crv,fp_src_t alpha,fp_src_t gamma)391 int curve_shortw_to_montgomery(ec_shortw_crv_src_t shortw_crv,
392 			       ec_montgomery_crv_t montgomery_crv,
393 			       fp_src_t alpha, fp_src_t gamma)
394 {
395 	int ret, cmp;
396 	fp c, gamma_inv, A, tmp;
397 	c.magic = gamma_inv.magic = A.magic = tmp.magic = WORD(0);
398 
399 	ret = ec_shortw_crv_check_initialized(shortw_crv); EG(ret, err);
400 	ret = fp_check_initialized(alpha); EG(ret, err);
401 	ret = fp_check_initialized(gamma); EG(ret, err);
402 	MUST_HAVE((alpha->ctx == shortw_crv->a.ctx) && (gamma->ctx == shortw_crv->a.ctx), ret, err);
403 
404 	ret = fp_init(&A, shortw_crv->a.ctx); EG(ret, err);
405 	ret = fp_init(&gamma_inv, shortw_crv->a.ctx); EG(ret, err);
406 	ret = fp_init(&c, shortw_crv->a.ctx); EG(ret, err);
407 	ret = fp_init(&tmp, shortw_crv->a.ctx); EG(ret, err);
408 
409 	/* Compute 1 / gamma */
410 	ret = fp_inv(&gamma_inv, gamma); EG(ret, err);
411 
412 	/* Compute A */
413 	ret = fp_set_word_value(&A, WORD(3)); EG(ret, err);
414 	ret = fp_mul(&A, &A, alpha); EG(ret, err);
415 	ret = fp_mul(&A, &A, &gamma_inv); EG(ret, err);
416 
417 	/* Sanity check on c */
418 	ret = fp_set_word_value(&c, WORD(3)); EG(ret, err);
419 	ret = fp_mul(&c, &c, alpha); EG(ret, err);
420 	ret = fp_mul(&c, &c, alpha); EG(ret, err);
421 	ret = fp_add(&c, &c, &(shortw_crv->a)); EG(ret, err);
422 	ret = fp_sqr(&tmp, gamma); EG(ret, err);
423 	/* gamma ** 2 must be equal to c */
424 	MUST_HAVE((!fp_cmp(&c, &tmp, &cmp)) && (!cmp), ret, err);
425 
426 	/* B is simply the inverse of gamma */
427 	ret = ec_montgomery_crv_init(montgomery_crv, &A, &gamma_inv, &(shortw_crv->order));
428 
429 err:
430 	fp_uninit(&A);
431 	fp_uninit(&gamma_inv);
432 	fp_uninit(&c);
433 	fp_uninit(&tmp);
434 
435 	return ret;
436 }
437 
438 /*
439  * Mapping points from Montgomery to short Weierstrass.
440  *   Point M(u, v) is mapped to W(x, y) with the formula:
441  *       - (x, y) = ((u/B)+(A/3B), v/B)
442  *
443  * Returns 0 on success, -1 on error.
444  */
aff_pt_montgomery_to_shortw(aff_pt_montgomery_src_t in_montgomery,ec_shortw_crv_src_t shortw_crv,aff_pt_t out_shortw)445 int aff_pt_montgomery_to_shortw(aff_pt_montgomery_src_t in_montgomery,
446 				ec_shortw_crv_src_t shortw_crv, aff_pt_t out_shortw)
447 {
448 	int ret, on_curve;
449 	fp tmp, tmp2;
450 	tmp.magic = tmp2.magic = WORD(0);
451 
452 	ret = ec_shortw_crv_check_initialized(shortw_crv); EG(ret, err);
453 
454 	/* Check that our input point is on its curve */
455 	MUST_HAVE((!aff_pt_montgomery_is_on_curve(in_montgomery, &on_curve)) && on_curve, ret, err);
456 
457 	ret = fp_init(&tmp, in_montgomery->crv->A.ctx); EG(ret, err);
458 	ret = fp_init(&tmp2, in_montgomery->crv->A.ctx); EG(ret, err);
459 
460 	ret = aff_pt_montgomery_check_initialized(in_montgomery); EG(ret, err);
461 	ret = curve_montgomery_shortw_check(in_montgomery->crv, shortw_crv); EG(ret, err);
462 
463 	ret = aff_pt_init(out_shortw, shortw_crv); EG(ret, err);
464 
465 	ret = fp_inv(&tmp, &(in_montgomery->crv->B)); EG(ret, err);
466 	ret = fp_mul(&tmp, &tmp, &(in_montgomery->u)); EG(ret, err);
467 
468 	ret = fp_set_word_value(&tmp2, WORD(3)); EG(ret, err);
469 	ret = fp_mul(&tmp2, &tmp2, &(in_montgomery->crv->B)); EG(ret, err);
470 	ret = fp_inv(&tmp2, &tmp2); EG(ret, err);
471 	ret = fp_mul(&tmp2, &tmp2, &(in_montgomery->crv->A)); EG(ret, err);
472 
473 	ret = fp_add(&(out_shortw->x), &tmp, &tmp2); EG(ret, err);
474 
475 	ret = fp_inv(&tmp, &(in_montgomery->crv->B)); EG(ret, err);
476 	ret = fp_mul(&(out_shortw->y), &tmp, &(in_montgomery->v)); EG(ret, err);
477 
478 	/* Final check that the point is on the curve */
479 	MUST_HAVE((!aff_pt_is_on_curve(out_shortw, &on_curve)) && on_curve, ret, err);
480 
481 err:
482 	fp_uninit(&tmp);
483 	fp_uninit(&tmp2);
484 
485 	return ret;
486 }
487 
488 /*
489  * Mapping from short Weierstrass to Montgomery.
490  *   Point W(x, y) is mapped to M(u, v) with the formula:
491  *       - (u, v) = (((Bx)−(A/3), By)
492  *
493  * Returns 0 on success, -1 on error.
494  */
aff_pt_shortw_to_montgomery(aff_pt_src_t in_shortw,ec_montgomery_crv_src_t montgomery_crv,aff_pt_montgomery_t out_montgomery)495 int aff_pt_shortw_to_montgomery(aff_pt_src_t in_shortw,
496 				ec_montgomery_crv_src_t montgomery_crv,
497 				aff_pt_montgomery_t out_montgomery)
498 {
499 	int ret, on_curve;
500 	fp tmp, tmp2;
501 	tmp.magic = tmp2.magic = WORD(0);
502 
503 	ret = ec_montgomery_crv_check_initialized(montgomery_crv); EG(ret, err);
504 
505 	/* Check that our input point is on its curve */
506 	MUST_HAVE((!aff_pt_is_on_curve(in_shortw, &on_curve)) && on_curve, ret, err);
507 
508 	ret = fp_init(&tmp, in_shortw->crv->a.ctx); EG(ret, err);
509 	ret = fp_init(&tmp2, in_shortw->crv->a.ctx); EG(ret, err);
510 
511 	ret = curve_montgomery_shortw_check(montgomery_crv, in_shortw->crv); EG(ret, err);
512 
513 	ret = aff_pt_montgomery_init(out_montgomery, montgomery_crv); EG(ret, err);
514 
515 	/* A/3 */
516 	ret = fp_inv_word(&tmp, WORD(3)); EG(ret, err);
517 	ret = fp_mul(&tmp, &tmp, &(montgomery_crv->A)); EG(ret, err);
518 
519 	/* Bx */
520 	ret = fp_mul(&tmp2, &(montgomery_crv->B), &(in_shortw->x)); EG(ret, err);
521 
522 	/* u = (Bx) - (A/3) */
523 	ret = fp_sub(&(out_montgomery->u), &tmp2, &tmp); EG(ret, err);
524 
525 	/* v = By */
526 	ret = fp_mul(&(out_montgomery->v), &(montgomery_crv->B), &(in_shortw->y)); EG(ret, err);
527 
528 	/* Final check that the point is on the curve */
529 	MUST_HAVE((!aff_pt_montgomery_is_on_curve(out_montgomery, &on_curve)) && on_curve, ret, err);
530 
531 err:
532 	fp_uninit(&tmp);
533 	fp_uninit(&tmp2);
534 
535 	return ret;
536 }
537 
538 
539 /*
540  * Recover the two possible v coordinates from one u on a given
541  * curve.
542  * The two outputs v1 and v2 are initialized in the function.
543  *
544  * The function returns -1 on error, 0 on success.
545  *
546  */
aff_pt_montgomery_v_from_u(fp_t v1,fp_t v2,fp_src_t u,ec_montgomery_crv_src_t crv)547 int aff_pt_montgomery_v_from_u(fp_t v1, fp_t v2, fp_src_t u, ec_montgomery_crv_src_t crv)
548 {
549 	int ret;
550 
551 	/* Sanity checks */
552 	ret = fp_check_initialized(u); EG(ret, err);
553 	ret = ec_montgomery_crv_check_initialized(crv); EG(ret, err);
554 	MUST_HAVE((u->ctx == crv->A.ctx) && (u->ctx == crv->B.ctx), ret, err);
555 	MUST_HAVE((v1 != NULL) && (v2 != NULL), ret, err);
556 	/* Aliasing is not supported */
557 	MUST_HAVE((v1 != v2) && (v1 != u), ret, err);
558 
559 	/* Initialize v1 and v2 with context */
560 	ret = fp_init(v1, u->ctx); EG(ret, err);
561 	ret = fp_init(v2, u->ctx); EG(ret, err);
562 
563 	/* v must satisfy the equation B v^2 = u^3 + A u^2 + u,
564 	 * so we compute square root for B^-1 * (u^3 + A u^2 + u)
565 	 */
566 	ret = fp_sqr(v2, u); EG(ret, err);
567 	ret = fp_mul(v1, v2, u); EG(ret, err);
568 	ret = fp_mul(v2, v2, &(crv->A)); EG(ret, err);
569 	ret = fp_add(v1, v1, v2); EG(ret, err);
570 	ret = fp_add(v1, v1, u); EG(ret, err);
571 	ret = fp_inv(v2, &(crv->B)); EG(ret, err);
572 	ret = fp_mul(v1, v1, v2); EG(ret, err);
573 
574 	/* Choose any of the two square roots as the solution */
575 	ret = fp_sqrt(v1, v2, v1);
576 
577 err:
578 	return ret;
579 }
580