xref: /freebsd/crypto/openssh/addr.c (revision 0fdf8fae8b569bf9fff3b5171e669dcd7cf9c79e)
1 /* $OpenBSD: addr.c,v 1.8 2024/04/02 09:29:31 deraadt Exp $ */
2 
3 /*
4  * Copyright (c) 2004-2008 Damien Miller <djm@mindrot.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include "includes.h"
20 
21 #include <sys/types.h>
22 #include <sys/socket.h>
23 #include <netinet/in.h>
24 #include <arpa/inet.h>
25 
26 #include <netdb.h>
27 #include <string.h>
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <limits.h>
31 
32 #include "addr.h"
33 
34 #define _SA(x)	((struct sockaddr *)(x))
35 
36 int
addr_unicast_masklen(int af)37 addr_unicast_masklen(int af)
38 {
39 	switch (af) {
40 	case AF_INET:
41 		return 32;
42 	case AF_INET6:
43 		return 128;
44 	default:
45 		return -1;
46 	}
47 }
48 
49 static inline int
masklen_valid(int af,u_int masklen)50 masklen_valid(int af, u_int masklen)
51 {
52 	switch (af) {
53 	case AF_INET:
54 		return masklen <= 32 ? 0 : -1;
55 	case AF_INET6:
56 		return masklen <= 128 ? 0 : -1;
57 	default:
58 		return -1;
59 	}
60 }
61 
62 int
addr_xaddr_to_sa(const struct xaddr * xa,struct sockaddr * sa,socklen_t * len,u_int16_t port)63 addr_xaddr_to_sa(const struct xaddr *xa, struct sockaddr *sa, socklen_t *len,
64     u_int16_t port)
65 {
66 	struct sockaddr_in *in4 = (struct sockaddr_in *)sa;
67 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)sa;
68 
69 	if (xa == NULL || sa == NULL || len == NULL)
70 		return -1;
71 
72 	switch (xa->af) {
73 	case AF_INET:
74 		if (*len < sizeof(*in4))
75 			return -1;
76 		memset(sa, '\0', sizeof(*in4));
77 		*len = sizeof(*in4);
78 #ifdef SOCK_HAS_LEN
79 		in4->sin_len = sizeof(*in4);
80 #endif
81 		in4->sin_family = AF_INET;
82 		in4->sin_port = htons(port);
83 		memcpy(&in4->sin_addr, &xa->v4, sizeof(in4->sin_addr));
84 		break;
85 	case AF_INET6:
86 		if (*len < sizeof(*in6))
87 			return -1;
88 		memset(sa, '\0', sizeof(*in6));
89 		*len = sizeof(*in6);
90 #ifdef SOCK_HAS_LEN
91 		in6->sin6_len = sizeof(*in6);
92 #endif
93 		in6->sin6_family = AF_INET6;
94 		in6->sin6_port = htons(port);
95 		memcpy(&in6->sin6_addr, &xa->v6, sizeof(in6->sin6_addr));
96 #ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID
97 		in6->sin6_scope_id = xa->scope_id;
98 #endif
99 		break;
100 	default:
101 		return -1;
102 	}
103 	return 0;
104 }
105 
106 /*
107  * Convert struct sockaddr to struct xaddr
108  * Returns 0 on success, -1 on failure.
109  */
110 int
addr_sa_to_xaddr(struct sockaddr * sa,socklen_t slen,struct xaddr * xa)111 addr_sa_to_xaddr(struct sockaddr *sa, socklen_t slen, struct xaddr *xa)
112 {
113 	struct sockaddr_in *in4 = (struct sockaddr_in *)sa;
114 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)sa;
115 
116 	memset(xa, '\0', sizeof(*xa));
117 
118 	switch (sa->sa_family) {
119 	case AF_INET:
120 		if (slen < (socklen_t)sizeof(*in4))
121 			return -1;
122 		xa->af = AF_INET;
123 		memcpy(&xa->v4, &in4->sin_addr, sizeof(xa->v4));
124 		break;
125 	case AF_INET6:
126 		if (slen < (socklen_t)sizeof(*in6))
127 			return -1;
128 		xa->af = AF_INET6;
129 		memcpy(&xa->v6, &in6->sin6_addr, sizeof(xa->v6));
130 #ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_SCOPE_ID
131 		xa->scope_id = in6->sin6_scope_id;
132 #endif
133 		break;
134 	default:
135 		return -1;
136 	}
137 
138 	return 0;
139 }
140 
141 int
addr_invert(struct xaddr * n)142 addr_invert(struct xaddr *n)
143 {
144 	int i;
145 
146 	if (n == NULL)
147 		return -1;
148 
149 	switch (n->af) {
150 	case AF_INET:
151 		n->v4.s_addr = ~n->v4.s_addr;
152 		return 0;
153 	case AF_INET6:
154 		for (i = 0; i < 4; i++)
155 			n->addr32[i] = ~n->addr32[i];
156 		return 0;
157 	default:
158 		return -1;
159 	}
160 }
161 
162 /*
163  * Calculate a netmask of length 'l' for address family 'af' and
164  * store it in 'n'.
165  * Returns 0 on success, -1 on failure.
166  */
167 int
addr_netmask(int af,u_int l,struct xaddr * n)168 addr_netmask(int af, u_int l, struct xaddr *n)
169 {
170 	int i;
171 
172 	if (masklen_valid(af, l) != 0 || n == NULL)
173 		return -1;
174 
175 	memset(n, '\0', sizeof(*n));
176 	switch (af) {
177 	case AF_INET:
178 		n->af = AF_INET;
179 		if (l == 0)
180 			return 0;
181 		n->v4.s_addr = htonl((0xffffffff << (32 - l)) & 0xffffffff);
182 		return 0;
183 	case AF_INET6:
184 		n->af = AF_INET6;
185 		for (i = 0; i < 4 && l >= 32; i++, l -= 32)
186 			n->addr32[i] = 0xffffffffU;
187 		if (i < 4 && l != 0)
188 			n->addr32[i] = htonl((0xffffffff << (32 - l)) &
189 			    0xffffffff);
190 		return 0;
191 	default:
192 		return -1;
193 	}
194 }
195 
196 int
addr_hostmask(int af,u_int l,struct xaddr * n)197 addr_hostmask(int af, u_int l, struct xaddr *n)
198 {
199 	if (addr_netmask(af, l, n) == -1 || addr_invert(n) == -1)
200 		return -1;
201 	return 0;
202 }
203 
204 /*
205  * Perform logical AND of addresses 'a' and 'b', storing result in 'dst'.
206  * Returns 0 on success, -1 on failure.
207  */
208 int
addr_and(struct xaddr * dst,const struct xaddr * a,const struct xaddr * b)209 addr_and(struct xaddr *dst, const struct xaddr *a, const struct xaddr *b)
210 {
211 	int i;
212 
213 	if (dst == NULL || a == NULL || b == NULL || a->af != b->af)
214 		return -1;
215 
216 	memcpy(dst, a, sizeof(*dst));
217 	switch (a->af) {
218 	case AF_INET:
219 		dst->v4.s_addr &= b->v4.s_addr;
220 		return 0;
221 	case AF_INET6:
222 		dst->scope_id = a->scope_id;
223 		for (i = 0; i < 4; i++)
224 			dst->addr32[i] &= b->addr32[i];
225 		return 0;
226 	default:
227 		return -1;
228 	}
229 }
230 
231 int
addr_or(struct xaddr * dst,const struct xaddr * a,const struct xaddr * b)232 addr_or(struct xaddr *dst, const struct xaddr *a, const struct xaddr *b)
233 {
234 	int i;
235 
236 	if (dst == NULL || a == NULL || b == NULL || a->af != b->af)
237 		return (-1);
238 
239 	memcpy(dst, a, sizeof(*dst));
240 	switch (a->af) {
241 	case AF_INET:
242 		dst->v4.s_addr |= b->v4.s_addr;
243 		return (0);
244 	case AF_INET6:
245 		for (i = 0; i < 4; i++)
246 			dst->addr32[i] |= b->addr32[i];
247 		return (0);
248 	default:
249 		return (-1);
250 	}
251 }
252 
253 int
addr_cmp(const struct xaddr * a,const struct xaddr * b)254 addr_cmp(const struct xaddr *a, const struct xaddr *b)
255 {
256 	int i;
257 
258 	if (a->af != b->af)
259 		return (a->af == AF_INET6 ? 1 : -1);
260 
261 	switch (a->af) {
262 	case AF_INET:
263 		/*
264 		 * Can't just subtract here as 255.255.255.255 - 0.0.0.0 is
265 		 * too big to fit into a signed int
266 		 */
267 		if (a->v4.s_addr == b->v4.s_addr)
268 			return 0;
269 		return (ntohl(a->v4.s_addr) > ntohl(b->v4.s_addr) ? 1 : -1);
270 	case AF_INET6:
271 		/*
272 		 * Do this a byte at a time to avoid the above issue and
273 		 * any endian problems
274 		 */
275 		for (i = 0; i < 16; i++)
276 			if (a->addr8[i] - b->addr8[i] != 0)
277 				return (a->addr8[i] - b->addr8[i]);
278 		if (a->scope_id == b->scope_id)
279 			return (0);
280 		return (a->scope_id > b->scope_id ? 1 : -1);
281 	default:
282 		return (-1);
283 	}
284 }
285 
286 int
addr_is_all0s(const struct xaddr * a)287 addr_is_all0s(const struct xaddr *a)
288 {
289 	int i;
290 
291 	switch (a->af) {
292 	case AF_INET:
293 		return (a->v4.s_addr == 0 ? 0 : -1);
294 	case AF_INET6:
295 		for (i = 0; i < 4; i++)
296 			if (a->addr32[i] != 0)
297 				return -1;
298 		return 0;
299 	default:
300 		return -1;
301 	}
302 }
303 
304 /* Increment the specified address. Note, does not do overflow checking */
305 void
addr_increment(struct xaddr * a)306 addr_increment(struct xaddr *a)
307 {
308 	int i;
309 	uint32_t n;
310 
311 	switch (a->af) {
312 	case AF_INET:
313 		a->v4.s_addr = htonl(ntohl(a->v4.s_addr) + 1);
314 		break;
315 	case AF_INET6:
316 		for (i = 0; i < 4; i++) {
317 			/* Increment with carry */
318 			n = ntohl(a->addr32[3 - i]) + 1;
319 			a->addr32[3 - i] = htonl(n);
320 			if (n != 0)
321 				break;
322 		}
323 		break;
324 	}
325 }
326 
327 /*
328  * Test whether host portion of address 'a', as determined by 'masklen'
329  * is all zeros.
330  * Returns 0 if host portion of address is all-zeros,
331  * -1 if not all zeros or on failure.
332  */
333 int
addr_host_is_all0s(const struct xaddr * a,u_int masklen)334 addr_host_is_all0s(const struct xaddr *a, u_int masklen)
335 {
336 	struct xaddr tmp_addr, tmp_mask, tmp_result;
337 
338 	memcpy(&tmp_addr, a, sizeof(tmp_addr));
339 	if (addr_hostmask(a->af, masklen, &tmp_mask) == -1)
340 		return -1;
341 	if (addr_and(&tmp_result, &tmp_addr, &tmp_mask) == -1)
342 		return -1;
343 	return addr_is_all0s(&tmp_result);
344 }
345 
346 #if 0
347 int
348 addr_host_to_all0s(struct xaddr *a, u_int masklen)
349 {
350 	struct xaddr tmp_mask;
351 
352 	if (addr_netmask(a->af, masklen, &tmp_mask) == -1)
353 		return (-1);
354 	if (addr_and(a, a, &tmp_mask) == -1)
355 		return (-1);
356 	return (0);
357 }
358 #endif
359 
360 int
addr_host_to_all1s(struct xaddr * a,u_int masklen)361 addr_host_to_all1s(struct xaddr *a, u_int masklen)
362 {
363 	struct xaddr tmp_mask;
364 
365 	if (addr_hostmask(a->af, masklen, &tmp_mask) == -1)
366 		return (-1);
367 	if (addr_or(a, a, &tmp_mask) == -1)
368 		return (-1);
369 	return (0);
370 }
371 
372 /*
373  * Parse string address 'p' into 'n'.
374  * Returns 0 on success, -1 on failure.
375  */
376 int
addr_pton(const char * p,struct xaddr * n)377 addr_pton(const char *p, struct xaddr *n)
378 {
379 	struct addrinfo hints, *ai;
380 
381 	memset(&hints, '\0', sizeof(hints));
382 	hints.ai_flags = AI_NUMERICHOST;
383 
384 	if (p == NULL || getaddrinfo(p, NULL, &hints, &ai) != 0)
385 		return -1;
386 
387 	if (ai == NULL)
388 		return -1;
389 
390 	if (ai->ai_addr == NULL) {
391 		freeaddrinfo(ai);
392 		return -1;
393 	}
394 
395 	if (n != NULL && addr_sa_to_xaddr(ai->ai_addr, ai->ai_addrlen,
396 	    n) == -1) {
397 		freeaddrinfo(ai);
398 		return -1;
399 	}
400 
401 	freeaddrinfo(ai);
402 	return 0;
403 }
404 
405 int
addr_sa_pton(const char * h,const char * s,struct sockaddr * sa,socklen_t slen)406 addr_sa_pton(const char *h, const char *s, struct sockaddr *sa, socklen_t slen)
407 {
408 	struct addrinfo hints, *ai;
409 
410 	memset(&hints, '\0', sizeof(hints));
411 	hints.ai_flags = AI_NUMERICHOST;
412 
413 	if (h == NULL || getaddrinfo(h, s, &hints, &ai) != 0)
414 		return -1;
415 
416 	if (ai == NULL)
417 		return -1;
418 
419 	if (ai->ai_addr == NULL) {
420 		freeaddrinfo(ai);
421 		return -1;
422 	}
423 
424 	if (sa != NULL) {
425 		if (slen < ai->ai_addrlen) {
426 			freeaddrinfo(ai);
427 			return -1;
428 		}
429 		memcpy(sa, &ai->ai_addr, ai->ai_addrlen);
430 	}
431 
432 	freeaddrinfo(ai);
433 	return 0;
434 }
435 
436 int
addr_ntop(const struct xaddr * n,char * p,size_t len)437 addr_ntop(const struct xaddr *n, char *p, size_t len)
438 {
439 	struct sockaddr_storage ss;
440 	socklen_t slen = sizeof(ss);
441 
442 	if (addr_xaddr_to_sa(n, _SA(&ss), &slen, 0) == -1)
443 		return -1;
444 	if (p == NULL || len == 0)
445 		return -1;
446 	if (getnameinfo(_SA(&ss), slen, p, len, NULL, 0,
447 	    NI_NUMERICHOST) != 0)
448 		return -1;
449 
450 	return 0;
451 }
452 
453 /*
454  * Parse a CIDR address (x.x.x.x/y or xxxx:yyyy::/z).
455  * Return -1 on parse error, -2 on inconsistency or 0 on success.
456  */
457 int
addr_pton_cidr(const char * p,struct xaddr * n,u_int * l)458 addr_pton_cidr(const char *p, struct xaddr *n, u_int *l)
459 {
460 	struct xaddr tmp;
461 	u_int masklen = 999;
462 	char addrbuf[64], *mp;
463 	const char *errstr;
464 
465 	/* Don't modify argument */
466 	if (p == NULL || strlcpy(addrbuf, p, sizeof(addrbuf)) >= sizeof(addrbuf))
467 		return -1;
468 
469 	if ((mp = strchr(addrbuf, '/')) != NULL) {
470 		*mp = '\0';
471 		mp++;
472 		masklen = (u_int)strtonum(mp, 0, INT_MAX, &errstr);
473 		if (errstr)
474 			return -1;
475 	}
476 
477 	if (addr_pton(addrbuf, &tmp) == -1)
478 		return -1;
479 
480 	if (mp == NULL)
481 		masklen = addr_unicast_masklen(tmp.af);
482 	if (masklen_valid(tmp.af, masklen) == -1)
483 		return -2;
484 	if (addr_host_is_all0s(&tmp, masklen) != 0)
485 		return -2;
486 
487 	if (n != NULL)
488 		memcpy(n, &tmp, sizeof(*n));
489 	if (l != NULL)
490 		*l = masklen;
491 
492 	return 0;
493 }
494 
495 int
addr_netmatch(const struct xaddr * host,const struct xaddr * net,u_int masklen)496 addr_netmatch(const struct xaddr *host, const struct xaddr *net, u_int masklen)
497 {
498 	struct xaddr tmp_mask, tmp_result;
499 
500 	if (host->af != net->af)
501 		return -1;
502 
503 	if (addr_netmask(host->af, masklen, &tmp_mask) == -1)
504 		return -1;
505 	if (addr_and(&tmp_result, host, &tmp_mask) == -1)
506 		return -1;
507 	return addr_cmp(&tmp_result, net);
508 }
509