xref: /freebsd/contrib/llvm-project/llvm/lib/Target/X86/X86FixupBWInsts.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1  //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  /// \file
9  /// This file defines the pass that looks through the machine instructions
10  /// late in the compilation, and finds byte or word instructions that
11  /// can be profitably replaced with 32 bit instructions that give equivalent
12  /// results for the bits of the results that are used. There are two possible
13  /// reasons to do this.
14  ///
15  /// One reason is to avoid false-dependences on the upper portions
16  /// of the registers.  Only instructions that have a destination register
17  /// which is not in any of the source registers can be affected by this.
18  /// Any instruction where one of the source registers is also the destination
19  /// register is unaffected, because it has a true dependence on the source
20  /// register already.  So, this consideration primarily affects load
21  /// instructions and register-to-register moves.  It would
22  /// seem like cmov(s) would also be affected, but because of the way cmov is
23  /// really implemented by most machines as reading both the destination and
24  /// and source registers, and then "merging" the two based on a condition,
25  /// it really already should be considered as having a true dependence on the
26  /// destination register as well.
27  ///
28  /// The other reason to do this is for potential code size savings.  Word
29  /// operations need an extra override byte compared to their 32 bit
30  /// versions. So this can convert many word operations to their larger
31  /// size, saving a byte in encoding. This could introduce partial register
32  /// dependences where none existed however.  As an example take:
33  ///   orw  ax, $0x1000
34  ///   addw ax, $3
35  /// now if this were to get transformed into
36  ///   orw  ax, $1000
37  ///   addl eax, $3
38  /// because the addl encodes shorter than the addw, this would introduce
39  /// a use of a register that was only partially written earlier.  On older
40  /// Intel processors this can be quite a performance penalty, so this should
41  /// probably only be done when it can be proven that a new partial dependence
42  /// wouldn't be created, or when your know a newer processor is being
43  /// targeted, or when optimizing for minimum code size.
44  ///
45  //===----------------------------------------------------------------------===//
46  
47  #include "X86.h"
48  #include "X86InstrInfo.h"
49  #include "X86Subtarget.h"
50  #include "llvm/ADT/Statistic.h"
51  #include "llvm/Analysis/ProfileSummaryInfo.h"
52  #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
53  #include "llvm/CodeGen/LiveRegUnits.h"
54  #include "llvm/CodeGen/MachineFunctionPass.h"
55  #include "llvm/CodeGen/MachineInstrBuilder.h"
56  #include "llvm/CodeGen/MachineRegisterInfo.h"
57  #include "llvm/CodeGen/MachineSizeOpts.h"
58  #include "llvm/CodeGen/Passes.h"
59  #include "llvm/CodeGen/TargetInstrInfo.h"
60  #include "llvm/Support/Debug.h"
61  #include "llvm/Support/raw_ostream.h"
62  using namespace llvm;
63  
64  #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
65  #define FIXUPBW_NAME "x86-fixup-bw-insts"
66  
67  #define DEBUG_TYPE FIXUPBW_NAME
68  
69  // Option to allow this optimization pass to have fine-grained control.
70  static cl::opt<bool>
71      FixupBWInsts("fixup-byte-word-insts",
72                   cl::desc("Change byte and word instructions to larger sizes"),
73                   cl::init(true), cl::Hidden);
74  
75  namespace {
76  class FixupBWInstPass : public MachineFunctionPass {
77    /// Loop over all of the instructions in the basic block replacing applicable
78    /// byte or word instructions with better alternatives.
79    void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
80  
81    /// This returns the 32 bit super reg of the original destination register of
82    /// the MachineInstr passed in, if that super register is dead just prior to
83    /// \p OrigMI. Otherwise it returns Register().
84    Register getSuperRegDestIfDead(MachineInstr *OrigMI) const;
85  
86    /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
87    /// register if it is safe to do so.  Return the replacement instruction if
88    /// OK, otherwise return nullptr.
89    MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
90  
91    /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
92    /// safe to do so.  Return the replacement instruction if OK, otherwise return
93    /// nullptr.
94    MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
95  
96    /// Change the MachineInstr \p MI into the equivalent extend to 32 bit
97    /// register if it is safe to do so.  Return the replacement instruction if
98    /// OK, otherwise return nullptr.
99    MachineInstr *tryReplaceExtend(unsigned New32BitOpcode,
100                                   MachineInstr *MI) const;
101  
102    // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
103    // possible.  Return the replacement instruction if OK, return nullptr
104    // otherwise.
105    MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
106  
107  public:
108    static char ID;
109  
getPassName() const110    StringRef getPassName() const override { return FIXUPBW_DESC; }
111  
FixupBWInstPass()112    FixupBWInstPass() : MachineFunctionPass(ID) { }
113  
getAnalysisUsage(AnalysisUsage & AU) const114    void getAnalysisUsage(AnalysisUsage &AU) const override {
115      AU.addRequired<ProfileSummaryInfoWrapperPass>();
116      AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
117      MachineFunctionPass::getAnalysisUsage(AU);
118    }
119  
120    /// Loop over all of the basic blocks, replacing byte and word instructions by
121    /// equivalent 32 bit instructions where performance or code size can be
122    /// improved.
123    bool runOnMachineFunction(MachineFunction &MF) override;
124  
getRequiredProperties() const125    MachineFunctionProperties getRequiredProperties() const override {
126      return MachineFunctionProperties().set(
127          MachineFunctionProperties::Property::NoVRegs);
128    }
129  
130  private:
131    MachineFunction *MF = nullptr;
132  
133    /// Machine instruction info used throughout the class.
134    const X86InstrInfo *TII = nullptr;
135  
136    const TargetRegisterInfo *TRI = nullptr;
137  
138    /// Local member for function's OptForSize attribute.
139    bool OptForSize = false;
140  
141    /// Register Liveness information after the current instruction.
142    LiveRegUnits LiveUnits;
143  
144    ProfileSummaryInfo *PSI = nullptr;
145    MachineBlockFrequencyInfo *MBFI = nullptr;
146  };
147  char FixupBWInstPass::ID = 0;
148  }
149  
INITIALIZE_PASS(FixupBWInstPass,FIXUPBW_NAME,FIXUPBW_DESC,false,false)150  INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
151  
152  FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
153  
runOnMachineFunction(MachineFunction & MF)154  bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
155    if (!FixupBWInsts || skipFunction(MF.getFunction()))
156      return false;
157  
158    this->MF = &MF;
159    TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
160    TRI = MF.getRegInfo().getTargetRegisterInfo();
161    PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
162    MBFI = (PSI && PSI->hasProfileSummary()) ?
163           &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
164           nullptr;
165    LiveUnits.init(TII->getRegisterInfo());
166  
167    LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
168  
169    // Process all basic blocks.
170    for (auto &MBB : MF)
171      processBasicBlock(MF, MBB);
172  
173    LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
174  
175    return true;
176  }
177  
178  /// Check if after \p OrigMI the only portion of super register
179  /// of the destination register of \p OrigMI that is alive is that
180  /// destination register.
181  ///
182  /// If so, return that super register in \p SuperDestReg.
getSuperRegDestIfDead(MachineInstr * OrigMI) const183  Register FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI) const {
184    const X86RegisterInfo *TRI = &TII->getRegisterInfo();
185    Register OrigDestReg = OrigMI->getOperand(0).getReg();
186    Register SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
187    assert(SuperDestReg.isValid() && "Invalid Operand");
188  
189    const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
190  
191    // Make sure that the sub-register that this instruction has as its
192    // destination is the lowest order sub-register of the super-register.
193    // If it isn't, then the register isn't really dead even if the
194    // super-register is considered dead.
195    if (SubRegIdx == X86::sub_8bit_hi)
196      return Register();
197  
198    // Test all regunits of the super register that are not part of the
199    // sub register. If none of them are live then the super register is safe to
200    // use.
201    bool SuperIsLive = false;
202    auto Range = TRI->regunits(OrigDestReg);
203    MCRegUnitIterator I = Range.begin(), E = Range.end();
204    for (MCRegUnit S : TRI->regunits(SuperDestReg)) {
205      I = std::lower_bound(I, E, S);
206      if ((I == E || *I > S) && LiveUnits.getBitVector().test(S)) {
207        SuperIsLive = true;
208        break;
209      }
210    }
211    if (!SuperIsLive)
212      return SuperDestReg;
213  
214    // If we get here, the super-register destination (or some part of it) is
215    // marked as live after the original instruction.
216    //
217    // The X86 backend does not have subregister liveness tracking enabled,
218    // so liveness information might be overly conservative. Specifically, the
219    // super register might be marked as live because it is implicitly defined
220    // by the instruction we are examining.
221    //
222    // However, for some specific instructions (this pass only cares about MOVs)
223    // we can produce more precise results by analysing that MOV's operands.
224    //
225    // Indeed, if super-register is not live before the mov it means that it
226    // was originally <read-undef> and so we are free to modify these
227    // undef upper bits. That may happen in case where the use is in another MBB
228    // and the vreg/physreg corresponding to the move has higher width than
229    // necessary (e.g. due to register coalescing with a "truncate" copy).
230    // So, we would like to handle patterns like this:
231    //
232    //   %bb.2: derived from LLVM BB %if.then
233    //   Live Ins: %rdi
234    //   Predecessors according to CFG: %bb.0
235    //   %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
236    //                                 ; No implicit %eax
237    //   Successors according to CFG: %bb.3(?%)
238    //
239    //   %bb.3: derived from LLVM BB %if.end
240    //   Live Ins: %eax                            Only %ax is actually live
241    //   Predecessors according to CFG: %bb.2 %bb.1
242    //   %ax = KILL %ax, implicit killed %eax
243    //   RET 0, %ax
244    unsigned Opc = OrigMI->getOpcode();
245    // These are the opcodes currently known to work with the code below, if
246    // something // else will be added we need to ensure that new opcode has the
247    // same properties.
248    if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr &&
249        Opc != X86::MOV16rr)
250      return Register();
251  
252    bool IsDefined = false;
253    for (auto &MO: OrigMI->implicit_operands()) {
254      if (!MO.isReg())
255        continue;
256  
257      if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
258        IsDefined = true;
259  
260      // If MO is a use of any part of the destination register but is not equal
261      // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
262      // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
263      // %eax, or %rax will prevent us from using the %eax register.
264      if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
265          TRI->regsOverlap(SuperDestReg, MO.getReg()))
266        return Register();
267    }
268    // Reg is not Imp-def'ed -> it's live both before/after the instruction.
269    if (!IsDefined)
270      return Register();
271  
272    // Otherwise, the Reg is not live before the MI and the MOV can't
273    // make it really live, so it's in fact dead even after the MI.
274    return SuperDestReg;
275  }
276  
tryReplaceLoad(unsigned New32BitOpcode,MachineInstr * MI) const277  MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
278                                                MachineInstr *MI) const {
279    // We are going to try to rewrite this load to a larger zero-extending
280    // load.  This is safe if all portions of the 32 bit super-register
281    // of the original destination register, except for the original destination
282    // register are dead. getSuperRegDestIfDead checks that.
283    Register NewDestReg = getSuperRegDestIfDead(MI);
284    if (!NewDestReg)
285      return nullptr;
286  
287    // Safe to change the instruction.
288    MachineInstrBuilder MIB =
289        BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg);
290  
291    unsigned NumArgs = MI->getNumOperands();
292    for (unsigned i = 1; i < NumArgs; ++i)
293      MIB.add(MI->getOperand(i));
294  
295    MIB.setMemRefs(MI->memoperands());
296  
297    // If it was debug tracked, record a substitution.
298    if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
299      unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
300                                            MI->getOperand(0).getReg());
301      unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
302      MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
303    }
304  
305    return MIB;
306  }
307  
tryReplaceCopy(MachineInstr * MI) const308  MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
309    assert(MI->getNumExplicitOperands() == 2);
310    auto &OldDest = MI->getOperand(0);
311    auto &OldSrc = MI->getOperand(1);
312  
313    Register NewDestReg = getSuperRegDestIfDead(MI);
314    if (!NewDestReg)
315      return nullptr;
316  
317    Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
318    assert(NewSrcReg.isValid() && "Invalid Operand");
319  
320    // This is only correct if we access the same subregister index: otherwise,
321    // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
322    const X86RegisterInfo *TRI = &TII->getRegisterInfo();
323    if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
324        TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
325      return nullptr;
326  
327    // Safe to change the instruction.
328    // Don't set src flags, as we don't know if we're also killing the superreg.
329    // However, the superregister might not be defined; make it explicit that
330    // we don't care about the higher bits by reading it as Undef, and adding
331    // an imp-use on the original subregister.
332    MachineInstrBuilder MIB =
333        BuildMI(*MF, MIMetadata(*MI), TII->get(X86::MOV32rr), NewDestReg)
334            .addReg(NewSrcReg, RegState::Undef)
335            .addReg(OldSrc.getReg(), RegState::Implicit);
336  
337    // Drop imp-defs/uses that would be redundant with the new def/use.
338    for (auto &Op : MI->implicit_operands())
339      if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
340        MIB.add(Op);
341  
342    return MIB;
343  }
344  
tryReplaceExtend(unsigned New32BitOpcode,MachineInstr * MI) const345  MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode,
346                                                  MachineInstr *MI) const {
347    Register NewDestReg = getSuperRegDestIfDead(MI);
348    if (!NewDestReg)
349      return nullptr;
350  
351    // Don't interfere with formation of CBW instructions which should be a
352    // shorter encoding than even the MOVSX32rr8. It's also immune to partial
353    // merge issues on Intel CPUs.
354    if (MI->getOpcode() == X86::MOVSX16rr8 &&
355        MI->getOperand(0).getReg() == X86::AX &&
356        MI->getOperand(1).getReg() == X86::AL)
357      return nullptr;
358  
359    // Safe to change the instruction.
360    MachineInstrBuilder MIB =
361        BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg);
362  
363    unsigned NumArgs = MI->getNumOperands();
364    for (unsigned i = 1; i < NumArgs; ++i)
365      MIB.add(MI->getOperand(i));
366  
367    MIB.setMemRefs(MI->memoperands());
368  
369    if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
370      unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
371                                            MI->getOperand(0).getReg());
372      unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
373      MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
374    }
375  
376    return MIB;
377  }
378  
tryReplaceInstr(MachineInstr * MI,MachineBasicBlock & MBB) const379  MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
380                                                 MachineBasicBlock &MBB) const {
381    // See if this is an instruction of the type we are currently looking for.
382    switch (MI->getOpcode()) {
383  
384    case X86::MOV8rm:
385      // Replace 8-bit loads with the zero-extending version if not optimizing
386      // for size. The extending op is cheaper across a wide range of uarch and
387      // it avoids a potentially expensive partial register stall. It takes an
388      // extra byte to encode, however, so don't do this when optimizing for size.
389      if (!OptForSize)
390        return tryReplaceLoad(X86::MOVZX32rm8, MI);
391      break;
392  
393    case X86::MOV16rm:
394      // Always try to replace 16 bit load with 32 bit zero extending.
395      // Code size is the same, and there is sometimes a perf advantage
396      // from eliminating a false dependence on the upper portion of
397      // the register.
398      return tryReplaceLoad(X86::MOVZX32rm16, MI);
399  
400    case X86::MOV8rr:
401    case X86::MOV16rr:
402      // Always try to replace 8/16 bit copies with a 32 bit copy.
403      // Code size is either less (16) or equal (8), and there is sometimes a
404      // perf advantage from eliminating a false dependence on the upper portion
405      // of the register.
406      return tryReplaceCopy(MI);
407  
408    case X86::MOVSX16rr8:
409      return tryReplaceExtend(X86::MOVSX32rr8, MI);
410    case X86::MOVSX16rm8:
411      return tryReplaceExtend(X86::MOVSX32rm8, MI);
412    case X86::MOVZX16rr8:
413      return tryReplaceExtend(X86::MOVZX32rr8, MI);
414    case X86::MOVZX16rm8:
415      return tryReplaceExtend(X86::MOVZX32rm8, MI);
416  
417    default:
418      // nothing to do here.
419      break;
420    }
421  
422    return nullptr;
423  }
424  
processBasicBlock(MachineFunction & MF,MachineBasicBlock & MBB)425  void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
426                                          MachineBasicBlock &MBB) {
427  
428    // This algorithm doesn't delete the instructions it is replacing
429    // right away.  By leaving the existing instructions in place, the
430    // register liveness information doesn't change, and this makes the
431    // analysis that goes on be better than if the replaced instructions
432    // were immediately removed.
433    //
434    // This algorithm always creates a replacement instruction
435    // and notes that and the original in a data structure, until the
436    // whole BB has been analyzed.  This keeps the replacement instructions
437    // from making it seem as if the larger register might be live.
438    SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
439  
440    // Start computing liveness for this block. We iterate from the end to be able
441    // to update this for each instruction.
442    LiveUnits.clear();
443    // We run after PEI, so we need to AddPristinesAndCSRs.
444    LiveUnits.addLiveOuts(MBB);
445  
446    OptForSize = MF.getFunction().hasOptSize() ||
447                 llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
448  
449    for (MachineInstr &MI : llvm::reverse(MBB)) {
450      if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB))
451        MIReplacements.push_back(std::make_pair(&MI, NewMI));
452  
453      // We're done with this instruction, update liveness for the next one.
454      LiveUnits.stepBackward(MI);
455    }
456  
457    while (!MIReplacements.empty()) {
458      MachineInstr *MI = MIReplacements.back().first;
459      MachineInstr *NewMI = MIReplacements.back().second;
460      MIReplacements.pop_back();
461      MBB.insert(MI, NewMI);
462      MBB.erase(MI);
463    }
464  }
465