1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with generation of the layout of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/VTableBuilder.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTDiagnostic.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cstdio>
26
27 using namespace clang;
28
29 #define DUMP_OVERRIDERS 0
30
31 namespace {
32
33 /// BaseOffset - Represents an offset from a derived class to a direct or
34 /// indirect base class.
35 struct BaseOffset {
36 /// DerivedClass - The derived class.
37 const CXXRecordDecl *DerivedClass;
38
39 /// VirtualBase - If the path from the derived class to the base class
40 /// involves virtual base classes, this holds the declaration of the last
41 /// virtual base in this path (i.e. closest to the base class).
42 const CXXRecordDecl *VirtualBase;
43
44 /// NonVirtualOffset - The offset from the derived class to the base class.
45 /// (Or the offset from the virtual base class to the base class, if the
46 /// path from the derived class to the base class involves a virtual base
47 /// class.
48 CharUnits NonVirtualOffset;
49
BaseOffset__anon1858bcf60111::BaseOffset50 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
51 NonVirtualOffset(CharUnits::Zero()) { }
BaseOffset__anon1858bcf60111::BaseOffset52 BaseOffset(const CXXRecordDecl *DerivedClass,
53 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
54 : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
55 NonVirtualOffset(NonVirtualOffset) { }
56
isEmpty__anon1858bcf60111::BaseOffset57 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
58 };
59
60 /// FinalOverriders - Contains the final overrider member functions for all
61 /// member functions in the base subobjects of a class.
62 class FinalOverriders {
63 public:
64 /// OverriderInfo - Information about a final overrider.
65 struct OverriderInfo {
66 /// Method - The method decl of the overrider.
67 const CXXMethodDecl *Method;
68
69 /// VirtualBase - The virtual base class subobject of this overrider.
70 /// Note that this records the closest derived virtual base class subobject.
71 const CXXRecordDecl *VirtualBase;
72
73 /// Offset - the base offset of the overrider's parent in the layout class.
74 CharUnits Offset;
75
OverriderInfo__anon1858bcf60111::FinalOverriders::OverriderInfo76 OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
77 Offset(CharUnits::Zero()) { }
78 };
79
80 private:
81 /// MostDerivedClass - The most derived class for which the final overriders
82 /// are stored.
83 const CXXRecordDecl *MostDerivedClass;
84
85 /// MostDerivedClassOffset - If we're building final overriders for a
86 /// construction vtable, this holds the offset from the layout class to the
87 /// most derived class.
88 const CharUnits MostDerivedClassOffset;
89
90 /// LayoutClass - The class we're using for layout information. Will be
91 /// different than the most derived class if the final overriders are for a
92 /// construction vtable.
93 const CXXRecordDecl *LayoutClass;
94
95 ASTContext &Context;
96
97 /// MostDerivedClassLayout - the AST record layout of the most derived class.
98 const ASTRecordLayout &MostDerivedClassLayout;
99
100 /// MethodBaseOffsetPairTy - Uniquely identifies a member function
101 /// in a base subobject.
102 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
103
104 typedef llvm::DenseMap<MethodBaseOffsetPairTy,
105 OverriderInfo> OverridersMapTy;
106
107 /// OverridersMap - The final overriders for all virtual member functions of
108 /// all the base subobjects of the most derived class.
109 OverridersMapTy OverridersMap;
110
111 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
112 /// as a record decl and a subobject number) and its offsets in the most
113 /// derived class as well as the layout class.
114 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
115 CharUnits> SubobjectOffsetMapTy;
116
117 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
118
119 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
120 /// given base.
121 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
122 CharUnits OffsetInLayoutClass,
123 SubobjectOffsetMapTy &SubobjectOffsets,
124 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
125 SubobjectCountMapTy &SubobjectCounts);
126
127 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
128
129 /// dump - dump the final overriders for a base subobject, and all its direct
130 /// and indirect base subobjects.
131 void dump(raw_ostream &Out, BaseSubobject Base,
132 VisitedVirtualBasesSetTy& VisitedVirtualBases);
133
134 public:
135 FinalOverriders(const CXXRecordDecl *MostDerivedClass,
136 CharUnits MostDerivedClassOffset,
137 const CXXRecordDecl *LayoutClass);
138
139 /// getOverrider - Get the final overrider for the given method declaration in
140 /// the subobject with the given base offset.
getOverrider(const CXXMethodDecl * MD,CharUnits BaseOffset) const141 OverriderInfo getOverrider(const CXXMethodDecl *MD,
142 CharUnits BaseOffset) const {
143 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
144 "Did not find overrider!");
145
146 return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
147 }
148
149 /// dump - dump the final overriders.
dump()150 void dump() {
151 VisitedVirtualBasesSetTy VisitedVirtualBases;
152 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
153 VisitedVirtualBases);
154 }
155
156 };
157
FinalOverriders(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,const CXXRecordDecl * LayoutClass)158 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
159 CharUnits MostDerivedClassOffset,
160 const CXXRecordDecl *LayoutClass)
161 : MostDerivedClass(MostDerivedClass),
162 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
163 Context(MostDerivedClass->getASTContext()),
164 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
165
166 // Compute base offsets.
167 SubobjectOffsetMapTy SubobjectOffsets;
168 SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
169 SubobjectCountMapTy SubobjectCounts;
170 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
171 /*IsVirtual=*/false,
172 MostDerivedClassOffset,
173 SubobjectOffsets, SubobjectLayoutClassOffsets,
174 SubobjectCounts);
175
176 // Get the final overriders.
177 CXXFinalOverriderMap FinalOverriders;
178 MostDerivedClass->getFinalOverriders(FinalOverriders);
179
180 for (const auto &Overrider : FinalOverriders) {
181 const CXXMethodDecl *MD = Overrider.first;
182 const OverridingMethods &Methods = Overrider.second;
183
184 for (const auto &M : Methods) {
185 unsigned SubobjectNumber = M.first;
186 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
187 SubobjectNumber)) &&
188 "Did not find subobject offset!");
189
190 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
191 SubobjectNumber)];
192
193 assert(M.second.size() == 1 && "Final overrider is not unique!");
194 const UniqueVirtualMethod &Method = M.second.front();
195
196 const CXXRecordDecl *OverriderRD = Method.Method->getParent();
197 assert(SubobjectLayoutClassOffsets.count(
198 std::make_pair(OverriderRD, Method.Subobject))
199 && "Did not find subobject offset!");
200 CharUnits OverriderOffset =
201 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
202 Method.Subobject)];
203
204 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
205 assert(!Overrider.Method && "Overrider should not exist yet!");
206
207 Overrider.Offset = OverriderOffset;
208 Overrider.Method = Method.Method;
209 Overrider.VirtualBase = Method.InVirtualSubobject;
210 }
211 }
212
213 #if DUMP_OVERRIDERS
214 // And dump them (for now).
215 dump();
216 #endif
217 }
218
ComputeBaseOffset(const ASTContext & Context,const CXXRecordDecl * DerivedRD,const CXXBasePath & Path)219 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
220 const CXXRecordDecl *DerivedRD,
221 const CXXBasePath &Path) {
222 CharUnits NonVirtualOffset = CharUnits::Zero();
223
224 unsigned NonVirtualStart = 0;
225 const CXXRecordDecl *VirtualBase = nullptr;
226
227 // First, look for the virtual base class.
228 for (int I = Path.size(), E = 0; I != E; --I) {
229 const CXXBasePathElement &Element = Path[I - 1];
230
231 if (Element.Base->isVirtual()) {
232 NonVirtualStart = I;
233 QualType VBaseType = Element.Base->getType();
234 VirtualBase = VBaseType->getAsCXXRecordDecl();
235 break;
236 }
237 }
238
239 // Now compute the non-virtual offset.
240 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
241 const CXXBasePathElement &Element = Path[I];
242
243 // Check the base class offset.
244 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
245
246 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
247
248 NonVirtualOffset += Layout.getBaseClassOffset(Base);
249 }
250
251 // FIXME: This should probably use CharUnits or something. Maybe we should
252 // even change the base offsets in ASTRecordLayout to be specified in
253 // CharUnits.
254 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
255
256 }
257
ComputeBaseOffset(const ASTContext & Context,const CXXRecordDecl * BaseRD,const CXXRecordDecl * DerivedRD)258 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
259 const CXXRecordDecl *BaseRD,
260 const CXXRecordDecl *DerivedRD) {
261 CXXBasePaths Paths(/*FindAmbiguities=*/false,
262 /*RecordPaths=*/true, /*DetectVirtual=*/false);
263
264 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
265 llvm_unreachable("Class must be derived from the passed in base class!");
266
267 return ComputeBaseOffset(Context, DerivedRD, Paths.front());
268 }
269
270 static BaseOffset
ComputeReturnAdjustmentBaseOffset(ASTContext & Context,const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
272 const CXXMethodDecl *DerivedMD,
273 const CXXMethodDecl *BaseMD) {
274 const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
275 const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();
276
277 // Canonicalize the return types.
278 CanQualType CanDerivedReturnType =
279 Context.getCanonicalType(DerivedFT->getReturnType());
280 CanQualType CanBaseReturnType =
281 Context.getCanonicalType(BaseFT->getReturnType());
282
283 assert(CanDerivedReturnType->getTypeClass() ==
284 CanBaseReturnType->getTypeClass() &&
285 "Types must have same type class!");
286
287 if (CanDerivedReturnType == CanBaseReturnType) {
288 // No adjustment needed.
289 return BaseOffset();
290 }
291
292 if (isa<ReferenceType>(CanDerivedReturnType)) {
293 CanDerivedReturnType =
294 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
295 CanBaseReturnType =
296 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
297 } else if (isa<PointerType>(CanDerivedReturnType)) {
298 CanDerivedReturnType =
299 CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
300 CanBaseReturnType =
301 CanBaseReturnType->getAs<PointerType>()->getPointeeType();
302 } else {
303 llvm_unreachable("Unexpected return type!");
304 }
305
306 // We need to compare unqualified types here; consider
307 // const T *Base::foo();
308 // T *Derived::foo();
309 if (CanDerivedReturnType.getUnqualifiedType() ==
310 CanBaseReturnType.getUnqualifiedType()) {
311 // No adjustment needed.
312 return BaseOffset();
313 }
314
315 const CXXRecordDecl *DerivedRD =
316 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
317
318 const CXXRecordDecl *BaseRD =
319 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
320
321 return ComputeBaseOffset(Context, BaseRD, DerivedRD);
322 }
323
324 void
ComputeBaseOffsets(BaseSubobject Base,bool IsVirtual,CharUnits OffsetInLayoutClass,SubobjectOffsetMapTy & SubobjectOffsets,SubobjectOffsetMapTy & SubobjectLayoutClassOffsets,SubobjectCountMapTy & SubobjectCounts)325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
326 CharUnits OffsetInLayoutClass,
327 SubobjectOffsetMapTy &SubobjectOffsets,
328 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
329 SubobjectCountMapTy &SubobjectCounts) {
330 const CXXRecordDecl *RD = Base.getBase();
331
332 unsigned SubobjectNumber = 0;
333 if (!IsVirtual)
334 SubobjectNumber = ++SubobjectCounts[RD];
335
336 // Set up the subobject to offset mapping.
337 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
338 && "Subobject offset already exists!");
339 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
340 && "Subobject offset already exists!");
341
342 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
343 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
344 OffsetInLayoutClass;
345
346 // Traverse our bases.
347 for (const auto &B : RD->bases()) {
348 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
349
350 CharUnits BaseOffset;
351 CharUnits BaseOffsetInLayoutClass;
352 if (B.isVirtual()) {
353 // Check if we've visited this virtual base before.
354 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
355 continue;
356
357 const ASTRecordLayout &LayoutClassLayout =
358 Context.getASTRecordLayout(LayoutClass);
359
360 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
361 BaseOffsetInLayoutClass =
362 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
363 } else {
364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
365 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
366
367 BaseOffset = Base.getBaseOffset() + Offset;
368 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
369 }
370
371 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
372 B.isVirtual(), BaseOffsetInLayoutClass,
373 SubobjectOffsets, SubobjectLayoutClassOffsets,
374 SubobjectCounts);
375 }
376 }
377
dump(raw_ostream & Out,BaseSubobject Base,VisitedVirtualBasesSetTy & VisitedVirtualBases)378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
379 VisitedVirtualBasesSetTy &VisitedVirtualBases) {
380 const CXXRecordDecl *RD = Base.getBase();
381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
382
383 for (const auto &B : RD->bases()) {
384 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
385
386 // Ignore bases that don't have any virtual member functions.
387 if (!BaseDecl->isPolymorphic())
388 continue;
389
390 CharUnits BaseOffset;
391 if (B.isVirtual()) {
392 if (!VisitedVirtualBases.insert(BaseDecl).second) {
393 // We've visited this base before.
394 continue;
395 }
396
397 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
398 } else {
399 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
400 }
401
402 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
403 }
404
405 Out << "Final overriders for (";
406 RD->printQualifiedName(Out);
407 Out << ", ";
408 Out << Base.getBaseOffset().getQuantity() << ")\n";
409
410 // Now dump the overriders for this base subobject.
411 for (const auto *MD : RD->methods()) {
412 if (!VTableContextBase::hasVtableSlot(MD))
413 continue;
414 MD = MD->getCanonicalDecl();
415
416 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
417
418 Out << " ";
419 MD->printQualifiedName(Out);
420 Out << " - (";
421 Overrider.Method->printQualifiedName(Out);
422 Out << ", " << Overrider.Offset.getQuantity() << ')';
423
424 BaseOffset Offset;
425 if (!Overrider.Method->isPureVirtual())
426 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
427
428 if (!Offset.isEmpty()) {
429 Out << " [ret-adj: ";
430 if (Offset.VirtualBase) {
431 Offset.VirtualBase->printQualifiedName(Out);
432 Out << " vbase, ";
433 }
434
435 Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
436 }
437
438 Out << "\n";
439 }
440 }
441
442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
443 struct VCallOffsetMap {
444
445 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
446
447 /// Offsets - Keeps track of methods and their offsets.
448 // FIXME: This should be a real map and not a vector.
449 SmallVector<MethodAndOffsetPairTy, 16> Offsets;
450
451 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
452 /// can share the same vcall offset.
453 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
454 const CXXMethodDecl *RHS);
455
456 public:
457 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
458 /// add was successful, or false if there was already a member function with
459 /// the same signature in the map.
460 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
461
462 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
463 /// vtable address point) for the given virtual member function.
464 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
465
466 // empty - Return whether the offset map is empty or not.
empty__anon1858bcf60111::VCallOffsetMap467 bool empty() const { return Offsets.empty(); }
468 };
469
HasSameVirtualSignature(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
471 const CXXMethodDecl *RHS) {
472 const FunctionProtoType *LT =
473 cast<FunctionProtoType>(LHS->getType().getCanonicalType());
474 const FunctionProtoType *RT =
475 cast<FunctionProtoType>(RHS->getType().getCanonicalType());
476
477 // Fast-path matches in the canonical types.
478 if (LT == RT) return true;
479
480 // Force the signatures to match. We can't rely on the overrides
481 // list here because there isn't necessarily an inheritance
482 // relationship between the two methods.
483 if (LT->getMethodQuals() != RT->getMethodQuals())
484 return false;
485 return LT->getParamTypes() == RT->getParamTypes();
486 }
487
MethodsCanShareVCallOffset(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)488 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
489 const CXXMethodDecl *RHS) {
490 assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!");
491 assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!");
492
493 // A destructor can share a vcall offset with another destructor.
494 if (isa<CXXDestructorDecl>(LHS))
495 return isa<CXXDestructorDecl>(RHS);
496
497 // FIXME: We need to check more things here.
498
499 // The methods must have the same name.
500 DeclarationName LHSName = LHS->getDeclName();
501 DeclarationName RHSName = RHS->getDeclName();
502 if (LHSName != RHSName)
503 return false;
504
505 // And the same signatures.
506 return HasSameVirtualSignature(LHS, RHS);
507 }
508
AddVCallOffset(const CXXMethodDecl * MD,CharUnits OffsetOffset)509 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
510 CharUnits OffsetOffset) {
511 // Check if we can reuse an offset.
512 for (const auto &OffsetPair : Offsets) {
513 if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
514 return false;
515 }
516
517 // Add the offset.
518 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
519 return true;
520 }
521
getVCallOffsetOffset(const CXXMethodDecl * MD)522 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
523 // Look for an offset.
524 for (const auto &OffsetPair : Offsets) {
525 if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
526 return OffsetPair.second;
527 }
528
529 llvm_unreachable("Should always find a vcall offset offset!");
530 }
531
532 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
533 class VCallAndVBaseOffsetBuilder {
534 public:
535 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
536 VBaseOffsetOffsetsMapTy;
537
538 private:
539 const ItaniumVTableContext &VTables;
540
541 /// MostDerivedClass - The most derived class for which we're building vcall
542 /// and vbase offsets.
543 const CXXRecordDecl *MostDerivedClass;
544
545 /// LayoutClass - The class we're using for layout information. Will be
546 /// different than the most derived class if we're building a construction
547 /// vtable.
548 const CXXRecordDecl *LayoutClass;
549
550 /// Context - The ASTContext which we will use for layout information.
551 ASTContext &Context;
552
553 /// Components - vcall and vbase offset components
554 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
555 VTableComponentVectorTy Components;
556
557 /// VisitedVirtualBases - Visited virtual bases.
558 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
559
560 /// VCallOffsets - Keeps track of vcall offsets.
561 VCallOffsetMap VCallOffsets;
562
563
564 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
565 /// relative to the address point.
566 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
567
568 /// FinalOverriders - The final overriders of the most derived class.
569 /// (Can be null when we're not building a vtable of the most derived class).
570 const FinalOverriders *Overriders;
571
572 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
573 /// given base subobject.
574 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
575 CharUnits RealBaseOffset);
576
577 /// AddVCallOffsets - Add vcall offsets for the given base subobject.
578 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
579
580 /// AddVBaseOffsets - Add vbase offsets for the given class.
581 void AddVBaseOffsets(const CXXRecordDecl *Base,
582 CharUnits OffsetInLayoutClass);
583
584 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
585 /// chars, relative to the vtable address point.
586 CharUnits getCurrentOffsetOffset() const;
587
588 public:
VCallAndVBaseOffsetBuilder(const ItaniumVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,const CXXRecordDecl * LayoutClass,const FinalOverriders * Overriders,BaseSubobject Base,bool BaseIsVirtual,CharUnits OffsetInLayoutClass)589 VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables,
590 const CXXRecordDecl *MostDerivedClass,
591 const CXXRecordDecl *LayoutClass,
592 const FinalOverriders *Overriders,
593 BaseSubobject Base, bool BaseIsVirtual,
594 CharUnits OffsetInLayoutClass)
595 : VTables(VTables), MostDerivedClass(MostDerivedClass),
596 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
597 Overriders(Overriders) {
598
599 // Add vcall and vbase offsets.
600 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
601 }
602
603 /// Methods for iterating over the components.
604 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
components_begin() const605 const_iterator components_begin() const { return Components.rbegin(); }
components_end() const606 const_iterator components_end() const { return Components.rend(); }
607
getVCallOffsets() const608 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
getVBaseOffsetOffsets() const609 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
610 return VBaseOffsetOffsets;
611 }
612 };
613
614 void
AddVCallAndVBaseOffsets(BaseSubobject Base,bool BaseIsVirtual,CharUnits RealBaseOffset)615 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
616 bool BaseIsVirtual,
617 CharUnits RealBaseOffset) {
618 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
619
620 // Itanium C++ ABI 2.5.2:
621 // ..in classes sharing a virtual table with a primary base class, the vcall
622 // and vbase offsets added by the derived class all come before the vcall
623 // and vbase offsets required by the base class, so that the latter may be
624 // laid out as required by the base class without regard to additions from
625 // the derived class(es).
626
627 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
628 // emit them for the primary base first).
629 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
630 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
631
632 CharUnits PrimaryBaseOffset;
633
634 // Get the base offset of the primary base.
635 if (PrimaryBaseIsVirtual) {
636 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
637 "Primary vbase should have a zero offset!");
638
639 const ASTRecordLayout &MostDerivedClassLayout =
640 Context.getASTRecordLayout(MostDerivedClass);
641
642 PrimaryBaseOffset =
643 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
644 } else {
645 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
646 "Primary base should have a zero offset!");
647
648 PrimaryBaseOffset = Base.getBaseOffset();
649 }
650
651 AddVCallAndVBaseOffsets(
652 BaseSubobject(PrimaryBase,PrimaryBaseOffset),
653 PrimaryBaseIsVirtual, RealBaseOffset);
654 }
655
656 AddVBaseOffsets(Base.getBase(), RealBaseOffset);
657
658 // We only want to add vcall offsets for virtual bases.
659 if (BaseIsVirtual)
660 AddVCallOffsets(Base, RealBaseOffset);
661 }
662
getCurrentOffsetOffset() const663 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
664 // OffsetIndex is the index of this vcall or vbase offset, relative to the
665 // vtable address point. (We subtract 3 to account for the information just
666 // above the address point, the RTTI info, the offset to top, and the
667 // vcall offset itself).
668 size_t NumComponentsAboveAddrPoint = 3;
669 if (Context.getLangOpts().OmitVTableRTTI)
670 NumComponentsAboveAddrPoint--;
671 int64_t OffsetIndex =
672 -(int64_t)(NumComponentsAboveAddrPoint + Components.size());
673
674 // Under the relative ABI, the offset widths are 32-bit ints instead of
675 // pointer widths.
676 CharUnits OffsetWidth = Context.toCharUnitsFromBits(
677 VTables.isRelativeLayout()
678 ? 32
679 : Context.getTargetInfo().getPointerWidth(LangAS::Default));
680 CharUnits OffsetOffset = OffsetWidth * OffsetIndex;
681
682 return OffsetOffset;
683 }
684
AddVCallOffsets(BaseSubobject Base,CharUnits VBaseOffset)685 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
686 CharUnits VBaseOffset) {
687 const CXXRecordDecl *RD = Base.getBase();
688 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
689
690 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
691
692 // Handle the primary base first.
693 // We only want to add vcall offsets if the base is non-virtual; a virtual
694 // primary base will have its vcall and vbase offsets emitted already.
695 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
696 // Get the base offset of the primary base.
697 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
698 "Primary base should have a zero offset!");
699
700 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
701 VBaseOffset);
702 }
703
704 // Add the vcall offsets.
705 for (const auto *MD : RD->methods()) {
706 if (!VTableContextBase::hasVtableSlot(MD))
707 continue;
708 MD = MD->getCanonicalDecl();
709
710 CharUnits OffsetOffset = getCurrentOffsetOffset();
711
712 // Don't add a vcall offset if we already have one for this member function
713 // signature.
714 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
715 continue;
716
717 CharUnits Offset = CharUnits::Zero();
718
719 if (Overriders) {
720 // Get the final overrider.
721 FinalOverriders::OverriderInfo Overrider =
722 Overriders->getOverrider(MD, Base.getBaseOffset());
723
724 /// The vcall offset is the offset from the virtual base to the object
725 /// where the function was overridden.
726 Offset = Overrider.Offset - VBaseOffset;
727 }
728
729 Components.push_back(
730 VTableComponent::MakeVCallOffset(Offset));
731 }
732
733 // And iterate over all non-virtual bases (ignoring the primary base).
734 for (const auto &B : RD->bases()) {
735 if (B.isVirtual())
736 continue;
737
738 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
739 if (BaseDecl == PrimaryBase)
740 continue;
741
742 // Get the base offset of this base.
743 CharUnits BaseOffset = Base.getBaseOffset() +
744 Layout.getBaseClassOffset(BaseDecl);
745
746 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
747 VBaseOffset);
748 }
749 }
750
751 void
AddVBaseOffsets(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass)752 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
753 CharUnits OffsetInLayoutClass) {
754 const ASTRecordLayout &LayoutClassLayout =
755 Context.getASTRecordLayout(LayoutClass);
756
757 // Add vbase offsets.
758 for (const auto &B : RD->bases()) {
759 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
760
761 // Check if this is a virtual base that we haven't visited before.
762 if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
763 CharUnits Offset =
764 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
765
766 // Add the vbase offset offset.
767 assert(!VBaseOffsetOffsets.count(BaseDecl) &&
768 "vbase offset offset already exists!");
769
770 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
771 VBaseOffsetOffsets.insert(
772 std::make_pair(BaseDecl, VBaseOffsetOffset));
773
774 Components.push_back(
775 VTableComponent::MakeVBaseOffset(Offset));
776 }
777
778 // Check the base class looking for more vbase offsets.
779 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
780 }
781 }
782
783 /// ItaniumVTableBuilder - Class for building vtable layout information.
784 class ItaniumVTableBuilder {
785 public:
786 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
787 /// primary bases.
788 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
789 PrimaryBasesSetVectorTy;
790
791 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
792 VBaseOffsetOffsetsMapTy;
793
794 typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
795
796 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
797
798 private:
799 /// VTables - Global vtable information.
800 ItaniumVTableContext &VTables;
801
802 /// MostDerivedClass - The most derived class for which we're building this
803 /// vtable.
804 const CXXRecordDecl *MostDerivedClass;
805
806 /// MostDerivedClassOffset - If we're building a construction vtable, this
807 /// holds the offset from the layout class to the most derived class.
808 const CharUnits MostDerivedClassOffset;
809
810 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
811 /// base. (This only makes sense when building a construction vtable).
812 bool MostDerivedClassIsVirtual;
813
814 /// LayoutClass - The class we're using for layout information. Will be
815 /// different than the most derived class if we're building a construction
816 /// vtable.
817 const CXXRecordDecl *LayoutClass;
818
819 /// Context - The ASTContext which we will use for layout information.
820 ASTContext &Context;
821
822 /// FinalOverriders - The final overriders of the most derived class.
823 const FinalOverriders Overriders;
824
825 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
826 /// bases in this vtable.
827 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
828
829 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
830 /// the most derived class.
831 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
832
833 /// Components - The components of the vtable being built.
834 SmallVector<VTableComponent, 64> Components;
835
836 /// AddressPoints - Address points for the vtable being built.
837 AddressPointsMapTy AddressPoints;
838
839 /// MethodInfo - Contains information about a method in a vtable.
840 /// (Used for computing 'this' pointer adjustment thunks.
841 struct MethodInfo {
842 /// BaseOffset - The base offset of this method.
843 const CharUnits BaseOffset;
844
845 /// BaseOffsetInLayoutClass - The base offset in the layout class of this
846 /// method.
847 const CharUnits BaseOffsetInLayoutClass;
848
849 /// VTableIndex - The index in the vtable that this method has.
850 /// (For destructors, this is the index of the complete destructor).
851 const uint64_t VTableIndex;
852
MethodInfo__anon1858bcf60111::ItaniumVTableBuilder::MethodInfo853 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
854 uint64_t VTableIndex)
855 : BaseOffset(BaseOffset),
856 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
857 VTableIndex(VTableIndex) { }
858
MethodInfo__anon1858bcf60111::ItaniumVTableBuilder::MethodInfo859 MethodInfo()
860 : BaseOffset(CharUnits::Zero()),
861 BaseOffsetInLayoutClass(CharUnits::Zero()),
862 VTableIndex(0) { }
863
864 MethodInfo(MethodInfo const&) = default;
865 };
866
867 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
868
869 /// MethodInfoMap - The information for all methods in the vtable we're
870 /// currently building.
871 MethodInfoMapTy MethodInfoMap;
872
873 /// MethodVTableIndices - Contains the index (relative to the vtable address
874 /// point) where the function pointer for a virtual function is stored.
875 MethodVTableIndicesTy MethodVTableIndices;
876
877 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
878
879 /// VTableThunks - The thunks by vtable index in the vtable currently being
880 /// built.
881 VTableThunksMapTy VTableThunks;
882
883 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
884 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
885
886 /// Thunks - A map that contains all the thunks needed for all methods in the
887 /// most derived class for which the vtable is currently being built.
888 ThunksMapTy Thunks;
889
890 /// AddThunk - Add a thunk for the given method.
891 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
892
893 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
894 /// part of the vtable we're currently building.
895 void ComputeThisAdjustments();
896
897 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
898
899 /// PrimaryVirtualBases - All known virtual bases who are a primary base of
900 /// some other base.
901 VisitedVirtualBasesSetTy PrimaryVirtualBases;
902
903 /// ComputeReturnAdjustment - Compute the return adjustment given a return
904 /// adjustment base offset.
905 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
906
907 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
908 /// the 'this' pointer from the base subobject to the derived subobject.
909 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
910 BaseSubobject Derived) const;
911
912 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
913 /// given virtual member function, its offset in the layout class and its
914 /// final overrider.
915 ThisAdjustment
916 ComputeThisAdjustment(const CXXMethodDecl *MD,
917 CharUnits BaseOffsetInLayoutClass,
918 FinalOverriders::OverriderInfo Overrider);
919
920 /// AddMethod - Add a single virtual member function to the vtable
921 /// components vector.
922 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
923
924 /// IsOverriderUsed - Returns whether the overrider will ever be used in this
925 /// part of the vtable.
926 ///
927 /// Itanium C++ ABI 2.5.2:
928 ///
929 /// struct A { virtual void f(); };
930 /// struct B : virtual public A { int i; };
931 /// struct C : virtual public A { int j; };
932 /// struct D : public B, public C {};
933 ///
934 /// When B and C are declared, A is a primary base in each case, so although
935 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
936 /// adjustment is required and no thunk is generated. However, inside D
937 /// objects, A is no longer a primary base of C, so if we allowed calls to
938 /// C::f() to use the copy of A's vtable in the C subobject, we would need
939 /// to adjust this from C* to B::A*, which would require a third-party
940 /// thunk. Since we require that a call to C::f() first convert to A*,
941 /// C-in-D's copy of A's vtable is never referenced, so this is not
942 /// necessary.
943 bool IsOverriderUsed(const CXXMethodDecl *Overrider,
944 CharUnits BaseOffsetInLayoutClass,
945 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
946 CharUnits FirstBaseOffsetInLayoutClass) const;
947
948
949 /// AddMethods - Add the methods of this base subobject and all its
950 /// primary bases to the vtable components vector.
951 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
952 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
953 CharUnits FirstBaseOffsetInLayoutClass,
954 PrimaryBasesSetVectorTy &PrimaryBases);
955
956 // LayoutVTable - Layout the vtable for the given base class, including its
957 // secondary vtables and any vtables for virtual bases.
958 void LayoutVTable();
959
960 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
961 /// given base subobject, as well as all its secondary vtables.
962 ///
963 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
964 /// or a direct or indirect base of a virtual base.
965 ///
966 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
967 /// in the layout class.
968 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
969 bool BaseIsMorallyVirtual,
970 bool BaseIsVirtualInLayoutClass,
971 CharUnits OffsetInLayoutClass);
972
973 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
974 /// subobject.
975 ///
976 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
977 /// or a direct or indirect base of a virtual base.
978 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
979 CharUnits OffsetInLayoutClass);
980
981 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
982 /// class hierarchy.
983 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
984 CharUnits OffsetInLayoutClass,
985 VisitedVirtualBasesSetTy &VBases);
986
987 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
988 /// given base (excluding any primary bases).
989 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
990 VisitedVirtualBasesSetTy &VBases);
991
992 /// isBuildingConstructionVTable - Return whether this vtable builder is
993 /// building a construction vtable.
isBuildingConstructorVTable() const994 bool isBuildingConstructorVTable() const {
995 return MostDerivedClass != LayoutClass;
996 }
997
998 public:
999 /// Component indices of the first component of each of the vtables in the
1000 /// vtable group.
1001 SmallVector<size_t, 4> VTableIndices;
1002
ItaniumVTableBuilder(ItaniumVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)1003 ItaniumVTableBuilder(ItaniumVTableContext &VTables,
1004 const CXXRecordDecl *MostDerivedClass,
1005 CharUnits MostDerivedClassOffset,
1006 bool MostDerivedClassIsVirtual,
1007 const CXXRecordDecl *LayoutClass)
1008 : VTables(VTables), MostDerivedClass(MostDerivedClass),
1009 MostDerivedClassOffset(MostDerivedClassOffset),
1010 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
1011 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
1012 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
1013 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
1014
1015 LayoutVTable();
1016
1017 if (Context.getLangOpts().DumpVTableLayouts)
1018 dumpLayout(llvm::outs());
1019 }
1020
getNumThunks() const1021 uint64_t getNumThunks() const {
1022 return Thunks.size();
1023 }
1024
thunks_begin() const1025 ThunksMapTy::const_iterator thunks_begin() const {
1026 return Thunks.begin();
1027 }
1028
thunks_end() const1029 ThunksMapTy::const_iterator thunks_end() const {
1030 return Thunks.end();
1031 }
1032
getVBaseOffsetOffsets() const1033 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1034 return VBaseOffsetOffsets;
1035 }
1036
getAddressPoints() const1037 const AddressPointsMapTy &getAddressPoints() const {
1038 return AddressPoints;
1039 }
1040
vtable_indices_begin() const1041 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1042 return MethodVTableIndices.begin();
1043 }
1044
vtable_indices_end() const1045 MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1046 return MethodVTableIndices.end();
1047 }
1048
vtable_components() const1049 ArrayRef<VTableComponent> vtable_components() const { return Components; }
1050
address_points_begin() const1051 AddressPointsMapTy::const_iterator address_points_begin() const {
1052 return AddressPoints.begin();
1053 }
1054
address_points_end() const1055 AddressPointsMapTy::const_iterator address_points_end() const {
1056 return AddressPoints.end();
1057 }
1058
vtable_thunks_begin() const1059 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1060 return VTableThunks.begin();
1061 }
1062
vtable_thunks_end() const1063 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1064 return VTableThunks.end();
1065 }
1066
1067 /// dumpLayout - Dump the vtable layout.
1068 void dumpLayout(raw_ostream&);
1069 };
1070
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)1071 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1072 const ThunkInfo &Thunk) {
1073 assert(!isBuildingConstructorVTable() &&
1074 "Can't add thunks for construction vtable");
1075
1076 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1077
1078 // Check if we have this thunk already.
1079 if (llvm::is_contained(ThunksVector, Thunk))
1080 return;
1081
1082 ThunksVector.push_back(Thunk);
1083 }
1084
1085 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1086
1087 /// Visit all the methods overridden by the given method recursively,
1088 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
1089 /// indicating whether to continue the recursion for the given overridden
1090 /// method (i.e. returning false stops the iteration).
1091 template <class VisitorTy>
1092 static void
visitAllOverriddenMethods(const CXXMethodDecl * MD,VisitorTy & Visitor)1093 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1094 assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
1095
1096 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1097 if (!Visitor(OverriddenMD))
1098 continue;
1099 visitAllOverriddenMethods(OverriddenMD, Visitor);
1100 }
1101 }
1102
1103 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1104 /// the overridden methods that the function decl overrides.
1105 static void
ComputeAllOverriddenMethods(const CXXMethodDecl * MD,OverriddenMethodsSetTy & OverriddenMethods)1106 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1107 OverriddenMethodsSetTy& OverriddenMethods) {
1108 auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1109 // Don't recurse on this method if we've already collected it.
1110 return OverriddenMethods.insert(MD).second;
1111 };
1112 visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
1113 }
1114
ComputeThisAdjustments()1115 void ItaniumVTableBuilder::ComputeThisAdjustments() {
1116 // Now go through the method info map and see if any of the methods need
1117 // 'this' pointer adjustments.
1118 for (const auto &MI : MethodInfoMap) {
1119 const CXXMethodDecl *MD = MI.first;
1120 const MethodInfo &MethodInfo = MI.second;
1121
1122 // Ignore adjustments for unused function pointers.
1123 uint64_t VTableIndex = MethodInfo.VTableIndex;
1124 if (Components[VTableIndex].getKind() ==
1125 VTableComponent::CK_UnusedFunctionPointer)
1126 continue;
1127
1128 // Get the final overrider for this method.
1129 FinalOverriders::OverriderInfo Overrider =
1130 Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1131
1132 // Check if we need an adjustment at all.
1133 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1134 // When a return thunk is needed by a derived class that overrides a
1135 // virtual base, gcc uses a virtual 'this' adjustment as well.
1136 // While the thunk itself might be needed by vtables in subclasses or
1137 // in construction vtables, there doesn't seem to be a reason for using
1138 // the thunk in this vtable. Still, we do so to match gcc.
1139 if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1140 continue;
1141 }
1142
1143 ThisAdjustment ThisAdjustment =
1144 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1145
1146 if (ThisAdjustment.isEmpty())
1147 continue;
1148
1149 // Add it.
1150 auto SetThisAdjustmentThunk = [&](uint64_t Idx) {
1151 // If a this pointer adjustment is required, record the method that
1152 // created the vtable entry. MD is not necessarily the method that
1153 // created the entry since derived classes overwrite base class
1154 // information in MethodInfoMap, hence findOriginalMethodInMap is called
1155 // here.
1156 //
1157 // For example, in the following class hierarchy, if MD = D1::m and
1158 // Overrider = D2:m, the original method that created the entry is B0:m,
1159 // which is what findOriginalMethodInMap(MD) returns:
1160 //
1161 // struct B0 { int a; virtual void m(); };
1162 // struct D0 : B0 { int a; void m() override; };
1163 // struct D1 : B0 { int a; void m() override; };
1164 // struct D2 : D0, D1 { int a; void m() override; };
1165 //
1166 // We need to record the method because we cannot
1167 // call findOriginalMethod to find the method that created the entry if
1168 // the method in the entry requires adjustment.
1169 //
1170 // Do not set ThunkInfo::Method if Idx is already in VTableThunks. This
1171 // can happen when covariant return adjustment is required too.
1172 if (!VTableThunks.count(Idx)) {
1173 const CXXMethodDecl *Method = VTables.findOriginalMethodInMap(MD);
1174 VTableThunks[Idx].Method = Method;
1175 VTableThunks[Idx].ThisType = Method->getThisType().getTypePtr();
1176 }
1177 VTableThunks[Idx].This = ThisAdjustment;
1178 };
1179
1180 SetThisAdjustmentThunk(VTableIndex);
1181
1182 if (isa<CXXDestructorDecl>(MD)) {
1183 // Add an adjustment for the deleting destructor as well.
1184 SetThisAdjustmentThunk(VTableIndex + 1);
1185 }
1186 }
1187
1188 /// Clear the method info map.
1189 MethodInfoMap.clear();
1190
1191 if (isBuildingConstructorVTable()) {
1192 // We don't need to store thunk information for construction vtables.
1193 return;
1194 }
1195
1196 for (const auto &TI : VTableThunks) {
1197 const VTableComponent &Component = Components[TI.first];
1198 const ThunkInfo &Thunk = TI.second;
1199 const CXXMethodDecl *MD;
1200
1201 switch (Component.getKind()) {
1202 default:
1203 llvm_unreachable("Unexpected vtable component kind!");
1204 case VTableComponent::CK_FunctionPointer:
1205 MD = Component.getFunctionDecl();
1206 break;
1207 case VTableComponent::CK_CompleteDtorPointer:
1208 MD = Component.getDestructorDecl();
1209 break;
1210 case VTableComponent::CK_DeletingDtorPointer:
1211 // We've already added the thunk when we saw the complete dtor pointer.
1212 continue;
1213 }
1214
1215 if (MD->getParent() == MostDerivedClass)
1216 AddThunk(MD, Thunk);
1217 }
1218 }
1219
1220 ReturnAdjustment
ComputeReturnAdjustment(BaseOffset Offset)1221 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1222 ReturnAdjustment Adjustment;
1223
1224 if (!Offset.isEmpty()) {
1225 if (Offset.VirtualBase) {
1226 // Get the virtual base offset offset.
1227 if (Offset.DerivedClass == MostDerivedClass) {
1228 // We can get the offset offset directly from our map.
1229 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1230 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1231 } else {
1232 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1233 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1234 Offset.VirtualBase).getQuantity();
1235 }
1236 }
1237
1238 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1239 }
1240
1241 return Adjustment;
1242 }
1243
ComputeThisAdjustmentBaseOffset(BaseSubobject Base,BaseSubobject Derived) const1244 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1245 BaseSubobject Base, BaseSubobject Derived) const {
1246 const CXXRecordDecl *BaseRD = Base.getBase();
1247 const CXXRecordDecl *DerivedRD = Derived.getBase();
1248
1249 CXXBasePaths Paths(/*FindAmbiguities=*/true,
1250 /*RecordPaths=*/true, /*DetectVirtual=*/true);
1251
1252 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1253 llvm_unreachable("Class must be derived from the passed in base class!");
1254
1255 // We have to go through all the paths, and see which one leads us to the
1256 // right base subobject.
1257 for (const CXXBasePath &Path : Paths) {
1258 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1259
1260 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1261
1262 if (Offset.VirtualBase) {
1263 // If we have a virtual base class, the non-virtual offset is relative
1264 // to the virtual base class offset.
1265 const ASTRecordLayout &LayoutClassLayout =
1266 Context.getASTRecordLayout(LayoutClass);
1267
1268 /// Get the virtual base offset, relative to the most derived class
1269 /// layout.
1270 OffsetToBaseSubobject +=
1271 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1272 } else {
1273 // Otherwise, the non-virtual offset is relative to the derived class
1274 // offset.
1275 OffsetToBaseSubobject += Derived.getBaseOffset();
1276 }
1277
1278 // Check if this path gives us the right base subobject.
1279 if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1280 // Since we're going from the base class _to_ the derived class, we'll
1281 // invert the non-virtual offset here.
1282 Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1283 return Offset;
1284 }
1285 }
1286
1287 return BaseOffset();
1288 }
1289
ComputeThisAdjustment(const CXXMethodDecl * MD,CharUnits BaseOffsetInLayoutClass,FinalOverriders::OverriderInfo Overrider)1290 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1291 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1292 FinalOverriders::OverriderInfo Overrider) {
1293 // Ignore adjustments for pure virtual member functions.
1294 if (Overrider.Method->isPureVirtual())
1295 return ThisAdjustment();
1296
1297 BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1298 BaseOffsetInLayoutClass);
1299
1300 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1301 Overrider.Offset);
1302
1303 // Compute the adjustment offset.
1304 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1305 OverriderBaseSubobject);
1306 if (Offset.isEmpty())
1307 return ThisAdjustment();
1308
1309 ThisAdjustment Adjustment;
1310
1311 if (Offset.VirtualBase) {
1312 // Get the vcall offset map for this virtual base.
1313 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1314
1315 if (VCallOffsets.empty()) {
1316 // We don't have vcall offsets for this virtual base, go ahead and
1317 // build them.
1318 VCallAndVBaseOffsetBuilder Builder(
1319 VTables, MostDerivedClass, MostDerivedClass,
1320 /*Overriders=*/nullptr,
1321 BaseSubobject(Offset.VirtualBase, CharUnits::Zero()),
1322 /*BaseIsVirtual=*/true,
1323 /*OffsetInLayoutClass=*/
1324 CharUnits::Zero());
1325
1326 VCallOffsets = Builder.getVCallOffsets();
1327 }
1328
1329 Adjustment.Virtual.Itanium.VCallOffsetOffset =
1330 VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1331 }
1332
1333 // Set the non-virtual part of the adjustment.
1334 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1335
1336 return Adjustment;
1337 }
1338
AddMethod(const CXXMethodDecl * MD,ReturnAdjustment ReturnAdjustment)1339 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1340 ReturnAdjustment ReturnAdjustment) {
1341 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1342 assert(ReturnAdjustment.isEmpty() &&
1343 "Destructor can't have return adjustment!");
1344
1345 // Add both the complete destructor and the deleting destructor.
1346 Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1347 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1348 } else {
1349 // Add the return adjustment if necessary.
1350 if (!ReturnAdjustment.isEmpty())
1351 VTableThunks[Components.size()].Return = ReturnAdjustment;
1352
1353 // Add the function.
1354 Components.push_back(VTableComponent::MakeFunction(MD));
1355 }
1356 }
1357
1358 /// OverridesIndirectMethodInBase - Return whether the given member function
1359 /// overrides any methods in the set of given bases.
1360 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1361 /// For example, if we have:
1362 ///
1363 /// struct A { virtual void f(); }
1364 /// struct B : A { virtual void f(); }
1365 /// struct C : B { virtual void f(); }
1366 ///
1367 /// OverridesIndirectMethodInBase will return true if given C::f as the method
1368 /// and { A } as the set of bases.
OverridesIndirectMethodInBases(const CXXMethodDecl * MD,ItaniumVTableBuilder::PrimaryBasesSetVectorTy & Bases)1369 static bool OverridesIndirectMethodInBases(
1370 const CXXMethodDecl *MD,
1371 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1372 if (Bases.count(MD->getParent()))
1373 return true;
1374
1375 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1376 // Check "indirect overriders".
1377 if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1378 return true;
1379 }
1380
1381 return false;
1382 }
1383
IsOverriderUsed(const CXXMethodDecl * Overrider,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass) const1384 bool ItaniumVTableBuilder::IsOverriderUsed(
1385 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1386 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1387 CharUnits FirstBaseOffsetInLayoutClass) const {
1388 // If the base and the first base in the primary base chain have the same
1389 // offsets, then this overrider will be used.
1390 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1391 return true;
1392
1393 // We know now that Base (or a direct or indirect base of it) is a primary
1394 // base in part of the class hierarchy, but not a primary base in the most
1395 // derived class.
1396
1397 // If the overrider is the first base in the primary base chain, we know
1398 // that the overrider will be used.
1399 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1400 return true;
1401
1402 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1403
1404 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1405 PrimaryBases.insert(RD);
1406
1407 // Now traverse the base chain, starting with the first base, until we find
1408 // the base that is no longer a primary base.
1409 while (true) {
1410 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1411 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1412
1413 if (!PrimaryBase)
1414 break;
1415
1416 if (Layout.isPrimaryBaseVirtual()) {
1417 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1418 "Primary base should always be at offset 0!");
1419
1420 const ASTRecordLayout &LayoutClassLayout =
1421 Context.getASTRecordLayout(LayoutClass);
1422
1423 // Now check if this is the primary base that is not a primary base in the
1424 // most derived class.
1425 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1426 FirstBaseOffsetInLayoutClass) {
1427 // We found it, stop walking the chain.
1428 break;
1429 }
1430 } else {
1431 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1432 "Primary base should always be at offset 0!");
1433 }
1434
1435 if (!PrimaryBases.insert(PrimaryBase))
1436 llvm_unreachable("Found a duplicate primary base!");
1437
1438 RD = PrimaryBase;
1439 }
1440
1441 // If the final overrider is an override of one of the primary bases,
1442 // then we know that it will be used.
1443 return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1444 }
1445
1446 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1447
1448 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
1449 /// from the nearest base. Returns null if no method was found.
1450 /// The Bases are expected to be sorted in a base-to-derived order.
1451 static const CXXMethodDecl *
FindNearestOverriddenMethod(const CXXMethodDecl * MD,BasesSetVectorTy & Bases)1452 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1453 BasesSetVectorTy &Bases) {
1454 OverriddenMethodsSetTy OverriddenMethods;
1455 ComputeAllOverriddenMethods(MD, OverriddenMethods);
1456
1457 for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) {
1458 // Now check the overridden methods.
1459 for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1460 // We found our overridden method.
1461 if (OverriddenMD->getParent() == PrimaryBase)
1462 return OverriddenMD;
1463 }
1464 }
1465
1466 return nullptr;
1467 }
1468
AddMethods(BaseSubobject Base,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass,PrimaryBasesSetVectorTy & PrimaryBases)1469 void ItaniumVTableBuilder::AddMethods(
1470 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1471 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1472 CharUnits FirstBaseOffsetInLayoutClass,
1473 PrimaryBasesSetVectorTy &PrimaryBases) {
1474 // Itanium C++ ABI 2.5.2:
1475 // The order of the virtual function pointers in a virtual table is the
1476 // order of declaration of the corresponding member functions in the class.
1477 //
1478 // There is an entry for any virtual function declared in a class,
1479 // whether it is a new function or overrides a base class function,
1480 // unless it overrides a function from the primary base, and conversion
1481 // between their return types does not require an adjustment.
1482
1483 const CXXRecordDecl *RD = Base.getBase();
1484 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1485
1486 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1487 CharUnits PrimaryBaseOffset;
1488 CharUnits PrimaryBaseOffsetInLayoutClass;
1489 if (Layout.isPrimaryBaseVirtual()) {
1490 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1491 "Primary vbase should have a zero offset!");
1492
1493 const ASTRecordLayout &MostDerivedClassLayout =
1494 Context.getASTRecordLayout(MostDerivedClass);
1495
1496 PrimaryBaseOffset =
1497 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1498
1499 const ASTRecordLayout &LayoutClassLayout =
1500 Context.getASTRecordLayout(LayoutClass);
1501
1502 PrimaryBaseOffsetInLayoutClass =
1503 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1504 } else {
1505 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1506 "Primary base should have a zero offset!");
1507
1508 PrimaryBaseOffset = Base.getBaseOffset();
1509 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1510 }
1511
1512 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1513 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1514 FirstBaseOffsetInLayoutClass, PrimaryBases);
1515
1516 if (!PrimaryBases.insert(PrimaryBase))
1517 llvm_unreachable("Found a duplicate primary base!");
1518 }
1519
1520 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1521 NewVirtualFunctionsTy NewVirtualFunctions;
1522
1523 llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;
1524
1525 // Now go through all virtual member functions and add them.
1526 for (const auto *MD : RD->methods()) {
1527 if (!ItaniumVTableContext::hasVtableSlot(MD))
1528 continue;
1529 MD = MD->getCanonicalDecl();
1530
1531 // Get the final overrider.
1532 FinalOverriders::OverriderInfo Overrider =
1533 Overriders.getOverrider(MD, Base.getBaseOffset());
1534
1535 // Check if this virtual member function overrides a method in a primary
1536 // base. If this is the case, and the return type doesn't require adjustment
1537 // then we can just use the member function from the primary base.
1538 if (const CXXMethodDecl *OverriddenMD =
1539 FindNearestOverriddenMethod(MD, PrimaryBases)) {
1540 if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1541 OverriddenMD).isEmpty()) {
1542 VTables.setOriginalMethod(MD, OverriddenMD);
1543
1544 // Replace the method info of the overridden method with our own
1545 // method.
1546 assert(MethodInfoMap.count(OverriddenMD) &&
1547 "Did not find the overridden method!");
1548 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1549
1550 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1551 OverriddenMethodInfo.VTableIndex);
1552
1553 assert(!MethodInfoMap.count(MD) &&
1554 "Should not have method info for this method yet!");
1555
1556 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1557 MethodInfoMap.erase(OverriddenMD);
1558
1559 // If the overridden method exists in a virtual base class or a direct
1560 // or indirect base class of a virtual base class, we need to emit a
1561 // thunk if we ever have a class hierarchy where the base class is not
1562 // a primary base in the complete object.
1563 if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1564 // Compute the this adjustment.
1565 ThisAdjustment ThisAdjustment =
1566 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1567 Overrider);
1568
1569 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1570 Overrider.Method->getParent() == MostDerivedClass) {
1571
1572 // There's no return adjustment from OverriddenMD and MD,
1573 // but that doesn't mean there isn't one between MD and
1574 // the final overrider.
1575 BaseOffset ReturnAdjustmentOffset =
1576 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1577 ReturnAdjustment ReturnAdjustment =
1578 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1579
1580 // This is a virtual thunk for the most derived class, add it.
1581 AddThunk(Overrider.Method,
1582 ThunkInfo(ThisAdjustment, ReturnAdjustment,
1583 OverriddenMD->getThisType().getTypePtr()));
1584 }
1585 }
1586
1587 continue;
1588 }
1589 }
1590
1591 if (MD->isImplicit())
1592 NewImplicitVirtualFunctions.push_back(MD);
1593 else
1594 NewVirtualFunctions.push_back(MD);
1595 }
1596
1597 std::stable_sort(
1598 NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(),
1599 [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
1600 if (A == B)
1601 return false;
1602 if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
1603 return A->isCopyAssignmentOperator();
1604 if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
1605 return A->isMoveAssignmentOperator();
1606 if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B))
1607 return isa<CXXDestructorDecl>(A);
1608 assert(A->getOverloadedOperator() == OO_EqualEqual &&
1609 B->getOverloadedOperator() == OO_EqualEqual &&
1610 "unexpected or duplicate implicit virtual function");
1611 // We rely on Sema to have declared the operator== members in the
1612 // same order as the corresponding operator<=> members.
1613 return false;
1614 });
1615 NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(),
1616 NewImplicitVirtualFunctions.end());
1617
1618 for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1619 // Get the final overrider.
1620 FinalOverriders::OverriderInfo Overrider =
1621 Overriders.getOverrider(MD, Base.getBaseOffset());
1622
1623 // Insert the method info for this method.
1624 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1625 Components.size());
1626
1627 assert(!MethodInfoMap.count(MD) &&
1628 "Should not have method info for this method yet!");
1629 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1630
1631 // Check if this overrider is going to be used.
1632 const CXXMethodDecl *OverriderMD = Overrider.Method;
1633 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1634 FirstBaseInPrimaryBaseChain,
1635 FirstBaseOffsetInLayoutClass)) {
1636 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1637 continue;
1638 }
1639
1640 // Check if this overrider needs a return adjustment.
1641 // We don't want to do this for pure virtual member functions.
1642 BaseOffset ReturnAdjustmentOffset;
1643 if (!OverriderMD->isPureVirtual()) {
1644 ReturnAdjustmentOffset =
1645 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1646 }
1647
1648 ReturnAdjustment ReturnAdjustment =
1649 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1650
1651 // If a return adjustment is required, record the method that created the
1652 // vtable entry. We need to record the method because we cannot call
1653 // findOriginalMethod to find the method that created the entry if the
1654 // method in the entry requires adjustment.
1655 if (!ReturnAdjustment.isEmpty()) {
1656 VTableThunks[Components.size()].Method = MD;
1657 VTableThunks[Components.size()].ThisType = MD->getThisType().getTypePtr();
1658 }
1659
1660 AddMethod(Overrider.Method, ReturnAdjustment);
1661 }
1662 }
1663
LayoutVTable()1664 void ItaniumVTableBuilder::LayoutVTable() {
1665 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1666 CharUnits::Zero()),
1667 /*BaseIsMorallyVirtual=*/false,
1668 MostDerivedClassIsVirtual,
1669 MostDerivedClassOffset);
1670
1671 VisitedVirtualBasesSetTy VBases;
1672
1673 // Determine the primary virtual bases.
1674 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1675 VBases);
1676 VBases.clear();
1677
1678 LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1679
1680 // -fapple-kext adds an extra entry at end of vtbl.
1681 bool IsAppleKext = Context.getLangOpts().AppleKext;
1682 if (IsAppleKext)
1683 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1684 }
1685
LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,bool BaseIsVirtualInLayoutClass,CharUnits OffsetInLayoutClass)1686 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1687 BaseSubobject Base, bool BaseIsMorallyVirtual,
1688 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1689 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1690
1691 unsigned VTableIndex = Components.size();
1692 VTableIndices.push_back(VTableIndex);
1693
1694 // Add vcall and vbase offsets for this vtable.
1695 VCallAndVBaseOffsetBuilder Builder(
1696 VTables, MostDerivedClass, LayoutClass, &Overriders, Base,
1697 BaseIsVirtualInLayoutClass, OffsetInLayoutClass);
1698 Components.append(Builder.components_begin(), Builder.components_end());
1699
1700 // Check if we need to add these vcall offsets.
1701 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1702 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1703
1704 if (VCallOffsets.empty())
1705 VCallOffsets = Builder.getVCallOffsets();
1706 }
1707
1708 // If we're laying out the most derived class we want to keep track of the
1709 // virtual base class offset offsets.
1710 if (Base.getBase() == MostDerivedClass)
1711 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1712
1713 // Add the offset to top.
1714 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1715 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1716
1717 // Next, add the RTTI.
1718 if (!Context.getLangOpts().OmitVTableRTTI)
1719 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1720
1721 uint64_t AddressPoint = Components.size();
1722
1723 // Now go through all virtual member functions and add them.
1724 PrimaryBasesSetVectorTy PrimaryBases;
1725 AddMethods(Base, OffsetInLayoutClass,
1726 Base.getBase(), OffsetInLayoutClass,
1727 PrimaryBases);
1728
1729 const CXXRecordDecl *RD = Base.getBase();
1730 if (RD == MostDerivedClass) {
1731 assert(MethodVTableIndices.empty());
1732 for (const auto &I : MethodInfoMap) {
1733 const CXXMethodDecl *MD = I.first;
1734 const MethodInfo &MI = I.second;
1735 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1736 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1737 = MI.VTableIndex - AddressPoint;
1738 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1739 = MI.VTableIndex + 1 - AddressPoint;
1740 } else {
1741 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1742 }
1743 }
1744 }
1745
1746 // Compute 'this' pointer adjustments.
1747 ComputeThisAdjustments();
1748
1749 // Add all address points.
1750 while (true) {
1751 AddressPoints.insert(
1752 std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
1753 VTableLayout::AddressPointLocation{
1754 unsigned(VTableIndices.size() - 1),
1755 unsigned(AddressPoint - VTableIndex)}));
1756
1757 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1758 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1759
1760 if (!PrimaryBase)
1761 break;
1762
1763 if (Layout.isPrimaryBaseVirtual()) {
1764 // Check if this virtual primary base is a primary base in the layout
1765 // class. If it's not, we don't want to add it.
1766 const ASTRecordLayout &LayoutClassLayout =
1767 Context.getASTRecordLayout(LayoutClass);
1768
1769 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1770 OffsetInLayoutClass) {
1771 // We don't want to add this class (or any of its primary bases).
1772 break;
1773 }
1774 }
1775
1776 RD = PrimaryBase;
1777 }
1778
1779 // Layout secondary vtables.
1780 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1781 }
1782
1783 void
LayoutSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,CharUnits OffsetInLayoutClass)1784 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1785 bool BaseIsMorallyVirtual,
1786 CharUnits OffsetInLayoutClass) {
1787 // Itanium C++ ABI 2.5.2:
1788 // Following the primary virtual table of a derived class are secondary
1789 // virtual tables for each of its proper base classes, except any primary
1790 // base(s) with which it shares its primary virtual table.
1791
1792 const CXXRecordDecl *RD = Base.getBase();
1793 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1794 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1795
1796 for (const auto &B : RD->bases()) {
1797 // Ignore virtual bases, we'll emit them later.
1798 if (B.isVirtual())
1799 continue;
1800
1801 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1802
1803 // Ignore bases that don't have a vtable.
1804 if (!BaseDecl->isDynamicClass())
1805 continue;
1806
1807 if (isBuildingConstructorVTable()) {
1808 // Itanium C++ ABI 2.6.4:
1809 // Some of the base class subobjects may not need construction virtual
1810 // tables, which will therefore not be present in the construction
1811 // virtual table group, even though the subobject virtual tables are
1812 // present in the main virtual table group for the complete object.
1813 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1814 continue;
1815 }
1816
1817 // Get the base offset of this base.
1818 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1819 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1820
1821 CharUnits BaseOffsetInLayoutClass =
1822 OffsetInLayoutClass + RelativeBaseOffset;
1823
1824 // Don't emit a secondary vtable for a primary base. We might however want
1825 // to emit secondary vtables for other bases of this base.
1826 if (BaseDecl == PrimaryBase) {
1827 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1828 BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1829 continue;
1830 }
1831
1832 // Layout the primary vtable (and any secondary vtables) for this base.
1833 LayoutPrimaryAndSecondaryVTables(
1834 BaseSubobject(BaseDecl, BaseOffset),
1835 BaseIsMorallyVirtual,
1836 /*BaseIsVirtualInLayoutClass=*/false,
1837 BaseOffsetInLayoutClass);
1838 }
1839 }
1840
DeterminePrimaryVirtualBases(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass,VisitedVirtualBasesSetTy & VBases)1841 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1842 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1843 VisitedVirtualBasesSetTy &VBases) {
1844 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1845
1846 // Check if this base has a primary base.
1847 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1848
1849 // Check if it's virtual.
1850 if (Layout.isPrimaryBaseVirtual()) {
1851 bool IsPrimaryVirtualBase = true;
1852
1853 if (isBuildingConstructorVTable()) {
1854 // Check if the base is actually a primary base in the class we use for
1855 // layout.
1856 const ASTRecordLayout &LayoutClassLayout =
1857 Context.getASTRecordLayout(LayoutClass);
1858
1859 CharUnits PrimaryBaseOffsetInLayoutClass =
1860 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1861
1862 // We know that the base is not a primary base in the layout class if
1863 // the base offsets are different.
1864 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1865 IsPrimaryVirtualBase = false;
1866 }
1867
1868 if (IsPrimaryVirtualBase)
1869 PrimaryVirtualBases.insert(PrimaryBase);
1870 }
1871 }
1872
1873 // Traverse bases, looking for more primary virtual bases.
1874 for (const auto &B : RD->bases()) {
1875 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1876
1877 CharUnits BaseOffsetInLayoutClass;
1878
1879 if (B.isVirtual()) {
1880 if (!VBases.insert(BaseDecl).second)
1881 continue;
1882
1883 const ASTRecordLayout &LayoutClassLayout =
1884 Context.getASTRecordLayout(LayoutClass);
1885
1886 BaseOffsetInLayoutClass =
1887 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1888 } else {
1889 BaseOffsetInLayoutClass =
1890 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1891 }
1892
1893 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1894 }
1895 }
1896
LayoutVTablesForVirtualBases(const CXXRecordDecl * RD,VisitedVirtualBasesSetTy & VBases)1897 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1898 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1899 // Itanium C++ ABI 2.5.2:
1900 // Then come the virtual base virtual tables, also in inheritance graph
1901 // order, and again excluding primary bases (which share virtual tables with
1902 // the classes for which they are primary).
1903 for (const auto &B : RD->bases()) {
1904 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1905
1906 // Check if this base needs a vtable. (If it's virtual, not a primary base
1907 // of some other class, and we haven't visited it before).
1908 if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1909 !PrimaryVirtualBases.count(BaseDecl) &&
1910 VBases.insert(BaseDecl).second) {
1911 const ASTRecordLayout &MostDerivedClassLayout =
1912 Context.getASTRecordLayout(MostDerivedClass);
1913 CharUnits BaseOffset =
1914 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1915
1916 const ASTRecordLayout &LayoutClassLayout =
1917 Context.getASTRecordLayout(LayoutClass);
1918 CharUnits BaseOffsetInLayoutClass =
1919 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1920
1921 LayoutPrimaryAndSecondaryVTables(
1922 BaseSubobject(BaseDecl, BaseOffset),
1923 /*BaseIsMorallyVirtual=*/true,
1924 /*BaseIsVirtualInLayoutClass=*/true,
1925 BaseOffsetInLayoutClass);
1926 }
1927
1928 // We only need to check the base for virtual base vtables if it actually
1929 // has virtual bases.
1930 if (BaseDecl->getNumVBases())
1931 LayoutVTablesForVirtualBases(BaseDecl, VBases);
1932 }
1933 }
1934
printThunkMethod(const ThunkInfo & Info,raw_ostream & Out)1935 static void printThunkMethod(const ThunkInfo &Info, raw_ostream &Out) {
1936 if (!Info.Method)
1937 return;
1938 std::string Str = PredefinedExpr::ComputeName(
1939 PredefinedIdentKind::PrettyFunctionNoVirtual, Info.Method);
1940 Out << " method: " << Str;
1941 }
1942
1943 /// dumpLayout - Dump the vtable layout.
dumpLayout(raw_ostream & Out)1944 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1945 // FIXME: write more tests that actually use the dumpLayout output to prevent
1946 // ItaniumVTableBuilder regressions.
1947
1948 Out << "Original map\n";
1949
1950 for (const auto &P : VTables.getOriginalMethodMap()) {
1951 std::string Str0 =
1952 PredefinedExpr::ComputeName(PredefinedIdentKind::PrettyFunctionNoVirtual,
1953 P.first);
1954 std::string Str1 =
1955 PredefinedExpr::ComputeName(PredefinedIdentKind::PrettyFunctionNoVirtual,
1956 P.second);
1957 Out << " " << Str0 << " -> " << Str1 << "\n";
1958 }
1959
1960 if (isBuildingConstructorVTable()) {
1961 Out << "Construction vtable for ('";
1962 MostDerivedClass->printQualifiedName(Out);
1963 Out << "', ";
1964 Out << MostDerivedClassOffset.getQuantity() << ") in '";
1965 LayoutClass->printQualifiedName(Out);
1966 } else {
1967 Out << "Vtable for '";
1968 MostDerivedClass->printQualifiedName(Out);
1969 }
1970 Out << "' (" << Components.size() << " entries).\n";
1971
1972 // Iterate through the address points and insert them into a new map where
1973 // they are keyed by the index and not the base object.
1974 // Since an address point can be shared by multiple subobjects, we use an
1975 // STL multimap.
1976 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1977 for (const auto &AP : AddressPoints) {
1978 const BaseSubobject &Base = AP.first;
1979 uint64_t Index =
1980 VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
1981
1982 AddressPointsByIndex.insert(std::make_pair(Index, Base));
1983 }
1984
1985 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1986 uint64_t Index = I;
1987
1988 Out << llvm::format("%4d | ", I);
1989
1990 const VTableComponent &Component = Components[I];
1991
1992 // Dump the component.
1993 switch (Component.getKind()) {
1994
1995 case VTableComponent::CK_VCallOffset:
1996 Out << "vcall_offset ("
1997 << Component.getVCallOffset().getQuantity()
1998 << ")";
1999 break;
2000
2001 case VTableComponent::CK_VBaseOffset:
2002 Out << "vbase_offset ("
2003 << Component.getVBaseOffset().getQuantity()
2004 << ")";
2005 break;
2006
2007 case VTableComponent::CK_OffsetToTop:
2008 Out << "offset_to_top ("
2009 << Component.getOffsetToTop().getQuantity()
2010 << ")";
2011 break;
2012
2013 case VTableComponent::CK_RTTI:
2014 Component.getRTTIDecl()->printQualifiedName(Out);
2015 Out << " RTTI";
2016 break;
2017
2018 case VTableComponent::CK_FunctionPointer: {
2019 const CXXMethodDecl *MD = Component.getFunctionDecl();
2020
2021 std::string Str = PredefinedExpr::ComputeName(
2022 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2023 Out << Str;
2024 if (MD->isPureVirtual())
2025 Out << " [pure]";
2026
2027 if (MD->isDeleted())
2028 Out << " [deleted]";
2029
2030 ThunkInfo Thunk = VTableThunks.lookup(I);
2031 if (!Thunk.isEmpty()) {
2032 // If this function pointer has a return adjustment, dump it.
2033 if (!Thunk.Return.isEmpty()) {
2034 Out << "\n [return adjustment: ";
2035 Out << Thunk.Return.NonVirtual << " non-virtual";
2036
2037 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2038 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2039 Out << " vbase offset offset";
2040 }
2041
2042 Out << ']';
2043 printThunkMethod(Thunk, Out);
2044 }
2045
2046 // If this function pointer has a 'this' pointer adjustment, dump it.
2047 if (!Thunk.This.isEmpty()) {
2048 Out << "\n [this adjustment: ";
2049 Out << Thunk.This.NonVirtual << " non-virtual";
2050
2051 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2052 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2053 Out << " vcall offset offset";
2054 }
2055
2056 Out << ']';
2057 printThunkMethod(Thunk, Out);
2058 }
2059 }
2060
2061 break;
2062 }
2063
2064 case VTableComponent::CK_CompleteDtorPointer:
2065 case VTableComponent::CK_DeletingDtorPointer: {
2066 bool IsComplete =
2067 Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
2068
2069 const CXXDestructorDecl *DD = Component.getDestructorDecl();
2070
2071 DD->printQualifiedName(Out);
2072 if (IsComplete)
2073 Out << "() [complete]";
2074 else
2075 Out << "() [deleting]";
2076
2077 if (DD->isPureVirtual())
2078 Out << " [pure]";
2079
2080 ThunkInfo Thunk = VTableThunks.lookup(I);
2081 if (!Thunk.isEmpty()) {
2082 // If this destructor has a 'this' pointer adjustment, dump it.
2083 if (!Thunk.This.isEmpty()) {
2084 Out << "\n [this adjustment: ";
2085 Out << Thunk.This.NonVirtual << " non-virtual";
2086
2087 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2088 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2089 Out << " vcall offset offset";
2090 }
2091
2092 Out << ']';
2093 }
2094 printThunkMethod(Thunk, Out);
2095 }
2096
2097 break;
2098 }
2099
2100 case VTableComponent::CK_UnusedFunctionPointer: {
2101 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2102
2103 std::string Str = PredefinedExpr::ComputeName(
2104 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2105 Out << "[unused] " << Str;
2106 if (MD->isPureVirtual())
2107 Out << " [pure]";
2108 }
2109
2110 }
2111
2112 Out << '\n';
2113
2114 // Dump the next address point.
2115 uint64_t NextIndex = Index + 1;
2116 if (AddressPointsByIndex.count(NextIndex)) {
2117 if (AddressPointsByIndex.count(NextIndex) == 1) {
2118 const BaseSubobject &Base =
2119 AddressPointsByIndex.find(NextIndex)->second;
2120
2121 Out << " -- (";
2122 Base.getBase()->printQualifiedName(Out);
2123 Out << ", " << Base.getBaseOffset().getQuantity();
2124 Out << ") vtable address --\n";
2125 } else {
2126 CharUnits BaseOffset =
2127 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2128
2129 // We store the class names in a set to get a stable order.
2130 std::set<std::string> ClassNames;
2131 for (const auto &I :
2132 llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
2133 assert(I.second.getBaseOffset() == BaseOffset &&
2134 "Invalid base offset!");
2135 const CXXRecordDecl *RD = I.second.getBase();
2136 ClassNames.insert(RD->getQualifiedNameAsString());
2137 }
2138
2139 for (const std::string &Name : ClassNames) {
2140 Out << " -- (" << Name;
2141 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2142 }
2143 }
2144 }
2145 }
2146
2147 Out << '\n';
2148
2149 if (isBuildingConstructorVTable())
2150 return;
2151
2152 if (MostDerivedClass->getNumVBases()) {
2153 // We store the virtual base class names and their offsets in a map to get
2154 // a stable order.
2155
2156 std::map<std::string, CharUnits> ClassNamesAndOffsets;
2157 for (const auto &I : VBaseOffsetOffsets) {
2158 std::string ClassName = I.first->getQualifiedNameAsString();
2159 CharUnits OffsetOffset = I.second;
2160 ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
2161 }
2162
2163 Out << "Virtual base offset offsets for '";
2164 MostDerivedClass->printQualifiedName(Out);
2165 Out << "' (";
2166 Out << ClassNamesAndOffsets.size();
2167 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2168
2169 for (const auto &I : ClassNamesAndOffsets)
2170 Out << " " << I.first << " | " << I.second.getQuantity() << '\n';
2171
2172 Out << "\n";
2173 }
2174
2175 if (!Thunks.empty()) {
2176 // We store the method names in a map to get a stable order.
2177 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2178
2179 for (const auto &I : Thunks) {
2180 const CXXMethodDecl *MD = I.first;
2181 std::string MethodName = PredefinedExpr::ComputeName(
2182 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2183
2184 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2185 }
2186
2187 for (const auto &I : MethodNamesAndDecls) {
2188 const std::string &MethodName = I.first;
2189 const CXXMethodDecl *MD = I.second;
2190
2191 ThunkInfoVectorTy ThunksVector = Thunks[MD];
2192 llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2193 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2194 });
2195
2196 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2197 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2198
2199 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2200 const ThunkInfo &Thunk = ThunksVector[I];
2201
2202 Out << llvm::format("%4d | ", I);
2203
2204 // If this function pointer has a return pointer adjustment, dump it.
2205 if (!Thunk.Return.isEmpty()) {
2206 Out << "return adjustment: " << Thunk.Return.NonVirtual;
2207 Out << " non-virtual";
2208 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2209 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2210 Out << " vbase offset offset";
2211 }
2212
2213 if (!Thunk.This.isEmpty())
2214 Out << "\n ";
2215 }
2216
2217 // If this function pointer has a 'this' pointer adjustment, dump it.
2218 if (!Thunk.This.isEmpty()) {
2219 Out << "this adjustment: ";
2220 Out << Thunk.This.NonVirtual << " non-virtual";
2221
2222 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2223 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2224 Out << " vcall offset offset";
2225 }
2226 }
2227
2228 Out << '\n';
2229 }
2230
2231 Out << '\n';
2232 }
2233 }
2234
2235 // Compute the vtable indices for all the member functions.
2236 // Store them in a map keyed by the index so we'll get a sorted table.
2237 std::map<uint64_t, std::string> IndicesMap;
2238
2239 for (const auto *MD : MostDerivedClass->methods()) {
2240 // We only want virtual member functions.
2241 if (!ItaniumVTableContext::hasVtableSlot(MD))
2242 continue;
2243 MD = MD->getCanonicalDecl();
2244
2245 std::string MethodName = PredefinedExpr::ComputeName(
2246 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
2247
2248 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2249 GlobalDecl GD(DD, Dtor_Complete);
2250 assert(MethodVTableIndices.count(GD));
2251 uint64_t VTableIndex = MethodVTableIndices[GD];
2252 IndicesMap[VTableIndex] = MethodName + " [complete]";
2253 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2254 } else {
2255 assert(MethodVTableIndices.count(MD));
2256 IndicesMap[MethodVTableIndices[MD]] = MethodName;
2257 }
2258 }
2259
2260 // Print the vtable indices for all the member functions.
2261 if (!IndicesMap.empty()) {
2262 Out << "VTable indices for '";
2263 MostDerivedClass->printQualifiedName(Out);
2264 Out << "' (" << IndicesMap.size() << " entries).\n";
2265
2266 for (const auto &I : IndicesMap) {
2267 uint64_t VTableIndex = I.first;
2268 const std::string &MethodName = I.second;
2269
2270 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2271 << '\n';
2272 }
2273 }
2274
2275 Out << '\n';
2276 }
2277 }
2278
2279 static VTableLayout::AddressPointsIndexMapTy
MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy & addressPoints,unsigned numVTables)2280 MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints,
2281 unsigned numVTables) {
2282 VTableLayout::AddressPointsIndexMapTy indexMap(numVTables);
2283
2284 for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) {
2285 const auto &addressPointLoc = it->second;
2286 unsigned vtableIndex = addressPointLoc.VTableIndex;
2287 unsigned addressPoint = addressPointLoc.AddressPointIndex;
2288 if (indexMap[vtableIndex]) {
2289 // Multiple BaseSubobjects can map to the same AddressPointLocation, but
2290 // every vtable index should have a unique address point.
2291 assert(indexMap[vtableIndex] == addressPoint &&
2292 "Every vtable index should have a unique address point. Found a "
2293 "vtable that has two different address points.");
2294 } else {
2295 indexMap[vtableIndex] = addressPoint;
2296 }
2297 }
2298
2299 // Note that by this point, not all the address may be initialized if the
2300 // AddressPoints map is empty. This is ok if the map isn't needed. See
2301 // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an
2302 // emprt map.
2303 return indexMap;
2304 }
2305
VTableLayout(ArrayRef<size_t> VTableIndices,ArrayRef<VTableComponent> VTableComponents,ArrayRef<VTableThunkTy> VTableThunks,const AddressPointsMapTy & AddressPoints)2306 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
2307 ArrayRef<VTableComponent> VTableComponents,
2308 ArrayRef<VTableThunkTy> VTableThunks,
2309 const AddressPointsMapTy &AddressPoints)
2310 : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
2311 AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices(
2312 AddressPoints, VTableIndices.size())) {
2313 if (VTableIndices.size() <= 1)
2314 assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
2315 else
2316 this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
2317
2318 llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
2319 const VTableLayout::VTableThunkTy &RHS) {
2320 assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2321 "Different thunks should have unique indices!");
2322 return LHS.first < RHS.first;
2323 });
2324 }
2325
~VTableLayout()2326 VTableLayout::~VTableLayout() { }
2327
hasVtableSlot(const CXXMethodDecl * MD)2328 bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) {
2329 return MD->isVirtual() && !MD->isImmediateFunction();
2330 }
2331
ItaniumVTableContext(ASTContext & Context,VTableComponentLayout ComponentLayout)2332 ItaniumVTableContext::ItaniumVTableContext(
2333 ASTContext &Context, VTableComponentLayout ComponentLayout)
2334 : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {}
2335
~ItaniumVTableContext()2336 ItaniumVTableContext::~ItaniumVTableContext() {}
2337
getMethodVTableIndex(GlobalDecl GD)2338 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2339 GD = GD.getCanonicalDecl();
2340 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2341 if (I != MethodVTableIndices.end())
2342 return I->second;
2343
2344 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2345
2346 computeVTableRelatedInformation(RD);
2347
2348 I = MethodVTableIndices.find(GD);
2349 assert(I != MethodVTableIndices.end() && "Did not find index!");
2350 return I->second;
2351 }
2352
2353 CharUnits
getVirtualBaseOffsetOffset(const CXXRecordDecl * RD,const CXXRecordDecl * VBase)2354 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2355 const CXXRecordDecl *VBase) {
2356 ClassPairTy ClassPair(RD, VBase);
2357
2358 VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2359 VirtualBaseClassOffsetOffsets.find(ClassPair);
2360 if (I != VirtualBaseClassOffsetOffsets.end())
2361 return I->second;
2362
2363 VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr,
2364 BaseSubobject(RD, CharUnits::Zero()),
2365 /*BaseIsVirtual=*/false,
2366 /*OffsetInLayoutClass=*/CharUnits::Zero());
2367
2368 for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2369 // Insert all types.
2370 ClassPairTy ClassPair(RD, I.first);
2371
2372 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2373 }
2374
2375 I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2376 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2377
2378 return I->second;
2379 }
2380
findOriginalMethod(GlobalDecl GD)2381 GlobalDecl ItaniumVTableContext::findOriginalMethod(GlobalDecl GD) {
2382 const auto *MD = cast<CXXMethodDecl>(GD.getDecl());
2383 computeVTableRelatedInformation(MD->getParent());
2384 const CXXMethodDecl *OriginalMD = findOriginalMethodInMap(MD);
2385
2386 if (const auto *DD = dyn_cast<CXXDestructorDecl>(OriginalMD))
2387 return GlobalDecl(DD, GD.getDtorType());
2388 return OriginalMD;
2389 }
2390
2391 const CXXMethodDecl *
findOriginalMethodInMap(const CXXMethodDecl * MD) const2392 ItaniumVTableContext::findOriginalMethodInMap(const CXXMethodDecl *MD) const {
2393 // Traverse the chain of virtual methods until we find the method that added
2394 // the v-table slot.
2395 while (true) {
2396 auto I = OriginalMethodMap.find(MD);
2397
2398 // MD doesn't exist in OriginalMethodMap, so it must be the method we are
2399 // looking for.
2400 if (I == OriginalMethodMap.end())
2401 break;
2402
2403 // Set MD to the overridden method.
2404 MD = I->second;
2405 }
2406
2407 return MD;
2408 }
2409
2410 static std::unique_ptr<VTableLayout>
CreateVTableLayout(const ItaniumVTableBuilder & Builder)2411 CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2412 SmallVector<VTableLayout::VTableThunkTy, 1>
2413 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2414
2415 return std::make_unique<VTableLayout>(
2416 Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
2417 Builder.getAddressPoints());
2418 }
2419
2420 void
computeVTableRelatedInformation(const CXXRecordDecl * RD)2421 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2422 std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
2423
2424 // Check if we've computed this information before.
2425 if (Entry)
2426 return;
2427
2428 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2429 /*MostDerivedClassIsVirtual=*/false, RD);
2430 Entry = CreateVTableLayout(Builder);
2431
2432 MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2433 Builder.vtable_indices_end());
2434
2435 // Add the known thunks.
2436 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2437
2438 // If we don't have the vbase information for this class, insert it.
2439 // getVirtualBaseOffsetOffset will compute it separately without computing
2440 // the rest of the vtable related information.
2441 if (!RD->getNumVBases())
2442 return;
2443
2444 const CXXRecordDecl *VBase =
2445 RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2446
2447 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2448 return;
2449
2450 for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2451 // Insert all types.
2452 ClassPairTy ClassPair(RD, I.first);
2453
2454 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2455 }
2456 }
2457
2458 std::unique_ptr<VTableLayout>
createConstructionVTableLayout(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)2459 ItaniumVTableContext::createConstructionVTableLayout(
2460 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2461 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2462 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2463 MostDerivedClassIsVirtual, LayoutClass);
2464 return CreateVTableLayout(Builder);
2465 }
2466
2467 namespace {
2468
2469 // Vtables in the Microsoft ABI are different from the Itanium ABI.
2470 //
2471 // The main differences are:
2472 // 1. Separate vftable and vbtable.
2473 //
2474 // 2. Each subobject with a vfptr gets its own vftable rather than an address
2475 // point in a single vtable shared between all the subobjects.
2476 // Each vftable is represented by a separate section and virtual calls
2477 // must be done using the vftable which has a slot for the function to be
2478 // called.
2479 //
2480 // 3. Virtual method definitions expect their 'this' parameter to point to the
2481 // first vfptr whose table provides a compatible overridden method. In many
2482 // cases, this permits the original vf-table entry to directly call
2483 // the method instead of passing through a thunk.
2484 // See example before VFTableBuilder::ComputeThisOffset below.
2485 //
2486 // A compatible overridden method is one which does not have a non-trivial
2487 // covariant-return adjustment.
2488 //
2489 // The first vfptr is the one with the lowest offset in the complete-object
2490 // layout of the defining class, and the method definition will subtract
2491 // that constant offset from the parameter value to get the real 'this'
2492 // value. Therefore, if the offset isn't really constant (e.g. if a virtual
2493 // function defined in a virtual base is overridden in a more derived
2494 // virtual base and these bases have a reverse order in the complete
2495 // object), the vf-table may require a this-adjustment thunk.
2496 //
2497 // 4. vftables do not contain new entries for overrides that merely require
2498 // this-adjustment. Together with #3, this keeps vf-tables smaller and
2499 // eliminates the need for this-adjustment thunks in many cases, at the cost
2500 // of often requiring redundant work to adjust the "this" pointer.
2501 //
2502 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2503 // Vtordisps are emitted into the class layout if a class has
2504 // a) a user-defined ctor/dtor
2505 // and
2506 // b) a method overriding a method in a virtual base.
2507 //
2508 // To get a better understanding of this code,
2509 // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2510
2511 class VFTableBuilder {
2512 public:
2513 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2514 MethodVFTableLocationsTy;
2515
2516 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2517 method_locations_range;
2518
2519 private:
2520 /// VTables - Global vtable information.
2521 MicrosoftVTableContext &VTables;
2522
2523 /// Context - The ASTContext which we will use for layout information.
2524 ASTContext &Context;
2525
2526 /// MostDerivedClass - The most derived class for which we're building this
2527 /// vtable.
2528 const CXXRecordDecl *MostDerivedClass;
2529
2530 const ASTRecordLayout &MostDerivedClassLayout;
2531
2532 const VPtrInfo &WhichVFPtr;
2533
2534 /// FinalOverriders - The final overriders of the most derived class.
2535 const FinalOverriders Overriders;
2536
2537 /// Components - The components of the vftable being built.
2538 SmallVector<VTableComponent, 64> Components;
2539
2540 MethodVFTableLocationsTy MethodVFTableLocations;
2541
2542 /// Does this class have an RTTI component?
2543 bool HasRTTIComponent = false;
2544
2545 /// MethodInfo - Contains information about a method in a vtable.
2546 /// (Used for computing 'this' pointer adjustment thunks.
2547 struct MethodInfo {
2548 /// VBTableIndex - The nonzero index in the vbtable that
2549 /// this method's base has, or zero.
2550 const uint64_t VBTableIndex;
2551
2552 /// VFTableIndex - The index in the vftable that this method has.
2553 const uint64_t VFTableIndex;
2554
2555 /// Shadowed - Indicates if this vftable slot is shadowed by
2556 /// a slot for a covariant-return override. If so, it shouldn't be printed
2557 /// or used for vcalls in the most derived class.
2558 bool Shadowed;
2559
2560 /// UsesExtraSlot - Indicates if this vftable slot was created because
2561 /// any of the overridden slots required a return adjusting thunk.
2562 bool UsesExtraSlot;
2563
MethodInfo__anon1858bcf60711::VFTableBuilder::MethodInfo2564 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2565 bool UsesExtraSlot = false)
2566 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2567 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2568
MethodInfo__anon1858bcf60711::VFTableBuilder::MethodInfo2569 MethodInfo()
2570 : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2571 UsesExtraSlot(false) {}
2572 };
2573
2574 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2575
2576 /// MethodInfoMap - The information for all methods in the vftable we're
2577 /// currently building.
2578 MethodInfoMapTy MethodInfoMap;
2579
2580 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2581
2582 /// VTableThunks - The thunks by vftable index in the vftable currently being
2583 /// built.
2584 VTableThunksMapTy VTableThunks;
2585
2586 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2587 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2588
2589 /// Thunks - A map that contains all the thunks needed for all methods in the
2590 /// most derived class for which the vftable is currently being built.
2591 ThunksMapTy Thunks;
2592
2593 /// AddThunk - Add a thunk for the given method.
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)2594 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2595 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2596
2597 // Check if we have this thunk already.
2598 if (llvm::is_contained(ThunksVector, Thunk))
2599 return;
2600
2601 ThunksVector.push_back(Thunk);
2602 }
2603
2604 /// ComputeThisOffset - Returns the 'this' argument offset for the given
2605 /// method, relative to the beginning of the MostDerivedClass.
2606 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2607
2608 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2609 CharUnits ThisOffset, ThisAdjustment &TA);
2610
2611 /// AddMethod - Add a single virtual member function to the vftable
2612 /// components vector.
AddMethod(const CXXMethodDecl * MD,ThunkInfo TI)2613 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2614 if (!TI.isEmpty()) {
2615 VTableThunks[Components.size()] = TI;
2616 AddThunk(MD, TI);
2617 }
2618 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2619 assert(TI.Return.isEmpty() &&
2620 "Destructor can't have return adjustment!");
2621 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2622 } else {
2623 Components.push_back(VTableComponent::MakeFunction(MD));
2624 }
2625 }
2626
2627 /// AddMethods - Add the methods of this base subobject and the relevant
2628 /// subbases to the vftable we're currently laying out.
2629 void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2630 const CXXRecordDecl *LastVBase,
2631 BasesSetVectorTy &VisitedBases);
2632
LayoutVFTable()2633 void LayoutVFTable() {
2634 // RTTI data goes before all other entries.
2635 if (HasRTTIComponent)
2636 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2637
2638 BasesSetVectorTy VisitedBases;
2639 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2640 VisitedBases);
2641 // Note that it is possible for the vftable to contain only an RTTI
2642 // pointer, if all virtual functions are constewval.
2643 assert(!Components.empty() && "vftable can't be empty");
2644
2645 assert(MethodVFTableLocations.empty());
2646 for (const auto &I : MethodInfoMap) {
2647 const CXXMethodDecl *MD = I.first;
2648 const MethodInfo &MI = I.second;
2649 assert(MD == MD->getCanonicalDecl());
2650
2651 // Skip the methods that the MostDerivedClass didn't override
2652 // and the entries shadowed by return adjusting thunks.
2653 if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2654 continue;
2655 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2656 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2657 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2658 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2659 } else {
2660 MethodVFTableLocations[MD] = Loc;
2661 }
2662 }
2663 }
2664
2665 public:
VFTableBuilder(MicrosoftVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,const VPtrInfo & Which)2666 VFTableBuilder(MicrosoftVTableContext &VTables,
2667 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
2668 : VTables(VTables),
2669 Context(MostDerivedClass->getASTContext()),
2670 MostDerivedClass(MostDerivedClass),
2671 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2672 WhichVFPtr(Which),
2673 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2674 // Provide the RTTI component if RTTIData is enabled. If the vftable would
2675 // be available externally, we should not provide the RTTI componenent. It
2676 // is currently impossible to get available externally vftables with either
2677 // dllimport or extern template instantiations, but eventually we may add a
2678 // flag to support additional devirtualization that needs this.
2679 if (Context.getLangOpts().RTTIData)
2680 HasRTTIComponent = true;
2681
2682 LayoutVFTable();
2683
2684 if (Context.getLangOpts().DumpVTableLayouts)
2685 dumpLayout(llvm::outs());
2686 }
2687
getNumThunks() const2688 uint64_t getNumThunks() const { return Thunks.size(); }
2689
thunks_begin() const2690 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2691
thunks_end() const2692 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2693
vtable_locations() const2694 method_locations_range vtable_locations() const {
2695 return method_locations_range(MethodVFTableLocations.begin(),
2696 MethodVFTableLocations.end());
2697 }
2698
vtable_components() const2699 ArrayRef<VTableComponent> vtable_components() const { return Components; }
2700
vtable_thunks_begin() const2701 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2702 return VTableThunks.begin();
2703 }
2704
vtable_thunks_end() const2705 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2706 return VTableThunks.end();
2707 }
2708
2709 void dumpLayout(raw_ostream &);
2710 };
2711
2712 } // end namespace
2713
2714 // Let's study one class hierarchy as an example:
2715 // struct A {
2716 // virtual void f();
2717 // int x;
2718 // };
2719 //
2720 // struct B : virtual A {
2721 // virtual void f();
2722 // };
2723 //
2724 // Record layouts:
2725 // struct A:
2726 // 0 | (A vftable pointer)
2727 // 4 | int x
2728 //
2729 // struct B:
2730 // 0 | (B vbtable pointer)
2731 // 4 | struct A (virtual base)
2732 // 4 | (A vftable pointer)
2733 // 8 | int x
2734 //
2735 // Let's assume we have a pointer to the A part of an object of dynamic type B:
2736 // B b;
2737 // A *a = (A*)&b;
2738 // a->f();
2739 //
2740 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2741 // "this" parameter to point at the A subobject, which is B+4.
2742 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2743 // performed as a *static* adjustment.
2744 //
2745 // Interesting thing happens when we alter the relative placement of A and B
2746 // subobjects in a class:
2747 // struct C : virtual B { };
2748 //
2749 // C c;
2750 // A *a = (A*)&c;
2751 // a->f();
2752 //
2753 // Respective record layout is:
2754 // 0 | (C vbtable pointer)
2755 // 4 | struct A (virtual base)
2756 // 4 | (A vftable pointer)
2757 // 8 | int x
2758 // 12 | struct B (virtual base)
2759 // 12 | (B vbtable pointer)
2760 //
2761 // The final overrider of f() in class C is still B::f(), so B+4 should be
2762 // passed as "this" to that code. However, "a" points at B-8, so the respective
2763 // vftable entry should hold a thunk that adds 12 to the "this" argument before
2764 // performing a tail call to B::f().
2765 //
2766 // With this example in mind, we can now calculate the 'this' argument offset
2767 // for the given method, relative to the beginning of the MostDerivedClass.
2768 CharUnits
ComputeThisOffset(FinalOverriders::OverriderInfo Overrider)2769 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2770 BasesSetVectorTy Bases;
2771
2772 {
2773 // Find the set of least derived bases that define the given method.
2774 OverriddenMethodsSetTy VisitedOverriddenMethods;
2775 auto InitialOverriddenDefinitionCollector = [&](
2776 const CXXMethodDecl *OverriddenMD) {
2777 if (OverriddenMD->size_overridden_methods() == 0)
2778 Bases.insert(OverriddenMD->getParent());
2779 // Don't recurse on this method if we've already collected it.
2780 return VisitedOverriddenMethods.insert(OverriddenMD).second;
2781 };
2782 visitAllOverriddenMethods(Overrider.Method,
2783 InitialOverriddenDefinitionCollector);
2784 }
2785
2786 // If there are no overrides then 'this' is located
2787 // in the base that defines the method.
2788 if (Bases.size() == 0)
2789 return Overrider.Offset;
2790
2791 CXXBasePaths Paths;
2792 Overrider.Method->getParent()->lookupInBases(
2793 [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2794 return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
2795 },
2796 Paths);
2797
2798 // This will hold the smallest this offset among overridees of MD.
2799 // This implies that an offset of a non-virtual base will dominate an offset
2800 // of a virtual base to potentially reduce the number of thunks required
2801 // in the derived classes that inherit this method.
2802 CharUnits Ret;
2803 bool First = true;
2804
2805 const ASTRecordLayout &OverriderRDLayout =
2806 Context.getASTRecordLayout(Overrider.Method->getParent());
2807 for (const CXXBasePath &Path : Paths) {
2808 CharUnits ThisOffset = Overrider.Offset;
2809 CharUnits LastVBaseOffset;
2810
2811 // For each path from the overrider to the parents of the overridden
2812 // methods, traverse the path, calculating the this offset in the most
2813 // derived class.
2814 for (const CXXBasePathElement &Element : Path) {
2815 QualType CurTy = Element.Base->getType();
2816 const CXXRecordDecl *PrevRD = Element.Class,
2817 *CurRD = CurTy->getAsCXXRecordDecl();
2818 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2819
2820 if (Element.Base->isVirtual()) {
2821 // The interesting things begin when you have virtual inheritance.
2822 // The final overrider will use a static adjustment equal to the offset
2823 // of the vbase in the final overrider class.
2824 // For example, if the final overrider is in a vbase B of the most
2825 // derived class and it overrides a method of the B's own vbase A,
2826 // it uses A* as "this". In its prologue, it can cast A* to B* with
2827 // a static offset. This offset is used regardless of the actual
2828 // offset of A from B in the most derived class, requiring an
2829 // this-adjusting thunk in the vftable if A and B are laid out
2830 // differently in the most derived class.
2831 LastVBaseOffset = ThisOffset =
2832 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2833 } else {
2834 ThisOffset += Layout.getBaseClassOffset(CurRD);
2835 }
2836 }
2837
2838 if (isa<CXXDestructorDecl>(Overrider.Method)) {
2839 if (LastVBaseOffset.isZero()) {
2840 // If a "Base" class has at least one non-virtual base with a virtual
2841 // destructor, the "Base" virtual destructor will take the address
2842 // of the "Base" subobject as the "this" argument.
2843 ThisOffset = Overrider.Offset;
2844 } else {
2845 // A virtual destructor of a virtual base takes the address of the
2846 // virtual base subobject as the "this" argument.
2847 ThisOffset = LastVBaseOffset;
2848 }
2849 }
2850
2851 if (Ret > ThisOffset || First) {
2852 First = false;
2853 Ret = ThisOffset;
2854 }
2855 }
2856
2857 assert(!First && "Method not found in the given subobject?");
2858 return Ret;
2859 }
2860
2861 // Things are getting even more complex when the "this" adjustment has to
2862 // use a dynamic offset instead of a static one, or even two dynamic offsets.
2863 // This is sometimes required when a virtual call happens in the middle of
2864 // a non-most-derived class construction or destruction.
2865 //
2866 // Let's take a look at the following example:
2867 // struct A {
2868 // virtual void f();
2869 // };
2870 //
2871 // void foo(A *a) { a->f(); } // Knows nothing about siblings of A.
2872 //
2873 // struct B : virtual A {
2874 // virtual void f();
2875 // B() {
2876 // foo(this);
2877 // }
2878 // };
2879 //
2880 // struct C : virtual B {
2881 // virtual void f();
2882 // };
2883 //
2884 // Record layouts for these classes are:
2885 // struct A
2886 // 0 | (A vftable pointer)
2887 //
2888 // struct B
2889 // 0 | (B vbtable pointer)
2890 // 4 | (vtordisp for vbase A)
2891 // 8 | struct A (virtual base)
2892 // 8 | (A vftable pointer)
2893 //
2894 // struct C
2895 // 0 | (C vbtable pointer)
2896 // 4 | (vtordisp for vbase A)
2897 // 8 | struct A (virtual base) // A precedes B!
2898 // 8 | (A vftable pointer)
2899 // 12 | struct B (virtual base)
2900 // 12 | (B vbtable pointer)
2901 //
2902 // When one creates an object of type C, the C constructor:
2903 // - initializes all the vbptrs, then
2904 // - calls the A subobject constructor
2905 // (initializes A's vfptr with an address of A vftable), then
2906 // - calls the B subobject constructor
2907 // (initializes A's vfptr with an address of B vftable and vtordisp for A),
2908 // that in turn calls foo(), then
2909 // - initializes A's vfptr with an address of C vftable and zeroes out the
2910 // vtordisp
2911 // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2912 // without vtordisp thunks?
2913 // FIXME: how are vtordisp handled in the presence of nooverride/final?
2914 //
2915 // When foo() is called, an object with a layout of class C has a vftable
2916 // referencing B::f() that assumes a B layout, so the "this" adjustments are
2917 // incorrect, unless an extra adjustment is done. This adjustment is called
2918 // "vtordisp adjustment". Vtordisp basically holds the difference between the
2919 // actual location of a vbase in the layout class and the location assumed by
2920 // the vftable of the class being constructed/destructed. Vtordisp is only
2921 // needed if "this" escapes a
2922 // structor (or we can't prove otherwise).
2923 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2924 // estimation of a dynamic adjustment]
2925 //
2926 // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2927 // so it just passes that pointer as "this" in a virtual call.
2928 // If there was no vtordisp, that would just dispatch to B::f().
2929 // However, B::f() assumes B+8 is passed as "this",
2930 // yet the pointer foo() passes along is B-4 (i.e. C+8).
2931 // An extra adjustment is needed, so we emit a thunk into the B vftable.
2932 // This vtordisp thunk subtracts the value of vtordisp
2933 // from the "this" argument (-12) before making a tailcall to B::f().
2934 //
2935 // Let's consider an even more complex example:
2936 // struct D : virtual B, virtual C {
2937 // D() {
2938 // foo(this);
2939 // }
2940 // };
2941 //
2942 // struct D
2943 // 0 | (D vbtable pointer)
2944 // 4 | (vtordisp for vbase A)
2945 // 8 | struct A (virtual base) // A precedes both B and C!
2946 // 8 | (A vftable pointer)
2947 // 12 | struct B (virtual base) // B precedes C!
2948 // 12 | (B vbtable pointer)
2949 // 16 | struct C (virtual base)
2950 // 16 | (C vbtable pointer)
2951 //
2952 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2953 // to C::f(), which assumes C+8 as its "this" parameter. This time, foo()
2954 // passes along A, which is C-8. The A vtordisp holds
2955 // "D.vbptr[index_of_A] - offset_of_A_in_D"
2956 // and we statically know offset_of_A_in_D, so can get a pointer to D.
2957 // When we know it, we can make an extra vbtable lookup to locate the C vbase
2958 // and one extra static adjustment to calculate the expected value of C+8.
CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,CharUnits ThisOffset,ThisAdjustment & TA)2959 void VFTableBuilder::CalculateVtordispAdjustment(
2960 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2961 ThisAdjustment &TA) {
2962 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2963 MostDerivedClassLayout.getVBaseOffsetsMap();
2964 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2965 VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2966 assert(VBaseMapEntry != VBaseMap.end());
2967
2968 // If there's no vtordisp or the final overrider is defined in the same vbase
2969 // as the initial declaration, we don't need any vtordisp adjustment.
2970 if (!VBaseMapEntry->second.hasVtorDisp() ||
2971 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2972 return;
2973
2974 // OK, now we know we need to use a vtordisp thunk.
2975 // The implicit vtordisp field is located right before the vbase.
2976 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2977 TA.Virtual.Microsoft.VtordispOffset =
2978 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2979
2980 // A simple vtordisp thunk will suffice if the final overrider is defined
2981 // in either the most derived class or its non-virtual base.
2982 if (Overrider.Method->getParent() == MostDerivedClass ||
2983 !Overrider.VirtualBase)
2984 return;
2985
2986 // Otherwise, we need to do use the dynamic offset of the final overrider
2987 // in order to get "this" adjustment right.
2988 TA.Virtual.Microsoft.VBPtrOffset =
2989 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2990 MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2991 TA.Virtual.Microsoft.VBOffsetOffset =
2992 Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2993 VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2994
2995 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2996 }
2997
GroupNewVirtualOverloads(const CXXRecordDecl * RD,SmallVector<const CXXMethodDecl *,10> & VirtualMethods)2998 static void GroupNewVirtualOverloads(
2999 const CXXRecordDecl *RD,
3000 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
3001 // Put the virtual methods into VirtualMethods in the proper order:
3002 // 1) Group overloads by declaration name. New groups are added to the
3003 // vftable in the order of their first declarations in this class
3004 // (including overrides, non-virtual methods and any other named decl that
3005 // might be nested within the class).
3006 // 2) In each group, new overloads appear in the reverse order of declaration.
3007 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
3008 SmallVector<MethodGroup, 10> Groups;
3009 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
3010 VisitedGroupIndicesTy VisitedGroupIndices;
3011 for (const auto *D : RD->decls()) {
3012 const auto *ND = dyn_cast<NamedDecl>(D);
3013 if (!ND)
3014 continue;
3015 VisitedGroupIndicesTy::iterator J;
3016 bool Inserted;
3017 std::tie(J, Inserted) = VisitedGroupIndices.insert(
3018 std::make_pair(ND->getDeclName(), Groups.size()));
3019 if (Inserted)
3020 Groups.push_back(MethodGroup());
3021 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
3022 if (MicrosoftVTableContext::hasVtableSlot(MD))
3023 Groups[J->second].push_back(MD->getCanonicalDecl());
3024 }
3025
3026 for (const MethodGroup &Group : Groups)
3027 VirtualMethods.append(Group.rbegin(), Group.rend());
3028 }
3029
isDirectVBase(const CXXRecordDecl * Base,const CXXRecordDecl * RD)3030 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
3031 for (const auto &B : RD->bases()) {
3032 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
3033 return true;
3034 }
3035 return false;
3036 }
3037
AddMethods(BaseSubobject Base,unsigned BaseDepth,const CXXRecordDecl * LastVBase,BasesSetVectorTy & VisitedBases)3038 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
3039 const CXXRecordDecl *LastVBase,
3040 BasesSetVectorTy &VisitedBases) {
3041 const CXXRecordDecl *RD = Base.getBase();
3042 if (!RD->isPolymorphic())
3043 return;
3044
3045 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3046
3047 // See if this class expands a vftable of the base we look at, which is either
3048 // the one defined by the vfptr base path or the primary base of the current
3049 // class.
3050 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
3051 CharUnits NextBaseOffset;
3052 if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
3053 NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
3054 if (isDirectVBase(NextBase, RD)) {
3055 NextLastVBase = NextBase;
3056 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
3057 } else {
3058 NextBaseOffset =
3059 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
3060 }
3061 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
3062 assert(!Layout.isPrimaryBaseVirtual() &&
3063 "No primary virtual bases in this ABI");
3064 NextBase = PrimaryBase;
3065 NextBaseOffset = Base.getBaseOffset();
3066 }
3067
3068 if (NextBase) {
3069 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
3070 NextLastVBase, VisitedBases);
3071 if (!VisitedBases.insert(NextBase))
3072 llvm_unreachable("Found a duplicate primary base!");
3073 }
3074
3075 SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
3076 // Put virtual methods in the proper order.
3077 GroupNewVirtualOverloads(RD, VirtualMethods);
3078
3079 // Now go through all virtual member functions and add them to the current
3080 // vftable. This is done by
3081 // - replacing overridden methods in their existing slots, as long as they
3082 // don't require return adjustment; calculating This adjustment if needed.
3083 // - adding new slots for methods of the current base not present in any
3084 // sub-bases;
3085 // - adding new slots for methods that require Return adjustment.
3086 // We keep track of the methods visited in the sub-bases in MethodInfoMap.
3087 for (const CXXMethodDecl *MD : VirtualMethods) {
3088 FinalOverriders::OverriderInfo FinalOverrider =
3089 Overriders.getOverrider(MD, Base.getBaseOffset());
3090 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
3091 const CXXMethodDecl *OverriddenMD =
3092 FindNearestOverriddenMethod(MD, VisitedBases);
3093
3094 ThisAdjustment ThisAdjustmentOffset;
3095 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
3096 CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
3097 ThisAdjustmentOffset.NonVirtual =
3098 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
3099 if ((OverriddenMD || FinalOverriderMD != MD) &&
3100 WhichVFPtr.getVBaseWithVPtr())
3101 CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
3102 ThisAdjustmentOffset);
3103
3104 unsigned VBIndex =
3105 LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
3106
3107 if (OverriddenMD) {
3108 // If MD overrides anything in this vftable, we need to update the
3109 // entries.
3110 MethodInfoMapTy::iterator OverriddenMDIterator =
3111 MethodInfoMap.find(OverriddenMD);
3112
3113 // If the overridden method went to a different vftable, skip it.
3114 if (OverriddenMDIterator == MethodInfoMap.end())
3115 continue;
3116
3117 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
3118
3119 VBIndex = OverriddenMethodInfo.VBTableIndex;
3120
3121 // Let's check if the overrider requires any return adjustments.
3122 // We must create a new slot if the MD's return type is not trivially
3123 // convertible to the OverriddenMD's one.
3124 // Once a chain of method overrides adds a return adjusting vftable slot,
3125 // all subsequent overrides will also use an extra method slot.
3126 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3127 Context, MD, OverriddenMD).isEmpty() ||
3128 OverriddenMethodInfo.UsesExtraSlot;
3129
3130 if (!ReturnAdjustingThunk) {
3131 // No return adjustment needed - just replace the overridden method info
3132 // with the current info.
3133 MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
3134 MethodInfoMap.erase(OverriddenMDIterator);
3135
3136 assert(!MethodInfoMap.count(MD) &&
3137 "Should not have method info for this method yet!");
3138 MethodInfoMap.insert(std::make_pair(MD, MI));
3139 continue;
3140 }
3141
3142 // In case we need a return adjustment, we'll add a new slot for
3143 // the overrider. Mark the overridden method as shadowed by the new slot.
3144 OverriddenMethodInfo.Shadowed = true;
3145
3146 // Force a special name mangling for a return-adjusting thunk
3147 // unless the method is the final overrider without this adjustment.
3148 ForceReturnAdjustmentMangling =
3149 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3150 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3151 MD->size_overridden_methods()) {
3152 // Skip methods that don't belong to the vftable of the current class,
3153 // e.g. each method that wasn't seen in any of the visited sub-bases
3154 // but overrides multiple methods of other sub-bases.
3155 continue;
3156 }
3157
3158 // If we got here, MD is a method not seen in any of the sub-bases or
3159 // it requires return adjustment. Insert the method info for this method.
3160 MethodInfo MI(VBIndex,
3161 HasRTTIComponent ? Components.size() - 1 : Components.size(),
3162 ReturnAdjustingThunk);
3163
3164 assert(!MethodInfoMap.count(MD) &&
3165 "Should not have method info for this method yet!");
3166 MethodInfoMap.insert(std::make_pair(MD, MI));
3167
3168 // Check if this overrider needs a return adjustment.
3169 // We don't want to do this for pure virtual member functions.
3170 BaseOffset ReturnAdjustmentOffset;
3171 ReturnAdjustment ReturnAdjustment;
3172 if (!FinalOverriderMD->isPureVirtual()) {
3173 ReturnAdjustmentOffset =
3174 ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3175 }
3176 if (!ReturnAdjustmentOffset.isEmpty()) {
3177 ForceReturnAdjustmentMangling = true;
3178 ReturnAdjustment.NonVirtual =
3179 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3180 if (ReturnAdjustmentOffset.VirtualBase) {
3181 const ASTRecordLayout &DerivedLayout =
3182 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3183 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3184 DerivedLayout.getVBPtrOffset().getQuantity();
3185 ReturnAdjustment.Virtual.Microsoft.VBIndex =
3186 VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3187 ReturnAdjustmentOffset.VirtualBase);
3188 }
3189 }
3190 auto ThisType = (OverriddenMD ? OverriddenMD : MD)->getThisType().getTypePtr();
3191 AddMethod(FinalOverriderMD,
3192 ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment, ThisType,
3193 ForceReturnAdjustmentMangling ? MD : nullptr));
3194 }
3195 }
3196
PrintBasePath(const VPtrInfo::BasePath & Path,raw_ostream & Out)3197 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3198 for (const CXXRecordDecl *Elem : llvm::reverse(Path)) {
3199 Out << "'";
3200 Elem->printQualifiedName(Out);
3201 Out << "' in ";
3202 }
3203 }
3204
dumpMicrosoftThunkAdjustment(const ThunkInfo & TI,raw_ostream & Out,bool ContinueFirstLine)3205 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3206 bool ContinueFirstLine) {
3207 const ReturnAdjustment &R = TI.Return;
3208 bool Multiline = false;
3209 const char *LinePrefix = "\n ";
3210 if (!R.isEmpty() || TI.Method) {
3211 if (!ContinueFirstLine)
3212 Out << LinePrefix;
3213 Out << "[return adjustment (to type '"
3214 << TI.Method->getReturnType().getCanonicalType() << "'): ";
3215 if (R.Virtual.Microsoft.VBPtrOffset)
3216 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3217 if (R.Virtual.Microsoft.VBIndex)
3218 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3219 Out << R.NonVirtual << " non-virtual]";
3220 Multiline = true;
3221 }
3222
3223 const ThisAdjustment &T = TI.This;
3224 if (!T.isEmpty()) {
3225 if (Multiline || !ContinueFirstLine)
3226 Out << LinePrefix;
3227 Out << "[this adjustment: ";
3228 if (!TI.This.Virtual.isEmpty()) {
3229 assert(T.Virtual.Microsoft.VtordispOffset < 0);
3230 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3231 if (T.Virtual.Microsoft.VBPtrOffset) {
3232 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3233 << " to the left,";
3234 assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3235 Out << LinePrefix << " vboffset at "
3236 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3237 }
3238 }
3239 Out << T.NonVirtual << " non-virtual]";
3240 }
3241 }
3242
dumpLayout(raw_ostream & Out)3243 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3244 Out << "VFTable for ";
3245 PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
3246 Out << "'";
3247 MostDerivedClass->printQualifiedName(Out);
3248 Out << "' (" << Components.size()
3249 << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3250
3251 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3252 Out << llvm::format("%4d | ", I);
3253
3254 const VTableComponent &Component = Components[I];
3255
3256 // Dump the component.
3257 switch (Component.getKind()) {
3258 case VTableComponent::CK_RTTI:
3259 Component.getRTTIDecl()->printQualifiedName(Out);
3260 Out << " RTTI";
3261 break;
3262
3263 case VTableComponent::CK_FunctionPointer: {
3264 const CXXMethodDecl *MD = Component.getFunctionDecl();
3265
3266 // FIXME: Figure out how to print the real thunk type, since they can
3267 // differ in the return type.
3268 std::string Str = PredefinedExpr::ComputeName(
3269 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
3270 Out << Str;
3271 if (MD->isPureVirtual())
3272 Out << " [pure]";
3273
3274 if (MD->isDeleted())
3275 Out << " [deleted]";
3276
3277 ThunkInfo Thunk = VTableThunks.lookup(I);
3278 if (!Thunk.isEmpty())
3279 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3280
3281 break;
3282 }
3283
3284 case VTableComponent::CK_DeletingDtorPointer: {
3285 const CXXDestructorDecl *DD = Component.getDestructorDecl();
3286
3287 DD->printQualifiedName(Out);
3288 Out << "() [scalar deleting]";
3289
3290 if (DD->isPureVirtual())
3291 Out << " [pure]";
3292
3293 ThunkInfo Thunk = VTableThunks.lookup(I);
3294 if (!Thunk.isEmpty()) {
3295 assert(Thunk.Return.isEmpty() &&
3296 "No return adjustment needed for destructors!");
3297 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3298 }
3299
3300 break;
3301 }
3302
3303 default:
3304 DiagnosticsEngine &Diags = Context.getDiagnostics();
3305 unsigned DiagID = Diags.getCustomDiagID(
3306 DiagnosticsEngine::Error,
3307 "Unexpected vftable component type %0 for component number %1");
3308 Diags.Report(MostDerivedClass->getLocation(), DiagID)
3309 << I << Component.getKind();
3310 }
3311
3312 Out << '\n';
3313 }
3314
3315 Out << '\n';
3316
3317 if (!Thunks.empty()) {
3318 // We store the method names in a map to get a stable order.
3319 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3320
3321 for (const auto &I : Thunks) {
3322 const CXXMethodDecl *MD = I.first;
3323 std::string MethodName = PredefinedExpr::ComputeName(
3324 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
3325
3326 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3327 }
3328
3329 for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3330 const std::string &MethodName = MethodNameAndDecl.first;
3331 const CXXMethodDecl *MD = MethodNameAndDecl.second;
3332
3333 ThunkInfoVectorTy ThunksVector = Thunks[MD];
3334 llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
3335 const ThunkInfo &RHS) {
3336 // Keep different thunks with the same adjustments in the order they
3337 // were put into the vector.
3338 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3339 });
3340
3341 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3342 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3343
3344 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3345 const ThunkInfo &Thunk = ThunksVector[I];
3346
3347 Out << llvm::format("%4d | ", I);
3348 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3349 Out << '\n';
3350 }
3351
3352 Out << '\n';
3353 }
3354 }
3355
3356 Out.flush();
3357 }
3358
setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *,4> & A,ArrayRef<const CXXRecordDecl * > B)3359 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3360 ArrayRef<const CXXRecordDecl *> B) {
3361 for (const CXXRecordDecl *Decl : B) {
3362 if (A.count(Decl))
3363 return true;
3364 }
3365 return false;
3366 }
3367
3368 static bool rebucketPaths(VPtrInfoVector &Paths);
3369
3370 /// Produces MSVC-compatible vbtable data. The symbols produced by this
3371 /// algorithm match those produced by MSVC 2012 and newer, which is different
3372 /// from MSVC 2010.
3373 ///
3374 /// MSVC 2012 appears to minimize the vbtable names using the following
3375 /// algorithm. First, walk the class hierarchy in the usual order, depth first,
3376 /// left to right, to find all of the subobjects which contain a vbptr field.
3377 /// Visiting each class node yields a list of inheritance paths to vbptrs. Each
3378 /// record with a vbptr creates an initially empty path.
3379 ///
3380 /// To combine paths from child nodes, the paths are compared to check for
3381 /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of
3382 /// components in the same order. Each group of ambiguous paths is extended by
3383 /// appending the class of the base from which it came. If the current class
3384 /// node produced an ambiguous path, its path is extended with the current class.
3385 /// After extending paths, MSVC again checks for ambiguity, and extends any
3386 /// ambiguous path which wasn't already extended. Because each node yields an
3387 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3388 /// to produce an unambiguous set of paths.
3389 ///
3390 /// TODO: Presumably vftables use the same algorithm.
computeVTablePaths(bool ForVBTables,const CXXRecordDecl * RD,VPtrInfoVector & Paths)3391 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3392 const CXXRecordDecl *RD,
3393 VPtrInfoVector &Paths) {
3394 assert(Paths.empty());
3395 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3396
3397 // Base case: this subobject has its own vptr.
3398 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3399 Paths.push_back(std::make_unique<VPtrInfo>(RD));
3400
3401 // Recursive case: get all the vbtables from our bases and remove anything
3402 // that shares a virtual base.
3403 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3404 for (const auto &B : RD->bases()) {
3405 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3406 if (B.isVirtual() && VBasesSeen.count(Base))
3407 continue;
3408
3409 if (!Base->isDynamicClass())
3410 continue;
3411
3412 const VPtrInfoVector &BasePaths =
3413 ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3414
3415 for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
3416 // Don't include the path if it goes through a virtual base that we've
3417 // already included.
3418 if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3419 continue;
3420
3421 // Copy the path and adjust it as necessary.
3422 auto P = std::make_unique<VPtrInfo>(*BaseInfo);
3423
3424 // We mangle Base into the path if the path would've been ambiguous and it
3425 // wasn't already extended with Base.
3426 if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3427 P->NextBaseToMangle = Base;
3428
3429 // Keep track of which vtable the derived class is going to extend with
3430 // new methods or bases. We append to either the vftable of our primary
3431 // base, or the first non-virtual base that has a vbtable.
3432 if (P->ObjectWithVPtr == Base &&
3433 Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3434 : Layout.getPrimaryBase()))
3435 P->ObjectWithVPtr = RD;
3436
3437 // Keep track of the full adjustment from the MDC to this vtable. The
3438 // adjustment is captured by an optional vbase and a non-virtual offset.
3439 if (B.isVirtual())
3440 P->ContainingVBases.push_back(Base);
3441 else if (P->ContainingVBases.empty())
3442 P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3443
3444 // Update the full offset in the MDC.
3445 P->FullOffsetInMDC = P->NonVirtualOffset;
3446 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3447 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3448
3449 Paths.push_back(std::move(P));
3450 }
3451
3452 if (B.isVirtual())
3453 VBasesSeen.insert(Base);
3454
3455 // After visiting any direct base, we've transitively visited all of its
3456 // morally virtual bases.
3457 for (const auto &VB : Base->vbases())
3458 VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3459 }
3460
3461 // Sort the paths into buckets, and if any of them are ambiguous, extend all
3462 // paths in ambiguous buckets.
3463 bool Changed = true;
3464 while (Changed)
3465 Changed = rebucketPaths(Paths);
3466 }
3467
extendPath(VPtrInfo & P)3468 static bool extendPath(VPtrInfo &P) {
3469 if (P.NextBaseToMangle) {
3470 P.MangledPath.push_back(P.NextBaseToMangle);
3471 P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3472 return true;
3473 }
3474 return false;
3475 }
3476
rebucketPaths(VPtrInfoVector & Paths)3477 static bool rebucketPaths(VPtrInfoVector &Paths) {
3478 // What we're essentially doing here is bucketing together ambiguous paths.
3479 // Any bucket with more than one path in it gets extended by NextBase, which
3480 // is usually the direct base of the inherited the vbptr. This code uses a
3481 // sorted vector to implement a multiset to form the buckets. Note that the
3482 // ordering is based on pointers, but it doesn't change our output order. The
3483 // current algorithm is designed to match MSVC 2012's names.
3484 llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted(
3485 llvm::make_pointee_range(Paths));
3486 llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
3487 return LHS.MangledPath < RHS.MangledPath;
3488 });
3489 bool Changed = false;
3490 for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3491 // Scan forward to find the end of the bucket.
3492 size_t BucketStart = I;
3493 do {
3494 ++I;
3495 } while (I != E &&
3496 PathsSorted[BucketStart].get().MangledPath ==
3497 PathsSorted[I].get().MangledPath);
3498
3499 // If this bucket has multiple paths, extend them all.
3500 if (I - BucketStart > 1) {
3501 for (size_t II = BucketStart; II != I; ++II)
3502 Changed |= extendPath(PathsSorted[II]);
3503 assert(Changed && "no paths were extended to fix ambiguity");
3504 }
3505 }
3506 return Changed;
3507 }
3508
~MicrosoftVTableContext()3509 MicrosoftVTableContext::~MicrosoftVTableContext() {}
3510
3511 namespace {
3512 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3513 llvm::DenseSet<BaseSubobject>> FullPathTy;
3514 }
3515
3516 // This recursive function finds all paths from a subobject centered at
3517 // (RD, Offset) to the subobject located at IntroducingObject.
findPathsToSubobject(ASTContext & Context,const ASTRecordLayout & MostDerivedLayout,const CXXRecordDecl * RD,CharUnits Offset,BaseSubobject IntroducingObject,FullPathTy & FullPath,std::list<FullPathTy> & Paths)3518 static void findPathsToSubobject(ASTContext &Context,
3519 const ASTRecordLayout &MostDerivedLayout,
3520 const CXXRecordDecl *RD, CharUnits Offset,
3521 BaseSubobject IntroducingObject,
3522 FullPathTy &FullPath,
3523 std::list<FullPathTy> &Paths) {
3524 if (BaseSubobject(RD, Offset) == IntroducingObject) {
3525 Paths.push_back(FullPath);
3526 return;
3527 }
3528
3529 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3530
3531 for (const CXXBaseSpecifier &BS : RD->bases()) {
3532 const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3533 CharUnits NewOffset = BS.isVirtual()
3534 ? MostDerivedLayout.getVBaseClassOffset(Base)
3535 : Offset + Layout.getBaseClassOffset(Base);
3536 FullPath.insert(BaseSubobject(Base, NewOffset));
3537 findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
3538 IntroducingObject, FullPath, Paths);
3539 FullPath.pop_back();
3540 }
3541 }
3542
3543 // Return the paths which are not subsets of other paths.
removeRedundantPaths(std::list<FullPathTy> & FullPaths)3544 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3545 FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
3546 for (const FullPathTy &OtherPath : FullPaths) {
3547 if (&SpecificPath == &OtherPath)
3548 continue;
3549 if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) {
3550 return OtherPath.contains(BSO);
3551 })) {
3552 return true;
3553 }
3554 }
3555 return false;
3556 });
3557 }
3558
getOffsetOfFullPath(ASTContext & Context,const CXXRecordDecl * RD,const FullPathTy & FullPath)3559 static CharUnits getOffsetOfFullPath(ASTContext &Context,
3560 const CXXRecordDecl *RD,
3561 const FullPathTy &FullPath) {
3562 const ASTRecordLayout &MostDerivedLayout =
3563 Context.getASTRecordLayout(RD);
3564 CharUnits Offset = CharUnits::fromQuantity(-1);
3565 for (const BaseSubobject &BSO : FullPath) {
3566 const CXXRecordDecl *Base = BSO.getBase();
3567 // The first entry in the path is always the most derived record, skip it.
3568 if (Base == RD) {
3569 assert(Offset.getQuantity() == -1);
3570 Offset = CharUnits::Zero();
3571 continue;
3572 }
3573 assert(Offset.getQuantity() != -1);
3574 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3575 // While we know which base has to be traversed, we don't know if that base
3576 // was a virtual base.
3577 const CXXBaseSpecifier *BaseBS = std::find_if(
3578 RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
3579 return BS.getType()->getAsCXXRecordDecl() == Base;
3580 });
3581 Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
3582 : Offset + Layout.getBaseClassOffset(Base);
3583 RD = Base;
3584 }
3585 return Offset;
3586 }
3587
3588 // We want to select the path which introduces the most covariant overrides. If
3589 // two paths introduce overrides which the other path doesn't contain, issue a
3590 // diagnostic.
selectBestPath(ASTContext & Context,const CXXRecordDecl * RD,const VPtrInfo & Info,std::list<FullPathTy> & FullPaths)3591 static const FullPathTy *selectBestPath(ASTContext &Context,
3592 const CXXRecordDecl *RD,
3593 const VPtrInfo &Info,
3594 std::list<FullPathTy> &FullPaths) {
3595 // Handle some easy cases first.
3596 if (FullPaths.empty())
3597 return nullptr;
3598 if (FullPaths.size() == 1)
3599 return &FullPaths.front();
3600
3601 const FullPathTy *BestPath = nullptr;
3602 typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3603 OverriderSetTy LastOverrides;
3604 for (const FullPathTy &SpecificPath : FullPaths) {
3605 assert(!SpecificPath.empty());
3606 OverriderSetTy CurrentOverrides;
3607 const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3608 // Find the distance from the start of the path to the subobject with the
3609 // VPtr.
3610 CharUnits BaseOffset =
3611 getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
3612 FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3613 for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
3614 if (!MicrosoftVTableContext::hasVtableSlot(MD))
3615 continue;
3616 FinalOverriders::OverriderInfo OI =
3617 Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
3618 const CXXMethodDecl *OverridingMethod = OI.Method;
3619 // Only overriders which have a return adjustment introduce problematic
3620 // thunks.
3621 if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
3622 .isEmpty())
3623 continue;
3624 // It's possible that the overrider isn't in this path. If so, skip it
3625 // because this path didn't introduce it.
3626 const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3627 if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) {
3628 return BSO.getBase() == OverridingParent;
3629 }))
3630 continue;
3631 CurrentOverrides.insert(OverridingMethod);
3632 }
3633 OverriderSetTy NewOverrides =
3634 llvm::set_difference(CurrentOverrides, LastOverrides);
3635 if (NewOverrides.empty())
3636 continue;
3637 OverriderSetTy MissingOverrides =
3638 llvm::set_difference(LastOverrides, CurrentOverrides);
3639 if (MissingOverrides.empty()) {
3640 // This path is a strict improvement over the last path, let's use it.
3641 BestPath = &SpecificPath;
3642 std::swap(CurrentOverrides, LastOverrides);
3643 } else {
3644 // This path introduces an overrider with a conflicting covariant thunk.
3645 DiagnosticsEngine &Diags = Context.getDiagnostics();
3646 const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3647 const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3648 Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3649 << RD;
3650 Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3651 << CovariantMD;
3652 Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3653 << ConflictMD;
3654 }
3655 }
3656 // Go with the path that introduced the most covariant overrides. If there is
3657 // no such path, pick the first path.
3658 return BestPath ? BestPath : &FullPaths.front();
3659 }
3660
computeFullPathsForVFTables(ASTContext & Context,const CXXRecordDecl * RD,VPtrInfoVector & Paths)3661 static void computeFullPathsForVFTables(ASTContext &Context,
3662 const CXXRecordDecl *RD,
3663 VPtrInfoVector &Paths) {
3664 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3665 FullPathTy FullPath;
3666 std::list<FullPathTy> FullPaths;
3667 for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
3668 findPathsToSubobject(
3669 Context, MostDerivedLayout, RD, CharUnits::Zero(),
3670 BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
3671 FullPaths);
3672 FullPath.clear();
3673 removeRedundantPaths(FullPaths);
3674 Info->PathToIntroducingObject.clear();
3675 if (const FullPathTy *BestPath =
3676 selectBestPath(Context, RD, *Info, FullPaths))
3677 for (const BaseSubobject &BSO : *BestPath)
3678 Info->PathToIntroducingObject.push_back(BSO.getBase());
3679 FullPaths.clear();
3680 }
3681 }
3682
vfptrIsEarlierInMDC(const ASTRecordLayout & Layout,const MethodVFTableLocation & LHS,const MethodVFTableLocation & RHS)3683 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
3684 const MethodVFTableLocation &LHS,
3685 const MethodVFTableLocation &RHS) {
3686 CharUnits L = LHS.VFPtrOffset;
3687 CharUnits R = RHS.VFPtrOffset;
3688 if (LHS.VBase)
3689 L += Layout.getVBaseClassOffset(LHS.VBase);
3690 if (RHS.VBase)
3691 R += Layout.getVBaseClassOffset(RHS.VBase);
3692 return L < R;
3693 }
3694
computeVTableRelatedInformation(const CXXRecordDecl * RD)3695 void MicrosoftVTableContext::computeVTableRelatedInformation(
3696 const CXXRecordDecl *RD) {
3697 assert(RD->isDynamicClass());
3698
3699 // Check if we've computed this information before.
3700 if (VFPtrLocations.count(RD))
3701 return;
3702
3703 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3704
3705 {
3706 auto VFPtrs = std::make_unique<VPtrInfoVector>();
3707 computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3708 computeFullPathsForVFTables(Context, RD, *VFPtrs);
3709 VFPtrLocations[RD] = std::move(VFPtrs);
3710 }
3711
3712 MethodVFTableLocationsTy NewMethodLocations;
3713 for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
3714 VFTableBuilder Builder(*this, RD, *VFPtr);
3715
3716 VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3717 assert(VFTableLayouts.count(id) == 0);
3718 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3719 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3720 VFTableLayouts[id] = std::make_unique<VTableLayout>(
3721 ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
3722 EmptyAddressPointsMap);
3723 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3724
3725 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3726 for (const auto &Loc : Builder.vtable_locations()) {
3727 auto Insert = NewMethodLocations.insert(Loc);
3728 if (!Insert.second) {
3729 const MethodVFTableLocation &NewLoc = Loc.second;
3730 MethodVFTableLocation &OldLoc = Insert.first->second;
3731 if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
3732 OldLoc = NewLoc;
3733 }
3734 }
3735 }
3736
3737 MethodVFTableLocations.insert(NewMethodLocations.begin(),
3738 NewMethodLocations.end());
3739 if (Context.getLangOpts().DumpVTableLayouts)
3740 dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3741 }
3742
dumpMethodLocations(const CXXRecordDecl * RD,const MethodVFTableLocationsTy & NewMethods,raw_ostream & Out)3743 void MicrosoftVTableContext::dumpMethodLocations(
3744 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3745 raw_ostream &Out) {
3746 // Compute the vtable indices for all the member functions.
3747 // Store them in a map keyed by the location so we'll get a sorted table.
3748 std::map<MethodVFTableLocation, std::string> IndicesMap;
3749 bool HasNonzeroOffset = false;
3750
3751 for (const auto &I : NewMethods) {
3752 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
3753 assert(hasVtableSlot(MD));
3754
3755 std::string MethodName = PredefinedExpr::ComputeName(
3756 PredefinedIdentKind::PrettyFunctionNoVirtual, MD);
3757
3758 if (isa<CXXDestructorDecl>(MD)) {
3759 IndicesMap[I.second] = MethodName + " [scalar deleting]";
3760 } else {
3761 IndicesMap[I.second] = MethodName;
3762 }
3763
3764 if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
3765 HasNonzeroOffset = true;
3766 }
3767
3768 // Print the vtable indices for all the member functions.
3769 if (!IndicesMap.empty()) {
3770 Out << "VFTable indices for ";
3771 Out << "'";
3772 RD->printQualifiedName(Out);
3773 Out << "' (" << IndicesMap.size()
3774 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3775
3776 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3777 uint64_t LastVBIndex = 0;
3778 for (const auto &I : IndicesMap) {
3779 CharUnits VFPtrOffset = I.first.VFPtrOffset;
3780 uint64_t VBIndex = I.first.VBTableIndex;
3781 if (HasNonzeroOffset &&
3782 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3783 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3784 Out << " -- accessible via ";
3785 if (VBIndex)
3786 Out << "vbtable index " << VBIndex << ", ";
3787 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3788 LastVFPtrOffset = VFPtrOffset;
3789 LastVBIndex = VBIndex;
3790 }
3791
3792 uint64_t VTableIndex = I.first.Index;
3793 const std::string &MethodName = I.second;
3794 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3795 }
3796 Out << '\n';
3797 }
3798
3799 Out.flush();
3800 }
3801
computeVBTableRelatedInformation(const CXXRecordDecl * RD)3802 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
3803 const CXXRecordDecl *RD) {
3804 VirtualBaseInfo *VBI;
3805
3806 {
3807 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell,
3808 // as it may be modified and rehashed under us.
3809 std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
3810 if (Entry)
3811 return *Entry;
3812 Entry = std::make_unique<VirtualBaseInfo>();
3813 VBI = Entry.get();
3814 }
3815
3816 computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3817
3818 // First, see if the Derived class shared the vbptr with a non-virtual base.
3819 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3820 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3821 // If the Derived class shares the vbptr with a non-virtual base, the shared
3822 // virtual bases come first so that the layout is the same.
3823 const VirtualBaseInfo &BaseInfo =
3824 computeVBTableRelatedInformation(VBPtrBase);
3825 VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
3826 BaseInfo.VBTableIndices.end());
3827 }
3828
3829 // New vbases are added to the end of the vbtable.
3830 // Skip the self entry and vbases visited in the non-virtual base, if any.
3831 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3832 for (const auto &VB : RD->vbases()) {
3833 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3834 if (!VBI->VBTableIndices.count(CurVBase))
3835 VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3836 }
3837
3838 return *VBI;
3839 }
3840
getVBTableIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * VBase)3841 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3842 const CXXRecordDecl *VBase) {
3843 const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
3844 assert(VBInfo.VBTableIndices.count(VBase));
3845 return VBInfo.VBTableIndices.find(VBase)->second;
3846 }
3847
3848 const VPtrInfoVector &
enumerateVBTables(const CXXRecordDecl * RD)3849 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3850 return computeVBTableRelatedInformation(RD).VBPtrPaths;
3851 }
3852
3853 const VPtrInfoVector &
getVFPtrOffsets(const CXXRecordDecl * RD)3854 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3855 computeVTableRelatedInformation(RD);
3856
3857 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3858 return *VFPtrLocations[RD];
3859 }
3860
3861 const VTableLayout &
getVFTableLayout(const CXXRecordDecl * RD,CharUnits VFPtrOffset)3862 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3863 CharUnits VFPtrOffset) {
3864 computeVTableRelatedInformation(RD);
3865
3866 VFTableIdTy id(RD, VFPtrOffset);
3867 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3868 return *VFTableLayouts[id];
3869 }
3870
3871 MethodVFTableLocation
getMethodVFTableLocation(GlobalDecl GD)3872 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3873 assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) &&
3874 "Only use this method for virtual methods or dtors");
3875 if (isa<CXXDestructorDecl>(GD.getDecl()))
3876 assert(GD.getDtorType() == Dtor_Deleting);
3877
3878 GD = GD.getCanonicalDecl();
3879
3880 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3881 if (I != MethodVFTableLocations.end())
3882 return I->second;
3883
3884 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3885
3886 computeVTableRelatedInformation(RD);
3887
3888 I = MethodVFTableLocations.find(GD);
3889 assert(I != MethodVFTableLocations.end() && "Did not find index!");
3890 return I->second;
3891 }
3892