1 //===-- DataExtractor.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "lldb/Utility/DataExtractor.h"
10
11 #include "lldb/lldb-defines.h"
12 #include "lldb/lldb-enumerations.h"
13 #include "lldb/lldb-forward.h"
14 #include "lldb/lldb-types.h"
15
16 #include "lldb/Utility/DataBuffer.h"
17 #include "lldb/Utility/DataBufferHeap.h"
18 #include "lldb/Utility/LLDBAssert.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/Stream.h"
21 #include "lldb/Utility/StreamString.h"
22 #include "lldb/Utility/UUID.h"
23
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Support/LEB128.h"
28 #include "llvm/Support/MD5.h"
29 #include "llvm/Support/MathExtras.h"
30
31 #include <algorithm>
32 #include <array>
33 #include <cassert>
34 #include <cstdint>
35 #include <string>
36
37 #include <cctype>
38 #include <cinttypes>
39 #include <cstring>
40
41 using namespace lldb;
42 using namespace lldb_private;
43
ReadInt16(const unsigned char * ptr,offset_t offset)44 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
45 uint16_t value;
46 memcpy(&value, ptr + offset, 2);
47 return value;
48 }
49
ReadInt32(const unsigned char * ptr,offset_t offset=0)50 static inline uint32_t ReadInt32(const unsigned char *ptr,
51 offset_t offset = 0) {
52 uint32_t value;
53 memcpy(&value, ptr + offset, 4);
54 return value;
55 }
56
ReadInt64(const unsigned char * ptr,offset_t offset=0)57 static inline uint64_t ReadInt64(const unsigned char *ptr,
58 offset_t offset = 0) {
59 uint64_t value;
60 memcpy(&value, ptr + offset, 8);
61 return value;
62 }
63
ReadInt16(const void * ptr)64 static inline uint16_t ReadInt16(const void *ptr) {
65 uint16_t value;
66 memcpy(&value, ptr, 2);
67 return value;
68 }
69
ReadSwapInt16(const unsigned char * ptr,offset_t offset)70 static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
71 offset_t offset) {
72 uint16_t value;
73 memcpy(&value, ptr + offset, 2);
74 return llvm::byteswap<uint16_t>(value);
75 }
76
ReadSwapInt32(const unsigned char * ptr,offset_t offset)77 static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
78 offset_t offset) {
79 uint32_t value;
80 memcpy(&value, ptr + offset, 4);
81 return llvm::byteswap<uint32_t>(value);
82 }
83
ReadSwapInt64(const unsigned char * ptr,offset_t offset)84 static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
85 offset_t offset) {
86 uint64_t value;
87 memcpy(&value, ptr + offset, 8);
88 return llvm::byteswap<uint64_t>(value);
89 }
90
ReadSwapInt16(const void * ptr)91 static inline uint16_t ReadSwapInt16(const void *ptr) {
92 uint16_t value;
93 memcpy(&value, ptr, 2);
94 return llvm::byteswap<uint16_t>(value);
95 }
96
ReadSwapInt32(const void * ptr)97 static inline uint32_t ReadSwapInt32(const void *ptr) {
98 uint32_t value;
99 memcpy(&value, ptr, 4);
100 return llvm::byteswap<uint32_t>(value);
101 }
102
ReadSwapInt64(const void * ptr)103 static inline uint64_t ReadSwapInt64(const void *ptr) {
104 uint64_t value;
105 memcpy(&value, ptr, 8);
106 return llvm::byteswap<uint64_t>(value);
107 }
108
ReadMaxInt64(const uint8_t * data,size_t byte_size,ByteOrder byte_order)109 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
110 ByteOrder byte_order) {
111 uint64_t res = 0;
112 if (byte_order == eByteOrderBig)
113 for (size_t i = 0; i < byte_size; ++i)
114 res = (res << 8) | data[i];
115 else {
116 assert(byte_order == eByteOrderLittle);
117 for (size_t i = 0; i < byte_size; ++i)
118 res = (res << 8) | data[byte_size - 1 - i];
119 }
120 return res;
121 }
122
DataExtractor()123 DataExtractor::DataExtractor()
124 : m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
125 m_data_sp() {}
126
127 // This constructor allows us to use data that is owned by someone else. The
128 // data must stay around as long as this object is valid.
DataExtractor(const void * data,offset_t length,ByteOrder endian,uint32_t addr_size,uint32_t target_byte_size)129 DataExtractor::DataExtractor(const void *data, offset_t length,
130 ByteOrder endian, uint32_t addr_size,
131 uint32_t target_byte_size /*=1*/)
132 : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))),
133 m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length),
134 m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
135 m_target_byte_size(target_byte_size) {
136 assert(addr_size >= 1 && addr_size <= 8);
137 }
138
139 // Make a shared pointer reference to the shared data in "data_sp" and set the
140 // endian swapping setting to "swap", and the address size to "addr_size". The
141 // shared data reference will ensure the data lives as long as any
142 // DataExtractor objects exist that have a reference to this data.
DataExtractor(const DataBufferSP & data_sp,ByteOrder endian,uint32_t addr_size,uint32_t target_byte_size)143 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
144 uint32_t addr_size,
145 uint32_t target_byte_size /*=1*/)
146 : m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
147 m_target_byte_size(target_byte_size) {
148 assert(addr_size >= 1 && addr_size <= 8);
149 SetData(data_sp);
150 }
151
152 // Initialize this object with a subset of the data bytes in "data". If "data"
153 // contains shared data, then a reference to this shared data will added and
154 // the shared data will stay around as long as any object contains a reference
155 // to that data. The endian swap and address size settings are copied from
156 // "data".
DataExtractor(const DataExtractor & data,offset_t offset,offset_t length,uint32_t target_byte_size)157 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
158 offset_t length, uint32_t target_byte_size /*=1*/)
159 : m_byte_order(data.m_byte_order), m_addr_size(data.m_addr_size),
160 m_data_sp(), m_target_byte_size(target_byte_size) {
161 assert(m_addr_size >= 1 && m_addr_size <= 8);
162 if (data.ValidOffset(offset)) {
163 offset_t bytes_available = data.GetByteSize() - offset;
164 if (length > bytes_available)
165 length = bytes_available;
166 SetData(data, offset, length);
167 }
168 }
169
DataExtractor(const DataExtractor & rhs)170 DataExtractor::DataExtractor(const DataExtractor &rhs)
171 : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
172 m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
173 m_target_byte_size(rhs.m_target_byte_size) {
174 assert(m_addr_size >= 1 && m_addr_size <= 8);
175 }
176
177 // Assignment operator
operator =(const DataExtractor & rhs)178 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
179 if (this != &rhs) {
180 m_start = rhs.m_start;
181 m_end = rhs.m_end;
182 m_byte_order = rhs.m_byte_order;
183 m_addr_size = rhs.m_addr_size;
184 m_data_sp = rhs.m_data_sp;
185 }
186 return *this;
187 }
188
189 DataExtractor::~DataExtractor() = default;
190
191 // Clears the object contents back to a default invalid state, and release any
192 // references to shared data that this object may contain.
Clear()193 void DataExtractor::Clear() {
194 m_start = nullptr;
195 m_end = nullptr;
196 m_byte_order = endian::InlHostByteOrder();
197 m_addr_size = sizeof(void *);
198 m_data_sp.reset();
199 }
200
201 // If this object contains shared data, this function returns the offset into
202 // that shared data. Else zero is returned.
GetSharedDataOffset() const203 size_t DataExtractor::GetSharedDataOffset() const {
204 if (m_start != nullptr) {
205 const DataBuffer *data = m_data_sp.get();
206 if (data != nullptr) {
207 const uint8_t *data_bytes = data->GetBytes();
208 if (data_bytes != nullptr) {
209 assert(m_start >= data_bytes);
210 return m_start - data_bytes;
211 }
212 }
213 }
214 return 0;
215 }
216
217 // Set the data with which this object will extract from to data starting at
218 // BYTES and set the length of the data to LENGTH bytes long. The data is
219 // externally owned must be around at least as long as this object points to
220 // the data. No copy of the data is made, this object just refers to this data
221 // and can extract from it. If this object refers to any shared data upon
222 // entry, the reference to that data will be released. Is SWAP is set to true,
223 // any data extracted will be endian swapped.
SetData(const void * bytes,offset_t length,ByteOrder endian)224 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
225 ByteOrder endian) {
226 m_byte_order = endian;
227 m_data_sp.reset();
228 if (bytes == nullptr || length == 0) {
229 m_start = nullptr;
230 m_end = nullptr;
231 } else {
232 m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes));
233 m_end = m_start + length;
234 }
235 return GetByteSize();
236 }
237
238 // Assign the data for this object to be a subrange in "data" starting
239 // "data_offset" bytes into "data" and ending "data_length" bytes later. If
240 // "data_offset" is not a valid offset into "data", then this object will
241 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too
242 // large, the length will be capped at the number of bytes remaining in "data".
243 // If "data" contains a shared pointer to other data, then a ref counted
244 // pointer to that data will be made in this object. If "data" doesn't contain
245 // a shared pointer to data, then the bytes referred to in "data" will need to
246 // exist at least as long as this object refers to those bytes. The address
247 // size and endian swap settings are copied from the current values in "data".
SetData(const DataExtractor & data,offset_t data_offset,offset_t data_length)248 lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
249 offset_t data_offset,
250 offset_t data_length) {
251 m_addr_size = data.m_addr_size;
252 assert(m_addr_size >= 1 && m_addr_size <= 8);
253 // If "data" contains shared pointer to data, then we can use that
254 if (data.m_data_sp) {
255 m_byte_order = data.m_byte_order;
256 return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
257 data_length);
258 }
259
260 // We have a DataExtractor object that just has a pointer to bytes
261 if (data.ValidOffset(data_offset)) {
262 if (data_length > data.GetByteSize() - data_offset)
263 data_length = data.GetByteSize() - data_offset;
264 return SetData(data.GetDataStart() + data_offset, data_length,
265 data.GetByteOrder());
266 }
267 return 0;
268 }
269
270 // Assign the data for this object to be a subrange of the shared data in
271 // "data_sp" starting "data_offset" bytes into "data_sp" and ending
272 // "data_length" bytes later. If "data_offset" is not a valid offset into
273 // "data_sp", then this object will contain no bytes. If "data_offset" is
274 // within "data_sp" yet "data_length" is too large, the length will be capped
275 // at the number of bytes remaining in "data_sp". A ref counted pointer to the
276 // data in "data_sp" will be made in this object IF the number of bytes this
277 // object refers to in greater than zero (if at least one byte was available
278 // starting at "data_offset") to ensure the data stays around as long as it is
279 // needed. The address size and endian swap settings will remain unchanged from
280 // their current settings.
SetData(const DataBufferSP & data_sp,offset_t data_offset,offset_t data_length)281 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
282 offset_t data_offset,
283 offset_t data_length) {
284 m_start = m_end = nullptr;
285
286 if (data_length > 0) {
287 m_data_sp = data_sp;
288 if (data_sp) {
289 const size_t data_size = data_sp->GetByteSize();
290 if (data_offset < data_size) {
291 m_start = data_sp->GetBytes() + data_offset;
292 const size_t bytes_left = data_size - data_offset;
293 // Cap the length of we asked for too many
294 if (data_length <= bytes_left)
295 m_end = m_start + data_length; // We got all the bytes we wanted
296 else
297 m_end = m_start + bytes_left; // Not all the bytes requested were
298 // available in the shared data
299 }
300 }
301 }
302
303 size_t new_size = GetByteSize();
304
305 // Don't hold a shared pointer to the data buffer if we don't share any valid
306 // bytes in the shared buffer.
307 if (new_size == 0)
308 m_data_sp.reset();
309
310 return new_size;
311 }
312
313 // Extract a single unsigned char from the binary data and update the offset
314 // pointed to by "offset_ptr".
315 //
316 // RETURNS the byte that was extracted, or zero on failure.
GetU8(offset_t * offset_ptr) const317 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
318 const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
319 if (data)
320 return *data;
321 return 0;
322 }
323
324 // Extract "count" unsigned chars from the binary data and update the offset
325 // pointed to by "offset_ptr". The extracted data is copied into "dst".
326 //
327 // RETURNS the non-nullptr buffer pointer upon successful extraction of
328 // all the requested bytes, or nullptr when the data is not available in the
329 // buffer due to being out of bounds, or insufficient data.
GetU8(offset_t * offset_ptr,void * dst,uint32_t count) const330 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
331 uint32_t count) const {
332 const uint8_t *data =
333 static_cast<const uint8_t *>(GetData(offset_ptr, count));
334 if (data) {
335 // Copy the data into the buffer
336 memcpy(dst, data, count);
337 // Return a non-nullptr pointer to the converted data as an indicator of
338 // success
339 return dst;
340 }
341 return nullptr;
342 }
343
344 // Extract a single uint16_t from the data and update the offset pointed to by
345 // "offset_ptr".
346 //
347 // RETURNS the uint16_t that was extracted, or zero on failure.
GetU16(offset_t * offset_ptr) const348 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
349 uint16_t val = 0;
350 const uint8_t *data =
351 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
352 if (data) {
353 if (m_byte_order != endian::InlHostByteOrder())
354 val = ReadSwapInt16(data);
355 else
356 val = ReadInt16(data);
357 }
358 return val;
359 }
360
GetU16_unchecked(offset_t * offset_ptr) const361 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
362 uint16_t val;
363 if (m_byte_order == endian::InlHostByteOrder())
364 val = ReadInt16(m_start, *offset_ptr);
365 else
366 val = ReadSwapInt16(m_start, *offset_ptr);
367 *offset_ptr += sizeof(val);
368 return val;
369 }
370
GetU32_unchecked(offset_t * offset_ptr) const371 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
372 uint32_t val;
373 if (m_byte_order == endian::InlHostByteOrder())
374 val = ReadInt32(m_start, *offset_ptr);
375 else
376 val = ReadSwapInt32(m_start, *offset_ptr);
377 *offset_ptr += sizeof(val);
378 return val;
379 }
380
GetU64_unchecked(offset_t * offset_ptr) const381 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
382 uint64_t val;
383 if (m_byte_order == endian::InlHostByteOrder())
384 val = ReadInt64(m_start, *offset_ptr);
385 else
386 val = ReadSwapInt64(m_start, *offset_ptr);
387 *offset_ptr += sizeof(val);
388 return val;
389 }
390
391 // Extract "count" uint16_t values from the binary data and update the offset
392 // pointed to by "offset_ptr". The extracted data is copied into "dst".
393 //
394 // RETURNS the non-nullptr buffer pointer upon successful extraction of
395 // all the requested bytes, or nullptr when the data is not available in the
396 // buffer due to being out of bounds, or insufficient data.
GetU16(offset_t * offset_ptr,void * void_dst,uint32_t count) const397 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
398 uint32_t count) const {
399 const size_t src_size = sizeof(uint16_t) * count;
400 const uint16_t *src =
401 static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
402 if (src) {
403 if (m_byte_order != endian::InlHostByteOrder()) {
404 uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
405 uint16_t *dst_end = dst_pos + count;
406 const uint16_t *src_pos = src;
407 while (dst_pos < dst_end) {
408 *dst_pos = ReadSwapInt16(src_pos);
409 ++dst_pos;
410 ++src_pos;
411 }
412 } else {
413 memcpy(void_dst, src, src_size);
414 }
415 // Return a non-nullptr pointer to the converted data as an indicator of
416 // success
417 return void_dst;
418 }
419 return nullptr;
420 }
421
422 // Extract a single uint32_t from the data and update the offset pointed to by
423 // "offset_ptr".
424 //
425 // RETURNS the uint32_t that was extracted, or zero on failure.
GetU32(offset_t * offset_ptr) const426 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
427 uint32_t val = 0;
428 const uint8_t *data =
429 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
430 if (data) {
431 if (m_byte_order != endian::InlHostByteOrder()) {
432 val = ReadSwapInt32(data);
433 } else {
434 memcpy(&val, data, 4);
435 }
436 }
437 return val;
438 }
439
440 // Extract "count" uint32_t values from the binary data and update the offset
441 // pointed to by "offset_ptr". The extracted data is copied into "dst".
442 //
443 // RETURNS the non-nullptr buffer pointer upon successful extraction of
444 // all the requested bytes, or nullptr when the data is not available in the
445 // buffer due to being out of bounds, or insufficient data.
GetU32(offset_t * offset_ptr,void * void_dst,uint32_t count) const446 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
447 uint32_t count) const {
448 const size_t src_size = sizeof(uint32_t) * count;
449 const uint32_t *src =
450 static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
451 if (src) {
452 if (m_byte_order != endian::InlHostByteOrder()) {
453 uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
454 uint32_t *dst_end = dst_pos + count;
455 const uint32_t *src_pos = src;
456 while (dst_pos < dst_end) {
457 *dst_pos = ReadSwapInt32(src_pos);
458 ++dst_pos;
459 ++src_pos;
460 }
461 } else {
462 memcpy(void_dst, src, src_size);
463 }
464 // Return a non-nullptr pointer to the converted data as an indicator of
465 // success
466 return void_dst;
467 }
468 return nullptr;
469 }
470
471 // Extract a single uint64_t from the data and update the offset pointed to by
472 // "offset_ptr".
473 //
474 // RETURNS the uint64_t that was extracted, or zero on failure.
GetU64(offset_t * offset_ptr) const475 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
476 uint64_t val = 0;
477 const uint8_t *data =
478 static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
479 if (data) {
480 if (m_byte_order != endian::InlHostByteOrder()) {
481 val = ReadSwapInt64(data);
482 } else {
483 memcpy(&val, data, 8);
484 }
485 }
486 return val;
487 }
488
489 // GetU64
490 //
491 // Get multiple consecutive 64 bit values. Return true if the entire read
492 // succeeds and increment the offset pointed to by offset_ptr, else return
493 // false and leave the offset pointed to by offset_ptr unchanged.
GetU64(offset_t * offset_ptr,void * void_dst,uint32_t count) const494 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
495 uint32_t count) const {
496 const size_t src_size = sizeof(uint64_t) * count;
497 const uint64_t *src =
498 static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
499 if (src) {
500 if (m_byte_order != endian::InlHostByteOrder()) {
501 uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
502 uint64_t *dst_end = dst_pos + count;
503 const uint64_t *src_pos = src;
504 while (dst_pos < dst_end) {
505 *dst_pos = ReadSwapInt64(src_pos);
506 ++dst_pos;
507 ++src_pos;
508 }
509 } else {
510 memcpy(void_dst, src, src_size);
511 }
512 // Return a non-nullptr pointer to the converted data as an indicator of
513 // success
514 return void_dst;
515 }
516 return nullptr;
517 }
518
GetMaxU32(offset_t * offset_ptr,size_t byte_size) const519 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
520 size_t byte_size) const {
521 lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
522 return GetMaxU64(offset_ptr, byte_size);
523 }
524
GetMaxU64(offset_t * offset_ptr,size_t byte_size) const525 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
526 size_t byte_size) const {
527 lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
528 switch (byte_size) {
529 case 1:
530 return GetU8(offset_ptr);
531 case 2:
532 return GetU16(offset_ptr);
533 case 4:
534 return GetU32(offset_ptr);
535 case 8:
536 return GetU64(offset_ptr);
537 default: {
538 // General case.
539 const uint8_t *data =
540 static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
541 if (data == nullptr)
542 return 0;
543 return ReadMaxInt64(data, byte_size, m_byte_order);
544 }
545 }
546 return 0;
547 }
548
GetMaxU64_unchecked(offset_t * offset_ptr,size_t byte_size) const549 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
550 size_t byte_size) const {
551 switch (byte_size) {
552 case 1:
553 return GetU8_unchecked(offset_ptr);
554 case 2:
555 return GetU16_unchecked(offset_ptr);
556 case 4:
557 return GetU32_unchecked(offset_ptr);
558 case 8:
559 return GetU64_unchecked(offset_ptr);
560 default: {
561 uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
562 *offset_ptr += byte_size;
563 return res;
564 }
565 }
566 return 0;
567 }
568
GetMaxS64(offset_t * offset_ptr,size_t byte_size) const569 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
570 uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
571 return llvm::SignExtend64(u64, 8 * byte_size);
572 }
573
GetMaxU64Bitfield(offset_t * offset_ptr,size_t size,uint32_t bitfield_bit_size,uint32_t bitfield_bit_offset) const574 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
575 uint32_t bitfield_bit_size,
576 uint32_t bitfield_bit_offset) const {
577 assert(bitfield_bit_size <= 64);
578 uint64_t uval64 = GetMaxU64(offset_ptr, size);
579
580 if (bitfield_bit_size == 0)
581 return uval64;
582
583 int32_t lsbcount = bitfield_bit_offset;
584 if (m_byte_order == eByteOrderBig)
585 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
586
587 if (lsbcount > 0)
588 uval64 >>= lsbcount;
589
590 uint64_t bitfield_mask =
591 (bitfield_bit_size == 64
592 ? std::numeric_limits<uint64_t>::max()
593 : ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1));
594 if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
595 return uval64;
596
597 uval64 &= bitfield_mask;
598
599 return uval64;
600 }
601
GetMaxS64Bitfield(offset_t * offset_ptr,size_t size,uint32_t bitfield_bit_size,uint32_t bitfield_bit_offset) const602 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
603 uint32_t bitfield_bit_size,
604 uint32_t bitfield_bit_offset) const {
605 assert(size >= 1 && "GetMaxS64Bitfield size must be >= 1");
606 assert(size <= 8 && "GetMaxS64Bitfield size must be <= 8");
607 int64_t sval64 = GetMaxS64(offset_ptr, size);
608 if (bitfield_bit_size == 0)
609 return sval64;
610 int32_t lsbcount = bitfield_bit_offset;
611 if (m_byte_order == eByteOrderBig)
612 lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
613 if (lsbcount > 0)
614 sval64 >>= lsbcount;
615 uint64_t bitfield_mask = llvm::maskTrailingOnes<uint64_t>(bitfield_bit_size);
616 sval64 &= bitfield_mask;
617 // sign extend if needed
618 if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
619 sval64 |= ~bitfield_mask;
620 return sval64;
621 }
622
GetFloat(offset_t * offset_ptr) const623 float DataExtractor::GetFloat(offset_t *offset_ptr) const {
624 return Get<float>(offset_ptr, 0.0f);
625 }
626
GetDouble(offset_t * offset_ptr) const627 double DataExtractor::GetDouble(offset_t *offset_ptr) const {
628 return Get<double>(offset_ptr, 0.0);
629 }
630
GetLongDouble(offset_t * offset_ptr) const631 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
632 long double val = 0.0;
633 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \
634 defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
635 *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
636 endian::InlHostByteOrder());
637 #else
638 *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
639 sizeof(val), endian::InlHostByteOrder());
640 #endif
641 return val;
642 }
643
644 // Extract a single address from the data and update the offset pointed to by
645 // "offset_ptr". The size of the extracted address comes from the
646 // "this->m_addr_size" member variable and should be set correctly prior to
647 // extracting any address values.
648 //
649 // RETURNS the address that was extracted, or zero on failure.
GetAddress(offset_t * offset_ptr) const650 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
651 assert(m_addr_size >= 1 && m_addr_size <= 8);
652 return GetMaxU64(offset_ptr, m_addr_size);
653 }
654
GetAddress_unchecked(offset_t * offset_ptr) const655 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
656 assert(m_addr_size >= 1 && m_addr_size <= 8);
657 return GetMaxU64_unchecked(offset_ptr, m_addr_size);
658 }
659
ExtractBytes(offset_t offset,offset_t length,ByteOrder dst_byte_order,void * dst) const660 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
661 ByteOrder dst_byte_order, void *dst) const {
662 const uint8_t *src = PeekData(offset, length);
663 if (src) {
664 if (dst_byte_order != GetByteOrder()) {
665 // Validate that only a word- or register-sized dst is byte swapped
666 assert(length == 1 || length == 2 || length == 4 || length == 8 ||
667 length == 10 || length == 16 || length == 32);
668
669 for (uint32_t i = 0; i < length; ++i)
670 (static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
671 } else
672 ::memcpy(dst, src, length);
673 return length;
674 }
675 return 0;
676 }
677
678 // Extract data as it exists in target memory
CopyData(offset_t offset,offset_t length,void * dst) const679 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
680 void *dst) const {
681 const uint8_t *src = PeekData(offset, length);
682 if (src) {
683 ::memcpy(dst, src, length);
684 return length;
685 }
686 return 0;
687 }
688
689 // Extract data and swap if needed when doing the copy
690 lldb::offset_t
CopyByteOrderedData(offset_t src_offset,offset_t src_len,void * dst_void_ptr,offset_t dst_len,ByteOrder dst_byte_order) const691 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
692 void *dst_void_ptr, offset_t dst_len,
693 ByteOrder dst_byte_order) const {
694 // Validate the source info
695 if (!ValidOffsetForDataOfSize(src_offset, src_len))
696 assert(ValidOffsetForDataOfSize(src_offset, src_len));
697 assert(src_len > 0);
698 assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
699
700 // Validate the destination info
701 assert(dst_void_ptr != nullptr);
702 assert(dst_len > 0);
703 assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
704
705 // Validate that only a word- or register-sized dst is byte swapped
706 assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
707 dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
708 dst_len == 32);
709
710 // Must have valid byte orders set in this object and for destination
711 if (!(dst_byte_order == eByteOrderBig ||
712 dst_byte_order == eByteOrderLittle) ||
713 !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
714 return 0;
715
716 uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
717 const uint8_t *src = PeekData(src_offset, src_len);
718 if (src) {
719 if (dst_len >= src_len) {
720 // We are copying the entire value from src into dst. Calculate how many,
721 // if any, zeroes we need for the most significant bytes if "dst_len" is
722 // greater than "src_len"...
723 const size_t num_zeroes = dst_len - src_len;
724 if (dst_byte_order == eByteOrderBig) {
725 // Big endian, so we lead with zeroes...
726 if (num_zeroes > 0)
727 ::memset(dst, 0, num_zeroes);
728 // Then either copy or swap the rest
729 if (m_byte_order == eByteOrderBig) {
730 ::memcpy(dst + num_zeroes, src, src_len);
731 } else {
732 for (uint32_t i = 0; i < src_len; ++i)
733 dst[i + num_zeroes] = src[src_len - 1 - i];
734 }
735 } else {
736 // Little endian destination, so we lead the value bytes
737 if (m_byte_order == eByteOrderBig) {
738 for (uint32_t i = 0; i < src_len; ++i)
739 dst[i] = src[src_len - 1 - i];
740 } else {
741 ::memcpy(dst, src, src_len);
742 }
743 // And zero the rest...
744 if (num_zeroes > 0)
745 ::memset(dst + src_len, 0, num_zeroes);
746 }
747 return src_len;
748 } else {
749 // We are only copying some of the value from src into dst..
750
751 if (dst_byte_order == eByteOrderBig) {
752 // Big endian dst
753 if (m_byte_order == eByteOrderBig) {
754 // Big endian dst, with big endian src
755 ::memcpy(dst, src + (src_len - dst_len), dst_len);
756 } else {
757 // Big endian dst, with little endian src
758 for (uint32_t i = 0; i < dst_len; ++i)
759 dst[i] = src[dst_len - 1 - i];
760 }
761 } else {
762 // Little endian dst
763 if (m_byte_order == eByteOrderBig) {
764 // Little endian dst, with big endian src
765 for (uint32_t i = 0; i < dst_len; ++i)
766 dst[i] = src[src_len - 1 - i];
767 } else {
768 // Little endian dst, with big endian src
769 ::memcpy(dst, src, dst_len);
770 }
771 }
772 return dst_len;
773 }
774 }
775 return 0;
776 }
777
778 // Extracts a variable length NULL terminated C string from the data at the
779 // offset pointed to by "offset_ptr". The "offset_ptr" will be updated with
780 // the offset of the byte that follows the NULL terminator byte.
781 //
782 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
783 // non-zero and there aren't enough available bytes, nullptr will be returned
784 // and "offset_ptr" will not be updated.
GetCStr(offset_t * offset_ptr) const785 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
786 const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
787 // Already at the end of the data.
788 if (!start)
789 return nullptr;
790
791 const char *end = reinterpret_cast<const char *>(m_end);
792
793 // Check all bytes for a null terminator that terminates a C string.
794 const char *terminator_or_end = std::find(start, end, '\0');
795
796 // We didn't find a null terminator, so return nullptr to indicate that there
797 // is no valid C string at that offset.
798 if (terminator_or_end == end)
799 return nullptr;
800
801 // Update offset_ptr for the caller to point to the data behind the
802 // terminator (which is 1 byte long).
803 *offset_ptr += (terminator_or_end - start + 1UL);
804 return start;
805 }
806
807 // Extracts a NULL terminated C string from the fixed length field of length
808 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
809 // updated with the offset of the byte that follows the fixed length field.
810 //
811 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
812 // plus the length of the field is out of bounds, or if the field does not
813 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
814 // will not be updated.
GetCStr(offset_t * offset_ptr,offset_t len) const815 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
816 const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
817 if (cstr != nullptr) {
818 if (memchr(cstr, '\0', len) == nullptr) {
819 return nullptr;
820 }
821 *offset_ptr += len;
822 return cstr;
823 }
824 return nullptr;
825 }
826
827 // Peeks at a string in the contained data. No verification is done to make
828 // sure the entire string lies within the bounds of this object's data, only
829 // "offset" is verified to be a valid offset.
830 //
831 // Returns a valid C string pointer if "offset" is a valid offset in this
832 // object's data, else nullptr is returned.
PeekCStr(offset_t offset) const833 const char *DataExtractor::PeekCStr(offset_t offset) const {
834 return reinterpret_cast<const char *>(PeekData(offset, 1));
835 }
836
837 // Extracts an unsigned LEB128 number from this object's data starting at the
838 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
839 // will be updated with the offset of the byte following the last extracted
840 // byte.
841 //
842 // Returned the extracted integer value.
GetULEB128(offset_t * offset_ptr) const843 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
844 const uint8_t *src = PeekData(*offset_ptr, 1);
845 if (src == nullptr)
846 return 0;
847
848 unsigned byte_count = 0;
849 uint64_t result = llvm::decodeULEB128(src, &byte_count, m_end);
850 *offset_ptr += byte_count;
851 return result;
852 }
853
854 // Extracts an signed LEB128 number from this object's data starting at the
855 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
856 // will be updated with the offset of the byte following the last extracted
857 // byte.
858 //
859 // Returned the extracted integer value.
GetSLEB128(offset_t * offset_ptr) const860 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
861 const uint8_t *src = PeekData(*offset_ptr, 1);
862 if (src == nullptr)
863 return 0;
864
865 unsigned byte_count = 0;
866 int64_t result = llvm::decodeSLEB128(src, &byte_count, m_end);
867 *offset_ptr += byte_count;
868 return result;
869 }
870
871 // Skips a ULEB128 number (signed or unsigned) from this object's data starting
872 // at the offset pointed to by "offset_ptr". The offset pointed to by
873 // "offset_ptr" will be updated with the offset of the byte following the last
874 // extracted byte.
875 //
876 // Returns the number of bytes consumed during the extraction.
Skip_LEB128(offset_t * offset_ptr) const877 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
878 uint32_t bytes_consumed = 0;
879 const uint8_t *src = PeekData(*offset_ptr, 1);
880 if (src == nullptr)
881 return 0;
882
883 const uint8_t *end = m_end;
884
885 if (src < end) {
886 const uint8_t *src_pos = src;
887 while ((src_pos < end) && (*src_pos++ & 0x80))
888 ++bytes_consumed;
889 *offset_ptr += src_pos - src;
890 }
891 return bytes_consumed;
892 }
893
894 // Dumps bytes from this object's data to the stream "s" starting
895 // "start_offset" bytes into this data, and ending with the byte before
896 // "end_offset". "base_addr" will be added to the offset into the dumped data
897 // when showing the offset into the data in the output information.
898 // "num_per_line" objects of type "type" will be dumped with the option to
899 // override the format for each object with "type_format". "type_format" is a
900 // printf style formatting string. If "type_format" is nullptr, then an
901 // appropriate format string will be used for the supplied "type". If the
902 // stream "s" is nullptr, then the output will be send to Log().
PutToLog(Log * log,offset_t start_offset,offset_t length,uint64_t base_addr,uint32_t num_per_line,DataExtractor::Type type) const903 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
904 offset_t length, uint64_t base_addr,
905 uint32_t num_per_line,
906 DataExtractor::Type type) const {
907 if (log == nullptr)
908 return start_offset;
909
910 offset_t offset;
911 offset_t end_offset;
912 uint32_t count;
913 StreamString sstr;
914 for (offset = start_offset, end_offset = offset + length, count = 0;
915 ValidOffset(offset) && offset < end_offset; ++count) {
916 if ((count % num_per_line) == 0) {
917 // Print out any previous string
918 if (sstr.GetSize() > 0) {
919 log->PutString(sstr.GetString());
920 sstr.Clear();
921 }
922 // Reset string offset and fill the current line string with address:
923 if (base_addr != LLDB_INVALID_ADDRESS)
924 sstr.Printf("0x%8.8" PRIx64 ":",
925 static_cast<uint64_t>(base_addr + (offset - start_offset)));
926 }
927
928 switch (type) {
929 case TypeUInt8:
930 sstr.Printf(" %2.2x", GetU8(&offset));
931 break;
932 case TypeChar: {
933 char ch = GetU8(&offset);
934 sstr.Printf(" %c", llvm::isPrint(ch) ? ch : ' ');
935 } break;
936 case TypeUInt16:
937 sstr.Printf(" %4.4x", GetU16(&offset));
938 break;
939 case TypeUInt32:
940 sstr.Printf(" %8.8x", GetU32(&offset));
941 break;
942 case TypeUInt64:
943 sstr.Printf(" %16.16" PRIx64, GetU64(&offset));
944 break;
945 case TypePointer:
946 sstr.Printf(" 0x%" PRIx64, GetAddress(&offset));
947 break;
948 case TypeULEB128:
949 sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset));
950 break;
951 case TypeSLEB128:
952 sstr.Printf(" %" PRId64, GetSLEB128(&offset));
953 break;
954 }
955 }
956
957 if (!sstr.Empty())
958 log->PutString(sstr.GetString());
959
960 return offset; // Return the offset at which we ended up
961 }
962
Copy(DataExtractor & dest_data) const963 size_t DataExtractor::Copy(DataExtractor &dest_data) const {
964 if (m_data_sp) {
965 // we can pass along the SP to the data
966 dest_data.SetData(m_data_sp);
967 } else {
968 const uint8_t *base_ptr = m_start;
969 size_t data_size = GetByteSize();
970 dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
971 }
972 return GetByteSize();
973 }
974
Append(DataExtractor & rhs)975 bool DataExtractor::Append(DataExtractor &rhs) {
976 if (rhs.GetByteOrder() != GetByteOrder())
977 return false;
978
979 if (rhs.GetByteSize() == 0)
980 return true;
981
982 if (GetByteSize() == 0)
983 return (rhs.Copy(*this) > 0);
984
985 size_t bytes = GetByteSize() + rhs.GetByteSize();
986
987 DataBufferHeap *buffer_heap_ptr = nullptr;
988 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
989
990 if (!buffer_sp || buffer_heap_ptr == nullptr)
991 return false;
992
993 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
994
995 memcpy(bytes_ptr, GetDataStart(), GetByteSize());
996 memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
997
998 SetData(buffer_sp);
999
1000 return true;
1001 }
1002
Append(void * buf,offset_t length)1003 bool DataExtractor::Append(void *buf, offset_t length) {
1004 if (buf == nullptr)
1005 return false;
1006
1007 if (length == 0)
1008 return true;
1009
1010 size_t bytes = GetByteSize() + length;
1011
1012 DataBufferHeap *buffer_heap_ptr = nullptr;
1013 DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1014
1015 if (!buffer_sp || buffer_heap_ptr == nullptr)
1016 return false;
1017
1018 uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1019
1020 if (GetByteSize() > 0)
1021 memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1022
1023 memcpy(bytes_ptr + GetByteSize(), buf, length);
1024
1025 SetData(buffer_sp);
1026
1027 return true;
1028 }
1029
Checksum(llvm::SmallVectorImpl<uint8_t> & dest,uint64_t max_data)1030 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
1031 uint64_t max_data) {
1032 if (max_data == 0)
1033 max_data = GetByteSize();
1034 else
1035 max_data = std::min(max_data, GetByteSize());
1036
1037 llvm::MD5 md5;
1038
1039 const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
1040 md5.update(data);
1041
1042 llvm::MD5::MD5Result result;
1043 md5.final(result);
1044
1045 dest.clear();
1046 dest.append(result.begin(), result.end());
1047 }
1048