1 //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Correlated Value Propagation pass.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
14 #include "llvm/ADT/DepthFirstIterator.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/PatternMatch.h"
37 #include "llvm/IR/PassManager.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include <cassert>
44 #include <optional>
45 #include <utility>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "correlated-value-propagation"
50
51 STATISTIC(NumPhis, "Number of phis propagated");
52 STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value");
53 STATISTIC(NumSelects, "Number of selects propagated");
54 STATISTIC(NumCmps, "Number of comparisons propagated");
55 STATISTIC(NumReturns, "Number of return values propagated");
56 STATISTIC(NumDeadCases, "Number of switch cases removed");
57 STATISTIC(NumSDivSRemsNarrowed,
58 "Number of sdivs/srems whose width was decreased");
59 STATISTIC(NumSDivs, "Number of sdiv converted to udiv");
60 STATISTIC(NumUDivURemsNarrowed,
61 "Number of udivs/urems whose width was decreased");
62 STATISTIC(NumAShrsConverted, "Number of ashr converted to lshr");
63 STATISTIC(NumAShrsRemoved, "Number of ashr removed");
64 STATISTIC(NumSRems, "Number of srem converted to urem");
65 STATISTIC(NumSExt, "Number of sext converted to zext");
66 STATISTIC(NumSIToFP, "Number of sitofp converted to uitofp");
67 STATISTIC(NumSICmps, "Number of signed icmp preds simplified to unsigned");
68 STATISTIC(NumAnd, "Number of ands removed");
69 STATISTIC(NumNW, "Number of no-wrap deductions");
70 STATISTIC(NumNSW, "Number of no-signed-wrap deductions");
71 STATISTIC(NumNUW, "Number of no-unsigned-wrap deductions");
72 STATISTIC(NumAddNW, "Number of no-wrap deductions for add");
73 STATISTIC(NumAddNSW, "Number of no-signed-wrap deductions for add");
74 STATISTIC(NumAddNUW, "Number of no-unsigned-wrap deductions for add");
75 STATISTIC(NumSubNW, "Number of no-wrap deductions for sub");
76 STATISTIC(NumSubNSW, "Number of no-signed-wrap deductions for sub");
77 STATISTIC(NumSubNUW, "Number of no-unsigned-wrap deductions for sub");
78 STATISTIC(NumMulNW, "Number of no-wrap deductions for mul");
79 STATISTIC(NumMulNSW, "Number of no-signed-wrap deductions for mul");
80 STATISTIC(NumMulNUW, "Number of no-unsigned-wrap deductions for mul");
81 STATISTIC(NumShlNW, "Number of no-wrap deductions for shl");
82 STATISTIC(NumShlNSW, "Number of no-signed-wrap deductions for shl");
83 STATISTIC(NumShlNUW, "Number of no-unsigned-wrap deductions for shl");
84 STATISTIC(NumAbs, "Number of llvm.abs intrinsics removed");
85 STATISTIC(NumOverflows, "Number of overflow checks removed");
86 STATISTIC(NumSaturating,
87 "Number of saturating arithmetics converted to normal arithmetics");
88 STATISTIC(NumNonNull, "Number of function pointer arguments marked non-null");
89 STATISTIC(NumCmpIntr, "Number of llvm.[us]cmp intrinsics removed");
90 STATISTIC(NumMinMax, "Number of llvm.[us]{min,max} intrinsics removed");
91 STATISTIC(NumSMinMax,
92 "Number of llvm.s{min,max} intrinsics simplified to unsigned");
93 STATISTIC(NumUDivURemsNarrowedExpanded,
94 "Number of bound udiv's/urem's expanded");
95 STATISTIC(NumNNeg, "Number of zext/uitofp non-negative deductions");
96
getConstantAt(Value * V,Instruction * At,LazyValueInfo * LVI)97 static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) {
98 if (Constant *C = LVI->getConstant(V, At))
99 return C;
100
101 // TODO: The following really should be sunk inside LVI's core algorithm, or
102 // at least the outer shims around such.
103 auto *C = dyn_cast<CmpInst>(V);
104 if (!C)
105 return nullptr;
106
107 Value *Op0 = C->getOperand(0);
108 Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
109 if (!Op1)
110 return nullptr;
111
112 return LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At,
113 /*UseBlockValue=*/false);
114 }
115
processSelect(SelectInst * S,LazyValueInfo * LVI)116 static bool processSelect(SelectInst *S, LazyValueInfo *LVI) {
117 if (S->getType()->isVectorTy() || isa<Constant>(S->getCondition()))
118 return false;
119
120 bool Changed = false;
121 for (Use &U : make_early_inc_range(S->uses())) {
122 auto *I = cast<Instruction>(U.getUser());
123 Constant *C;
124 if (auto *PN = dyn_cast<PHINode>(I))
125 C = LVI->getConstantOnEdge(S->getCondition(), PN->getIncomingBlock(U),
126 I->getParent(), I);
127 else
128 C = getConstantAt(S->getCondition(), I, LVI);
129
130 auto *CI = dyn_cast_or_null<ConstantInt>(C);
131 if (!CI)
132 continue;
133
134 U.set(CI->isOne() ? S->getTrueValue() : S->getFalseValue());
135 Changed = true;
136 ++NumSelects;
137 }
138
139 if (Changed && S->use_empty())
140 S->eraseFromParent();
141
142 return Changed;
143 }
144
145 /// Try to simplify a phi with constant incoming values that match the edge
146 /// values of a non-constant value on all other edges:
147 /// bb0:
148 /// %isnull = icmp eq i8* %x, null
149 /// br i1 %isnull, label %bb2, label %bb1
150 /// bb1:
151 /// br label %bb2
152 /// bb2:
153 /// %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ]
154 /// -->
155 /// %r = %x
simplifyCommonValuePhi(PHINode * P,LazyValueInfo * LVI,DominatorTree * DT)156 static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI,
157 DominatorTree *DT) {
158 // Collect incoming constants and initialize possible common value.
159 SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants;
160 Value *CommonValue = nullptr;
161 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
162 Value *Incoming = P->getIncomingValue(i);
163 if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
164 IncomingConstants.push_back(std::make_pair(IncomingConstant, i));
165 } else if (!CommonValue) {
166 // The potential common value is initialized to the first non-constant.
167 CommonValue = Incoming;
168 } else if (Incoming != CommonValue) {
169 // There can be only one non-constant common value.
170 return false;
171 }
172 }
173
174 if (!CommonValue || IncomingConstants.empty())
175 return false;
176
177 // The common value must be valid in all incoming blocks.
178 BasicBlock *ToBB = P->getParent();
179 if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
180 if (!DT->dominates(CommonInst, ToBB))
181 return false;
182
183 // We have a phi with exactly 1 variable incoming value and 1 or more constant
184 // incoming values. See if all constant incoming values can be mapped back to
185 // the same incoming variable value.
186 for (auto &IncomingConstant : IncomingConstants) {
187 Constant *C = IncomingConstant.first;
188 BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second);
189 if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P))
190 return false;
191 }
192
193 // LVI only guarantees that the value matches a certain constant if the value
194 // is not poison. Make sure we don't replace a well-defined value with poison.
195 // This is usually satisfied due to a prior branch on the value.
196 if (!isGuaranteedNotToBePoison(CommonValue, nullptr, P, DT))
197 return false;
198
199 // All constant incoming values map to the same variable along the incoming
200 // edges of the phi. The phi is unnecessary.
201 P->replaceAllUsesWith(CommonValue);
202 P->eraseFromParent();
203 ++NumPhiCommon;
204 return true;
205 }
206
getValueOnEdge(LazyValueInfo * LVI,Value * Incoming,BasicBlock * From,BasicBlock * To,Instruction * CxtI)207 static Value *getValueOnEdge(LazyValueInfo *LVI, Value *Incoming,
208 BasicBlock *From, BasicBlock *To,
209 Instruction *CxtI) {
210 if (Constant *C = LVI->getConstantOnEdge(Incoming, From, To, CxtI))
211 return C;
212
213 // Look if the incoming value is a select with a scalar condition for which
214 // LVI can tells us the value. In that case replace the incoming value with
215 // the appropriate value of the select. This often allows us to remove the
216 // select later.
217 auto *SI = dyn_cast<SelectInst>(Incoming);
218 if (!SI)
219 return nullptr;
220
221 // Once LVI learns to handle vector types, we could also add support
222 // for vector type constants that are not all zeroes or all ones.
223 Value *Condition = SI->getCondition();
224 if (!Condition->getType()->isVectorTy()) {
225 if (Constant *C = LVI->getConstantOnEdge(Condition, From, To, CxtI)) {
226 if (C->isOneValue())
227 return SI->getTrueValue();
228 if (C->isZeroValue())
229 return SI->getFalseValue();
230 }
231 }
232
233 // Look if the select has a constant but LVI tells us that the incoming
234 // value can never be that constant. In that case replace the incoming
235 // value with the other value of the select. This often allows us to
236 // remove the select later.
237
238 // The "false" case
239 if (auto *C = dyn_cast<Constant>(SI->getFalseValue()))
240 if (auto *Res = dyn_cast_or_null<ConstantInt>(
241 LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, From, To, CxtI));
242 Res && Res->isZero())
243 return SI->getTrueValue();
244
245 // The "true" case,
246 // similar to the select "false" case, but try the select "true" value
247 if (auto *C = dyn_cast<Constant>(SI->getTrueValue()))
248 if (auto *Res = dyn_cast_or_null<ConstantInt>(
249 LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, From, To, CxtI));
250 Res && Res->isZero())
251 return SI->getFalseValue();
252
253 return nullptr;
254 }
255
processPHI(PHINode * P,LazyValueInfo * LVI,DominatorTree * DT,const SimplifyQuery & SQ)256 static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT,
257 const SimplifyQuery &SQ) {
258 bool Changed = false;
259
260 BasicBlock *BB = P->getParent();
261 for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
262 Value *Incoming = P->getIncomingValue(i);
263 if (isa<Constant>(Incoming)) continue;
264
265 Value *V = getValueOnEdge(LVI, Incoming, P->getIncomingBlock(i), BB, P);
266 if (V) {
267 P->setIncomingValue(i, V);
268 Changed = true;
269 }
270 }
271
272 if (Value *V = simplifyInstruction(P, SQ)) {
273 P->replaceAllUsesWith(V);
274 P->eraseFromParent();
275 Changed = true;
276 }
277
278 if (!Changed)
279 Changed = simplifyCommonValuePhi(P, LVI, DT);
280
281 if (Changed)
282 ++NumPhis;
283
284 return Changed;
285 }
286
processICmp(ICmpInst * Cmp,LazyValueInfo * LVI)287 static bool processICmp(ICmpInst *Cmp, LazyValueInfo *LVI) {
288 // Only for signed relational comparisons of integers.
289 if (!Cmp->getOperand(0)->getType()->isIntOrIntVectorTy())
290 return false;
291
292 if (!Cmp->isSigned())
293 return false;
294
295 ICmpInst::Predicate UnsignedPred =
296 ConstantRange::getEquivalentPredWithFlippedSignedness(
297 Cmp->getPredicate(),
298 LVI->getConstantRangeAtUse(Cmp->getOperandUse(0),
299 /*UndefAllowed*/ true),
300 LVI->getConstantRangeAtUse(Cmp->getOperandUse(1),
301 /*UndefAllowed*/ true));
302
303 if (UnsignedPred == ICmpInst::Predicate::BAD_ICMP_PREDICATE)
304 return false;
305
306 ++NumSICmps;
307 Cmp->setPredicate(UnsignedPred);
308
309 return true;
310 }
311
312 /// See if LazyValueInfo's ability to exploit edge conditions or range
313 /// information is sufficient to prove this comparison. Even for local
314 /// conditions, this can sometimes prove conditions instcombine can't by
315 /// exploiting range information.
constantFoldCmp(CmpInst * Cmp,LazyValueInfo * LVI)316 static bool constantFoldCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
317 Value *Op0 = Cmp->getOperand(0);
318 Value *Op1 = Cmp->getOperand(1);
319 Constant *Res = LVI->getPredicateAt(Cmp->getPredicate(), Op0, Op1, Cmp,
320 /*UseBlockValue=*/true);
321 if (!Res)
322 return false;
323
324 ++NumCmps;
325 Cmp->replaceAllUsesWith(Res);
326 Cmp->eraseFromParent();
327 return true;
328 }
329
processCmp(CmpInst * Cmp,LazyValueInfo * LVI)330 static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
331 if (constantFoldCmp(Cmp, LVI))
332 return true;
333
334 if (auto *ICmp = dyn_cast<ICmpInst>(Cmp))
335 if (processICmp(ICmp, LVI))
336 return true;
337
338 return false;
339 }
340
341 /// Simplify a switch instruction by removing cases which can never fire. If the
342 /// uselessness of a case could be determined locally then constant propagation
343 /// would already have figured it out. Instead, walk the predecessors and
344 /// statically evaluate cases based on information available on that edge. Cases
345 /// that cannot fire no matter what the incoming edge can safely be removed. If
346 /// a case fires on every incoming edge then the entire switch can be removed
347 /// and replaced with a branch to the case destination.
processSwitch(SwitchInst * I,LazyValueInfo * LVI,DominatorTree * DT)348 static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI,
349 DominatorTree *DT) {
350 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
351 Value *Cond = I->getCondition();
352 BasicBlock *BB = I->getParent();
353
354 // Analyse each switch case in turn.
355 bool Changed = false;
356 DenseMap<BasicBlock*, int> SuccessorsCount;
357 for (auto *Succ : successors(BB))
358 SuccessorsCount[Succ]++;
359
360 { // Scope for SwitchInstProfUpdateWrapper. It must not live during
361 // ConstantFoldTerminator() as the underlying SwitchInst can be changed.
362 SwitchInstProfUpdateWrapper SI(*I);
363 unsigned ReachableCaseCount = 0;
364
365 for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
366 ConstantInt *Case = CI->getCaseValue();
367 auto *Res = dyn_cast_or_null<ConstantInt>(
368 LVI->getPredicateAt(CmpInst::ICMP_EQ, Cond, Case, I,
369 /* UseBlockValue */ true));
370
371 if (Res && Res->isZero()) {
372 // This case never fires - remove it.
373 BasicBlock *Succ = CI->getCaseSuccessor();
374 Succ->removePredecessor(BB);
375 CI = SI.removeCase(CI);
376 CE = SI->case_end();
377
378 // The condition can be modified by removePredecessor's PHI simplification
379 // logic.
380 Cond = SI->getCondition();
381
382 ++NumDeadCases;
383 Changed = true;
384 if (--SuccessorsCount[Succ] == 0)
385 DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}});
386 continue;
387 }
388 if (Res && Res->isOne()) {
389 // This case always fires. Arrange for the switch to be turned into an
390 // unconditional branch by replacing the switch condition with the case
391 // value.
392 SI->setCondition(Case);
393 NumDeadCases += SI->getNumCases();
394 Changed = true;
395 break;
396 }
397
398 // Increment the case iterator since we didn't delete it.
399 ++CI;
400 ++ReachableCaseCount;
401 }
402
403 BasicBlock *DefaultDest = SI->getDefaultDest();
404 if (ReachableCaseCount > 1 &&
405 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())) {
406 ConstantRange CR = LVI->getConstantRangeAtUse(I->getOperandUse(0),
407 /*UndefAllowed*/ false);
408 // The default dest is unreachable if all cases are covered.
409 if (!CR.isSizeLargerThan(ReachableCaseCount)) {
410 BasicBlock *NewUnreachableBB =
411 BasicBlock::Create(BB->getContext(), "default.unreachable",
412 BB->getParent(), DefaultDest);
413 new UnreachableInst(BB->getContext(), NewUnreachableBB);
414
415 DefaultDest->removePredecessor(BB);
416 SI->setDefaultDest(NewUnreachableBB);
417
418 if (SuccessorsCount[DefaultDest] == 1)
419 DTU.applyUpdates({{DominatorTree::Delete, BB, DefaultDest}});
420 DTU.applyUpdates({{DominatorTree::Insert, BB, NewUnreachableBB}});
421
422 ++NumDeadCases;
423 Changed = true;
424 }
425 }
426 }
427
428 if (Changed)
429 // If the switch has been simplified to the point where it can be replaced
430 // by a branch then do so now.
431 ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false,
432 /*TLI = */ nullptr, &DTU);
433 return Changed;
434 }
435
436 // See if we can prove that the given binary op intrinsic will not overflow.
willNotOverflow(BinaryOpIntrinsic * BO,LazyValueInfo * LVI)437 static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) {
438 ConstantRange LRange =
439 LVI->getConstantRangeAtUse(BO->getOperandUse(0), /*UndefAllowed*/ false);
440 ConstantRange RRange =
441 LVI->getConstantRangeAtUse(BO->getOperandUse(1), /*UndefAllowed*/ false);
442 ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
443 BO->getBinaryOp(), RRange, BO->getNoWrapKind());
444 return NWRegion.contains(LRange);
445 }
446
setDeducedOverflowingFlags(Value * V,Instruction::BinaryOps Opcode,bool NewNSW,bool NewNUW)447 static void setDeducedOverflowingFlags(Value *V, Instruction::BinaryOps Opcode,
448 bool NewNSW, bool NewNUW) {
449 Statistic *OpcNW, *OpcNSW, *OpcNUW;
450 switch (Opcode) {
451 case Instruction::Add:
452 OpcNW = &NumAddNW;
453 OpcNSW = &NumAddNSW;
454 OpcNUW = &NumAddNUW;
455 break;
456 case Instruction::Sub:
457 OpcNW = &NumSubNW;
458 OpcNSW = &NumSubNSW;
459 OpcNUW = &NumSubNUW;
460 break;
461 case Instruction::Mul:
462 OpcNW = &NumMulNW;
463 OpcNSW = &NumMulNSW;
464 OpcNUW = &NumMulNUW;
465 break;
466 case Instruction::Shl:
467 OpcNW = &NumShlNW;
468 OpcNSW = &NumShlNSW;
469 OpcNUW = &NumShlNUW;
470 break;
471 default:
472 llvm_unreachable("Will not be called with other binops");
473 }
474
475 auto *Inst = dyn_cast<Instruction>(V);
476 if (NewNSW) {
477 ++NumNW;
478 ++*OpcNW;
479 ++NumNSW;
480 ++*OpcNSW;
481 if (Inst)
482 Inst->setHasNoSignedWrap();
483 }
484 if (NewNUW) {
485 ++NumNW;
486 ++*OpcNW;
487 ++NumNUW;
488 ++*OpcNUW;
489 if (Inst)
490 Inst->setHasNoUnsignedWrap();
491 }
492 }
493
494 static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI);
495
496 // See if @llvm.abs argument is alays positive/negative, and simplify.
497 // Notably, INT_MIN can belong to either range, regardless of the NSW,
498 // because it is negation-invariant.
processAbsIntrinsic(IntrinsicInst * II,LazyValueInfo * LVI)499 static bool processAbsIntrinsic(IntrinsicInst *II, LazyValueInfo *LVI) {
500 Value *X = II->getArgOperand(0);
501 bool IsIntMinPoison = cast<ConstantInt>(II->getArgOperand(1))->isOne();
502 APInt IntMin = APInt::getSignedMinValue(X->getType()->getScalarSizeInBits());
503 ConstantRange Range = LVI->getConstantRangeAtUse(
504 II->getOperandUse(0), /*UndefAllowed*/ IsIntMinPoison);
505
506 // Is X in [0, IntMin]? NOTE: INT_MIN is fine!
507 if (Range.icmp(CmpInst::ICMP_ULE, IntMin)) {
508 ++NumAbs;
509 II->replaceAllUsesWith(X);
510 II->eraseFromParent();
511 return true;
512 }
513
514 // Is X in [IntMin, 0]? NOTE: INT_MIN is fine!
515 if (Range.getSignedMax().isNonPositive()) {
516 IRBuilder<> B(II);
517 Value *NegX = B.CreateNeg(X, II->getName(),
518 /*HasNSW=*/IsIntMinPoison);
519 ++NumAbs;
520 II->replaceAllUsesWith(NegX);
521 II->eraseFromParent();
522
523 // See if we can infer some no-wrap flags.
524 if (auto *BO = dyn_cast<BinaryOperator>(NegX))
525 processBinOp(BO, LVI);
526
527 return true;
528 }
529
530 // Argument's range crosses zero.
531 // Can we at least tell that the argument is never INT_MIN?
532 if (!IsIntMinPoison && !Range.contains(IntMin)) {
533 ++NumNSW;
534 ++NumSubNSW;
535 II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
536 return true;
537 }
538 return false;
539 }
540
processCmpIntrinsic(CmpIntrinsic * CI,LazyValueInfo * LVI)541 static bool processCmpIntrinsic(CmpIntrinsic *CI, LazyValueInfo *LVI) {
542 ConstantRange LHS_CR =
543 LVI->getConstantRangeAtUse(CI->getOperandUse(0), /*UndefAllowed*/ false);
544 ConstantRange RHS_CR =
545 LVI->getConstantRangeAtUse(CI->getOperandUse(1), /*UndefAllowed*/ false);
546
547 if (LHS_CR.icmp(CI->getGTPredicate(), RHS_CR)) {
548 ++NumCmpIntr;
549 CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
550 CI->eraseFromParent();
551 return true;
552 }
553 if (LHS_CR.icmp(CI->getLTPredicate(), RHS_CR)) {
554 ++NumCmpIntr;
555 CI->replaceAllUsesWith(ConstantInt::getSigned(CI->getType(), -1));
556 CI->eraseFromParent();
557 return true;
558 }
559 if (LHS_CR.icmp(ICmpInst::ICMP_EQ, RHS_CR)) {
560 ++NumCmpIntr;
561 CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 0));
562 CI->eraseFromParent();
563 return true;
564 }
565
566 return false;
567 }
568
569 // See if this min/max intrinsic always picks it's one specific operand.
570 // If not, check whether we can canonicalize signed minmax into unsigned version
processMinMaxIntrinsic(MinMaxIntrinsic * MM,LazyValueInfo * LVI)571 static bool processMinMaxIntrinsic(MinMaxIntrinsic *MM, LazyValueInfo *LVI) {
572 CmpInst::Predicate Pred = CmpInst::getNonStrictPredicate(MM->getPredicate());
573 ConstantRange LHS_CR = LVI->getConstantRangeAtUse(MM->getOperandUse(0),
574 /*UndefAllowed*/ false);
575 ConstantRange RHS_CR = LVI->getConstantRangeAtUse(MM->getOperandUse(1),
576 /*UndefAllowed*/ false);
577 if (LHS_CR.icmp(Pred, RHS_CR)) {
578 ++NumMinMax;
579 MM->replaceAllUsesWith(MM->getLHS());
580 MM->eraseFromParent();
581 return true;
582 }
583 if (RHS_CR.icmp(Pred, LHS_CR)) {
584 ++NumMinMax;
585 MM->replaceAllUsesWith(MM->getRHS());
586 MM->eraseFromParent();
587 return true;
588 }
589
590 if (MM->isSigned() &&
591 ConstantRange::areInsensitiveToSignednessOfICmpPredicate(LHS_CR,
592 RHS_CR)) {
593 ++NumSMinMax;
594 IRBuilder<> B(MM);
595 MM->replaceAllUsesWith(B.CreateBinaryIntrinsic(
596 MM->getIntrinsicID() == Intrinsic::smin ? Intrinsic::umin
597 : Intrinsic::umax,
598 MM->getLHS(), MM->getRHS()));
599 MM->eraseFromParent();
600 return true;
601 }
602
603 return false;
604 }
605
606 // Rewrite this with.overflow intrinsic as non-overflowing.
processOverflowIntrinsic(WithOverflowInst * WO,LazyValueInfo * LVI)607 static bool processOverflowIntrinsic(WithOverflowInst *WO, LazyValueInfo *LVI) {
608 IRBuilder<> B(WO);
609 Instruction::BinaryOps Opcode = WO->getBinaryOp();
610 bool NSW = WO->isSigned();
611 bool NUW = !WO->isSigned();
612
613 Value *NewOp =
614 B.CreateBinOp(Opcode, WO->getLHS(), WO->getRHS(), WO->getName());
615 setDeducedOverflowingFlags(NewOp, Opcode, NSW, NUW);
616
617 StructType *ST = cast<StructType>(WO->getType());
618 Constant *Struct = ConstantStruct::get(ST,
619 { PoisonValue::get(ST->getElementType(0)),
620 ConstantInt::getFalse(ST->getElementType(1)) });
621 Value *NewI = B.CreateInsertValue(Struct, NewOp, 0);
622 WO->replaceAllUsesWith(NewI);
623 WO->eraseFromParent();
624 ++NumOverflows;
625
626 // See if we can infer the other no-wrap too.
627 if (auto *BO = dyn_cast<BinaryOperator>(NewOp))
628 processBinOp(BO, LVI);
629
630 return true;
631 }
632
processSaturatingInst(SaturatingInst * SI,LazyValueInfo * LVI)633 static bool processSaturatingInst(SaturatingInst *SI, LazyValueInfo *LVI) {
634 Instruction::BinaryOps Opcode = SI->getBinaryOp();
635 bool NSW = SI->isSigned();
636 bool NUW = !SI->isSigned();
637 BinaryOperator *BinOp = BinaryOperator::Create(
638 Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI->getIterator());
639 BinOp->setDebugLoc(SI->getDebugLoc());
640 setDeducedOverflowingFlags(BinOp, Opcode, NSW, NUW);
641
642 SI->replaceAllUsesWith(BinOp);
643 SI->eraseFromParent();
644 ++NumSaturating;
645
646 // See if we can infer the other no-wrap too.
647 if (auto *BO = dyn_cast<BinaryOperator>(BinOp))
648 processBinOp(BO, LVI);
649
650 return true;
651 }
652
653 /// Infer nonnull attributes for the arguments at the specified callsite.
processCallSite(CallBase & CB,LazyValueInfo * LVI)654 static bool processCallSite(CallBase &CB, LazyValueInfo *LVI) {
655
656 if (CB.getIntrinsicID() == Intrinsic::abs) {
657 return processAbsIntrinsic(&cast<IntrinsicInst>(CB), LVI);
658 }
659
660 if (auto *CI = dyn_cast<CmpIntrinsic>(&CB)) {
661 return processCmpIntrinsic(CI, LVI);
662 }
663
664 if (auto *MM = dyn_cast<MinMaxIntrinsic>(&CB)) {
665 return processMinMaxIntrinsic(MM, LVI);
666 }
667
668 if (auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
669 if (willNotOverflow(WO, LVI))
670 return processOverflowIntrinsic(WO, LVI);
671 }
672
673 if (auto *SI = dyn_cast<SaturatingInst>(&CB)) {
674 if (willNotOverflow(SI, LVI))
675 return processSaturatingInst(SI, LVI);
676 }
677
678 bool Changed = false;
679
680 // Deopt bundle operands are intended to capture state with minimal
681 // perturbance of the code otherwise. If we can find a constant value for
682 // any such operand and remove a use of the original value, that's
683 // desireable since it may allow further optimization of that value (e.g. via
684 // single use rules in instcombine). Since deopt uses tend to,
685 // idiomatically, appear along rare conditional paths, it's reasonable likely
686 // we may have a conditional fact with which LVI can fold.
687 if (auto DeoptBundle = CB.getOperandBundle(LLVMContext::OB_deopt)) {
688 for (const Use &ConstU : DeoptBundle->Inputs) {
689 Use &U = const_cast<Use&>(ConstU);
690 Value *V = U.get();
691 if (V->getType()->isVectorTy()) continue;
692 if (isa<Constant>(V)) continue;
693
694 Constant *C = LVI->getConstant(V, &CB);
695 if (!C) continue;
696 U.set(C);
697 Changed = true;
698 }
699 }
700
701 SmallVector<unsigned, 4> ArgNos;
702 unsigned ArgNo = 0;
703
704 for (Value *V : CB.args()) {
705 PointerType *Type = dyn_cast<PointerType>(V->getType());
706 // Try to mark pointer typed parameters as non-null. We skip the
707 // relatively expensive analysis for constants which are obviously either
708 // null or non-null to start with.
709 if (Type && !CB.paramHasAttr(ArgNo, Attribute::NonNull) &&
710 !isa<Constant>(V))
711 if (auto *Res = dyn_cast_or_null<ConstantInt>(LVI->getPredicateAt(
712 ICmpInst::ICMP_EQ, V, ConstantPointerNull::get(Type), &CB,
713 /*UseBlockValue=*/false));
714 Res && Res->isZero())
715 ArgNos.push_back(ArgNo);
716 ArgNo++;
717 }
718
719 assert(ArgNo == CB.arg_size() && "Call arguments not processed correctly.");
720
721 if (ArgNos.empty())
722 return Changed;
723
724 NumNonNull += ArgNos.size();
725 AttributeList AS = CB.getAttributes();
726 LLVMContext &Ctx = CB.getContext();
727 AS = AS.addParamAttribute(Ctx, ArgNos,
728 Attribute::get(Ctx, Attribute::NonNull));
729 CB.setAttributes(AS);
730
731 return true;
732 }
733
734 enum class Domain { NonNegative, NonPositive, Unknown };
735
getDomain(const ConstantRange & CR)736 static Domain getDomain(const ConstantRange &CR) {
737 if (CR.isAllNonNegative())
738 return Domain::NonNegative;
739 if (CR.icmp(ICmpInst::ICMP_SLE, APInt::getZero(CR.getBitWidth())))
740 return Domain::NonPositive;
741 return Domain::Unknown;
742 }
743
744 /// Try to shrink a sdiv/srem's width down to the smallest power of two that's
745 /// sufficient to contain its operands.
narrowSDivOrSRem(BinaryOperator * Instr,const ConstantRange & LCR,const ConstantRange & RCR)746 static bool narrowSDivOrSRem(BinaryOperator *Instr, const ConstantRange &LCR,
747 const ConstantRange &RCR) {
748 assert(Instr->getOpcode() == Instruction::SDiv ||
749 Instr->getOpcode() == Instruction::SRem);
750
751 // Find the smallest power of two bitwidth that's sufficient to hold Instr's
752 // operands.
753 unsigned OrigWidth = Instr->getType()->getScalarSizeInBits();
754
755 // What is the smallest bit width that can accommodate the entire value ranges
756 // of both of the operands?
757 unsigned MinSignedBits =
758 std::max(LCR.getMinSignedBits(), RCR.getMinSignedBits());
759
760 // sdiv/srem is UB if divisor is -1 and divident is INT_MIN, so unless we can
761 // prove that such a combination is impossible, we need to bump the bitwidth.
762 if (RCR.contains(APInt::getAllOnes(OrigWidth)) &&
763 LCR.contains(APInt::getSignedMinValue(MinSignedBits).sext(OrigWidth)))
764 ++MinSignedBits;
765
766 // Don't shrink below 8 bits wide.
767 unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MinSignedBits), 8);
768
769 // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
770 // two.
771 if (NewWidth >= OrigWidth)
772 return false;
773
774 ++NumSDivSRemsNarrowed;
775 IRBuilder<> B{Instr};
776 auto *TruncTy = Instr->getType()->getWithNewBitWidth(NewWidth);
777 auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
778 Instr->getName() + ".lhs.trunc");
779 auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
780 Instr->getName() + ".rhs.trunc");
781 auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
782 auto *Sext = B.CreateSExt(BO, Instr->getType(), Instr->getName() + ".sext");
783 if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
784 if (BinOp->getOpcode() == Instruction::SDiv)
785 BinOp->setIsExact(Instr->isExact());
786
787 Instr->replaceAllUsesWith(Sext);
788 Instr->eraseFromParent();
789 return true;
790 }
791
expandUDivOrURem(BinaryOperator * Instr,const ConstantRange & XCR,const ConstantRange & YCR)792 static bool expandUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR,
793 const ConstantRange &YCR) {
794 Type *Ty = Instr->getType();
795 assert(Instr->getOpcode() == Instruction::UDiv ||
796 Instr->getOpcode() == Instruction::URem);
797 bool IsRem = Instr->getOpcode() == Instruction::URem;
798
799 Value *X = Instr->getOperand(0);
800 Value *Y = Instr->getOperand(1);
801
802 // X u/ Y -> 0 iff X u< Y
803 // X u% Y -> X iff X u< Y
804 if (XCR.icmp(ICmpInst::ICMP_ULT, YCR)) {
805 Instr->replaceAllUsesWith(IsRem ? X : Constant::getNullValue(Ty));
806 Instr->eraseFromParent();
807 ++NumUDivURemsNarrowedExpanded;
808 return true;
809 }
810
811 // Given
812 // R = X u% Y
813 // We can represent the modulo operation as a loop/self-recursion:
814 // urem_rec(X, Y):
815 // Z = X - Y
816 // if X u< Y
817 // ret X
818 // else
819 // ret urem_rec(Z, Y)
820 // which isn't better, but if we only need a single iteration
821 // to compute the answer, this becomes quite good:
822 // R = X < Y ? X : X - Y iff X u< 2*Y (w/ unsigned saturation)
823 // Now, we do not care about all full multiples of Y in X, they do not change
824 // the answer, thus we could rewrite the expression as:
825 // X* = X - (Y * |_ X / Y _|)
826 // R = X* % Y
827 // so we don't need the *first* iteration to return, we just need to
828 // know *which* iteration will always return, so we could also rewrite it as:
829 // X* = X - (Y * |_ X / Y _|)
830 // R = X* % Y iff X* u< 2*Y (w/ unsigned saturation)
831 // but that does not seem profitable here.
832
833 // Even if we don't know X's range, the divisor may be so large, X can't ever
834 // be 2x larger than that. I.e. if divisor is always negative.
835 if (!XCR.icmp(ICmpInst::ICMP_ULT,
836 YCR.umul_sat(APInt(YCR.getBitWidth(), 2))) &&
837 !YCR.isAllNegative())
838 return false;
839
840 IRBuilder<> B(Instr);
841 Value *ExpandedOp;
842 if (XCR.icmp(ICmpInst::ICMP_UGE, YCR)) {
843 // If X is between Y and 2*Y the result is known.
844 if (IsRem)
845 ExpandedOp = B.CreateNUWSub(X, Y);
846 else
847 ExpandedOp = ConstantInt::get(Instr->getType(), 1);
848 } else if (IsRem) {
849 // NOTE: this transformation introduces two uses of X,
850 // but it may be undef so we must freeze it first.
851 Value *FrozenX = X;
852 if (!isGuaranteedNotToBeUndef(X))
853 FrozenX = B.CreateFreeze(X, X->getName() + ".frozen");
854 Value *FrozenY = Y;
855 if (!isGuaranteedNotToBeUndef(Y))
856 FrozenY = B.CreateFreeze(Y, Y->getName() + ".frozen");
857 auto *AdjX = B.CreateNUWSub(FrozenX, FrozenY, Instr->getName() + ".urem");
858 auto *Cmp = B.CreateICmp(ICmpInst::ICMP_ULT, FrozenX, FrozenY,
859 Instr->getName() + ".cmp");
860 ExpandedOp = B.CreateSelect(Cmp, FrozenX, AdjX);
861 } else {
862 auto *Cmp =
863 B.CreateICmp(ICmpInst::ICMP_UGE, X, Y, Instr->getName() + ".cmp");
864 ExpandedOp = B.CreateZExt(Cmp, Ty, Instr->getName() + ".udiv");
865 }
866 ExpandedOp->takeName(Instr);
867 Instr->replaceAllUsesWith(ExpandedOp);
868 Instr->eraseFromParent();
869 ++NumUDivURemsNarrowedExpanded;
870 return true;
871 }
872
873 /// Try to shrink a udiv/urem's width down to the smallest power of two that's
874 /// sufficient to contain its operands.
narrowUDivOrURem(BinaryOperator * Instr,const ConstantRange & XCR,const ConstantRange & YCR)875 static bool narrowUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR,
876 const ConstantRange &YCR) {
877 assert(Instr->getOpcode() == Instruction::UDiv ||
878 Instr->getOpcode() == Instruction::URem);
879
880 // Find the smallest power of two bitwidth that's sufficient to hold Instr's
881 // operands.
882
883 // What is the smallest bit width that can accommodate the entire value ranges
884 // of both of the operands?
885 unsigned MaxActiveBits = std::max(XCR.getActiveBits(), YCR.getActiveBits());
886 // Don't shrink below 8 bits wide.
887 unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MaxActiveBits), 8);
888
889 // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
890 // two.
891 if (NewWidth >= Instr->getType()->getScalarSizeInBits())
892 return false;
893
894 ++NumUDivURemsNarrowed;
895 IRBuilder<> B{Instr};
896 auto *TruncTy = Instr->getType()->getWithNewBitWidth(NewWidth);
897 auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
898 Instr->getName() + ".lhs.trunc");
899 auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
900 Instr->getName() + ".rhs.trunc");
901 auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
902 auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext");
903 if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
904 if (BinOp->getOpcode() == Instruction::UDiv)
905 BinOp->setIsExact(Instr->isExact());
906
907 Instr->replaceAllUsesWith(Zext);
908 Instr->eraseFromParent();
909 return true;
910 }
911
processUDivOrURem(BinaryOperator * Instr,LazyValueInfo * LVI)912 static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
913 assert(Instr->getOpcode() == Instruction::UDiv ||
914 Instr->getOpcode() == Instruction::URem);
915 ConstantRange XCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(0),
916 /*UndefAllowed*/ false);
917 // Allow undef for RHS, as we can assume it is division by zero UB.
918 ConstantRange YCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(1),
919 /*UndefAllowed*/ true);
920 if (expandUDivOrURem(Instr, XCR, YCR))
921 return true;
922
923 return narrowUDivOrURem(Instr, XCR, YCR);
924 }
925
processSRem(BinaryOperator * SDI,const ConstantRange & LCR,const ConstantRange & RCR,LazyValueInfo * LVI)926 static bool processSRem(BinaryOperator *SDI, const ConstantRange &LCR,
927 const ConstantRange &RCR, LazyValueInfo *LVI) {
928 assert(SDI->getOpcode() == Instruction::SRem);
929
930 if (LCR.abs().icmp(CmpInst::ICMP_ULT, RCR.abs())) {
931 SDI->replaceAllUsesWith(SDI->getOperand(0));
932 SDI->eraseFromParent();
933 return true;
934 }
935
936 struct Operand {
937 Value *V;
938 Domain D;
939 };
940 std::array<Operand, 2> Ops = {{{SDI->getOperand(0), getDomain(LCR)},
941 {SDI->getOperand(1), getDomain(RCR)}}};
942 if (Ops[0].D == Domain::Unknown || Ops[1].D == Domain::Unknown)
943 return false;
944
945 // We know domains of both of the operands!
946 ++NumSRems;
947
948 // We need operands to be non-negative, so negate each one that isn't.
949 for (Operand &Op : Ops) {
950 if (Op.D == Domain::NonNegative)
951 continue;
952 auto *BO = BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg",
953 SDI->getIterator());
954 BO->setDebugLoc(SDI->getDebugLoc());
955 Op.V = BO;
956 }
957
958 auto *URem = BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->getName(),
959 SDI->getIterator());
960 URem->setDebugLoc(SDI->getDebugLoc());
961
962 auto *Res = URem;
963
964 // If the divident was non-positive, we need to negate the result.
965 if (Ops[0].D == Domain::NonPositive) {
966 Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg",
967 SDI->getIterator());
968 Res->setDebugLoc(SDI->getDebugLoc());
969 }
970
971 SDI->replaceAllUsesWith(Res);
972 SDI->eraseFromParent();
973
974 // Try to simplify our new urem.
975 processUDivOrURem(URem, LVI);
976
977 return true;
978 }
979
980 /// See if LazyValueInfo's ability to exploit edge conditions or range
981 /// information is sufficient to prove the signs of both operands of this SDiv.
982 /// If this is the case, replace the SDiv with a UDiv. Even for local
983 /// conditions, this can sometimes prove conditions instcombine can't by
984 /// exploiting range information.
processSDiv(BinaryOperator * SDI,const ConstantRange & LCR,const ConstantRange & RCR,LazyValueInfo * LVI)985 static bool processSDiv(BinaryOperator *SDI, const ConstantRange &LCR,
986 const ConstantRange &RCR, LazyValueInfo *LVI) {
987 assert(SDI->getOpcode() == Instruction::SDiv);
988
989 // Check whether the division folds to a constant.
990 ConstantRange DivCR = LCR.sdiv(RCR);
991 if (const APInt *Elem = DivCR.getSingleElement()) {
992 SDI->replaceAllUsesWith(ConstantInt::get(SDI->getType(), *Elem));
993 SDI->eraseFromParent();
994 return true;
995 }
996
997 struct Operand {
998 Value *V;
999 Domain D;
1000 };
1001 std::array<Operand, 2> Ops = {{{SDI->getOperand(0), getDomain(LCR)},
1002 {SDI->getOperand(1), getDomain(RCR)}}};
1003 if (Ops[0].D == Domain::Unknown || Ops[1].D == Domain::Unknown)
1004 return false;
1005
1006 // We know domains of both of the operands!
1007 ++NumSDivs;
1008
1009 // We need operands to be non-negative, so negate each one that isn't.
1010 for (Operand &Op : Ops) {
1011 if (Op.D == Domain::NonNegative)
1012 continue;
1013 auto *BO = BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg",
1014 SDI->getIterator());
1015 BO->setDebugLoc(SDI->getDebugLoc());
1016 Op.V = BO;
1017 }
1018
1019 auto *UDiv = BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->getName(),
1020 SDI->getIterator());
1021 UDiv->setDebugLoc(SDI->getDebugLoc());
1022 UDiv->setIsExact(SDI->isExact());
1023
1024 auto *Res = UDiv;
1025
1026 // If the operands had two different domains, we need to negate the result.
1027 if (Ops[0].D != Ops[1].D) {
1028 Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg",
1029 SDI->getIterator());
1030 Res->setDebugLoc(SDI->getDebugLoc());
1031 }
1032
1033 SDI->replaceAllUsesWith(Res);
1034 SDI->eraseFromParent();
1035
1036 // Try to simplify our new udiv.
1037 processUDivOrURem(UDiv, LVI);
1038
1039 return true;
1040 }
1041
processSDivOrSRem(BinaryOperator * Instr,LazyValueInfo * LVI)1042 static bool processSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
1043 assert(Instr->getOpcode() == Instruction::SDiv ||
1044 Instr->getOpcode() == Instruction::SRem);
1045 ConstantRange LCR =
1046 LVI->getConstantRangeAtUse(Instr->getOperandUse(0), /*AllowUndef*/ false);
1047 // Allow undef for RHS, as we can assume it is division by zero UB.
1048 ConstantRange RCR =
1049 LVI->getConstantRangeAtUse(Instr->getOperandUse(1), /*AlloweUndef*/ true);
1050 if (Instr->getOpcode() == Instruction::SDiv)
1051 if (processSDiv(Instr, LCR, RCR, LVI))
1052 return true;
1053
1054 if (Instr->getOpcode() == Instruction::SRem) {
1055 if (processSRem(Instr, LCR, RCR, LVI))
1056 return true;
1057 }
1058
1059 return narrowSDivOrSRem(Instr, LCR, RCR);
1060 }
1061
processAShr(BinaryOperator * SDI,LazyValueInfo * LVI)1062 static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
1063 ConstantRange LRange =
1064 LVI->getConstantRangeAtUse(SDI->getOperandUse(0), /*UndefAllowed*/ false);
1065 unsigned OrigWidth = SDI->getType()->getScalarSizeInBits();
1066 ConstantRange NegOneOrZero =
1067 ConstantRange(APInt(OrigWidth, (uint64_t)-1, true), APInt(OrigWidth, 1));
1068 if (NegOneOrZero.contains(LRange)) {
1069 // ashr of -1 or 0 never changes the value, so drop the whole instruction
1070 ++NumAShrsRemoved;
1071 SDI->replaceAllUsesWith(SDI->getOperand(0));
1072 SDI->eraseFromParent();
1073 return true;
1074 }
1075
1076 if (!LRange.isAllNonNegative())
1077 return false;
1078
1079 ++NumAShrsConverted;
1080 auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1),
1081 "", SDI->getIterator());
1082 BO->takeName(SDI);
1083 BO->setDebugLoc(SDI->getDebugLoc());
1084 BO->setIsExact(SDI->isExact());
1085 SDI->replaceAllUsesWith(BO);
1086 SDI->eraseFromParent();
1087
1088 return true;
1089 }
1090
processSExt(SExtInst * SDI,LazyValueInfo * LVI)1091 static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) {
1092 const Use &Base = SDI->getOperandUse(0);
1093 if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
1094 .isAllNonNegative())
1095 return false;
1096
1097 ++NumSExt;
1098 auto *ZExt = CastInst::CreateZExtOrBitCast(Base, SDI->getType(), "",
1099 SDI->getIterator());
1100 ZExt->takeName(SDI);
1101 ZExt->setDebugLoc(SDI->getDebugLoc());
1102 ZExt->setNonNeg();
1103 SDI->replaceAllUsesWith(ZExt);
1104 SDI->eraseFromParent();
1105
1106 return true;
1107 }
1108
processPossibleNonNeg(PossiblyNonNegInst * I,LazyValueInfo * LVI)1109 static bool processPossibleNonNeg(PossiblyNonNegInst *I, LazyValueInfo *LVI) {
1110 if (I->hasNonNeg())
1111 return false;
1112
1113 const Use &Base = I->getOperandUse(0);
1114 if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
1115 .isAllNonNegative())
1116 return false;
1117
1118 ++NumNNeg;
1119 I->setNonNeg();
1120
1121 return true;
1122 }
1123
processZExt(ZExtInst * ZExt,LazyValueInfo * LVI)1124 static bool processZExt(ZExtInst *ZExt, LazyValueInfo *LVI) {
1125 return processPossibleNonNeg(cast<PossiblyNonNegInst>(ZExt), LVI);
1126 }
1127
processUIToFP(UIToFPInst * UIToFP,LazyValueInfo * LVI)1128 static bool processUIToFP(UIToFPInst *UIToFP, LazyValueInfo *LVI) {
1129 return processPossibleNonNeg(cast<PossiblyNonNegInst>(UIToFP), LVI);
1130 }
1131
processSIToFP(SIToFPInst * SIToFP,LazyValueInfo * LVI)1132 static bool processSIToFP(SIToFPInst *SIToFP, LazyValueInfo *LVI) {
1133 const Use &Base = SIToFP->getOperandUse(0);
1134 if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
1135 .isAllNonNegative())
1136 return false;
1137
1138 ++NumSIToFP;
1139 auto *UIToFP = CastInst::Create(Instruction::UIToFP, Base, SIToFP->getType(),
1140 "", SIToFP->getIterator());
1141 UIToFP->takeName(SIToFP);
1142 UIToFP->setDebugLoc(SIToFP->getDebugLoc());
1143 UIToFP->setNonNeg();
1144 SIToFP->replaceAllUsesWith(UIToFP);
1145 SIToFP->eraseFromParent();
1146
1147 return true;
1148 }
1149
processBinOp(BinaryOperator * BinOp,LazyValueInfo * LVI)1150 static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) {
1151 using OBO = OverflowingBinaryOperator;
1152
1153 bool NSW = BinOp->hasNoSignedWrap();
1154 bool NUW = BinOp->hasNoUnsignedWrap();
1155 if (NSW && NUW)
1156 return false;
1157
1158 Instruction::BinaryOps Opcode = BinOp->getOpcode();
1159 ConstantRange LRange = LVI->getConstantRangeAtUse(BinOp->getOperandUse(0),
1160 /*UndefAllowed=*/false);
1161 ConstantRange RRange = LVI->getConstantRangeAtUse(BinOp->getOperandUse(1),
1162 /*UndefAllowed=*/false);
1163
1164 bool Changed = false;
1165 bool NewNUW = false, NewNSW = false;
1166 if (!NUW) {
1167 ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
1168 Opcode, RRange, OBO::NoUnsignedWrap);
1169 NewNUW = NUWRange.contains(LRange);
1170 Changed |= NewNUW;
1171 }
1172 if (!NSW) {
1173 ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
1174 Opcode, RRange, OBO::NoSignedWrap);
1175 NewNSW = NSWRange.contains(LRange);
1176 Changed |= NewNSW;
1177 }
1178
1179 setDeducedOverflowingFlags(BinOp, Opcode, NewNSW, NewNUW);
1180
1181 return Changed;
1182 }
1183
processAnd(BinaryOperator * BinOp,LazyValueInfo * LVI)1184 static bool processAnd(BinaryOperator *BinOp, LazyValueInfo *LVI) {
1185 using namespace llvm::PatternMatch;
1186
1187 // Pattern match (and lhs, C) where C includes a superset of bits which might
1188 // be set in lhs. This is a common truncation idiom created by instcombine.
1189 const Use &LHS = BinOp->getOperandUse(0);
1190 const APInt *RHS;
1191 if (!match(BinOp->getOperand(1), m_LowBitMask(RHS)))
1192 return false;
1193
1194 // We can only replace the AND with LHS based on range info if the range does
1195 // not include undef.
1196 ConstantRange LRange =
1197 LVI->getConstantRangeAtUse(LHS, /*UndefAllowed=*/false);
1198 if (!LRange.getUnsignedMax().ule(*RHS))
1199 return false;
1200
1201 BinOp->replaceAllUsesWith(LHS);
1202 BinOp->eraseFromParent();
1203 NumAnd++;
1204 return true;
1205 }
1206
runImpl(Function & F,LazyValueInfo * LVI,DominatorTree * DT,const SimplifyQuery & SQ)1207 static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT,
1208 const SimplifyQuery &SQ) {
1209 bool FnChanged = false;
1210 // Visiting in a pre-order depth-first traversal causes us to simplify early
1211 // blocks before querying later blocks (which require us to analyze early
1212 // blocks). Eagerly simplifying shallow blocks means there is strictly less
1213 // work to do for deep blocks. This also means we don't visit unreachable
1214 // blocks.
1215 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1216 bool BBChanged = false;
1217 for (Instruction &II : llvm::make_early_inc_range(*BB)) {
1218 switch (II.getOpcode()) {
1219 case Instruction::Select:
1220 BBChanged |= processSelect(cast<SelectInst>(&II), LVI);
1221 break;
1222 case Instruction::PHI:
1223 BBChanged |= processPHI(cast<PHINode>(&II), LVI, DT, SQ);
1224 break;
1225 case Instruction::ICmp:
1226 case Instruction::FCmp:
1227 BBChanged |= processCmp(cast<CmpInst>(&II), LVI);
1228 break;
1229 case Instruction::Call:
1230 case Instruction::Invoke:
1231 BBChanged |= processCallSite(cast<CallBase>(II), LVI);
1232 break;
1233 case Instruction::SRem:
1234 case Instruction::SDiv:
1235 BBChanged |= processSDivOrSRem(cast<BinaryOperator>(&II), LVI);
1236 break;
1237 case Instruction::UDiv:
1238 case Instruction::URem:
1239 BBChanged |= processUDivOrURem(cast<BinaryOperator>(&II), LVI);
1240 break;
1241 case Instruction::AShr:
1242 BBChanged |= processAShr(cast<BinaryOperator>(&II), LVI);
1243 break;
1244 case Instruction::SExt:
1245 BBChanged |= processSExt(cast<SExtInst>(&II), LVI);
1246 break;
1247 case Instruction::ZExt:
1248 BBChanged |= processZExt(cast<ZExtInst>(&II), LVI);
1249 break;
1250 case Instruction::UIToFP:
1251 BBChanged |= processUIToFP(cast<UIToFPInst>(&II), LVI);
1252 break;
1253 case Instruction::SIToFP:
1254 BBChanged |= processSIToFP(cast<SIToFPInst>(&II), LVI);
1255 break;
1256 case Instruction::Add:
1257 case Instruction::Sub:
1258 case Instruction::Mul:
1259 case Instruction::Shl:
1260 BBChanged |= processBinOp(cast<BinaryOperator>(&II), LVI);
1261 break;
1262 case Instruction::And:
1263 BBChanged |= processAnd(cast<BinaryOperator>(&II), LVI);
1264 break;
1265 }
1266 }
1267
1268 Instruction *Term = BB->getTerminator();
1269 switch (Term->getOpcode()) {
1270 case Instruction::Switch:
1271 BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT);
1272 break;
1273 case Instruction::Ret: {
1274 auto *RI = cast<ReturnInst>(Term);
1275 // Try to determine the return value if we can. This is mainly here to
1276 // simplify the writing of unit tests, but also helps to enable IPO by
1277 // constant folding the return values of callees.
1278 auto *RetVal = RI->getReturnValue();
1279 if (!RetVal) break; // handle "ret void"
1280 if (isa<Constant>(RetVal)) break; // nothing to do
1281 if (auto *C = getConstantAt(RetVal, RI, LVI)) {
1282 ++NumReturns;
1283 RI->replaceUsesOfWith(RetVal, C);
1284 BBChanged = true;
1285 }
1286 }
1287 }
1288
1289 FnChanged |= BBChanged;
1290 }
1291
1292 return FnChanged;
1293 }
1294
1295 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)1296 CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) {
1297 LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
1298 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1299
1300 bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F));
1301
1302 PreservedAnalyses PA;
1303 if (!Changed) {
1304 PA = PreservedAnalyses::all();
1305 } else {
1306 #if defined(EXPENSIVE_CHECKS)
1307 assert(DT->verify(DominatorTree::VerificationLevel::Full));
1308 #else
1309 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
1310 #endif // EXPENSIVE_CHECKS
1311
1312 PA.preserve<DominatorTreeAnalysis>();
1313 PA.preserve<LazyValueAnalysis>();
1314 }
1315
1316 // Keeping LVI alive is expensive, both because it uses a lot of memory, and
1317 // because invalidating values in LVI is expensive. While CVP does preserve
1318 // LVI, we know that passes after JumpThreading+CVP will not need the result
1319 // of this analysis, so we forcefully discard it early.
1320 PA.abandon<LazyValueAnalysis>();
1321 return PA;
1322 }
1323