xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Correlated Value Propagation pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
14 #include "llvm/ADT/DepthFirstIterator.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/PatternMatch.h"
37 #include "llvm/IR/PassManager.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include <cassert>
44 #include <optional>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "correlated-value-propagation"
50 
51 STATISTIC(NumPhis,      "Number of phis propagated");
52 STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value");
53 STATISTIC(NumSelects,   "Number of selects propagated");
54 STATISTIC(NumCmps,      "Number of comparisons propagated");
55 STATISTIC(NumReturns,   "Number of return values propagated");
56 STATISTIC(NumDeadCases, "Number of switch cases removed");
57 STATISTIC(NumSDivSRemsNarrowed,
58           "Number of sdivs/srems whose width was decreased");
59 STATISTIC(NumSDivs,     "Number of sdiv converted to udiv");
60 STATISTIC(NumUDivURemsNarrowed,
61           "Number of udivs/urems whose width was decreased");
62 STATISTIC(NumAShrsConverted, "Number of ashr converted to lshr");
63 STATISTIC(NumAShrsRemoved, "Number of ashr removed");
64 STATISTIC(NumSRems,     "Number of srem converted to urem");
65 STATISTIC(NumSExt,      "Number of sext converted to zext");
66 STATISTIC(NumSIToFP,    "Number of sitofp converted to uitofp");
67 STATISTIC(NumSICmps,    "Number of signed icmp preds simplified to unsigned");
68 STATISTIC(NumAnd,       "Number of ands removed");
69 STATISTIC(NumNW,        "Number of no-wrap deductions");
70 STATISTIC(NumNSW,       "Number of no-signed-wrap deductions");
71 STATISTIC(NumNUW,       "Number of no-unsigned-wrap deductions");
72 STATISTIC(NumAddNW,     "Number of no-wrap deductions for add");
73 STATISTIC(NumAddNSW,    "Number of no-signed-wrap deductions for add");
74 STATISTIC(NumAddNUW,    "Number of no-unsigned-wrap deductions for add");
75 STATISTIC(NumSubNW,     "Number of no-wrap deductions for sub");
76 STATISTIC(NumSubNSW,    "Number of no-signed-wrap deductions for sub");
77 STATISTIC(NumSubNUW,    "Number of no-unsigned-wrap deductions for sub");
78 STATISTIC(NumMulNW,     "Number of no-wrap deductions for mul");
79 STATISTIC(NumMulNSW,    "Number of no-signed-wrap deductions for mul");
80 STATISTIC(NumMulNUW,    "Number of no-unsigned-wrap deductions for mul");
81 STATISTIC(NumShlNW,     "Number of no-wrap deductions for shl");
82 STATISTIC(NumShlNSW,    "Number of no-signed-wrap deductions for shl");
83 STATISTIC(NumShlNUW,    "Number of no-unsigned-wrap deductions for shl");
84 STATISTIC(NumAbs,       "Number of llvm.abs intrinsics removed");
85 STATISTIC(NumOverflows, "Number of overflow checks removed");
86 STATISTIC(NumSaturating,
87     "Number of saturating arithmetics converted to normal arithmetics");
88 STATISTIC(NumNonNull, "Number of function pointer arguments marked non-null");
89 STATISTIC(NumCmpIntr, "Number of llvm.[us]cmp intrinsics removed");
90 STATISTIC(NumMinMax, "Number of llvm.[us]{min,max} intrinsics removed");
91 STATISTIC(NumSMinMax,
92           "Number of llvm.s{min,max} intrinsics simplified to unsigned");
93 STATISTIC(NumUDivURemsNarrowedExpanded,
94           "Number of bound udiv's/urem's expanded");
95 STATISTIC(NumNNeg, "Number of zext/uitofp non-negative deductions");
96 
getConstantAt(Value * V,Instruction * At,LazyValueInfo * LVI)97 static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) {
98   if (Constant *C = LVI->getConstant(V, At))
99     return C;
100 
101   // TODO: The following really should be sunk inside LVI's core algorithm, or
102   // at least the outer shims around such.
103   auto *C = dyn_cast<CmpInst>(V);
104   if (!C)
105     return nullptr;
106 
107   Value *Op0 = C->getOperand(0);
108   Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
109   if (!Op1)
110     return nullptr;
111 
112   return LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At,
113                              /*UseBlockValue=*/false);
114 }
115 
processSelect(SelectInst * S,LazyValueInfo * LVI)116 static bool processSelect(SelectInst *S, LazyValueInfo *LVI) {
117   if (S->getType()->isVectorTy() || isa<Constant>(S->getCondition()))
118     return false;
119 
120   bool Changed = false;
121   for (Use &U : make_early_inc_range(S->uses())) {
122     auto *I = cast<Instruction>(U.getUser());
123     Constant *C;
124     if (auto *PN = dyn_cast<PHINode>(I))
125       C = LVI->getConstantOnEdge(S->getCondition(), PN->getIncomingBlock(U),
126                                  I->getParent(), I);
127     else
128       C = getConstantAt(S->getCondition(), I, LVI);
129 
130     auto *CI = dyn_cast_or_null<ConstantInt>(C);
131     if (!CI)
132       continue;
133 
134     U.set(CI->isOne() ? S->getTrueValue() : S->getFalseValue());
135     Changed = true;
136     ++NumSelects;
137   }
138 
139   if (Changed && S->use_empty())
140     S->eraseFromParent();
141 
142   return Changed;
143 }
144 
145 /// Try to simplify a phi with constant incoming values that match the edge
146 /// values of a non-constant value on all other edges:
147 /// bb0:
148 ///   %isnull = icmp eq i8* %x, null
149 ///   br i1 %isnull, label %bb2, label %bb1
150 /// bb1:
151 ///   br label %bb2
152 /// bb2:
153 ///   %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ]
154 /// -->
155 ///   %r = %x
simplifyCommonValuePhi(PHINode * P,LazyValueInfo * LVI,DominatorTree * DT)156 static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI,
157                                    DominatorTree *DT) {
158   // Collect incoming constants and initialize possible common value.
159   SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants;
160   Value *CommonValue = nullptr;
161   for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
162     Value *Incoming = P->getIncomingValue(i);
163     if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
164       IncomingConstants.push_back(std::make_pair(IncomingConstant, i));
165     } else if (!CommonValue) {
166       // The potential common value is initialized to the first non-constant.
167       CommonValue = Incoming;
168     } else if (Incoming != CommonValue) {
169       // There can be only one non-constant common value.
170       return false;
171     }
172   }
173 
174   if (!CommonValue || IncomingConstants.empty())
175     return false;
176 
177   // The common value must be valid in all incoming blocks.
178   BasicBlock *ToBB = P->getParent();
179   if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
180     if (!DT->dominates(CommonInst, ToBB))
181       return false;
182 
183   // We have a phi with exactly 1 variable incoming value and 1 or more constant
184   // incoming values. See if all constant incoming values can be mapped back to
185   // the same incoming variable value.
186   for (auto &IncomingConstant : IncomingConstants) {
187     Constant *C = IncomingConstant.first;
188     BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second);
189     if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P))
190       return false;
191   }
192 
193   // LVI only guarantees that the value matches a certain constant if the value
194   // is not poison. Make sure we don't replace a well-defined value with poison.
195   // This is usually satisfied due to a prior branch on the value.
196   if (!isGuaranteedNotToBePoison(CommonValue, nullptr, P, DT))
197     return false;
198 
199   // All constant incoming values map to the same variable along the incoming
200   // edges of the phi. The phi is unnecessary.
201   P->replaceAllUsesWith(CommonValue);
202   P->eraseFromParent();
203   ++NumPhiCommon;
204   return true;
205 }
206 
getValueOnEdge(LazyValueInfo * LVI,Value * Incoming,BasicBlock * From,BasicBlock * To,Instruction * CxtI)207 static Value *getValueOnEdge(LazyValueInfo *LVI, Value *Incoming,
208                              BasicBlock *From, BasicBlock *To,
209                              Instruction *CxtI) {
210   if (Constant *C = LVI->getConstantOnEdge(Incoming, From, To, CxtI))
211     return C;
212 
213   // Look if the incoming value is a select with a scalar condition for which
214   // LVI can tells us the value. In that case replace the incoming value with
215   // the appropriate value of the select. This often allows us to remove the
216   // select later.
217   auto *SI = dyn_cast<SelectInst>(Incoming);
218   if (!SI)
219     return nullptr;
220 
221   // Once LVI learns to handle vector types, we could also add support
222   // for vector type constants that are not all zeroes or all ones.
223   Value *Condition = SI->getCondition();
224   if (!Condition->getType()->isVectorTy()) {
225     if (Constant *C = LVI->getConstantOnEdge(Condition, From, To, CxtI)) {
226       if (C->isOneValue())
227         return SI->getTrueValue();
228       if (C->isZeroValue())
229         return SI->getFalseValue();
230     }
231   }
232 
233   // Look if the select has a constant but LVI tells us that the incoming
234   // value can never be that constant. In that case replace the incoming
235   // value with the other value of the select. This often allows us to
236   // remove the select later.
237 
238   // The "false" case
239   if (auto *C = dyn_cast<Constant>(SI->getFalseValue()))
240     if (auto *Res = dyn_cast_or_null<ConstantInt>(
241             LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, From, To, CxtI));
242         Res && Res->isZero())
243       return SI->getTrueValue();
244 
245   // The "true" case,
246   // similar to the select "false" case, but try the select "true" value
247   if (auto *C = dyn_cast<Constant>(SI->getTrueValue()))
248     if (auto *Res = dyn_cast_or_null<ConstantInt>(
249             LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, From, To, CxtI));
250         Res && Res->isZero())
251       return SI->getFalseValue();
252 
253   return nullptr;
254 }
255 
processPHI(PHINode * P,LazyValueInfo * LVI,DominatorTree * DT,const SimplifyQuery & SQ)256 static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT,
257                        const SimplifyQuery &SQ) {
258   bool Changed = false;
259 
260   BasicBlock *BB = P->getParent();
261   for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
262     Value *Incoming = P->getIncomingValue(i);
263     if (isa<Constant>(Incoming)) continue;
264 
265     Value *V = getValueOnEdge(LVI, Incoming, P->getIncomingBlock(i), BB, P);
266     if (V) {
267       P->setIncomingValue(i, V);
268       Changed = true;
269     }
270   }
271 
272   if (Value *V = simplifyInstruction(P, SQ)) {
273     P->replaceAllUsesWith(V);
274     P->eraseFromParent();
275     Changed = true;
276   }
277 
278   if (!Changed)
279     Changed = simplifyCommonValuePhi(P, LVI, DT);
280 
281   if (Changed)
282     ++NumPhis;
283 
284   return Changed;
285 }
286 
processICmp(ICmpInst * Cmp,LazyValueInfo * LVI)287 static bool processICmp(ICmpInst *Cmp, LazyValueInfo *LVI) {
288   // Only for signed relational comparisons of integers.
289   if (!Cmp->getOperand(0)->getType()->isIntOrIntVectorTy())
290     return false;
291 
292   if (!Cmp->isSigned())
293     return false;
294 
295   ICmpInst::Predicate UnsignedPred =
296       ConstantRange::getEquivalentPredWithFlippedSignedness(
297           Cmp->getPredicate(),
298           LVI->getConstantRangeAtUse(Cmp->getOperandUse(0),
299                                      /*UndefAllowed*/ true),
300           LVI->getConstantRangeAtUse(Cmp->getOperandUse(1),
301                                      /*UndefAllowed*/ true));
302 
303   if (UnsignedPred == ICmpInst::Predicate::BAD_ICMP_PREDICATE)
304     return false;
305 
306   ++NumSICmps;
307   Cmp->setPredicate(UnsignedPred);
308 
309   return true;
310 }
311 
312 /// See if LazyValueInfo's ability to exploit edge conditions or range
313 /// information is sufficient to prove this comparison. Even for local
314 /// conditions, this can sometimes prove conditions instcombine can't by
315 /// exploiting range information.
constantFoldCmp(CmpInst * Cmp,LazyValueInfo * LVI)316 static bool constantFoldCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
317   Value *Op0 = Cmp->getOperand(0);
318   Value *Op1 = Cmp->getOperand(1);
319   Constant *Res = LVI->getPredicateAt(Cmp->getPredicate(), Op0, Op1, Cmp,
320                                       /*UseBlockValue=*/true);
321   if (!Res)
322     return false;
323 
324   ++NumCmps;
325   Cmp->replaceAllUsesWith(Res);
326   Cmp->eraseFromParent();
327   return true;
328 }
329 
processCmp(CmpInst * Cmp,LazyValueInfo * LVI)330 static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
331   if (constantFoldCmp(Cmp, LVI))
332     return true;
333 
334   if (auto *ICmp = dyn_cast<ICmpInst>(Cmp))
335     if (processICmp(ICmp, LVI))
336       return true;
337 
338   return false;
339 }
340 
341 /// Simplify a switch instruction by removing cases which can never fire. If the
342 /// uselessness of a case could be determined locally then constant propagation
343 /// would already have figured it out. Instead, walk the predecessors and
344 /// statically evaluate cases based on information available on that edge. Cases
345 /// that cannot fire no matter what the incoming edge can safely be removed. If
346 /// a case fires on every incoming edge then the entire switch can be removed
347 /// and replaced with a branch to the case destination.
processSwitch(SwitchInst * I,LazyValueInfo * LVI,DominatorTree * DT)348 static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI,
349                           DominatorTree *DT) {
350   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
351   Value *Cond = I->getCondition();
352   BasicBlock *BB = I->getParent();
353 
354   // Analyse each switch case in turn.
355   bool Changed = false;
356   DenseMap<BasicBlock*, int> SuccessorsCount;
357   for (auto *Succ : successors(BB))
358     SuccessorsCount[Succ]++;
359 
360   { // Scope for SwitchInstProfUpdateWrapper. It must not live during
361     // ConstantFoldTerminator() as the underlying SwitchInst can be changed.
362     SwitchInstProfUpdateWrapper SI(*I);
363     unsigned ReachableCaseCount = 0;
364 
365     for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
366       ConstantInt *Case = CI->getCaseValue();
367       auto *Res = dyn_cast_or_null<ConstantInt>(
368           LVI->getPredicateAt(CmpInst::ICMP_EQ, Cond, Case, I,
369                               /* UseBlockValue */ true));
370 
371       if (Res && Res->isZero()) {
372         // This case never fires - remove it.
373         BasicBlock *Succ = CI->getCaseSuccessor();
374         Succ->removePredecessor(BB);
375         CI = SI.removeCase(CI);
376         CE = SI->case_end();
377 
378         // The condition can be modified by removePredecessor's PHI simplification
379         // logic.
380         Cond = SI->getCondition();
381 
382         ++NumDeadCases;
383         Changed = true;
384         if (--SuccessorsCount[Succ] == 0)
385           DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}});
386         continue;
387       }
388       if (Res && Res->isOne()) {
389         // This case always fires.  Arrange for the switch to be turned into an
390         // unconditional branch by replacing the switch condition with the case
391         // value.
392         SI->setCondition(Case);
393         NumDeadCases += SI->getNumCases();
394         Changed = true;
395         break;
396       }
397 
398       // Increment the case iterator since we didn't delete it.
399       ++CI;
400       ++ReachableCaseCount;
401     }
402 
403     BasicBlock *DefaultDest = SI->getDefaultDest();
404     if (ReachableCaseCount > 1 &&
405         !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())) {
406       ConstantRange CR = LVI->getConstantRangeAtUse(I->getOperandUse(0),
407                                                     /*UndefAllowed*/ false);
408       // The default dest is unreachable if all cases are covered.
409       if (!CR.isSizeLargerThan(ReachableCaseCount)) {
410         BasicBlock *NewUnreachableBB =
411             BasicBlock::Create(BB->getContext(), "default.unreachable",
412                                BB->getParent(), DefaultDest);
413         new UnreachableInst(BB->getContext(), NewUnreachableBB);
414 
415         DefaultDest->removePredecessor(BB);
416         SI->setDefaultDest(NewUnreachableBB);
417 
418         if (SuccessorsCount[DefaultDest] == 1)
419           DTU.applyUpdates({{DominatorTree::Delete, BB, DefaultDest}});
420         DTU.applyUpdates({{DominatorTree::Insert, BB, NewUnreachableBB}});
421 
422         ++NumDeadCases;
423         Changed = true;
424       }
425     }
426   }
427 
428   if (Changed)
429     // If the switch has been simplified to the point where it can be replaced
430     // by a branch then do so now.
431     ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false,
432                            /*TLI = */ nullptr, &DTU);
433   return Changed;
434 }
435 
436 // See if we can prove that the given binary op intrinsic will not overflow.
willNotOverflow(BinaryOpIntrinsic * BO,LazyValueInfo * LVI)437 static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) {
438   ConstantRange LRange =
439       LVI->getConstantRangeAtUse(BO->getOperandUse(0), /*UndefAllowed*/ false);
440   ConstantRange RRange =
441       LVI->getConstantRangeAtUse(BO->getOperandUse(1), /*UndefAllowed*/ false);
442   ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
443       BO->getBinaryOp(), RRange, BO->getNoWrapKind());
444   return NWRegion.contains(LRange);
445 }
446 
setDeducedOverflowingFlags(Value * V,Instruction::BinaryOps Opcode,bool NewNSW,bool NewNUW)447 static void setDeducedOverflowingFlags(Value *V, Instruction::BinaryOps Opcode,
448                                        bool NewNSW, bool NewNUW) {
449   Statistic *OpcNW, *OpcNSW, *OpcNUW;
450   switch (Opcode) {
451   case Instruction::Add:
452     OpcNW = &NumAddNW;
453     OpcNSW = &NumAddNSW;
454     OpcNUW = &NumAddNUW;
455     break;
456   case Instruction::Sub:
457     OpcNW = &NumSubNW;
458     OpcNSW = &NumSubNSW;
459     OpcNUW = &NumSubNUW;
460     break;
461   case Instruction::Mul:
462     OpcNW = &NumMulNW;
463     OpcNSW = &NumMulNSW;
464     OpcNUW = &NumMulNUW;
465     break;
466   case Instruction::Shl:
467     OpcNW = &NumShlNW;
468     OpcNSW = &NumShlNSW;
469     OpcNUW = &NumShlNUW;
470     break;
471   default:
472     llvm_unreachable("Will not be called with other binops");
473   }
474 
475   auto *Inst = dyn_cast<Instruction>(V);
476   if (NewNSW) {
477     ++NumNW;
478     ++*OpcNW;
479     ++NumNSW;
480     ++*OpcNSW;
481     if (Inst)
482       Inst->setHasNoSignedWrap();
483   }
484   if (NewNUW) {
485     ++NumNW;
486     ++*OpcNW;
487     ++NumNUW;
488     ++*OpcNUW;
489     if (Inst)
490       Inst->setHasNoUnsignedWrap();
491   }
492 }
493 
494 static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI);
495 
496 // See if @llvm.abs argument is alays positive/negative, and simplify.
497 // Notably, INT_MIN can belong to either range, regardless of the NSW,
498 // because it is negation-invariant.
processAbsIntrinsic(IntrinsicInst * II,LazyValueInfo * LVI)499 static bool processAbsIntrinsic(IntrinsicInst *II, LazyValueInfo *LVI) {
500   Value *X = II->getArgOperand(0);
501   bool IsIntMinPoison = cast<ConstantInt>(II->getArgOperand(1))->isOne();
502   APInt IntMin = APInt::getSignedMinValue(X->getType()->getScalarSizeInBits());
503   ConstantRange Range = LVI->getConstantRangeAtUse(
504       II->getOperandUse(0), /*UndefAllowed*/ IsIntMinPoison);
505 
506   // Is X in [0, IntMin]?  NOTE: INT_MIN is fine!
507   if (Range.icmp(CmpInst::ICMP_ULE, IntMin)) {
508     ++NumAbs;
509     II->replaceAllUsesWith(X);
510     II->eraseFromParent();
511     return true;
512   }
513 
514   // Is X in [IntMin, 0]?  NOTE: INT_MIN is fine!
515   if (Range.getSignedMax().isNonPositive()) {
516     IRBuilder<> B(II);
517     Value *NegX = B.CreateNeg(X, II->getName(),
518                               /*HasNSW=*/IsIntMinPoison);
519     ++NumAbs;
520     II->replaceAllUsesWith(NegX);
521     II->eraseFromParent();
522 
523     // See if we can infer some no-wrap flags.
524     if (auto *BO = dyn_cast<BinaryOperator>(NegX))
525       processBinOp(BO, LVI);
526 
527     return true;
528   }
529 
530   // Argument's range crosses zero.
531   // Can we at least tell that the argument is never INT_MIN?
532   if (!IsIntMinPoison && !Range.contains(IntMin)) {
533     ++NumNSW;
534     ++NumSubNSW;
535     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
536     return true;
537   }
538   return false;
539 }
540 
processCmpIntrinsic(CmpIntrinsic * CI,LazyValueInfo * LVI)541 static bool processCmpIntrinsic(CmpIntrinsic *CI, LazyValueInfo *LVI) {
542   ConstantRange LHS_CR =
543       LVI->getConstantRangeAtUse(CI->getOperandUse(0), /*UndefAllowed*/ false);
544   ConstantRange RHS_CR =
545       LVI->getConstantRangeAtUse(CI->getOperandUse(1), /*UndefAllowed*/ false);
546 
547   if (LHS_CR.icmp(CI->getGTPredicate(), RHS_CR)) {
548     ++NumCmpIntr;
549     CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
550     CI->eraseFromParent();
551     return true;
552   }
553   if (LHS_CR.icmp(CI->getLTPredicate(), RHS_CR)) {
554     ++NumCmpIntr;
555     CI->replaceAllUsesWith(ConstantInt::getSigned(CI->getType(), -1));
556     CI->eraseFromParent();
557     return true;
558   }
559   if (LHS_CR.icmp(ICmpInst::ICMP_EQ, RHS_CR)) {
560     ++NumCmpIntr;
561     CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 0));
562     CI->eraseFromParent();
563     return true;
564   }
565 
566   return false;
567 }
568 
569 // See if this min/max intrinsic always picks it's one specific operand.
570 // If not, check whether we can canonicalize signed minmax into unsigned version
processMinMaxIntrinsic(MinMaxIntrinsic * MM,LazyValueInfo * LVI)571 static bool processMinMaxIntrinsic(MinMaxIntrinsic *MM, LazyValueInfo *LVI) {
572   CmpInst::Predicate Pred = CmpInst::getNonStrictPredicate(MM->getPredicate());
573   ConstantRange LHS_CR = LVI->getConstantRangeAtUse(MM->getOperandUse(0),
574                                                     /*UndefAllowed*/ false);
575   ConstantRange RHS_CR = LVI->getConstantRangeAtUse(MM->getOperandUse(1),
576                                                     /*UndefAllowed*/ false);
577   if (LHS_CR.icmp(Pred, RHS_CR)) {
578     ++NumMinMax;
579     MM->replaceAllUsesWith(MM->getLHS());
580     MM->eraseFromParent();
581     return true;
582   }
583   if (RHS_CR.icmp(Pred, LHS_CR)) {
584     ++NumMinMax;
585     MM->replaceAllUsesWith(MM->getRHS());
586     MM->eraseFromParent();
587     return true;
588   }
589 
590   if (MM->isSigned() &&
591       ConstantRange::areInsensitiveToSignednessOfICmpPredicate(LHS_CR,
592                                                                RHS_CR)) {
593     ++NumSMinMax;
594     IRBuilder<> B(MM);
595     MM->replaceAllUsesWith(B.CreateBinaryIntrinsic(
596         MM->getIntrinsicID() == Intrinsic::smin ? Intrinsic::umin
597                                                 : Intrinsic::umax,
598         MM->getLHS(), MM->getRHS()));
599     MM->eraseFromParent();
600     return true;
601   }
602 
603   return false;
604 }
605 
606 // Rewrite this with.overflow intrinsic as non-overflowing.
processOverflowIntrinsic(WithOverflowInst * WO,LazyValueInfo * LVI)607 static bool processOverflowIntrinsic(WithOverflowInst *WO, LazyValueInfo *LVI) {
608   IRBuilder<> B(WO);
609   Instruction::BinaryOps Opcode = WO->getBinaryOp();
610   bool NSW = WO->isSigned();
611   bool NUW = !WO->isSigned();
612 
613   Value *NewOp =
614       B.CreateBinOp(Opcode, WO->getLHS(), WO->getRHS(), WO->getName());
615   setDeducedOverflowingFlags(NewOp, Opcode, NSW, NUW);
616 
617   StructType *ST = cast<StructType>(WO->getType());
618   Constant *Struct = ConstantStruct::get(ST,
619       { PoisonValue::get(ST->getElementType(0)),
620         ConstantInt::getFalse(ST->getElementType(1)) });
621   Value *NewI = B.CreateInsertValue(Struct, NewOp, 0);
622   WO->replaceAllUsesWith(NewI);
623   WO->eraseFromParent();
624   ++NumOverflows;
625 
626   // See if we can infer the other no-wrap too.
627   if (auto *BO = dyn_cast<BinaryOperator>(NewOp))
628     processBinOp(BO, LVI);
629 
630   return true;
631 }
632 
processSaturatingInst(SaturatingInst * SI,LazyValueInfo * LVI)633 static bool processSaturatingInst(SaturatingInst *SI, LazyValueInfo *LVI) {
634   Instruction::BinaryOps Opcode = SI->getBinaryOp();
635   bool NSW = SI->isSigned();
636   bool NUW = !SI->isSigned();
637   BinaryOperator *BinOp = BinaryOperator::Create(
638       Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI->getIterator());
639   BinOp->setDebugLoc(SI->getDebugLoc());
640   setDeducedOverflowingFlags(BinOp, Opcode, NSW, NUW);
641 
642   SI->replaceAllUsesWith(BinOp);
643   SI->eraseFromParent();
644   ++NumSaturating;
645 
646   // See if we can infer the other no-wrap too.
647   if (auto *BO = dyn_cast<BinaryOperator>(BinOp))
648     processBinOp(BO, LVI);
649 
650   return true;
651 }
652 
653 /// Infer nonnull attributes for the arguments at the specified callsite.
processCallSite(CallBase & CB,LazyValueInfo * LVI)654 static bool processCallSite(CallBase &CB, LazyValueInfo *LVI) {
655 
656   if (CB.getIntrinsicID() == Intrinsic::abs) {
657     return processAbsIntrinsic(&cast<IntrinsicInst>(CB), LVI);
658   }
659 
660   if (auto *CI = dyn_cast<CmpIntrinsic>(&CB)) {
661     return processCmpIntrinsic(CI, LVI);
662   }
663 
664   if (auto *MM = dyn_cast<MinMaxIntrinsic>(&CB)) {
665     return processMinMaxIntrinsic(MM, LVI);
666   }
667 
668   if (auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
669     if (willNotOverflow(WO, LVI))
670       return processOverflowIntrinsic(WO, LVI);
671   }
672 
673   if (auto *SI = dyn_cast<SaturatingInst>(&CB)) {
674     if (willNotOverflow(SI, LVI))
675       return processSaturatingInst(SI, LVI);
676   }
677 
678   bool Changed = false;
679 
680   // Deopt bundle operands are intended to capture state with minimal
681   // perturbance of the code otherwise.  If we can find a constant value for
682   // any such operand and remove a use of the original value, that's
683   // desireable since it may allow further optimization of that value (e.g. via
684   // single use rules in instcombine).  Since deopt uses tend to,
685   // idiomatically, appear along rare conditional paths, it's reasonable likely
686   // we may have a conditional fact with which LVI can fold.
687   if (auto DeoptBundle = CB.getOperandBundle(LLVMContext::OB_deopt)) {
688     for (const Use &ConstU : DeoptBundle->Inputs) {
689       Use &U = const_cast<Use&>(ConstU);
690       Value *V = U.get();
691       if (V->getType()->isVectorTy()) continue;
692       if (isa<Constant>(V)) continue;
693 
694       Constant *C = LVI->getConstant(V, &CB);
695       if (!C) continue;
696       U.set(C);
697       Changed = true;
698     }
699   }
700 
701   SmallVector<unsigned, 4> ArgNos;
702   unsigned ArgNo = 0;
703 
704   for (Value *V : CB.args()) {
705     PointerType *Type = dyn_cast<PointerType>(V->getType());
706     // Try to mark pointer typed parameters as non-null.  We skip the
707     // relatively expensive analysis for constants which are obviously either
708     // null or non-null to start with.
709     if (Type && !CB.paramHasAttr(ArgNo, Attribute::NonNull) &&
710         !isa<Constant>(V))
711       if (auto *Res = dyn_cast_or_null<ConstantInt>(LVI->getPredicateAt(
712               ICmpInst::ICMP_EQ, V, ConstantPointerNull::get(Type), &CB,
713               /*UseBlockValue=*/false));
714           Res && Res->isZero())
715         ArgNos.push_back(ArgNo);
716     ArgNo++;
717   }
718 
719   assert(ArgNo == CB.arg_size() && "Call arguments not processed correctly.");
720 
721   if (ArgNos.empty())
722     return Changed;
723 
724   NumNonNull += ArgNos.size();
725   AttributeList AS = CB.getAttributes();
726   LLVMContext &Ctx = CB.getContext();
727   AS = AS.addParamAttribute(Ctx, ArgNos,
728                             Attribute::get(Ctx, Attribute::NonNull));
729   CB.setAttributes(AS);
730 
731   return true;
732 }
733 
734 enum class Domain { NonNegative, NonPositive, Unknown };
735 
getDomain(const ConstantRange & CR)736 static Domain getDomain(const ConstantRange &CR) {
737   if (CR.isAllNonNegative())
738     return Domain::NonNegative;
739   if (CR.icmp(ICmpInst::ICMP_SLE, APInt::getZero(CR.getBitWidth())))
740     return Domain::NonPositive;
741   return Domain::Unknown;
742 }
743 
744 /// Try to shrink a sdiv/srem's width down to the smallest power of two that's
745 /// sufficient to contain its operands.
narrowSDivOrSRem(BinaryOperator * Instr,const ConstantRange & LCR,const ConstantRange & RCR)746 static bool narrowSDivOrSRem(BinaryOperator *Instr, const ConstantRange &LCR,
747                              const ConstantRange &RCR) {
748   assert(Instr->getOpcode() == Instruction::SDiv ||
749          Instr->getOpcode() == Instruction::SRem);
750 
751   // Find the smallest power of two bitwidth that's sufficient to hold Instr's
752   // operands.
753   unsigned OrigWidth = Instr->getType()->getScalarSizeInBits();
754 
755   // What is the smallest bit width that can accommodate the entire value ranges
756   // of both of the operands?
757   unsigned MinSignedBits =
758       std::max(LCR.getMinSignedBits(), RCR.getMinSignedBits());
759 
760   // sdiv/srem is UB if divisor is -1 and divident is INT_MIN, so unless we can
761   // prove that such a combination is impossible, we need to bump the bitwidth.
762   if (RCR.contains(APInt::getAllOnes(OrigWidth)) &&
763       LCR.contains(APInt::getSignedMinValue(MinSignedBits).sext(OrigWidth)))
764     ++MinSignedBits;
765 
766   // Don't shrink below 8 bits wide.
767   unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MinSignedBits), 8);
768 
769   // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
770   // two.
771   if (NewWidth >= OrigWidth)
772     return false;
773 
774   ++NumSDivSRemsNarrowed;
775   IRBuilder<> B{Instr};
776   auto *TruncTy = Instr->getType()->getWithNewBitWidth(NewWidth);
777   auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
778                                      Instr->getName() + ".lhs.trunc");
779   auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
780                                      Instr->getName() + ".rhs.trunc");
781   auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
782   auto *Sext = B.CreateSExt(BO, Instr->getType(), Instr->getName() + ".sext");
783   if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
784     if (BinOp->getOpcode() == Instruction::SDiv)
785       BinOp->setIsExact(Instr->isExact());
786 
787   Instr->replaceAllUsesWith(Sext);
788   Instr->eraseFromParent();
789   return true;
790 }
791 
expandUDivOrURem(BinaryOperator * Instr,const ConstantRange & XCR,const ConstantRange & YCR)792 static bool expandUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR,
793                              const ConstantRange &YCR) {
794   Type *Ty = Instr->getType();
795   assert(Instr->getOpcode() == Instruction::UDiv ||
796          Instr->getOpcode() == Instruction::URem);
797   bool IsRem = Instr->getOpcode() == Instruction::URem;
798 
799   Value *X = Instr->getOperand(0);
800   Value *Y = Instr->getOperand(1);
801 
802   // X u/ Y -> 0  iff X u< Y
803   // X u% Y -> X  iff X u< Y
804   if (XCR.icmp(ICmpInst::ICMP_ULT, YCR)) {
805     Instr->replaceAllUsesWith(IsRem ? X : Constant::getNullValue(Ty));
806     Instr->eraseFromParent();
807     ++NumUDivURemsNarrowedExpanded;
808     return true;
809   }
810 
811   // Given
812   //   R  = X u% Y
813   // We can represent the modulo operation as a loop/self-recursion:
814   //   urem_rec(X, Y):
815   //     Z = X - Y
816   //     if X u< Y
817   //       ret X
818   //     else
819   //       ret urem_rec(Z, Y)
820   // which isn't better, but if we only need a single iteration
821   // to compute the answer, this becomes quite good:
822   //   R  = X < Y ? X : X - Y    iff X u< 2*Y (w/ unsigned saturation)
823   // Now, we do not care about all full multiples of Y in X, they do not change
824   // the answer, thus we could rewrite the expression as:
825   //   X* = X - (Y * |_ X / Y _|)
826   //   R  = X* % Y
827   // so we don't need the *first* iteration to return, we just need to
828   // know *which* iteration will always return, so we could also rewrite it as:
829   //   X* = X - (Y * |_ X / Y _|)
830   //   R  = X* % Y                 iff X* u< 2*Y (w/ unsigned saturation)
831   // but that does not seem profitable here.
832 
833   // Even if we don't know X's range, the divisor may be so large, X can't ever
834   // be 2x larger than that. I.e. if divisor is always negative.
835   if (!XCR.icmp(ICmpInst::ICMP_ULT,
836                 YCR.umul_sat(APInt(YCR.getBitWidth(), 2))) &&
837       !YCR.isAllNegative())
838     return false;
839 
840   IRBuilder<> B(Instr);
841   Value *ExpandedOp;
842   if (XCR.icmp(ICmpInst::ICMP_UGE, YCR)) {
843     // If X is between Y and 2*Y the result is known.
844     if (IsRem)
845       ExpandedOp = B.CreateNUWSub(X, Y);
846     else
847       ExpandedOp = ConstantInt::get(Instr->getType(), 1);
848   } else if (IsRem) {
849     // NOTE: this transformation introduces two uses of X,
850     //       but it may be undef so we must freeze it first.
851     Value *FrozenX = X;
852     if (!isGuaranteedNotToBeUndef(X))
853       FrozenX = B.CreateFreeze(X, X->getName() + ".frozen");
854     Value *FrozenY = Y;
855     if (!isGuaranteedNotToBeUndef(Y))
856       FrozenY = B.CreateFreeze(Y, Y->getName() + ".frozen");
857     auto *AdjX = B.CreateNUWSub(FrozenX, FrozenY, Instr->getName() + ".urem");
858     auto *Cmp = B.CreateICmp(ICmpInst::ICMP_ULT, FrozenX, FrozenY,
859                              Instr->getName() + ".cmp");
860     ExpandedOp = B.CreateSelect(Cmp, FrozenX, AdjX);
861   } else {
862     auto *Cmp =
863         B.CreateICmp(ICmpInst::ICMP_UGE, X, Y, Instr->getName() + ".cmp");
864     ExpandedOp = B.CreateZExt(Cmp, Ty, Instr->getName() + ".udiv");
865   }
866   ExpandedOp->takeName(Instr);
867   Instr->replaceAllUsesWith(ExpandedOp);
868   Instr->eraseFromParent();
869   ++NumUDivURemsNarrowedExpanded;
870   return true;
871 }
872 
873 /// Try to shrink a udiv/urem's width down to the smallest power of two that's
874 /// sufficient to contain its operands.
narrowUDivOrURem(BinaryOperator * Instr,const ConstantRange & XCR,const ConstantRange & YCR)875 static bool narrowUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR,
876                              const ConstantRange &YCR) {
877   assert(Instr->getOpcode() == Instruction::UDiv ||
878          Instr->getOpcode() == Instruction::URem);
879 
880   // Find the smallest power of two bitwidth that's sufficient to hold Instr's
881   // operands.
882 
883   // What is the smallest bit width that can accommodate the entire value ranges
884   // of both of the operands?
885   unsigned MaxActiveBits = std::max(XCR.getActiveBits(), YCR.getActiveBits());
886   // Don't shrink below 8 bits wide.
887   unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MaxActiveBits), 8);
888 
889   // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
890   // two.
891   if (NewWidth >= Instr->getType()->getScalarSizeInBits())
892     return false;
893 
894   ++NumUDivURemsNarrowed;
895   IRBuilder<> B{Instr};
896   auto *TruncTy = Instr->getType()->getWithNewBitWidth(NewWidth);
897   auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
898                                      Instr->getName() + ".lhs.trunc");
899   auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
900                                      Instr->getName() + ".rhs.trunc");
901   auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
902   auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext");
903   if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
904     if (BinOp->getOpcode() == Instruction::UDiv)
905       BinOp->setIsExact(Instr->isExact());
906 
907   Instr->replaceAllUsesWith(Zext);
908   Instr->eraseFromParent();
909   return true;
910 }
911 
processUDivOrURem(BinaryOperator * Instr,LazyValueInfo * LVI)912 static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
913   assert(Instr->getOpcode() == Instruction::UDiv ||
914          Instr->getOpcode() == Instruction::URem);
915   ConstantRange XCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(0),
916                                                  /*UndefAllowed*/ false);
917   // Allow undef for RHS, as we can assume it is division by zero UB.
918   ConstantRange YCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(1),
919                                                  /*UndefAllowed*/ true);
920   if (expandUDivOrURem(Instr, XCR, YCR))
921     return true;
922 
923   return narrowUDivOrURem(Instr, XCR, YCR);
924 }
925 
processSRem(BinaryOperator * SDI,const ConstantRange & LCR,const ConstantRange & RCR,LazyValueInfo * LVI)926 static bool processSRem(BinaryOperator *SDI, const ConstantRange &LCR,
927                         const ConstantRange &RCR, LazyValueInfo *LVI) {
928   assert(SDI->getOpcode() == Instruction::SRem);
929 
930   if (LCR.abs().icmp(CmpInst::ICMP_ULT, RCR.abs())) {
931     SDI->replaceAllUsesWith(SDI->getOperand(0));
932     SDI->eraseFromParent();
933     return true;
934   }
935 
936   struct Operand {
937     Value *V;
938     Domain D;
939   };
940   std::array<Operand, 2> Ops = {{{SDI->getOperand(0), getDomain(LCR)},
941                                  {SDI->getOperand(1), getDomain(RCR)}}};
942   if (Ops[0].D == Domain::Unknown || Ops[1].D == Domain::Unknown)
943     return false;
944 
945   // We know domains of both of the operands!
946   ++NumSRems;
947 
948   // We need operands to be non-negative, so negate each one that isn't.
949   for (Operand &Op : Ops) {
950     if (Op.D == Domain::NonNegative)
951       continue;
952     auto *BO = BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg",
953                                          SDI->getIterator());
954     BO->setDebugLoc(SDI->getDebugLoc());
955     Op.V = BO;
956   }
957 
958   auto *URem = BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->getName(),
959                                           SDI->getIterator());
960   URem->setDebugLoc(SDI->getDebugLoc());
961 
962   auto *Res = URem;
963 
964   // If the divident was non-positive, we need to negate the result.
965   if (Ops[0].D == Domain::NonPositive) {
966     Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg",
967                                     SDI->getIterator());
968     Res->setDebugLoc(SDI->getDebugLoc());
969   }
970 
971   SDI->replaceAllUsesWith(Res);
972   SDI->eraseFromParent();
973 
974   // Try to simplify our new urem.
975   processUDivOrURem(URem, LVI);
976 
977   return true;
978 }
979 
980 /// See if LazyValueInfo's ability to exploit edge conditions or range
981 /// information is sufficient to prove the signs of both operands of this SDiv.
982 /// If this is the case, replace the SDiv with a UDiv. Even for local
983 /// conditions, this can sometimes prove conditions instcombine can't by
984 /// exploiting range information.
processSDiv(BinaryOperator * SDI,const ConstantRange & LCR,const ConstantRange & RCR,LazyValueInfo * LVI)985 static bool processSDiv(BinaryOperator *SDI, const ConstantRange &LCR,
986                         const ConstantRange &RCR, LazyValueInfo *LVI) {
987   assert(SDI->getOpcode() == Instruction::SDiv);
988 
989   // Check whether the division folds to a constant.
990   ConstantRange DivCR = LCR.sdiv(RCR);
991   if (const APInt *Elem = DivCR.getSingleElement()) {
992     SDI->replaceAllUsesWith(ConstantInt::get(SDI->getType(), *Elem));
993     SDI->eraseFromParent();
994     return true;
995   }
996 
997   struct Operand {
998     Value *V;
999     Domain D;
1000   };
1001   std::array<Operand, 2> Ops = {{{SDI->getOperand(0), getDomain(LCR)},
1002                                  {SDI->getOperand(1), getDomain(RCR)}}};
1003   if (Ops[0].D == Domain::Unknown || Ops[1].D == Domain::Unknown)
1004     return false;
1005 
1006   // We know domains of both of the operands!
1007   ++NumSDivs;
1008 
1009   // We need operands to be non-negative, so negate each one that isn't.
1010   for (Operand &Op : Ops) {
1011     if (Op.D == Domain::NonNegative)
1012       continue;
1013     auto *BO = BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg",
1014                                          SDI->getIterator());
1015     BO->setDebugLoc(SDI->getDebugLoc());
1016     Op.V = BO;
1017   }
1018 
1019   auto *UDiv = BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->getName(),
1020                                           SDI->getIterator());
1021   UDiv->setDebugLoc(SDI->getDebugLoc());
1022   UDiv->setIsExact(SDI->isExact());
1023 
1024   auto *Res = UDiv;
1025 
1026   // If the operands had two different domains, we need to negate the result.
1027   if (Ops[0].D != Ops[1].D) {
1028     Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg",
1029                                     SDI->getIterator());
1030     Res->setDebugLoc(SDI->getDebugLoc());
1031   }
1032 
1033   SDI->replaceAllUsesWith(Res);
1034   SDI->eraseFromParent();
1035 
1036   // Try to simplify our new udiv.
1037   processUDivOrURem(UDiv, LVI);
1038 
1039   return true;
1040 }
1041 
processSDivOrSRem(BinaryOperator * Instr,LazyValueInfo * LVI)1042 static bool processSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
1043   assert(Instr->getOpcode() == Instruction::SDiv ||
1044          Instr->getOpcode() == Instruction::SRem);
1045   ConstantRange LCR =
1046       LVI->getConstantRangeAtUse(Instr->getOperandUse(0), /*AllowUndef*/ false);
1047   // Allow undef for RHS, as we can assume it is division by zero UB.
1048   ConstantRange RCR =
1049       LVI->getConstantRangeAtUse(Instr->getOperandUse(1), /*AlloweUndef*/ true);
1050   if (Instr->getOpcode() == Instruction::SDiv)
1051     if (processSDiv(Instr, LCR, RCR, LVI))
1052       return true;
1053 
1054   if (Instr->getOpcode() == Instruction::SRem) {
1055     if (processSRem(Instr, LCR, RCR, LVI))
1056       return true;
1057   }
1058 
1059   return narrowSDivOrSRem(Instr, LCR, RCR);
1060 }
1061 
processAShr(BinaryOperator * SDI,LazyValueInfo * LVI)1062 static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
1063   ConstantRange LRange =
1064       LVI->getConstantRangeAtUse(SDI->getOperandUse(0), /*UndefAllowed*/ false);
1065   unsigned OrigWidth = SDI->getType()->getScalarSizeInBits();
1066   ConstantRange NegOneOrZero =
1067       ConstantRange(APInt(OrigWidth, (uint64_t)-1, true), APInt(OrigWidth, 1));
1068   if (NegOneOrZero.contains(LRange)) {
1069     // ashr of -1 or 0 never changes the value, so drop the whole instruction
1070     ++NumAShrsRemoved;
1071     SDI->replaceAllUsesWith(SDI->getOperand(0));
1072     SDI->eraseFromParent();
1073     return true;
1074   }
1075 
1076   if (!LRange.isAllNonNegative())
1077     return false;
1078 
1079   ++NumAShrsConverted;
1080   auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1),
1081                                         "", SDI->getIterator());
1082   BO->takeName(SDI);
1083   BO->setDebugLoc(SDI->getDebugLoc());
1084   BO->setIsExact(SDI->isExact());
1085   SDI->replaceAllUsesWith(BO);
1086   SDI->eraseFromParent();
1087 
1088   return true;
1089 }
1090 
processSExt(SExtInst * SDI,LazyValueInfo * LVI)1091 static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) {
1092   const Use &Base = SDI->getOperandUse(0);
1093   if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
1094            .isAllNonNegative())
1095     return false;
1096 
1097   ++NumSExt;
1098   auto *ZExt = CastInst::CreateZExtOrBitCast(Base, SDI->getType(), "",
1099                                              SDI->getIterator());
1100   ZExt->takeName(SDI);
1101   ZExt->setDebugLoc(SDI->getDebugLoc());
1102   ZExt->setNonNeg();
1103   SDI->replaceAllUsesWith(ZExt);
1104   SDI->eraseFromParent();
1105 
1106   return true;
1107 }
1108 
processPossibleNonNeg(PossiblyNonNegInst * I,LazyValueInfo * LVI)1109 static bool processPossibleNonNeg(PossiblyNonNegInst *I, LazyValueInfo *LVI) {
1110   if (I->hasNonNeg())
1111     return false;
1112 
1113   const Use &Base = I->getOperandUse(0);
1114   if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
1115            .isAllNonNegative())
1116     return false;
1117 
1118   ++NumNNeg;
1119   I->setNonNeg();
1120 
1121   return true;
1122 }
1123 
processZExt(ZExtInst * ZExt,LazyValueInfo * LVI)1124 static bool processZExt(ZExtInst *ZExt, LazyValueInfo *LVI) {
1125   return processPossibleNonNeg(cast<PossiblyNonNegInst>(ZExt), LVI);
1126 }
1127 
processUIToFP(UIToFPInst * UIToFP,LazyValueInfo * LVI)1128 static bool processUIToFP(UIToFPInst *UIToFP, LazyValueInfo *LVI) {
1129   return processPossibleNonNeg(cast<PossiblyNonNegInst>(UIToFP), LVI);
1130 }
1131 
processSIToFP(SIToFPInst * SIToFP,LazyValueInfo * LVI)1132 static bool processSIToFP(SIToFPInst *SIToFP, LazyValueInfo *LVI) {
1133   const Use &Base = SIToFP->getOperandUse(0);
1134   if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false)
1135            .isAllNonNegative())
1136     return false;
1137 
1138   ++NumSIToFP;
1139   auto *UIToFP = CastInst::Create(Instruction::UIToFP, Base, SIToFP->getType(),
1140                                   "", SIToFP->getIterator());
1141   UIToFP->takeName(SIToFP);
1142   UIToFP->setDebugLoc(SIToFP->getDebugLoc());
1143   UIToFP->setNonNeg();
1144   SIToFP->replaceAllUsesWith(UIToFP);
1145   SIToFP->eraseFromParent();
1146 
1147   return true;
1148 }
1149 
processBinOp(BinaryOperator * BinOp,LazyValueInfo * LVI)1150 static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) {
1151   using OBO = OverflowingBinaryOperator;
1152 
1153   bool NSW = BinOp->hasNoSignedWrap();
1154   bool NUW = BinOp->hasNoUnsignedWrap();
1155   if (NSW && NUW)
1156     return false;
1157 
1158   Instruction::BinaryOps Opcode = BinOp->getOpcode();
1159   ConstantRange LRange = LVI->getConstantRangeAtUse(BinOp->getOperandUse(0),
1160                                                     /*UndefAllowed=*/false);
1161   ConstantRange RRange = LVI->getConstantRangeAtUse(BinOp->getOperandUse(1),
1162                                                     /*UndefAllowed=*/false);
1163 
1164   bool Changed = false;
1165   bool NewNUW = false, NewNSW = false;
1166   if (!NUW) {
1167     ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
1168         Opcode, RRange, OBO::NoUnsignedWrap);
1169     NewNUW = NUWRange.contains(LRange);
1170     Changed |= NewNUW;
1171   }
1172   if (!NSW) {
1173     ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
1174         Opcode, RRange, OBO::NoSignedWrap);
1175     NewNSW = NSWRange.contains(LRange);
1176     Changed |= NewNSW;
1177   }
1178 
1179   setDeducedOverflowingFlags(BinOp, Opcode, NewNSW, NewNUW);
1180 
1181   return Changed;
1182 }
1183 
processAnd(BinaryOperator * BinOp,LazyValueInfo * LVI)1184 static bool processAnd(BinaryOperator *BinOp, LazyValueInfo *LVI) {
1185   using namespace llvm::PatternMatch;
1186 
1187   // Pattern match (and lhs, C) where C includes a superset of bits which might
1188   // be set in lhs.  This is a common truncation idiom created by instcombine.
1189   const Use &LHS = BinOp->getOperandUse(0);
1190   const APInt *RHS;
1191   if (!match(BinOp->getOperand(1), m_LowBitMask(RHS)))
1192     return false;
1193 
1194   // We can only replace the AND with LHS based on range info if the range does
1195   // not include undef.
1196   ConstantRange LRange =
1197       LVI->getConstantRangeAtUse(LHS, /*UndefAllowed=*/false);
1198   if (!LRange.getUnsignedMax().ule(*RHS))
1199     return false;
1200 
1201   BinOp->replaceAllUsesWith(LHS);
1202   BinOp->eraseFromParent();
1203   NumAnd++;
1204   return true;
1205 }
1206 
runImpl(Function & F,LazyValueInfo * LVI,DominatorTree * DT,const SimplifyQuery & SQ)1207 static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT,
1208                     const SimplifyQuery &SQ) {
1209   bool FnChanged = false;
1210   // Visiting in a pre-order depth-first traversal causes us to simplify early
1211   // blocks before querying later blocks (which require us to analyze early
1212   // blocks).  Eagerly simplifying shallow blocks means there is strictly less
1213   // work to do for deep blocks.  This also means we don't visit unreachable
1214   // blocks.
1215   for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1216     bool BBChanged = false;
1217     for (Instruction &II : llvm::make_early_inc_range(*BB)) {
1218       switch (II.getOpcode()) {
1219       case Instruction::Select:
1220         BBChanged |= processSelect(cast<SelectInst>(&II), LVI);
1221         break;
1222       case Instruction::PHI:
1223         BBChanged |= processPHI(cast<PHINode>(&II), LVI, DT, SQ);
1224         break;
1225       case Instruction::ICmp:
1226       case Instruction::FCmp:
1227         BBChanged |= processCmp(cast<CmpInst>(&II), LVI);
1228         break;
1229       case Instruction::Call:
1230       case Instruction::Invoke:
1231         BBChanged |= processCallSite(cast<CallBase>(II), LVI);
1232         break;
1233       case Instruction::SRem:
1234       case Instruction::SDiv:
1235         BBChanged |= processSDivOrSRem(cast<BinaryOperator>(&II), LVI);
1236         break;
1237       case Instruction::UDiv:
1238       case Instruction::URem:
1239         BBChanged |= processUDivOrURem(cast<BinaryOperator>(&II), LVI);
1240         break;
1241       case Instruction::AShr:
1242         BBChanged |= processAShr(cast<BinaryOperator>(&II), LVI);
1243         break;
1244       case Instruction::SExt:
1245         BBChanged |= processSExt(cast<SExtInst>(&II), LVI);
1246         break;
1247       case Instruction::ZExt:
1248         BBChanged |= processZExt(cast<ZExtInst>(&II), LVI);
1249         break;
1250       case Instruction::UIToFP:
1251         BBChanged |= processUIToFP(cast<UIToFPInst>(&II), LVI);
1252         break;
1253       case Instruction::SIToFP:
1254         BBChanged |= processSIToFP(cast<SIToFPInst>(&II), LVI);
1255         break;
1256       case Instruction::Add:
1257       case Instruction::Sub:
1258       case Instruction::Mul:
1259       case Instruction::Shl:
1260         BBChanged |= processBinOp(cast<BinaryOperator>(&II), LVI);
1261         break;
1262       case Instruction::And:
1263         BBChanged |= processAnd(cast<BinaryOperator>(&II), LVI);
1264         break;
1265       }
1266     }
1267 
1268     Instruction *Term = BB->getTerminator();
1269     switch (Term->getOpcode()) {
1270     case Instruction::Switch:
1271       BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT);
1272       break;
1273     case Instruction::Ret: {
1274       auto *RI = cast<ReturnInst>(Term);
1275       // Try to determine the return value if we can.  This is mainly here to
1276       // simplify the writing of unit tests, but also helps to enable IPO by
1277       // constant folding the return values of callees.
1278       auto *RetVal = RI->getReturnValue();
1279       if (!RetVal) break; // handle "ret void"
1280       if (isa<Constant>(RetVal)) break; // nothing to do
1281       if (auto *C = getConstantAt(RetVal, RI, LVI)) {
1282         ++NumReturns;
1283         RI->replaceUsesOfWith(RetVal, C);
1284         BBChanged = true;
1285       }
1286     }
1287     }
1288 
1289     FnChanged |= BBChanged;
1290   }
1291 
1292   return FnChanged;
1293 }
1294 
1295 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)1296 CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) {
1297   LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
1298   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1299 
1300   bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F));
1301 
1302   PreservedAnalyses PA;
1303   if (!Changed) {
1304     PA = PreservedAnalyses::all();
1305   } else {
1306 #if defined(EXPENSIVE_CHECKS)
1307     assert(DT->verify(DominatorTree::VerificationLevel::Full));
1308 #else
1309     assert(DT->verify(DominatorTree::VerificationLevel::Fast));
1310 #endif // EXPENSIVE_CHECKS
1311 
1312     PA.preserve<DominatorTreeAnalysis>();
1313     PA.preserve<LazyValueAnalysis>();
1314   }
1315 
1316   // Keeping LVI alive is expensive, both because it uses a lot of memory, and
1317   // because invalidating values in LVI is expensive. While CVP does preserve
1318   // LVI, we know that passes after JumpThreading+CVP will not need the result
1319   // of this analysis, so we forcefully discard it early.
1320   PA.abandon<LazyValueAnalysis>();
1321   return PA;
1322 }
1323