xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/IPO/SCCP.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- SCCP.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements Interprocedural Sparse Conditional Constant Propagation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/IPO/SCCP.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/BlockFrequencyInfo.h"
17 #include "llvm/Analysis/PostDominators.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/ValueLattice.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/AttributeMask.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DIBuilder.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ModRef.h"
29 #include "llvm/Transforms/IPO.h"
30 #include "llvm/Transforms/IPO/FunctionSpecialization.h"
31 #include "llvm/Transforms/Scalar/SCCP.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Transforms/Utils/SCCPSolver.h"
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "sccp"
38 
39 STATISTIC(NumInstRemoved, "Number of instructions removed");
40 STATISTIC(NumArgsElimed ,"Number of arguments constant propagated");
41 STATISTIC(NumGlobalConst, "Number of globals found to be constant");
42 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
43 STATISTIC(NumInstReplaced,
44           "Number of instructions replaced with (simpler) instruction");
45 
46 static cl::opt<unsigned> FuncSpecMaxIters(
47     "funcspec-max-iters", cl::init(10), cl::Hidden, cl::desc(
48     "The maximum number of iterations function specialization is run"));
49 
findReturnsToZap(Function & F,SmallVector<ReturnInst *,8> & ReturnsToZap,SCCPSolver & Solver)50 static void findReturnsToZap(Function &F,
51                              SmallVector<ReturnInst *, 8> &ReturnsToZap,
52                              SCCPSolver &Solver) {
53   // We can only do this if we know that nothing else can call the function.
54   if (!Solver.isArgumentTrackedFunction(&F))
55     return;
56 
57   if (Solver.mustPreserveReturn(&F)) {
58     LLVM_DEBUG(
59         dbgs()
60         << "Can't zap returns of the function : " << F.getName()
61         << " due to present musttail or \"clang.arc.attachedcall\" call of "
62            "it\n");
63     return;
64   }
65 
66   assert(
67       all_of(F.users(),
68              [&Solver](User *U) {
69                if (isa<Instruction>(U) &&
70                    !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
71                  return true;
72                // Non-callsite uses are not impacted by zapping. Also, constant
73                // uses (like blockaddresses) could stuck around, without being
74                // used in the underlying IR, meaning we do not have lattice
75                // values for them.
76                if (!isa<CallBase>(U))
77                  return true;
78                if (U->getType()->isStructTy()) {
79                  return all_of(Solver.getStructLatticeValueFor(U),
80                                [](const ValueLatticeElement &LV) {
81                                  return !SCCPSolver::isOverdefined(LV);
82                                });
83                }
84 
85                // We don't consider assume-like intrinsics to be actual address
86                // captures.
87                if (auto *II = dyn_cast<IntrinsicInst>(U)) {
88                  if (II->isAssumeLikeIntrinsic())
89                    return true;
90                }
91 
92                return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U));
93              }) &&
94       "We can only zap functions where all live users have a concrete value");
95 
96   for (BasicBlock &BB : F) {
97     if (CallInst *CI = BB.getTerminatingMustTailCall()) {
98       LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
99                         << "musttail call : " << *CI << "\n");
100       (void)CI;
101       return;
102     }
103 
104     if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
105       if (!isa<UndefValue>(RI->getOperand(0)))
106         ReturnsToZap.push_back(RI);
107   }
108 }
109 
runIPSCCP(Module & M,const DataLayout & DL,FunctionAnalysisManager * FAM,std::function<const TargetLibraryInfo & (Function &)> GetTLI,std::function<TargetTransformInfo & (Function &)> GetTTI,std::function<AssumptionCache & (Function &)> GetAC,std::function<DominatorTree & (Function &)> GetDT,std::function<BlockFrequencyInfo & (Function &)> GetBFI,bool IsFuncSpecEnabled)110 static bool runIPSCCP(
111     Module &M, const DataLayout &DL, FunctionAnalysisManager *FAM,
112     std::function<const TargetLibraryInfo &(Function &)> GetTLI,
113     std::function<TargetTransformInfo &(Function &)> GetTTI,
114     std::function<AssumptionCache &(Function &)> GetAC,
115     std::function<DominatorTree &(Function &)> GetDT,
116     std::function<BlockFrequencyInfo &(Function &)> GetBFI,
117     bool IsFuncSpecEnabled) {
118   SCCPSolver Solver(DL, GetTLI, M.getContext());
119   FunctionSpecializer Specializer(Solver, M, FAM, GetBFI, GetTLI, GetTTI,
120                                   GetAC);
121 
122   // Loop over all functions, marking arguments to those with their addresses
123   // taken or that are external as overdefined.
124   for (Function &F : M) {
125     if (F.isDeclaration())
126       continue;
127 
128     DominatorTree &DT = GetDT(F);
129     AssumptionCache &AC = GetAC(F);
130     Solver.addPredicateInfo(F, DT, AC);
131 
132     // Determine if we can track the function's return values. If so, add the
133     // function to the solver's set of return-tracked functions.
134     if (canTrackReturnsInterprocedurally(&F))
135       Solver.addTrackedFunction(&F);
136 
137     // Determine if we can track the function's arguments. If so, add the
138     // function to the solver's set of argument-tracked functions.
139     if (canTrackArgumentsInterprocedurally(&F)) {
140       Solver.addArgumentTrackedFunction(&F);
141       continue;
142     }
143 
144     // Assume the function is called.
145     Solver.markBlockExecutable(&F.front());
146 
147     for (Argument &AI : F.args())
148       Solver.trackValueOfArgument(&AI);
149   }
150 
151   // Determine if we can track any of the module's global variables. If so, add
152   // the global variables we can track to the solver's set of tracked global
153   // variables.
154   for (GlobalVariable &G : M.globals()) {
155     G.removeDeadConstantUsers();
156     if (canTrackGlobalVariableInterprocedurally(&G))
157       Solver.trackValueOfGlobalVariable(&G);
158   }
159 
160   // Solve for constants.
161   Solver.solveWhileResolvedUndefsIn(M);
162 
163   if (IsFuncSpecEnabled) {
164     unsigned Iters = 0;
165     while (Iters++ < FuncSpecMaxIters && Specializer.run());
166   }
167 
168   // Iterate over all of the instructions in the module, replacing them with
169   // constants if we have found them to be of constant values.
170   bool MadeChanges = false;
171   for (Function &F : M) {
172     if (F.isDeclaration())
173       continue;
174 
175     SmallVector<BasicBlock *, 512> BlocksToErase;
176 
177     if (Solver.isBlockExecutable(&F.front())) {
178       bool ReplacedPointerArg = false;
179       for (Argument &Arg : F.args()) {
180         if (!Arg.use_empty() && Solver.tryToReplaceWithConstant(&Arg)) {
181           ReplacedPointerArg |= Arg.getType()->isPointerTy();
182           ++NumArgsElimed;
183         }
184       }
185 
186       // If we replaced an argument, we may now also access a global (currently
187       // classified as "other" memory). Update memory attribute to reflect this.
188       if (ReplacedPointerArg) {
189         auto UpdateAttrs = [&](AttributeList AL) {
190           MemoryEffects ME = AL.getMemoryEffects();
191           if (ME == MemoryEffects::unknown())
192             return AL;
193 
194           ME |= MemoryEffects(IRMemLocation::Other,
195                               ME.getModRef(IRMemLocation::ArgMem));
196           return AL.addFnAttribute(
197               F.getContext(),
198               Attribute::getWithMemoryEffects(F.getContext(), ME));
199         };
200 
201         F.setAttributes(UpdateAttrs(F.getAttributes()));
202         for (User *U : F.users()) {
203           auto *CB = dyn_cast<CallBase>(U);
204           if (!CB || CB->getCalledFunction() != &F)
205             continue;
206 
207           CB->setAttributes(UpdateAttrs(CB->getAttributes()));
208         }
209       }
210       MadeChanges |= ReplacedPointerArg;
211     }
212 
213     SmallPtrSet<Value *, 32> InsertedValues;
214     for (BasicBlock &BB : F) {
215       if (!Solver.isBlockExecutable(&BB)) {
216         LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);
217         ++NumDeadBlocks;
218 
219         MadeChanges = true;
220 
221         if (&BB != &F.front())
222           BlocksToErase.push_back(&BB);
223         continue;
224       }
225 
226       MadeChanges |= Solver.simplifyInstsInBlock(
227           BB, InsertedValues, NumInstRemoved, NumInstReplaced);
228     }
229 
230     DominatorTree *DT = FAM->getCachedResult<DominatorTreeAnalysis>(F);
231     PostDominatorTree *PDT = FAM->getCachedResult<PostDominatorTreeAnalysis>(F);
232     DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy);
233     // Change dead blocks to unreachable. We do it after replacing constants
234     // in all executable blocks, because changeToUnreachable may remove PHI
235     // nodes in executable blocks we found values for. The function's entry
236     // block is not part of BlocksToErase, so we have to handle it separately.
237     for (BasicBlock *BB : BlocksToErase) {
238       NumInstRemoved += changeToUnreachable(BB->getFirstNonPHIOrDbg(),
239                                             /*PreserveLCSSA=*/false, &DTU);
240     }
241     if (!Solver.isBlockExecutable(&F.front()))
242       NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHIOrDbg(),
243                                             /*PreserveLCSSA=*/false, &DTU);
244 
245     BasicBlock *NewUnreachableBB = nullptr;
246     for (BasicBlock &BB : F)
247       MadeChanges |= Solver.removeNonFeasibleEdges(&BB, DTU, NewUnreachableBB);
248 
249     for (BasicBlock *DeadBB : BlocksToErase)
250       if (!DeadBB->hasAddressTaken())
251         DTU.deleteBB(DeadBB);
252 
253     for (BasicBlock &BB : F) {
254       for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
255         if (Solver.getPredicateInfoFor(&Inst)) {
256           if (auto *II = dyn_cast<IntrinsicInst>(&Inst)) {
257             if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
258               Value *Op = II->getOperand(0);
259               Inst.replaceAllUsesWith(Op);
260               Inst.eraseFromParent();
261             }
262           }
263         }
264       }
265     }
266   }
267 
268   // If we inferred constant or undef return values for a function, we replaced
269   // all call uses with the inferred value.  This means we don't need to bother
270   // actually returning anything from the function.  Replace all return
271   // instructions with return undef.
272   //
273   // Do this in two stages: first identify the functions we should process, then
274   // actually zap their returns.  This is important because we can only do this
275   // if the address of the function isn't taken.  In cases where a return is the
276   // last use of a function, the order of processing functions would affect
277   // whether other functions are optimizable.
278   SmallVector<ReturnInst*, 8> ReturnsToZap;
279 
280   for (const auto &I : Solver.getTrackedRetVals()) {
281     Function *F = I.first;
282     const ValueLatticeElement &ReturnValue = I.second;
283 
284     // If there is a known constant range for the return value, add range
285     // attribute to the return value.
286     if (ReturnValue.isConstantRange() &&
287         !ReturnValue.getConstantRange().isSingleElement()) {
288       // Do not add range metadata if the return value may include undef.
289       if (ReturnValue.isConstantRangeIncludingUndef())
290         continue;
291 
292       // Do not touch existing attribute for now.
293       // TODO: We should be able to take the intersection of the existing
294       // attribute and the inferred range.
295       if (F->hasRetAttribute(Attribute::Range))
296         continue;
297       auto &CR = ReturnValue.getConstantRange();
298       F->addRangeRetAttr(CR);
299       continue;
300     }
301     if (F->getReturnType()->isVoidTy())
302       continue;
303     if (SCCPSolver::isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef())
304       findReturnsToZap(*F, ReturnsToZap, Solver);
305   }
306 
307   for (auto *F : Solver.getMRVFunctionsTracked()) {
308     assert(F->getReturnType()->isStructTy() &&
309            "The return type should be a struct");
310     StructType *STy = cast<StructType>(F->getReturnType());
311     if (Solver.isStructLatticeConstant(F, STy))
312       findReturnsToZap(*F, ReturnsToZap, Solver);
313   }
314 
315   // Zap all returns which we've identified as zap to change.
316   SmallSetVector<Function *, 8> FuncZappedReturn;
317   for (ReturnInst *RI : ReturnsToZap) {
318     Function *F = RI->getParent()->getParent();
319     RI->setOperand(0, PoisonValue::get(F->getReturnType()));
320     // Record all functions that are zapped.
321     FuncZappedReturn.insert(F);
322   }
323 
324   // Remove the returned attribute for zapped functions and the
325   // corresponding call sites.
326   // Also remove any attributes that convert an undef return value into
327   // immediate undefined behavior
328   AttributeMask UBImplyingAttributes =
329       AttributeFuncs::getUBImplyingAttributes();
330   for (Function *F : FuncZappedReturn) {
331     for (Argument &A : F->args())
332       F->removeParamAttr(A.getArgNo(), Attribute::Returned);
333     F->removeRetAttrs(UBImplyingAttributes);
334     for (Use &U : F->uses()) {
335       CallBase *CB = dyn_cast<CallBase>(U.getUser());
336       if (!CB) {
337         assert(isa<BlockAddress>(U.getUser()) ||
338                (isa<Constant>(U.getUser()) &&
339                 all_of(U.getUser()->users(), [](const User *UserUser) {
340                   return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic();
341                 })));
342         continue;
343       }
344 
345       for (Use &Arg : CB->args())
346         CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned);
347       CB->removeRetAttrs(UBImplyingAttributes);
348     }
349   }
350 
351   // If we inferred constant or undef values for globals variables, we can
352   // delete the global and any stores that remain to it.
353   for (const auto &I : make_early_inc_range(Solver.getTrackedGlobals())) {
354     GlobalVariable *GV = I.first;
355     if (SCCPSolver::isOverdefined(I.second))
356       continue;
357     LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
358                       << "' is constant!\n");
359     while (!GV->use_empty()) {
360       StoreInst *SI = cast<StoreInst>(GV->user_back());
361       SI->eraseFromParent();
362     }
363 
364     // Try to create a debug constant expression for the global variable
365     // initializer value.
366     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
367     GV->getDebugInfo(GVEs);
368     if (GVEs.size() == 1) {
369       DIBuilder DIB(M);
370       if (DIExpression *InitExpr = getExpressionForConstant(
371               DIB, *GV->getInitializer(), *GV->getValueType()))
372         GVEs[0]->replaceOperandWith(1, InitExpr);
373     }
374 
375     MadeChanges = true;
376     M.eraseGlobalVariable(GV);
377     ++NumGlobalConst;
378   }
379 
380   return MadeChanges;
381 }
382 
run(Module & M,ModuleAnalysisManager & AM)383 PreservedAnalyses IPSCCPPass::run(Module &M, ModuleAnalysisManager &AM) {
384   const DataLayout &DL = M.getDataLayout();
385   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
386   auto GetTLI = [&FAM](Function &F) -> const TargetLibraryInfo & {
387     return FAM.getResult<TargetLibraryAnalysis>(F);
388   };
389   auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
390     return FAM.getResult<TargetIRAnalysis>(F);
391   };
392   auto GetAC = [&FAM](Function &F) -> AssumptionCache & {
393     return FAM.getResult<AssumptionAnalysis>(F);
394   };
395   auto GetDT = [&FAM](Function &F) -> DominatorTree & {
396     return FAM.getResult<DominatorTreeAnalysis>(F);
397   };
398   auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
399     return FAM.getResult<BlockFrequencyAnalysis>(F);
400   };
401 
402 
403   if (!runIPSCCP(M, DL, &FAM, GetTLI, GetTTI, GetAC, GetDT, GetBFI,
404                  isFuncSpecEnabled()))
405     return PreservedAnalyses::all();
406 
407   PreservedAnalyses PA;
408   PA.preserve<DominatorTreeAnalysis>();
409   PA.preserve<PostDominatorTreeAnalysis>();
410   PA.preserve<FunctionAnalysisManagerModuleProxy>();
411   return PA;
412 }
413