1 //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the InstructionSelector class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64GlobalISelUtils.h"
15 #include "AArch64InstrInfo.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64RegisterBankInfo.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "AArch64TargetMachine.h"
21 #include "MCTargetDesc/AArch64AddressingModes.h"
22 #include "MCTargetDesc/AArch64MCTargetDesc.h"
23 #include "llvm/BinaryFormat/Dwarf.h"
24 #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h"
25 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
26 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
27 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
28 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
29 #include "llvm/CodeGen/GlobalISel/Utils.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicsAArch64.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <optional>
51
52 #define DEBUG_TYPE "aarch64-isel"
53
54 using namespace llvm;
55 using namespace MIPatternMatch;
56 using namespace AArch64GISelUtils;
57
58 namespace llvm {
59 class BlockFrequencyInfo;
60 class ProfileSummaryInfo;
61 }
62
63 namespace {
64
65 #define GET_GLOBALISEL_PREDICATE_BITSET
66 #include "AArch64GenGlobalISel.inc"
67 #undef GET_GLOBALISEL_PREDICATE_BITSET
68
69
70 class AArch64InstructionSelector : public InstructionSelector {
71 public:
72 AArch64InstructionSelector(const AArch64TargetMachine &TM,
73 const AArch64Subtarget &STI,
74 const AArch64RegisterBankInfo &RBI);
75
76 bool select(MachineInstr &I) override;
getName()77 static const char *getName() { return DEBUG_TYPE; }
78
setupMF(MachineFunction & MF,GISelKnownBits * KB,CodeGenCoverage * CoverageInfo,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)79 void setupMF(MachineFunction &MF, GISelKnownBits *KB,
80 CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI,
81 BlockFrequencyInfo *BFI) override {
82 InstructionSelector::setupMF(MF, KB, CoverageInfo, PSI, BFI);
83 MIB.setMF(MF);
84
85 // hasFnAttribute() is expensive to call on every BRCOND selection, so
86 // cache it here for each run of the selector.
87 ProduceNonFlagSettingCondBr =
88 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
89 MFReturnAddr = Register();
90
91 processPHIs(MF);
92 }
93
94 private:
95 /// tblgen-erated 'select' implementation, used as the initial selector for
96 /// the patterns that don't require complex C++.
97 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
98
99 // A lowering phase that runs before any selection attempts.
100 // Returns true if the instruction was modified.
101 bool preISelLower(MachineInstr &I);
102
103 // An early selection function that runs before the selectImpl() call.
104 bool earlySelect(MachineInstr &I);
105
106 /// Save state that is shared between select calls, call select on \p I and
107 /// then restore the saved state. This can be used to recursively call select
108 /// within a select call.
109 bool selectAndRestoreState(MachineInstr &I);
110
111 // Do some preprocessing of G_PHIs before we begin selection.
112 void processPHIs(MachineFunction &MF);
113
114 bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI);
115
116 /// Eliminate same-sized cross-bank copies into stores before selectImpl().
117 bool contractCrossBankCopyIntoStore(MachineInstr &I,
118 MachineRegisterInfo &MRI);
119
120 bool convertPtrAddToAdd(MachineInstr &I, MachineRegisterInfo &MRI);
121
122 bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF,
123 MachineRegisterInfo &MRI) const;
124 bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF,
125 MachineRegisterInfo &MRI) const;
126
127 ///@{
128 /// Helper functions for selectCompareBranch.
129 bool selectCompareBranchFedByFCmp(MachineInstr &I, MachineInstr &FCmp,
130 MachineIRBuilder &MIB) const;
131 bool selectCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp,
132 MachineIRBuilder &MIB) const;
133 bool tryOptCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp,
134 MachineIRBuilder &MIB) const;
135 bool tryOptAndIntoCompareBranch(MachineInstr &AndInst, bool Invert,
136 MachineBasicBlock *DstMBB,
137 MachineIRBuilder &MIB) const;
138 ///@}
139
140 bool selectCompareBranch(MachineInstr &I, MachineFunction &MF,
141 MachineRegisterInfo &MRI);
142
143 bool selectVectorAshrLshr(MachineInstr &I, MachineRegisterInfo &MRI);
144 bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI);
145
146 // Helper to generate an equivalent of scalar_to_vector into a new register,
147 // returned via 'Dst'.
148 MachineInstr *emitScalarToVector(unsigned EltSize,
149 const TargetRegisterClass *DstRC,
150 Register Scalar,
151 MachineIRBuilder &MIRBuilder) const;
152 /// Helper to narrow vector that was widened by emitScalarToVector.
153 /// Copy lowest part of 128-bit or 64-bit vector to 64-bit or 32-bit
154 /// vector, correspondingly.
155 MachineInstr *emitNarrowVector(Register DstReg, Register SrcReg,
156 MachineIRBuilder &MIRBuilder,
157 MachineRegisterInfo &MRI) const;
158
159 /// Emit a lane insert into \p DstReg, or a new vector register if
160 /// std::nullopt is provided.
161 ///
162 /// The lane inserted into is defined by \p LaneIdx. The vector source
163 /// register is given by \p SrcReg. The register containing the element is
164 /// given by \p EltReg.
165 MachineInstr *emitLaneInsert(std::optional<Register> DstReg, Register SrcReg,
166 Register EltReg, unsigned LaneIdx,
167 const RegisterBank &RB,
168 MachineIRBuilder &MIRBuilder) const;
169
170 /// Emit a sequence of instructions representing a constant \p CV for a
171 /// vector register \p Dst. (E.g. a MOV, or a load from a constant pool.)
172 ///
173 /// \returns the last instruction in the sequence on success, and nullptr
174 /// otherwise.
175 MachineInstr *emitConstantVector(Register Dst, Constant *CV,
176 MachineIRBuilder &MIRBuilder,
177 MachineRegisterInfo &MRI);
178
179 MachineInstr *tryAdvSIMDModImm8(Register Dst, unsigned DstSize, APInt Bits,
180 MachineIRBuilder &MIRBuilder);
181
182 MachineInstr *tryAdvSIMDModImm16(Register Dst, unsigned DstSize, APInt Bits,
183 MachineIRBuilder &MIRBuilder, bool Inv);
184
185 MachineInstr *tryAdvSIMDModImm32(Register Dst, unsigned DstSize, APInt Bits,
186 MachineIRBuilder &MIRBuilder, bool Inv);
187 MachineInstr *tryAdvSIMDModImm64(Register Dst, unsigned DstSize, APInt Bits,
188 MachineIRBuilder &MIRBuilder);
189 MachineInstr *tryAdvSIMDModImm321s(Register Dst, unsigned DstSize, APInt Bits,
190 MachineIRBuilder &MIRBuilder, bool Inv);
191 MachineInstr *tryAdvSIMDModImmFP(Register Dst, unsigned DstSize, APInt Bits,
192 MachineIRBuilder &MIRBuilder);
193
194 bool tryOptConstantBuildVec(MachineInstr &MI, LLT DstTy,
195 MachineRegisterInfo &MRI);
196 /// \returns true if a G_BUILD_VECTOR instruction \p MI can be selected as a
197 /// SUBREG_TO_REG.
198 bool tryOptBuildVecToSubregToReg(MachineInstr &MI, MachineRegisterInfo &MRI);
199 bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI);
200 bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI);
201 bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI);
202
203 bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI);
204 bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI);
205 bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI);
206 bool selectSplitVectorUnmerge(MachineInstr &I, MachineRegisterInfo &MRI);
207
208 /// Helper function to select vector load intrinsics like
209 /// @llvm.aarch64.neon.ld2.*, @llvm.aarch64.neon.ld4.*, etc.
210 /// \p Opc is the opcode that the selected instruction should use.
211 /// \p NumVecs is the number of vector destinations for the instruction.
212 /// \p I is the original G_INTRINSIC_W_SIDE_EFFECTS instruction.
213 bool selectVectorLoadIntrinsic(unsigned Opc, unsigned NumVecs,
214 MachineInstr &I);
215 bool selectVectorLoadLaneIntrinsic(unsigned Opc, unsigned NumVecs,
216 MachineInstr &I);
217 void selectVectorStoreIntrinsic(MachineInstr &I, unsigned NumVecs,
218 unsigned Opc);
219 bool selectVectorStoreLaneIntrinsic(MachineInstr &I, unsigned NumVecs,
220 unsigned Opc);
221 bool selectIntrinsicWithSideEffects(MachineInstr &I,
222 MachineRegisterInfo &MRI);
223 bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI);
224 bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI);
225 bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI);
226 bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI);
227 bool selectPtrAuthGlobalValue(MachineInstr &I,
228 MachineRegisterInfo &MRI) const;
229 bool selectReduction(MachineInstr &I, MachineRegisterInfo &MRI);
230 bool selectMOPS(MachineInstr &I, MachineRegisterInfo &MRI);
231 bool selectUSMovFromExtend(MachineInstr &I, MachineRegisterInfo &MRI);
232 void SelectTable(MachineInstr &I, MachineRegisterInfo &MRI, unsigned NumVecs,
233 unsigned Opc1, unsigned Opc2, bool isExt);
234
235 bool selectIndexedExtLoad(MachineInstr &I, MachineRegisterInfo &MRI);
236 bool selectIndexedLoad(MachineInstr &I, MachineRegisterInfo &MRI);
237 bool selectIndexedStore(GIndexedStore &I, MachineRegisterInfo &MRI);
238
239 unsigned emitConstantPoolEntry(const Constant *CPVal,
240 MachineFunction &MF) const;
241 MachineInstr *emitLoadFromConstantPool(const Constant *CPVal,
242 MachineIRBuilder &MIRBuilder) const;
243
244 // Emit a vector concat operation.
245 MachineInstr *emitVectorConcat(std::optional<Register> Dst, Register Op1,
246 Register Op2,
247 MachineIRBuilder &MIRBuilder) const;
248
249 // Emit an integer compare between LHS and RHS, which checks for Predicate.
250 MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
251 MachineOperand &Predicate,
252 MachineIRBuilder &MIRBuilder) const;
253
254 /// Emit a floating point comparison between \p LHS and \p RHS.
255 /// \p Pred if given is the intended predicate to use.
256 MachineInstr *
257 emitFPCompare(Register LHS, Register RHS, MachineIRBuilder &MIRBuilder,
258 std::optional<CmpInst::Predicate> = std::nullopt) const;
259
260 MachineInstr *
261 emitInstr(unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps,
262 std::initializer_list<llvm::SrcOp> SrcOps,
263 MachineIRBuilder &MIRBuilder,
264 const ComplexRendererFns &RenderFns = std::nullopt) const;
265 /// Helper function to emit an add or sub instruction.
266 ///
267 /// \p AddrModeAndSizeToOpcode must contain each of the opcode variants above
268 /// in a specific order.
269 ///
270 /// Below is an example of the expected input to \p AddrModeAndSizeToOpcode.
271 ///
272 /// \code
273 /// const std::array<std::array<unsigned, 2>, 4> Table {
274 /// {{AArch64::ADDXri, AArch64::ADDWri},
275 /// {AArch64::ADDXrs, AArch64::ADDWrs},
276 /// {AArch64::ADDXrr, AArch64::ADDWrr},
277 /// {AArch64::SUBXri, AArch64::SUBWri},
278 /// {AArch64::ADDXrx, AArch64::ADDWrx}}};
279 /// \endcode
280 ///
281 /// Each row in the table corresponds to a different addressing mode. Each
282 /// column corresponds to a different register size.
283 ///
284 /// \attention Rows must be structured as follows:
285 /// - Row 0: The ri opcode variants
286 /// - Row 1: The rs opcode variants
287 /// - Row 2: The rr opcode variants
288 /// - Row 3: The ri opcode variants for negative immediates
289 /// - Row 4: The rx opcode variants
290 ///
291 /// \attention Columns must be structured as follows:
292 /// - Column 0: The 64-bit opcode variants
293 /// - Column 1: The 32-bit opcode variants
294 ///
295 /// \p Dst is the destination register of the binop to emit.
296 /// \p LHS is the left-hand operand of the binop to emit.
297 /// \p RHS is the right-hand operand of the binop to emit.
298 MachineInstr *emitAddSub(
299 const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode,
300 Register Dst, MachineOperand &LHS, MachineOperand &RHS,
301 MachineIRBuilder &MIRBuilder) const;
302 MachineInstr *emitADD(Register DefReg, MachineOperand &LHS,
303 MachineOperand &RHS,
304 MachineIRBuilder &MIRBuilder) const;
305 MachineInstr *emitADDS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
306 MachineIRBuilder &MIRBuilder) const;
307 MachineInstr *emitSUBS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
308 MachineIRBuilder &MIRBuilder) const;
309 MachineInstr *emitADCS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
310 MachineIRBuilder &MIRBuilder) const;
311 MachineInstr *emitSBCS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
312 MachineIRBuilder &MIRBuilder) const;
313 MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS,
314 MachineIRBuilder &MIRBuilder) const;
315 MachineInstr *emitTST(MachineOperand &LHS, MachineOperand &RHS,
316 MachineIRBuilder &MIRBuilder) const;
317 MachineInstr *emitSelect(Register Dst, Register LHS, Register RHS,
318 AArch64CC::CondCode CC,
319 MachineIRBuilder &MIRBuilder) const;
320 MachineInstr *emitExtractVectorElt(std::optional<Register> DstReg,
321 const RegisterBank &DstRB, LLT ScalarTy,
322 Register VecReg, unsigned LaneIdx,
323 MachineIRBuilder &MIRBuilder) const;
324 MachineInstr *emitCSINC(Register Dst, Register Src1, Register Src2,
325 AArch64CC::CondCode Pred,
326 MachineIRBuilder &MIRBuilder) const;
327 /// Emit a CSet for a FP compare.
328 ///
329 /// \p Dst is expected to be a 32-bit scalar register.
330 MachineInstr *emitCSetForFCmp(Register Dst, CmpInst::Predicate Pred,
331 MachineIRBuilder &MIRBuilder) const;
332
333 /// Emit an instruction that sets NZCV to the carry-in expected by \p I.
334 /// Might elide the instruction if the previous instruction already sets NZCV
335 /// correctly.
336 MachineInstr *emitCarryIn(MachineInstr &I, Register CarryReg);
337
338 /// Emit the overflow op for \p Opcode.
339 ///
340 /// \p Opcode is expected to be an overflow op's opcode, e.g. G_UADDO,
341 /// G_USUBO, etc.
342 std::pair<MachineInstr *, AArch64CC::CondCode>
343 emitOverflowOp(unsigned Opcode, Register Dst, MachineOperand &LHS,
344 MachineOperand &RHS, MachineIRBuilder &MIRBuilder) const;
345
346 bool selectOverflowOp(MachineInstr &I, MachineRegisterInfo &MRI);
347
348 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
349 /// In some cases this is even possible with OR operations in the expression.
350 MachineInstr *emitConjunction(Register Val, AArch64CC::CondCode &OutCC,
351 MachineIRBuilder &MIB) const;
352 MachineInstr *emitConditionalComparison(Register LHS, Register RHS,
353 CmpInst::Predicate CC,
354 AArch64CC::CondCode Predicate,
355 AArch64CC::CondCode OutCC,
356 MachineIRBuilder &MIB) const;
357 MachineInstr *emitConjunctionRec(Register Val, AArch64CC::CondCode &OutCC,
358 bool Negate, Register CCOp,
359 AArch64CC::CondCode Predicate,
360 MachineIRBuilder &MIB) const;
361
362 /// Emit a TB(N)Z instruction which tests \p Bit in \p TestReg.
363 /// \p IsNegative is true if the test should be "not zero".
364 /// This will also optimize the test bit instruction when possible.
365 MachineInstr *emitTestBit(Register TestReg, uint64_t Bit, bool IsNegative,
366 MachineBasicBlock *DstMBB,
367 MachineIRBuilder &MIB) const;
368
369 /// Emit a CB(N)Z instruction which branches to \p DestMBB.
370 MachineInstr *emitCBZ(Register CompareReg, bool IsNegative,
371 MachineBasicBlock *DestMBB,
372 MachineIRBuilder &MIB) const;
373
374 // Equivalent to the i32shift_a and friends from AArch64InstrInfo.td.
375 // We use these manually instead of using the importer since it doesn't
376 // support SDNodeXForm.
377 ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const;
378 ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const;
379 ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const;
380 ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const;
381
382 ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const;
383 ComplexRendererFns selectArithImmed(MachineOperand &Root) const;
384 ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const;
385
386 ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root,
387 unsigned Size) const;
388
selectAddrModeUnscaled8(MachineOperand & Root) const389 ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const {
390 return selectAddrModeUnscaled(Root, 1);
391 }
selectAddrModeUnscaled16(MachineOperand & Root) const392 ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const {
393 return selectAddrModeUnscaled(Root, 2);
394 }
selectAddrModeUnscaled32(MachineOperand & Root) const395 ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const {
396 return selectAddrModeUnscaled(Root, 4);
397 }
selectAddrModeUnscaled64(MachineOperand & Root) const398 ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const {
399 return selectAddrModeUnscaled(Root, 8);
400 }
selectAddrModeUnscaled128(MachineOperand & Root) const401 ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const {
402 return selectAddrModeUnscaled(Root, 16);
403 }
404
405 /// Helper to try to fold in a GISEL_ADD_LOW into an immediate, to be used
406 /// from complex pattern matchers like selectAddrModeIndexed().
407 ComplexRendererFns tryFoldAddLowIntoImm(MachineInstr &RootDef, unsigned Size,
408 MachineRegisterInfo &MRI) const;
409
410 ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root,
411 unsigned Size) const;
412 template <int Width>
selectAddrModeIndexed(MachineOperand & Root) const413 ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const {
414 return selectAddrModeIndexed(Root, Width / 8);
415 }
416
417 std::optional<bool>
418 isWorthFoldingIntoAddrMode(MachineInstr &MI,
419 const MachineRegisterInfo &MRI) const;
420
421 bool isWorthFoldingIntoExtendedReg(MachineInstr &MI,
422 const MachineRegisterInfo &MRI,
423 bool IsAddrOperand) const;
424 ComplexRendererFns
425 selectAddrModeShiftedExtendXReg(MachineOperand &Root,
426 unsigned SizeInBytes) const;
427
428 /// Returns a \p ComplexRendererFns which contains a base, offset, and whether
429 /// or not a shift + extend should be folded into an addressing mode. Returns
430 /// None when this is not profitable or possible.
431 ComplexRendererFns
432 selectExtendedSHL(MachineOperand &Root, MachineOperand &Base,
433 MachineOperand &Offset, unsigned SizeInBytes,
434 bool WantsExt) const;
435 ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const;
436 ComplexRendererFns selectAddrModeXRO(MachineOperand &Root,
437 unsigned SizeInBytes) const;
438 template <int Width>
selectAddrModeXRO(MachineOperand & Root) const439 ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const {
440 return selectAddrModeXRO(Root, Width / 8);
441 }
442
443 ComplexRendererFns selectAddrModeWRO(MachineOperand &Root,
444 unsigned SizeInBytes) const;
445 template <int Width>
selectAddrModeWRO(MachineOperand & Root) const446 ComplexRendererFns selectAddrModeWRO(MachineOperand &Root) const {
447 return selectAddrModeWRO(Root, Width / 8);
448 }
449
450 ComplexRendererFns selectShiftedRegister(MachineOperand &Root,
451 bool AllowROR = false) const;
452
selectArithShiftedRegister(MachineOperand & Root) const453 ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const {
454 return selectShiftedRegister(Root);
455 }
456
selectLogicalShiftedRegister(MachineOperand & Root) const457 ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const {
458 return selectShiftedRegister(Root, true);
459 }
460
461 /// Given an extend instruction, determine the correct shift-extend type for
462 /// that instruction.
463 ///
464 /// If the instruction is going to be used in a load or store, pass
465 /// \p IsLoadStore = true.
466 AArch64_AM::ShiftExtendType
467 getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI,
468 bool IsLoadStore = false) const;
469
470 /// Move \p Reg to \p RC if \p Reg is not already on \p RC.
471 ///
472 /// \returns Either \p Reg if no change was necessary, or the new register
473 /// created by moving \p Reg.
474 ///
475 /// Note: This uses emitCopy right now.
476 Register moveScalarRegClass(Register Reg, const TargetRegisterClass &RC,
477 MachineIRBuilder &MIB) const;
478
479 ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const;
480
481 ComplexRendererFns selectExtractHigh(MachineOperand &Root) const;
482
483 void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI,
484 int OpIdx = -1) const;
485 void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I,
486 int OpIdx = -1) const;
487 void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I,
488 int OpIdx = -1) const;
489 void renderUbsanTrap(MachineInstrBuilder &MIB, const MachineInstr &MI,
490 int OpIdx) const;
491 void renderFPImm16(MachineInstrBuilder &MIB, const MachineInstr &MI,
492 int OpIdx = -1) const;
493 void renderFPImm32(MachineInstrBuilder &MIB, const MachineInstr &MI,
494 int OpIdx = -1) const;
495 void renderFPImm64(MachineInstrBuilder &MIB, const MachineInstr &MI,
496 int OpIdx = -1) const;
497 void renderFPImm32SIMDModImmType4(MachineInstrBuilder &MIB,
498 const MachineInstr &MI,
499 int OpIdx = -1) const;
500
501 // Materialize a GlobalValue or BlockAddress using a movz+movk sequence.
502 void materializeLargeCMVal(MachineInstr &I, const Value *V, unsigned OpFlags);
503
504 // Optimization methods.
505 bool tryOptSelect(GSelect &Sel);
506 bool tryOptSelectConjunction(GSelect &Sel, MachineInstr &CondMI);
507 MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
508 MachineOperand &Predicate,
509 MachineIRBuilder &MIRBuilder) const;
510
511 /// Return true if \p MI is a load or store of \p NumBytes bytes.
512 bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const;
513
514 /// Returns true if \p MI is guaranteed to have the high-half of a 64-bit
515 /// register zeroed out. In other words, the result of MI has been explicitly
516 /// zero extended.
517 bool isDef32(const MachineInstr &MI) const;
518
519 const AArch64TargetMachine &TM;
520 const AArch64Subtarget &STI;
521 const AArch64InstrInfo &TII;
522 const AArch64RegisterInfo &TRI;
523 const AArch64RegisterBankInfo &RBI;
524
525 bool ProduceNonFlagSettingCondBr = false;
526
527 // Some cached values used during selection.
528 // We use LR as a live-in register, and we keep track of it here as it can be
529 // clobbered by calls.
530 Register MFReturnAddr;
531
532 MachineIRBuilder MIB;
533
534 #define GET_GLOBALISEL_PREDICATES_DECL
535 #include "AArch64GenGlobalISel.inc"
536 #undef GET_GLOBALISEL_PREDICATES_DECL
537
538 // We declare the temporaries used by selectImpl() in the class to minimize the
539 // cost of constructing placeholder values.
540 #define GET_GLOBALISEL_TEMPORARIES_DECL
541 #include "AArch64GenGlobalISel.inc"
542 #undef GET_GLOBALISEL_TEMPORARIES_DECL
543 };
544
545 } // end anonymous namespace
546
547 #define GET_GLOBALISEL_IMPL
548 #include "AArch64GenGlobalISel.inc"
549 #undef GET_GLOBALISEL_IMPL
550
AArch64InstructionSelector(const AArch64TargetMachine & TM,const AArch64Subtarget & STI,const AArch64RegisterBankInfo & RBI)551 AArch64InstructionSelector::AArch64InstructionSelector(
552 const AArch64TargetMachine &TM, const AArch64Subtarget &STI,
553 const AArch64RegisterBankInfo &RBI)
554 : TM(TM), STI(STI), TII(*STI.getInstrInfo()), TRI(*STI.getRegisterInfo()),
555 RBI(RBI),
556 #define GET_GLOBALISEL_PREDICATES_INIT
557 #include "AArch64GenGlobalISel.inc"
558 #undef GET_GLOBALISEL_PREDICATES_INIT
559 #define GET_GLOBALISEL_TEMPORARIES_INIT
560 #include "AArch64GenGlobalISel.inc"
561 #undef GET_GLOBALISEL_TEMPORARIES_INIT
562 {
563 }
564
565 // FIXME: This should be target-independent, inferred from the types declared
566 // for each class in the bank.
567 //
568 /// Given a register bank, and a type, return the smallest register class that
569 /// can represent that combination.
570 static const TargetRegisterClass *
getRegClassForTypeOnBank(LLT Ty,const RegisterBank & RB,bool GetAllRegSet=false)571 getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB,
572 bool GetAllRegSet = false) {
573 if (RB.getID() == AArch64::GPRRegBankID) {
574 if (Ty.getSizeInBits() <= 32)
575 return GetAllRegSet ? &AArch64::GPR32allRegClass
576 : &AArch64::GPR32RegClass;
577 if (Ty.getSizeInBits() == 64)
578 return GetAllRegSet ? &AArch64::GPR64allRegClass
579 : &AArch64::GPR64RegClass;
580 if (Ty.getSizeInBits() == 128)
581 return &AArch64::XSeqPairsClassRegClass;
582 return nullptr;
583 }
584
585 if (RB.getID() == AArch64::FPRRegBankID) {
586 switch (Ty.getSizeInBits()) {
587 case 8:
588 return &AArch64::FPR8RegClass;
589 case 16:
590 return &AArch64::FPR16RegClass;
591 case 32:
592 return &AArch64::FPR32RegClass;
593 case 64:
594 return &AArch64::FPR64RegClass;
595 case 128:
596 return &AArch64::FPR128RegClass;
597 }
598 return nullptr;
599 }
600
601 return nullptr;
602 }
603
604 /// Given a register bank, and size in bits, return the smallest register class
605 /// that can represent that combination.
606 static const TargetRegisterClass *
getMinClassForRegBank(const RegisterBank & RB,TypeSize SizeInBits,bool GetAllRegSet=false)607 getMinClassForRegBank(const RegisterBank &RB, TypeSize SizeInBits,
608 bool GetAllRegSet = false) {
609 if (SizeInBits.isScalable()) {
610 assert(RB.getID() == AArch64::FPRRegBankID &&
611 "Expected FPR regbank for scalable type size");
612 return &AArch64::ZPRRegClass;
613 }
614
615 unsigned RegBankID = RB.getID();
616
617 if (RegBankID == AArch64::GPRRegBankID) {
618 if (SizeInBits <= 32)
619 return GetAllRegSet ? &AArch64::GPR32allRegClass
620 : &AArch64::GPR32RegClass;
621 if (SizeInBits == 64)
622 return GetAllRegSet ? &AArch64::GPR64allRegClass
623 : &AArch64::GPR64RegClass;
624 if (SizeInBits == 128)
625 return &AArch64::XSeqPairsClassRegClass;
626 }
627
628 if (RegBankID == AArch64::FPRRegBankID) {
629 switch (SizeInBits) {
630 default:
631 return nullptr;
632 case 8:
633 return &AArch64::FPR8RegClass;
634 case 16:
635 return &AArch64::FPR16RegClass;
636 case 32:
637 return &AArch64::FPR32RegClass;
638 case 64:
639 return &AArch64::FPR64RegClass;
640 case 128:
641 return &AArch64::FPR128RegClass;
642 }
643 }
644
645 return nullptr;
646 }
647
648 /// Returns the correct subregister to use for a given register class.
getSubRegForClass(const TargetRegisterClass * RC,const TargetRegisterInfo & TRI,unsigned & SubReg)649 static bool getSubRegForClass(const TargetRegisterClass *RC,
650 const TargetRegisterInfo &TRI, unsigned &SubReg) {
651 switch (TRI.getRegSizeInBits(*RC)) {
652 case 8:
653 SubReg = AArch64::bsub;
654 break;
655 case 16:
656 SubReg = AArch64::hsub;
657 break;
658 case 32:
659 if (RC != &AArch64::FPR32RegClass)
660 SubReg = AArch64::sub_32;
661 else
662 SubReg = AArch64::ssub;
663 break;
664 case 64:
665 SubReg = AArch64::dsub;
666 break;
667 default:
668 LLVM_DEBUG(
669 dbgs() << "Couldn't find appropriate subregister for register class.");
670 return false;
671 }
672
673 return true;
674 }
675
676 /// Returns the minimum size the given register bank can hold.
getMinSizeForRegBank(const RegisterBank & RB)677 static unsigned getMinSizeForRegBank(const RegisterBank &RB) {
678 switch (RB.getID()) {
679 case AArch64::GPRRegBankID:
680 return 32;
681 case AArch64::FPRRegBankID:
682 return 8;
683 default:
684 llvm_unreachable("Tried to get minimum size for unknown register bank.");
685 }
686 }
687
688 /// Create a REG_SEQUENCE instruction using the registers in \p Regs.
689 /// Helper function for functions like createDTuple and createQTuple.
690 ///
691 /// \p RegClassIDs - The list of register class IDs available for some tuple of
692 /// a scalar class. E.g. QQRegClassID, QQQRegClassID, QQQQRegClassID. This is
693 /// expected to contain between 2 and 4 tuple classes.
694 ///
695 /// \p SubRegs - The list of subregister classes associated with each register
696 /// class ID in \p RegClassIDs. E.g., QQRegClassID should use the qsub0
697 /// subregister class. The index of each subregister class is expected to
698 /// correspond with the index of each register class.
699 ///
700 /// \returns Either the destination register of REG_SEQUENCE instruction that
701 /// was created, or the 0th element of \p Regs if \p Regs contains a single
702 /// element.
createTuple(ArrayRef<Register> Regs,const unsigned RegClassIDs[],const unsigned SubRegs[],MachineIRBuilder & MIB)703 static Register createTuple(ArrayRef<Register> Regs,
704 const unsigned RegClassIDs[],
705 const unsigned SubRegs[], MachineIRBuilder &MIB) {
706 unsigned NumRegs = Regs.size();
707 if (NumRegs == 1)
708 return Regs[0];
709 assert(NumRegs >= 2 && NumRegs <= 4 &&
710 "Only support between two and 4 registers in a tuple!");
711 const TargetRegisterInfo *TRI = MIB.getMF().getSubtarget().getRegisterInfo();
712 auto *DesiredClass = TRI->getRegClass(RegClassIDs[NumRegs - 2]);
713 auto RegSequence =
714 MIB.buildInstr(TargetOpcode::REG_SEQUENCE, {DesiredClass}, {});
715 for (unsigned I = 0, E = Regs.size(); I < E; ++I) {
716 RegSequence.addUse(Regs[I]);
717 RegSequence.addImm(SubRegs[I]);
718 }
719 return RegSequence.getReg(0);
720 }
721
722 /// Create a tuple of D-registers using the registers in \p Regs.
createDTuple(ArrayRef<Register> Regs,MachineIRBuilder & MIB)723 static Register createDTuple(ArrayRef<Register> Regs, MachineIRBuilder &MIB) {
724 static const unsigned RegClassIDs[] = {
725 AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
726 static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
727 AArch64::dsub2, AArch64::dsub3};
728 return createTuple(Regs, RegClassIDs, SubRegs, MIB);
729 }
730
731 /// Create a tuple of Q-registers using the registers in \p Regs.
createQTuple(ArrayRef<Register> Regs,MachineIRBuilder & MIB)732 static Register createQTuple(ArrayRef<Register> Regs, MachineIRBuilder &MIB) {
733 static const unsigned RegClassIDs[] = {
734 AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
735 static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
736 AArch64::qsub2, AArch64::qsub3};
737 return createTuple(Regs, RegClassIDs, SubRegs, MIB);
738 }
739
getImmedFromMO(const MachineOperand & Root)740 static std::optional<uint64_t> getImmedFromMO(const MachineOperand &Root) {
741 auto &MI = *Root.getParent();
742 auto &MBB = *MI.getParent();
743 auto &MF = *MBB.getParent();
744 auto &MRI = MF.getRegInfo();
745 uint64_t Immed;
746 if (Root.isImm())
747 Immed = Root.getImm();
748 else if (Root.isCImm())
749 Immed = Root.getCImm()->getZExtValue();
750 else if (Root.isReg()) {
751 auto ValAndVReg =
752 getIConstantVRegValWithLookThrough(Root.getReg(), MRI, true);
753 if (!ValAndVReg)
754 return std::nullopt;
755 Immed = ValAndVReg->Value.getSExtValue();
756 } else
757 return std::nullopt;
758 return Immed;
759 }
760
761 /// Check whether \p I is a currently unsupported binary operation:
762 /// - it has an unsized type
763 /// - an operand is not a vreg
764 /// - all operands are not in the same bank
765 /// These are checks that should someday live in the verifier, but right now,
766 /// these are mostly limitations of the aarch64 selector.
unsupportedBinOp(const MachineInstr & I,const AArch64RegisterBankInfo & RBI,const MachineRegisterInfo & MRI,const AArch64RegisterInfo & TRI)767 static bool unsupportedBinOp(const MachineInstr &I,
768 const AArch64RegisterBankInfo &RBI,
769 const MachineRegisterInfo &MRI,
770 const AArch64RegisterInfo &TRI) {
771 LLT Ty = MRI.getType(I.getOperand(0).getReg());
772 if (!Ty.isValid()) {
773 LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n");
774 return true;
775 }
776
777 const RegisterBank *PrevOpBank = nullptr;
778 for (auto &MO : I.operands()) {
779 // FIXME: Support non-register operands.
780 if (!MO.isReg()) {
781 LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n");
782 return true;
783 }
784
785 // FIXME: Can generic operations have physical registers operands? If
786 // so, this will need to be taught about that, and we'll need to get the
787 // bank out of the minimal class for the register.
788 // Either way, this needs to be documented (and possibly verified).
789 if (!MO.getReg().isVirtual()) {
790 LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n");
791 return true;
792 }
793
794 const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI);
795 if (!OpBank) {
796 LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n");
797 return true;
798 }
799
800 if (PrevOpBank && OpBank != PrevOpBank) {
801 LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n");
802 return true;
803 }
804 PrevOpBank = OpBank;
805 }
806 return false;
807 }
808
809 /// Select the AArch64 opcode for the basic binary operation \p GenericOpc
810 /// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID
811 /// and of size \p OpSize.
812 /// \returns \p GenericOpc if the combination is unsupported.
selectBinaryOp(unsigned GenericOpc,unsigned RegBankID,unsigned OpSize)813 static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID,
814 unsigned OpSize) {
815 switch (RegBankID) {
816 case AArch64::GPRRegBankID:
817 if (OpSize == 32) {
818 switch (GenericOpc) {
819 case TargetOpcode::G_SHL:
820 return AArch64::LSLVWr;
821 case TargetOpcode::G_LSHR:
822 return AArch64::LSRVWr;
823 case TargetOpcode::G_ASHR:
824 return AArch64::ASRVWr;
825 default:
826 return GenericOpc;
827 }
828 } else if (OpSize == 64) {
829 switch (GenericOpc) {
830 case TargetOpcode::G_PTR_ADD:
831 return AArch64::ADDXrr;
832 case TargetOpcode::G_SHL:
833 return AArch64::LSLVXr;
834 case TargetOpcode::G_LSHR:
835 return AArch64::LSRVXr;
836 case TargetOpcode::G_ASHR:
837 return AArch64::ASRVXr;
838 default:
839 return GenericOpc;
840 }
841 }
842 break;
843 case AArch64::FPRRegBankID:
844 switch (OpSize) {
845 case 32:
846 switch (GenericOpc) {
847 case TargetOpcode::G_FADD:
848 return AArch64::FADDSrr;
849 case TargetOpcode::G_FSUB:
850 return AArch64::FSUBSrr;
851 case TargetOpcode::G_FMUL:
852 return AArch64::FMULSrr;
853 case TargetOpcode::G_FDIV:
854 return AArch64::FDIVSrr;
855 default:
856 return GenericOpc;
857 }
858 case 64:
859 switch (GenericOpc) {
860 case TargetOpcode::G_FADD:
861 return AArch64::FADDDrr;
862 case TargetOpcode::G_FSUB:
863 return AArch64::FSUBDrr;
864 case TargetOpcode::G_FMUL:
865 return AArch64::FMULDrr;
866 case TargetOpcode::G_FDIV:
867 return AArch64::FDIVDrr;
868 case TargetOpcode::G_OR:
869 return AArch64::ORRv8i8;
870 default:
871 return GenericOpc;
872 }
873 }
874 break;
875 }
876 return GenericOpc;
877 }
878
879 /// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc,
880 /// appropriate for the (value) register bank \p RegBankID and of memory access
881 /// size \p OpSize. This returns the variant with the base+unsigned-immediate
882 /// addressing mode (e.g., LDRXui).
883 /// \returns \p GenericOpc if the combination is unsupported.
selectLoadStoreUIOp(unsigned GenericOpc,unsigned RegBankID,unsigned OpSize)884 static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID,
885 unsigned OpSize) {
886 const bool isStore = GenericOpc == TargetOpcode::G_STORE;
887 switch (RegBankID) {
888 case AArch64::GPRRegBankID:
889 switch (OpSize) {
890 case 8:
891 return isStore ? AArch64::STRBBui : AArch64::LDRBBui;
892 case 16:
893 return isStore ? AArch64::STRHHui : AArch64::LDRHHui;
894 case 32:
895 return isStore ? AArch64::STRWui : AArch64::LDRWui;
896 case 64:
897 return isStore ? AArch64::STRXui : AArch64::LDRXui;
898 }
899 break;
900 case AArch64::FPRRegBankID:
901 switch (OpSize) {
902 case 8:
903 return isStore ? AArch64::STRBui : AArch64::LDRBui;
904 case 16:
905 return isStore ? AArch64::STRHui : AArch64::LDRHui;
906 case 32:
907 return isStore ? AArch64::STRSui : AArch64::LDRSui;
908 case 64:
909 return isStore ? AArch64::STRDui : AArch64::LDRDui;
910 case 128:
911 return isStore ? AArch64::STRQui : AArch64::LDRQui;
912 }
913 break;
914 }
915 return GenericOpc;
916 }
917
918 /// Helper function for selectCopy. Inserts a subregister copy from \p SrcReg
919 /// to \p *To.
920 ///
921 /// E.g "To = COPY SrcReg:SubReg"
copySubReg(MachineInstr & I,MachineRegisterInfo & MRI,const RegisterBankInfo & RBI,Register SrcReg,const TargetRegisterClass * To,unsigned SubReg)922 static bool copySubReg(MachineInstr &I, MachineRegisterInfo &MRI,
923 const RegisterBankInfo &RBI, Register SrcReg,
924 const TargetRegisterClass *To, unsigned SubReg) {
925 assert(SrcReg.isValid() && "Expected a valid source register?");
926 assert(To && "Destination register class cannot be null");
927 assert(SubReg && "Expected a valid subregister");
928
929 MachineIRBuilder MIB(I);
930 auto SubRegCopy =
931 MIB.buildInstr(TargetOpcode::COPY, {To}, {}).addReg(SrcReg, 0, SubReg);
932 MachineOperand &RegOp = I.getOperand(1);
933 RegOp.setReg(SubRegCopy.getReg(0));
934
935 // It's possible that the destination register won't be constrained. Make
936 // sure that happens.
937 if (!I.getOperand(0).getReg().isPhysical())
938 RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI);
939
940 return true;
941 }
942
943 /// Helper function to get the source and destination register classes for a
944 /// copy. Returns a std::pair containing the source register class for the
945 /// copy, and the destination register class for the copy. If a register class
946 /// cannot be determined, then it will be nullptr.
947 static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
getRegClassesForCopy(MachineInstr & I,const TargetInstrInfo & TII,MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)948 getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII,
949 MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
950 const RegisterBankInfo &RBI) {
951 Register DstReg = I.getOperand(0).getReg();
952 Register SrcReg = I.getOperand(1).getReg();
953 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
954 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
955
956 TypeSize DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
957 TypeSize SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
958
959 // Special casing for cross-bank copies of s1s. We can technically represent
960 // a 1-bit value with any size of register. The minimum size for a GPR is 32
961 // bits. So, we need to put the FPR on 32 bits as well.
962 //
963 // FIXME: I'm not sure if this case holds true outside of copies. If it does,
964 // then we can pull it into the helpers that get the appropriate class for a
965 // register bank. Or make a new helper that carries along some constraint
966 // information.
967 if (SrcRegBank != DstRegBank && (DstSize == 1 && SrcSize == 1))
968 SrcSize = DstSize = TypeSize::getFixed(32);
969
970 return {getMinClassForRegBank(SrcRegBank, SrcSize, true),
971 getMinClassForRegBank(DstRegBank, DstSize, true)};
972 }
973
974 // FIXME: We need some sort of API in RBI/TRI to allow generic code to
975 // constrain operands of simple instructions given a TargetRegisterClass
976 // and LLT
selectDebugInstr(MachineInstr & I,MachineRegisterInfo & MRI,const RegisterBankInfo & RBI)977 static bool selectDebugInstr(MachineInstr &I, MachineRegisterInfo &MRI,
978 const RegisterBankInfo &RBI) {
979 for (MachineOperand &MO : I.operands()) {
980 if (!MO.isReg())
981 continue;
982 Register Reg = MO.getReg();
983 if (!Reg)
984 continue;
985 if (Reg.isPhysical())
986 continue;
987 LLT Ty = MRI.getType(Reg);
988 const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
989 const TargetRegisterClass *RC =
990 RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
991 if (!RC) {
992 const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
993 RC = getRegClassForTypeOnBank(Ty, RB);
994 if (!RC) {
995 LLVM_DEBUG(
996 dbgs() << "Warning: DBG_VALUE operand has unexpected size/bank\n");
997 break;
998 }
999 }
1000 RBI.constrainGenericRegister(Reg, *RC, MRI);
1001 }
1002
1003 return true;
1004 }
1005
selectCopy(MachineInstr & I,const TargetInstrInfo & TII,MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)1006 static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
1007 MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
1008 const RegisterBankInfo &RBI) {
1009 Register DstReg = I.getOperand(0).getReg();
1010 Register SrcReg = I.getOperand(1).getReg();
1011 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
1012 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
1013
1014 // Find the correct register classes for the source and destination registers.
1015 const TargetRegisterClass *SrcRC;
1016 const TargetRegisterClass *DstRC;
1017 std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI);
1018
1019 if (!DstRC) {
1020 LLVM_DEBUG(dbgs() << "Unexpected dest size "
1021 << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n');
1022 return false;
1023 }
1024
1025 // Is this a copy? If so, then we may need to insert a subregister copy.
1026 if (I.isCopy()) {
1027 // Yes. Check if there's anything to fix up.
1028 if (!SrcRC) {
1029 LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n");
1030 return false;
1031 }
1032
1033 const TypeSize SrcSize = TRI.getRegSizeInBits(*SrcRC);
1034 const TypeSize DstSize = TRI.getRegSizeInBits(*DstRC);
1035 unsigned SubReg;
1036
1037 // If the source bank doesn't support a subregister copy small enough,
1038 // then we first need to copy to the destination bank.
1039 if (getMinSizeForRegBank(SrcRegBank) > DstSize) {
1040 const TargetRegisterClass *DstTempRC =
1041 getMinClassForRegBank(DstRegBank, SrcSize, /* GetAllRegSet */ true);
1042 getSubRegForClass(DstRC, TRI, SubReg);
1043
1044 MachineIRBuilder MIB(I);
1045 auto Copy = MIB.buildCopy({DstTempRC}, {SrcReg});
1046 copySubReg(I, MRI, RBI, Copy.getReg(0), DstRC, SubReg);
1047 } else if (SrcSize > DstSize) {
1048 // If the source register is bigger than the destination we need to
1049 // perform a subregister copy.
1050 const TargetRegisterClass *SubRegRC =
1051 getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
1052 getSubRegForClass(SubRegRC, TRI, SubReg);
1053 copySubReg(I, MRI, RBI, SrcReg, DstRC, SubReg);
1054 } else if (DstSize > SrcSize) {
1055 // If the destination register is bigger than the source we need to do
1056 // a promotion using SUBREG_TO_REG.
1057 const TargetRegisterClass *PromotionRC =
1058 getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
1059 getSubRegForClass(SrcRC, TRI, SubReg);
1060
1061 Register PromoteReg = MRI.createVirtualRegister(PromotionRC);
1062 BuildMI(*I.getParent(), I, I.getDebugLoc(),
1063 TII.get(AArch64::SUBREG_TO_REG), PromoteReg)
1064 .addImm(0)
1065 .addUse(SrcReg)
1066 .addImm(SubReg);
1067 MachineOperand &RegOp = I.getOperand(1);
1068 RegOp.setReg(PromoteReg);
1069 }
1070
1071 // If the destination is a physical register, then there's nothing to
1072 // change, so we're done.
1073 if (DstReg.isPhysical())
1074 return true;
1075 }
1076
1077 // No need to constrain SrcReg. It will get constrained when we hit another
1078 // of its use or its defs. Copies do not have constraints.
1079 if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
1080 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
1081 << " operand\n");
1082 return false;
1083 }
1084
1085 // If this a GPR ZEXT that we want to just reduce down into a copy.
1086 // The sizes will be mismatched with the source < 32b but that's ok.
1087 if (I.getOpcode() == TargetOpcode::G_ZEXT) {
1088 I.setDesc(TII.get(AArch64::COPY));
1089 assert(SrcRegBank.getID() == AArch64::GPRRegBankID);
1090 return selectCopy(I, TII, MRI, TRI, RBI);
1091 }
1092
1093 I.setDesc(TII.get(AArch64::COPY));
1094 return true;
1095 }
1096
selectFPConvOpc(unsigned GenericOpc,LLT DstTy,LLT SrcTy)1097 static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) {
1098 if (!DstTy.isScalar() || !SrcTy.isScalar())
1099 return GenericOpc;
1100
1101 const unsigned DstSize = DstTy.getSizeInBits();
1102 const unsigned SrcSize = SrcTy.getSizeInBits();
1103
1104 switch (DstSize) {
1105 case 32:
1106 switch (SrcSize) {
1107 case 32:
1108 switch (GenericOpc) {
1109 case TargetOpcode::G_SITOFP:
1110 return AArch64::SCVTFUWSri;
1111 case TargetOpcode::G_UITOFP:
1112 return AArch64::UCVTFUWSri;
1113 case TargetOpcode::G_FPTOSI:
1114 return AArch64::FCVTZSUWSr;
1115 case TargetOpcode::G_FPTOUI:
1116 return AArch64::FCVTZUUWSr;
1117 default:
1118 return GenericOpc;
1119 }
1120 case 64:
1121 switch (GenericOpc) {
1122 case TargetOpcode::G_SITOFP:
1123 return AArch64::SCVTFUXSri;
1124 case TargetOpcode::G_UITOFP:
1125 return AArch64::UCVTFUXSri;
1126 case TargetOpcode::G_FPTOSI:
1127 return AArch64::FCVTZSUWDr;
1128 case TargetOpcode::G_FPTOUI:
1129 return AArch64::FCVTZUUWDr;
1130 default:
1131 return GenericOpc;
1132 }
1133 default:
1134 return GenericOpc;
1135 }
1136 case 64:
1137 switch (SrcSize) {
1138 case 32:
1139 switch (GenericOpc) {
1140 case TargetOpcode::G_SITOFP:
1141 return AArch64::SCVTFUWDri;
1142 case TargetOpcode::G_UITOFP:
1143 return AArch64::UCVTFUWDri;
1144 case TargetOpcode::G_FPTOSI:
1145 return AArch64::FCVTZSUXSr;
1146 case TargetOpcode::G_FPTOUI:
1147 return AArch64::FCVTZUUXSr;
1148 default:
1149 return GenericOpc;
1150 }
1151 case 64:
1152 switch (GenericOpc) {
1153 case TargetOpcode::G_SITOFP:
1154 return AArch64::SCVTFUXDri;
1155 case TargetOpcode::G_UITOFP:
1156 return AArch64::UCVTFUXDri;
1157 case TargetOpcode::G_FPTOSI:
1158 return AArch64::FCVTZSUXDr;
1159 case TargetOpcode::G_FPTOUI:
1160 return AArch64::FCVTZUUXDr;
1161 default:
1162 return GenericOpc;
1163 }
1164 default:
1165 return GenericOpc;
1166 }
1167 default:
1168 return GenericOpc;
1169 };
1170 return GenericOpc;
1171 }
1172
1173 MachineInstr *
emitSelect(Register Dst,Register True,Register False,AArch64CC::CondCode CC,MachineIRBuilder & MIB) const1174 AArch64InstructionSelector::emitSelect(Register Dst, Register True,
1175 Register False, AArch64CC::CondCode CC,
1176 MachineIRBuilder &MIB) const {
1177 MachineRegisterInfo &MRI = *MIB.getMRI();
1178 assert(RBI.getRegBank(False, MRI, TRI)->getID() ==
1179 RBI.getRegBank(True, MRI, TRI)->getID() &&
1180 "Expected both select operands to have the same regbank?");
1181 LLT Ty = MRI.getType(True);
1182 if (Ty.isVector())
1183 return nullptr;
1184 const unsigned Size = Ty.getSizeInBits();
1185 assert((Size == 32 || Size == 64) &&
1186 "Expected 32 bit or 64 bit select only?");
1187 const bool Is32Bit = Size == 32;
1188 if (RBI.getRegBank(True, MRI, TRI)->getID() != AArch64::GPRRegBankID) {
1189 unsigned Opc = Is32Bit ? AArch64::FCSELSrrr : AArch64::FCSELDrrr;
1190 auto FCSel = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC);
1191 constrainSelectedInstRegOperands(*FCSel, TII, TRI, RBI);
1192 return &*FCSel;
1193 }
1194
1195 // By default, we'll try and emit a CSEL.
1196 unsigned Opc = Is32Bit ? AArch64::CSELWr : AArch64::CSELXr;
1197 bool Optimized = false;
1198 auto TryFoldBinOpIntoSelect = [&Opc, Is32Bit, &CC, &MRI,
1199 &Optimized](Register &Reg, Register &OtherReg,
1200 bool Invert) {
1201 if (Optimized)
1202 return false;
1203
1204 // Attempt to fold:
1205 //
1206 // %sub = G_SUB 0, %x
1207 // %select = G_SELECT cc, %reg, %sub
1208 //
1209 // Into:
1210 // %select = CSNEG %reg, %x, cc
1211 Register MatchReg;
1212 if (mi_match(Reg, MRI, m_Neg(m_Reg(MatchReg)))) {
1213 Opc = Is32Bit ? AArch64::CSNEGWr : AArch64::CSNEGXr;
1214 Reg = MatchReg;
1215 if (Invert) {
1216 CC = AArch64CC::getInvertedCondCode(CC);
1217 std::swap(Reg, OtherReg);
1218 }
1219 return true;
1220 }
1221
1222 // Attempt to fold:
1223 //
1224 // %xor = G_XOR %x, -1
1225 // %select = G_SELECT cc, %reg, %xor
1226 //
1227 // Into:
1228 // %select = CSINV %reg, %x, cc
1229 if (mi_match(Reg, MRI, m_Not(m_Reg(MatchReg)))) {
1230 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1231 Reg = MatchReg;
1232 if (Invert) {
1233 CC = AArch64CC::getInvertedCondCode(CC);
1234 std::swap(Reg, OtherReg);
1235 }
1236 return true;
1237 }
1238
1239 // Attempt to fold:
1240 //
1241 // %add = G_ADD %x, 1
1242 // %select = G_SELECT cc, %reg, %add
1243 //
1244 // Into:
1245 // %select = CSINC %reg, %x, cc
1246 if (mi_match(Reg, MRI,
1247 m_any_of(m_GAdd(m_Reg(MatchReg), m_SpecificICst(1)),
1248 m_GPtrAdd(m_Reg(MatchReg), m_SpecificICst(1))))) {
1249 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1250 Reg = MatchReg;
1251 if (Invert) {
1252 CC = AArch64CC::getInvertedCondCode(CC);
1253 std::swap(Reg, OtherReg);
1254 }
1255 return true;
1256 }
1257
1258 return false;
1259 };
1260
1261 // Helper lambda which tries to use CSINC/CSINV for the instruction when its
1262 // true/false values are constants.
1263 // FIXME: All of these patterns already exist in tablegen. We should be
1264 // able to import these.
1265 auto TryOptSelectCst = [&Opc, &True, &False, &CC, Is32Bit, &MRI,
1266 &Optimized]() {
1267 if (Optimized)
1268 return false;
1269 auto TrueCst = getIConstantVRegValWithLookThrough(True, MRI);
1270 auto FalseCst = getIConstantVRegValWithLookThrough(False, MRI);
1271 if (!TrueCst && !FalseCst)
1272 return false;
1273
1274 Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
1275 if (TrueCst && FalseCst) {
1276 int64_t T = TrueCst->Value.getSExtValue();
1277 int64_t F = FalseCst->Value.getSExtValue();
1278
1279 if (T == 0 && F == 1) {
1280 // G_SELECT cc, 0, 1 -> CSINC zreg, zreg, cc
1281 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1282 True = ZReg;
1283 False = ZReg;
1284 return true;
1285 }
1286
1287 if (T == 0 && F == -1) {
1288 // G_SELECT cc 0, -1 -> CSINV zreg, zreg cc
1289 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1290 True = ZReg;
1291 False = ZReg;
1292 return true;
1293 }
1294 }
1295
1296 if (TrueCst) {
1297 int64_t T = TrueCst->Value.getSExtValue();
1298 if (T == 1) {
1299 // G_SELECT cc, 1, f -> CSINC f, zreg, inv_cc
1300 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1301 True = False;
1302 False = ZReg;
1303 CC = AArch64CC::getInvertedCondCode(CC);
1304 return true;
1305 }
1306
1307 if (T == -1) {
1308 // G_SELECT cc, -1, f -> CSINV f, zreg, inv_cc
1309 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1310 True = False;
1311 False = ZReg;
1312 CC = AArch64CC::getInvertedCondCode(CC);
1313 return true;
1314 }
1315 }
1316
1317 if (FalseCst) {
1318 int64_t F = FalseCst->Value.getSExtValue();
1319 if (F == 1) {
1320 // G_SELECT cc, t, 1 -> CSINC t, zreg, cc
1321 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1322 False = ZReg;
1323 return true;
1324 }
1325
1326 if (F == -1) {
1327 // G_SELECT cc, t, -1 -> CSINC t, zreg, cc
1328 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1329 False = ZReg;
1330 return true;
1331 }
1332 }
1333 return false;
1334 };
1335
1336 Optimized |= TryFoldBinOpIntoSelect(False, True, /*Invert = */ false);
1337 Optimized |= TryFoldBinOpIntoSelect(True, False, /*Invert = */ true);
1338 Optimized |= TryOptSelectCst();
1339 auto SelectInst = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC);
1340 constrainSelectedInstRegOperands(*SelectInst, TII, TRI, RBI);
1341 return &*SelectInst;
1342 }
1343
changeICMPPredToAArch64CC(CmpInst::Predicate P)1344 static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) {
1345 switch (P) {
1346 default:
1347 llvm_unreachable("Unknown condition code!");
1348 case CmpInst::ICMP_NE:
1349 return AArch64CC::NE;
1350 case CmpInst::ICMP_EQ:
1351 return AArch64CC::EQ;
1352 case CmpInst::ICMP_SGT:
1353 return AArch64CC::GT;
1354 case CmpInst::ICMP_SGE:
1355 return AArch64CC::GE;
1356 case CmpInst::ICMP_SLT:
1357 return AArch64CC::LT;
1358 case CmpInst::ICMP_SLE:
1359 return AArch64CC::LE;
1360 case CmpInst::ICMP_UGT:
1361 return AArch64CC::HI;
1362 case CmpInst::ICMP_UGE:
1363 return AArch64CC::HS;
1364 case CmpInst::ICMP_ULT:
1365 return AArch64CC::LO;
1366 case CmpInst::ICMP_ULE:
1367 return AArch64CC::LS;
1368 }
1369 }
1370
1371 /// changeFPCCToORAArch64CC - Convert an IR fp condition code to an AArch64 CC.
changeFPCCToORAArch64CC(CmpInst::Predicate CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1372 static void changeFPCCToORAArch64CC(CmpInst::Predicate CC,
1373 AArch64CC::CondCode &CondCode,
1374 AArch64CC::CondCode &CondCode2) {
1375 CondCode2 = AArch64CC::AL;
1376 switch (CC) {
1377 default:
1378 llvm_unreachable("Unknown FP condition!");
1379 case CmpInst::FCMP_OEQ:
1380 CondCode = AArch64CC::EQ;
1381 break;
1382 case CmpInst::FCMP_OGT:
1383 CondCode = AArch64CC::GT;
1384 break;
1385 case CmpInst::FCMP_OGE:
1386 CondCode = AArch64CC::GE;
1387 break;
1388 case CmpInst::FCMP_OLT:
1389 CondCode = AArch64CC::MI;
1390 break;
1391 case CmpInst::FCMP_OLE:
1392 CondCode = AArch64CC::LS;
1393 break;
1394 case CmpInst::FCMP_ONE:
1395 CondCode = AArch64CC::MI;
1396 CondCode2 = AArch64CC::GT;
1397 break;
1398 case CmpInst::FCMP_ORD:
1399 CondCode = AArch64CC::VC;
1400 break;
1401 case CmpInst::FCMP_UNO:
1402 CondCode = AArch64CC::VS;
1403 break;
1404 case CmpInst::FCMP_UEQ:
1405 CondCode = AArch64CC::EQ;
1406 CondCode2 = AArch64CC::VS;
1407 break;
1408 case CmpInst::FCMP_UGT:
1409 CondCode = AArch64CC::HI;
1410 break;
1411 case CmpInst::FCMP_UGE:
1412 CondCode = AArch64CC::PL;
1413 break;
1414 case CmpInst::FCMP_ULT:
1415 CondCode = AArch64CC::LT;
1416 break;
1417 case CmpInst::FCMP_ULE:
1418 CondCode = AArch64CC::LE;
1419 break;
1420 case CmpInst::FCMP_UNE:
1421 CondCode = AArch64CC::NE;
1422 break;
1423 }
1424 }
1425
1426 /// Convert an IR fp condition code to an AArch64 CC.
1427 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1428 /// should be AND'ed instead of OR'ed.
changeFPCCToANDAArch64CC(CmpInst::Predicate CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1429 static void changeFPCCToANDAArch64CC(CmpInst::Predicate CC,
1430 AArch64CC::CondCode &CondCode,
1431 AArch64CC::CondCode &CondCode2) {
1432 CondCode2 = AArch64CC::AL;
1433 switch (CC) {
1434 default:
1435 changeFPCCToORAArch64CC(CC, CondCode, CondCode2);
1436 assert(CondCode2 == AArch64CC::AL);
1437 break;
1438 case CmpInst::FCMP_ONE:
1439 // (a one b)
1440 // == ((a olt b) || (a ogt b))
1441 // == ((a ord b) && (a une b))
1442 CondCode = AArch64CC::VC;
1443 CondCode2 = AArch64CC::NE;
1444 break;
1445 case CmpInst::FCMP_UEQ:
1446 // (a ueq b)
1447 // == ((a uno b) || (a oeq b))
1448 // == ((a ule b) && (a uge b))
1449 CondCode = AArch64CC::PL;
1450 CondCode2 = AArch64CC::LE;
1451 break;
1452 }
1453 }
1454
1455 /// Return a register which can be used as a bit to test in a TB(N)Z.
getTestBitReg(Register Reg,uint64_t & Bit,bool & Invert,MachineRegisterInfo & MRI)1456 static Register getTestBitReg(Register Reg, uint64_t &Bit, bool &Invert,
1457 MachineRegisterInfo &MRI) {
1458 assert(Reg.isValid() && "Expected valid register!");
1459 bool HasZext = false;
1460 while (MachineInstr *MI = getDefIgnoringCopies(Reg, MRI)) {
1461 unsigned Opc = MI->getOpcode();
1462
1463 if (!MI->getOperand(0).isReg() ||
1464 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1465 break;
1466
1467 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
1468 //
1469 // (tbz (trunc x), b) -> (tbz x, b) is always safe, because the bit number
1470 // on the truncated x is the same as the bit number on x.
1471 if (Opc == TargetOpcode::G_ANYEXT || Opc == TargetOpcode::G_ZEXT ||
1472 Opc == TargetOpcode::G_TRUNC) {
1473 if (Opc == TargetOpcode::G_ZEXT)
1474 HasZext = true;
1475
1476 Register NextReg = MI->getOperand(1).getReg();
1477 // Did we find something worth folding?
1478 if (!NextReg.isValid() || !MRI.hasOneNonDBGUse(NextReg))
1479 break;
1480
1481 // NextReg is worth folding. Keep looking.
1482 Reg = NextReg;
1483 continue;
1484 }
1485
1486 // Attempt to find a suitable operation with a constant on one side.
1487 std::optional<uint64_t> C;
1488 Register TestReg;
1489 switch (Opc) {
1490 default:
1491 break;
1492 case TargetOpcode::G_AND:
1493 case TargetOpcode::G_XOR: {
1494 TestReg = MI->getOperand(1).getReg();
1495 Register ConstantReg = MI->getOperand(2).getReg();
1496 auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstantReg, MRI);
1497 if (!VRegAndVal) {
1498 // AND commutes, check the other side for a constant.
1499 // FIXME: Can we canonicalize the constant so that it's always on the
1500 // same side at some point earlier?
1501 std::swap(ConstantReg, TestReg);
1502 VRegAndVal = getIConstantVRegValWithLookThrough(ConstantReg, MRI);
1503 }
1504 if (VRegAndVal) {
1505 if (HasZext)
1506 C = VRegAndVal->Value.getZExtValue();
1507 else
1508 C = VRegAndVal->Value.getSExtValue();
1509 }
1510 break;
1511 }
1512 case TargetOpcode::G_ASHR:
1513 case TargetOpcode::G_LSHR:
1514 case TargetOpcode::G_SHL: {
1515 TestReg = MI->getOperand(1).getReg();
1516 auto VRegAndVal =
1517 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1518 if (VRegAndVal)
1519 C = VRegAndVal->Value.getSExtValue();
1520 break;
1521 }
1522 }
1523
1524 // Didn't find a constant or viable register. Bail out of the loop.
1525 if (!C || !TestReg.isValid())
1526 break;
1527
1528 // We found a suitable instruction with a constant. Check to see if we can
1529 // walk through the instruction.
1530 Register NextReg;
1531 unsigned TestRegSize = MRI.getType(TestReg).getSizeInBits();
1532 switch (Opc) {
1533 default:
1534 break;
1535 case TargetOpcode::G_AND:
1536 // (tbz (and x, m), b) -> (tbz x, b) when the b-th bit of m is set.
1537 if ((*C >> Bit) & 1)
1538 NextReg = TestReg;
1539 break;
1540 case TargetOpcode::G_SHL:
1541 // (tbz (shl x, c), b) -> (tbz x, b-c) when b-c is positive and fits in
1542 // the type of the register.
1543 if (*C <= Bit && (Bit - *C) < TestRegSize) {
1544 NextReg = TestReg;
1545 Bit = Bit - *C;
1546 }
1547 break;
1548 case TargetOpcode::G_ASHR:
1549 // (tbz (ashr x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits
1550 // in x
1551 NextReg = TestReg;
1552 Bit = Bit + *C;
1553 if (Bit >= TestRegSize)
1554 Bit = TestRegSize - 1;
1555 break;
1556 case TargetOpcode::G_LSHR:
1557 // (tbz (lshr x, c), b) -> (tbz x, b+c) when b + c is < # bits in x
1558 if ((Bit + *C) < TestRegSize) {
1559 NextReg = TestReg;
1560 Bit = Bit + *C;
1561 }
1562 break;
1563 case TargetOpcode::G_XOR:
1564 // We can walk through a G_XOR by inverting whether we use tbz/tbnz when
1565 // appropriate.
1566 //
1567 // e.g. If x' = xor x, c, and the b-th bit is set in c then
1568 //
1569 // tbz x', b -> tbnz x, b
1570 //
1571 // Because x' only has the b-th bit set if x does not.
1572 if ((*C >> Bit) & 1)
1573 Invert = !Invert;
1574 NextReg = TestReg;
1575 break;
1576 }
1577
1578 // Check if we found anything worth folding.
1579 if (!NextReg.isValid())
1580 return Reg;
1581 Reg = NextReg;
1582 }
1583
1584 return Reg;
1585 }
1586
emitTestBit(Register TestReg,uint64_t Bit,bool IsNegative,MachineBasicBlock * DstMBB,MachineIRBuilder & MIB) const1587 MachineInstr *AArch64InstructionSelector::emitTestBit(
1588 Register TestReg, uint64_t Bit, bool IsNegative, MachineBasicBlock *DstMBB,
1589 MachineIRBuilder &MIB) const {
1590 assert(TestReg.isValid());
1591 assert(ProduceNonFlagSettingCondBr &&
1592 "Cannot emit TB(N)Z with speculation tracking!");
1593 MachineRegisterInfo &MRI = *MIB.getMRI();
1594
1595 // Attempt to optimize the test bit by walking over instructions.
1596 TestReg = getTestBitReg(TestReg, Bit, IsNegative, MRI);
1597 LLT Ty = MRI.getType(TestReg);
1598 unsigned Size = Ty.getSizeInBits();
1599 assert(!Ty.isVector() && "Expected a scalar!");
1600 assert(Bit < 64 && "Bit is too large!");
1601
1602 // When the test register is a 64-bit register, we have to narrow to make
1603 // TBNZW work.
1604 bool UseWReg = Bit < 32;
1605 unsigned NecessarySize = UseWReg ? 32 : 64;
1606 if (Size != NecessarySize)
1607 TestReg = moveScalarRegClass(
1608 TestReg, UseWReg ? AArch64::GPR32RegClass : AArch64::GPR64RegClass,
1609 MIB);
1610
1611 static const unsigned OpcTable[2][2] = {{AArch64::TBZX, AArch64::TBNZX},
1612 {AArch64::TBZW, AArch64::TBNZW}};
1613 unsigned Opc = OpcTable[UseWReg][IsNegative];
1614 auto TestBitMI =
1615 MIB.buildInstr(Opc).addReg(TestReg).addImm(Bit).addMBB(DstMBB);
1616 constrainSelectedInstRegOperands(*TestBitMI, TII, TRI, RBI);
1617 return &*TestBitMI;
1618 }
1619
tryOptAndIntoCompareBranch(MachineInstr & AndInst,bool Invert,MachineBasicBlock * DstMBB,MachineIRBuilder & MIB) const1620 bool AArch64InstructionSelector::tryOptAndIntoCompareBranch(
1621 MachineInstr &AndInst, bool Invert, MachineBasicBlock *DstMBB,
1622 MachineIRBuilder &MIB) const {
1623 assert(AndInst.getOpcode() == TargetOpcode::G_AND && "Expected G_AND only?");
1624 // Given something like this:
1625 //
1626 // %x = ...Something...
1627 // %one = G_CONSTANT i64 1
1628 // %zero = G_CONSTANT i64 0
1629 // %and = G_AND %x, %one
1630 // %cmp = G_ICMP intpred(ne), %and, %zero
1631 // %cmp_trunc = G_TRUNC %cmp
1632 // G_BRCOND %cmp_trunc, %bb.3
1633 //
1634 // We want to try and fold the AND into the G_BRCOND and produce either a
1635 // TBNZ (when we have intpred(ne)) or a TBZ (when we have intpred(eq)).
1636 //
1637 // In this case, we'd get
1638 //
1639 // TBNZ %x %bb.3
1640 //
1641
1642 // Check if the AND has a constant on its RHS which we can use as a mask.
1643 // If it's a power of 2, then it's the same as checking a specific bit.
1644 // (e.g, ANDing with 8 == ANDing with 000...100 == testing if bit 3 is set)
1645 auto MaybeBit = getIConstantVRegValWithLookThrough(
1646 AndInst.getOperand(2).getReg(), *MIB.getMRI());
1647 if (!MaybeBit)
1648 return false;
1649
1650 int32_t Bit = MaybeBit->Value.exactLogBase2();
1651 if (Bit < 0)
1652 return false;
1653
1654 Register TestReg = AndInst.getOperand(1).getReg();
1655
1656 // Emit a TB(N)Z.
1657 emitTestBit(TestReg, Bit, Invert, DstMBB, MIB);
1658 return true;
1659 }
1660
emitCBZ(Register CompareReg,bool IsNegative,MachineBasicBlock * DestMBB,MachineIRBuilder & MIB) const1661 MachineInstr *AArch64InstructionSelector::emitCBZ(Register CompareReg,
1662 bool IsNegative,
1663 MachineBasicBlock *DestMBB,
1664 MachineIRBuilder &MIB) const {
1665 assert(ProduceNonFlagSettingCondBr && "CBZ does not set flags!");
1666 MachineRegisterInfo &MRI = *MIB.getMRI();
1667 assert(RBI.getRegBank(CompareReg, MRI, TRI)->getID() ==
1668 AArch64::GPRRegBankID &&
1669 "Expected GPRs only?");
1670 auto Ty = MRI.getType(CompareReg);
1671 unsigned Width = Ty.getSizeInBits();
1672 assert(!Ty.isVector() && "Expected scalar only?");
1673 assert(Width <= 64 && "Expected width to be at most 64?");
1674 static const unsigned OpcTable[2][2] = {{AArch64::CBZW, AArch64::CBZX},
1675 {AArch64::CBNZW, AArch64::CBNZX}};
1676 unsigned Opc = OpcTable[IsNegative][Width == 64];
1677 auto BranchMI = MIB.buildInstr(Opc, {}, {CompareReg}).addMBB(DestMBB);
1678 constrainSelectedInstRegOperands(*BranchMI, TII, TRI, RBI);
1679 return &*BranchMI;
1680 }
1681
selectCompareBranchFedByFCmp(MachineInstr & I,MachineInstr & FCmp,MachineIRBuilder & MIB) const1682 bool AArch64InstructionSelector::selectCompareBranchFedByFCmp(
1683 MachineInstr &I, MachineInstr &FCmp, MachineIRBuilder &MIB) const {
1684 assert(FCmp.getOpcode() == TargetOpcode::G_FCMP);
1685 assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1686 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
1687 // totally clean. Some of them require two branches to implement.
1688 auto Pred = (CmpInst::Predicate)FCmp.getOperand(1).getPredicate();
1689 emitFPCompare(FCmp.getOperand(2).getReg(), FCmp.getOperand(3).getReg(), MIB,
1690 Pred);
1691 AArch64CC::CondCode CC1, CC2;
1692 changeFCMPPredToAArch64CC(static_cast<CmpInst::Predicate>(Pred), CC1, CC2);
1693 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1694 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC1).addMBB(DestMBB);
1695 if (CC2 != AArch64CC::AL)
1696 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC2).addMBB(DestMBB);
1697 I.eraseFromParent();
1698 return true;
1699 }
1700
tryOptCompareBranchFedByICmp(MachineInstr & I,MachineInstr & ICmp,MachineIRBuilder & MIB) const1701 bool AArch64InstructionSelector::tryOptCompareBranchFedByICmp(
1702 MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const {
1703 assert(ICmp.getOpcode() == TargetOpcode::G_ICMP);
1704 assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1705 // Attempt to optimize the G_BRCOND + G_ICMP into a TB(N)Z/CB(N)Z.
1706 //
1707 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
1708 // instructions will not be produced, as they are conditional branch
1709 // instructions that do not set flags.
1710 if (!ProduceNonFlagSettingCondBr)
1711 return false;
1712
1713 MachineRegisterInfo &MRI = *MIB.getMRI();
1714 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1715 auto Pred =
1716 static_cast<CmpInst::Predicate>(ICmp.getOperand(1).getPredicate());
1717 Register LHS = ICmp.getOperand(2).getReg();
1718 Register RHS = ICmp.getOperand(3).getReg();
1719
1720 // We're allowed to emit a TB(N)Z/CB(N)Z. Try to do that.
1721 auto VRegAndVal = getIConstantVRegValWithLookThrough(RHS, MRI);
1722 MachineInstr *AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI);
1723
1724 // When we can emit a TB(N)Z, prefer that.
1725 //
1726 // Handle non-commutative condition codes first.
1727 // Note that we don't want to do this when we have a G_AND because it can
1728 // become a tst. The tst will make the test bit in the TB(N)Z redundant.
1729 if (VRegAndVal && !AndInst) {
1730 int64_t C = VRegAndVal->Value.getSExtValue();
1731
1732 // When we have a greater-than comparison, we can just test if the msb is
1733 // zero.
1734 if (C == -1 && Pred == CmpInst::ICMP_SGT) {
1735 uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1736 emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB);
1737 I.eraseFromParent();
1738 return true;
1739 }
1740
1741 // When we have a less than comparison, we can just test if the msb is not
1742 // zero.
1743 if (C == 0 && Pred == CmpInst::ICMP_SLT) {
1744 uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1745 emitTestBit(LHS, Bit, /*IsNegative = */ true, DestMBB, MIB);
1746 I.eraseFromParent();
1747 return true;
1748 }
1749
1750 // Inversely, if we have a signed greater-than-or-equal comparison to zero,
1751 // we can test if the msb is zero.
1752 if (C == 0 && Pred == CmpInst::ICMP_SGE) {
1753 uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1754 emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB);
1755 I.eraseFromParent();
1756 return true;
1757 }
1758 }
1759
1760 // Attempt to handle commutative condition codes. Right now, that's only
1761 // eq/ne.
1762 if (ICmpInst::isEquality(Pred)) {
1763 if (!VRegAndVal) {
1764 std::swap(RHS, LHS);
1765 VRegAndVal = getIConstantVRegValWithLookThrough(RHS, MRI);
1766 AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI);
1767 }
1768
1769 if (VRegAndVal && VRegAndVal->Value == 0) {
1770 // If there's a G_AND feeding into this branch, try to fold it away by
1771 // emitting a TB(N)Z instead.
1772 //
1773 // Note: If we have LT, then it *is* possible to fold, but it wouldn't be
1774 // beneficial. When we have an AND and LT, we need a TST/ANDS, so folding
1775 // would be redundant.
1776 if (AndInst &&
1777 tryOptAndIntoCompareBranch(
1778 *AndInst, /*Invert = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB)) {
1779 I.eraseFromParent();
1780 return true;
1781 }
1782
1783 // Otherwise, try to emit a CB(N)Z instead.
1784 auto LHSTy = MRI.getType(LHS);
1785 if (!LHSTy.isVector() && LHSTy.getSizeInBits() <= 64) {
1786 emitCBZ(LHS, /*IsNegative = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB);
1787 I.eraseFromParent();
1788 return true;
1789 }
1790 }
1791 }
1792
1793 return false;
1794 }
1795
selectCompareBranchFedByICmp(MachineInstr & I,MachineInstr & ICmp,MachineIRBuilder & MIB) const1796 bool AArch64InstructionSelector::selectCompareBranchFedByICmp(
1797 MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const {
1798 assert(ICmp.getOpcode() == TargetOpcode::G_ICMP);
1799 assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1800 if (tryOptCompareBranchFedByICmp(I, ICmp, MIB))
1801 return true;
1802
1803 // Couldn't optimize. Emit a compare + a Bcc.
1804 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1805 auto PredOp = ICmp.getOperand(1);
1806 emitIntegerCompare(ICmp.getOperand(2), ICmp.getOperand(3), PredOp, MIB);
1807 const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(
1808 static_cast<CmpInst::Predicate>(PredOp.getPredicate()));
1809 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB);
1810 I.eraseFromParent();
1811 return true;
1812 }
1813
selectCompareBranch(MachineInstr & I,MachineFunction & MF,MachineRegisterInfo & MRI)1814 bool AArch64InstructionSelector::selectCompareBranch(
1815 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) {
1816 Register CondReg = I.getOperand(0).getReg();
1817 MachineInstr *CCMI = MRI.getVRegDef(CondReg);
1818 // Try to select the G_BRCOND using whatever is feeding the condition if
1819 // possible.
1820 unsigned CCMIOpc = CCMI->getOpcode();
1821 if (CCMIOpc == TargetOpcode::G_FCMP)
1822 return selectCompareBranchFedByFCmp(I, *CCMI, MIB);
1823 if (CCMIOpc == TargetOpcode::G_ICMP)
1824 return selectCompareBranchFedByICmp(I, *CCMI, MIB);
1825
1826 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
1827 // instructions will not be produced, as they are conditional branch
1828 // instructions that do not set flags.
1829 if (ProduceNonFlagSettingCondBr) {
1830 emitTestBit(CondReg, /*Bit = */ 0, /*IsNegative = */ true,
1831 I.getOperand(1).getMBB(), MIB);
1832 I.eraseFromParent();
1833 return true;
1834 }
1835
1836 // Can't emit TB(N)Z/CB(N)Z. Emit a tst + bcc instead.
1837 auto TstMI =
1838 MIB.buildInstr(AArch64::ANDSWri, {LLT::scalar(32)}, {CondReg}).addImm(1);
1839 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
1840 auto Bcc = MIB.buildInstr(AArch64::Bcc)
1841 .addImm(AArch64CC::NE)
1842 .addMBB(I.getOperand(1).getMBB());
1843 I.eraseFromParent();
1844 return constrainSelectedInstRegOperands(*Bcc, TII, TRI, RBI);
1845 }
1846
1847 /// Returns the element immediate value of a vector shift operand if found.
1848 /// This needs to detect a splat-like operation, e.g. a G_BUILD_VECTOR.
getVectorShiftImm(Register Reg,MachineRegisterInfo & MRI)1849 static std::optional<int64_t> getVectorShiftImm(Register Reg,
1850 MachineRegisterInfo &MRI) {
1851 assert(MRI.getType(Reg).isVector() && "Expected a *vector* shift operand");
1852 MachineInstr *OpMI = MRI.getVRegDef(Reg);
1853 return getAArch64VectorSplatScalar(*OpMI, MRI);
1854 }
1855
1856 /// Matches and returns the shift immediate value for a SHL instruction given
1857 /// a shift operand.
getVectorSHLImm(LLT SrcTy,Register Reg,MachineRegisterInfo & MRI)1858 static std::optional<int64_t> getVectorSHLImm(LLT SrcTy, Register Reg,
1859 MachineRegisterInfo &MRI) {
1860 std::optional<int64_t> ShiftImm = getVectorShiftImm(Reg, MRI);
1861 if (!ShiftImm)
1862 return std::nullopt;
1863 // Check the immediate is in range for a SHL.
1864 int64_t Imm = *ShiftImm;
1865 if (Imm < 0)
1866 return std::nullopt;
1867 switch (SrcTy.getElementType().getSizeInBits()) {
1868 default:
1869 LLVM_DEBUG(dbgs() << "Unhandled element type for vector shift");
1870 return std::nullopt;
1871 case 8:
1872 if (Imm > 7)
1873 return std::nullopt;
1874 break;
1875 case 16:
1876 if (Imm > 15)
1877 return std::nullopt;
1878 break;
1879 case 32:
1880 if (Imm > 31)
1881 return std::nullopt;
1882 break;
1883 case 64:
1884 if (Imm > 63)
1885 return std::nullopt;
1886 break;
1887 }
1888 return Imm;
1889 }
1890
selectVectorSHL(MachineInstr & I,MachineRegisterInfo & MRI)1891 bool AArch64InstructionSelector::selectVectorSHL(MachineInstr &I,
1892 MachineRegisterInfo &MRI) {
1893 assert(I.getOpcode() == TargetOpcode::G_SHL);
1894 Register DstReg = I.getOperand(0).getReg();
1895 const LLT Ty = MRI.getType(DstReg);
1896 Register Src1Reg = I.getOperand(1).getReg();
1897 Register Src2Reg = I.getOperand(2).getReg();
1898
1899 if (!Ty.isVector())
1900 return false;
1901
1902 // Check if we have a vector of constants on RHS that we can select as the
1903 // immediate form.
1904 std::optional<int64_t> ImmVal = getVectorSHLImm(Ty, Src2Reg, MRI);
1905
1906 unsigned Opc = 0;
1907 if (Ty == LLT::fixed_vector(2, 64)) {
1908 Opc = ImmVal ? AArch64::SHLv2i64_shift : AArch64::USHLv2i64;
1909 } else if (Ty == LLT::fixed_vector(4, 32)) {
1910 Opc = ImmVal ? AArch64::SHLv4i32_shift : AArch64::USHLv4i32;
1911 } else if (Ty == LLT::fixed_vector(2, 32)) {
1912 Opc = ImmVal ? AArch64::SHLv2i32_shift : AArch64::USHLv2i32;
1913 } else if (Ty == LLT::fixed_vector(4, 16)) {
1914 Opc = ImmVal ? AArch64::SHLv4i16_shift : AArch64::USHLv4i16;
1915 } else if (Ty == LLT::fixed_vector(8, 16)) {
1916 Opc = ImmVal ? AArch64::SHLv8i16_shift : AArch64::USHLv8i16;
1917 } else if (Ty == LLT::fixed_vector(16, 8)) {
1918 Opc = ImmVal ? AArch64::SHLv16i8_shift : AArch64::USHLv16i8;
1919 } else if (Ty == LLT::fixed_vector(8, 8)) {
1920 Opc = ImmVal ? AArch64::SHLv8i8_shift : AArch64::USHLv8i8;
1921 } else {
1922 LLVM_DEBUG(dbgs() << "Unhandled G_SHL type");
1923 return false;
1924 }
1925
1926 auto Shl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg});
1927 if (ImmVal)
1928 Shl.addImm(*ImmVal);
1929 else
1930 Shl.addUse(Src2Reg);
1931 constrainSelectedInstRegOperands(*Shl, TII, TRI, RBI);
1932 I.eraseFromParent();
1933 return true;
1934 }
1935
selectVectorAshrLshr(MachineInstr & I,MachineRegisterInfo & MRI)1936 bool AArch64InstructionSelector::selectVectorAshrLshr(
1937 MachineInstr &I, MachineRegisterInfo &MRI) {
1938 assert(I.getOpcode() == TargetOpcode::G_ASHR ||
1939 I.getOpcode() == TargetOpcode::G_LSHR);
1940 Register DstReg = I.getOperand(0).getReg();
1941 const LLT Ty = MRI.getType(DstReg);
1942 Register Src1Reg = I.getOperand(1).getReg();
1943 Register Src2Reg = I.getOperand(2).getReg();
1944
1945 if (!Ty.isVector())
1946 return false;
1947
1948 bool IsASHR = I.getOpcode() == TargetOpcode::G_ASHR;
1949
1950 // We expect the immediate case to be lowered in the PostLegalCombiner to
1951 // AArch64ISD::VASHR or AArch64ISD::VLSHR equivalents.
1952
1953 // There is not a shift right register instruction, but the shift left
1954 // register instruction takes a signed value, where negative numbers specify a
1955 // right shift.
1956
1957 unsigned Opc = 0;
1958 unsigned NegOpc = 0;
1959 const TargetRegisterClass *RC =
1960 getRegClassForTypeOnBank(Ty, RBI.getRegBank(AArch64::FPRRegBankID));
1961 if (Ty == LLT::fixed_vector(2, 64)) {
1962 Opc = IsASHR ? AArch64::SSHLv2i64 : AArch64::USHLv2i64;
1963 NegOpc = AArch64::NEGv2i64;
1964 } else if (Ty == LLT::fixed_vector(4, 32)) {
1965 Opc = IsASHR ? AArch64::SSHLv4i32 : AArch64::USHLv4i32;
1966 NegOpc = AArch64::NEGv4i32;
1967 } else if (Ty == LLT::fixed_vector(2, 32)) {
1968 Opc = IsASHR ? AArch64::SSHLv2i32 : AArch64::USHLv2i32;
1969 NegOpc = AArch64::NEGv2i32;
1970 } else if (Ty == LLT::fixed_vector(4, 16)) {
1971 Opc = IsASHR ? AArch64::SSHLv4i16 : AArch64::USHLv4i16;
1972 NegOpc = AArch64::NEGv4i16;
1973 } else if (Ty == LLT::fixed_vector(8, 16)) {
1974 Opc = IsASHR ? AArch64::SSHLv8i16 : AArch64::USHLv8i16;
1975 NegOpc = AArch64::NEGv8i16;
1976 } else if (Ty == LLT::fixed_vector(16, 8)) {
1977 Opc = IsASHR ? AArch64::SSHLv16i8 : AArch64::USHLv16i8;
1978 NegOpc = AArch64::NEGv16i8;
1979 } else if (Ty == LLT::fixed_vector(8, 8)) {
1980 Opc = IsASHR ? AArch64::SSHLv8i8 : AArch64::USHLv8i8;
1981 NegOpc = AArch64::NEGv8i8;
1982 } else {
1983 LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type");
1984 return false;
1985 }
1986
1987 auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg});
1988 constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI);
1989 auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg});
1990 constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI);
1991 I.eraseFromParent();
1992 return true;
1993 }
1994
selectVaStartAAPCS(MachineInstr & I,MachineFunction & MF,MachineRegisterInfo & MRI) const1995 bool AArch64InstructionSelector::selectVaStartAAPCS(
1996 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
1997 return false;
1998 }
1999
selectVaStartDarwin(MachineInstr & I,MachineFunction & MF,MachineRegisterInfo & MRI) const2000 bool AArch64InstructionSelector::selectVaStartDarwin(
2001 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
2002 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2003 Register ListReg = I.getOperand(0).getReg();
2004
2005 Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
2006
2007 int FrameIdx = FuncInfo->getVarArgsStackIndex();
2008 if (MF.getSubtarget<AArch64Subtarget>().isCallingConvWin64(
2009 MF.getFunction().getCallingConv(), MF.getFunction().isVarArg())) {
2010 FrameIdx = FuncInfo->getVarArgsGPRSize() > 0
2011 ? FuncInfo->getVarArgsGPRIndex()
2012 : FuncInfo->getVarArgsStackIndex();
2013 }
2014
2015 auto MIB =
2016 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri))
2017 .addDef(ArgsAddrReg)
2018 .addFrameIndex(FrameIdx)
2019 .addImm(0)
2020 .addImm(0);
2021
2022 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
2023
2024 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui))
2025 .addUse(ArgsAddrReg)
2026 .addUse(ListReg)
2027 .addImm(0)
2028 .addMemOperand(*I.memoperands_begin());
2029
2030 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
2031 I.eraseFromParent();
2032 return true;
2033 }
2034
materializeLargeCMVal(MachineInstr & I,const Value * V,unsigned OpFlags)2035 void AArch64InstructionSelector::materializeLargeCMVal(
2036 MachineInstr &I, const Value *V, unsigned OpFlags) {
2037 MachineBasicBlock &MBB = *I.getParent();
2038 MachineFunction &MF = *MBB.getParent();
2039 MachineRegisterInfo &MRI = MF.getRegInfo();
2040
2041 auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {});
2042 MovZ->addOperand(MF, I.getOperand(1));
2043 MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 |
2044 AArch64II::MO_NC);
2045 MovZ->addOperand(MF, MachineOperand::CreateImm(0));
2046 constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI);
2047
2048 auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset,
2049 Register ForceDstReg) {
2050 Register DstReg = ForceDstReg
2051 ? ForceDstReg
2052 : MRI.createVirtualRegister(&AArch64::GPR64RegClass);
2053 auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg);
2054 if (auto *GV = dyn_cast<GlobalValue>(V)) {
2055 MovI->addOperand(MF, MachineOperand::CreateGA(
2056 GV, MovZ->getOperand(1).getOffset(), Flags));
2057 } else {
2058 MovI->addOperand(
2059 MF, MachineOperand::CreateBA(cast<BlockAddress>(V),
2060 MovZ->getOperand(1).getOffset(), Flags));
2061 }
2062 MovI->addOperand(MF, MachineOperand::CreateImm(Offset));
2063 constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI);
2064 return DstReg;
2065 };
2066 Register DstReg = BuildMovK(MovZ.getReg(0),
2067 AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0);
2068 DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0);
2069 BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg());
2070 }
2071
preISelLower(MachineInstr & I)2072 bool AArch64InstructionSelector::preISelLower(MachineInstr &I) {
2073 MachineBasicBlock &MBB = *I.getParent();
2074 MachineFunction &MF = *MBB.getParent();
2075 MachineRegisterInfo &MRI = MF.getRegInfo();
2076
2077 switch (I.getOpcode()) {
2078 case TargetOpcode::G_STORE: {
2079 bool Changed = contractCrossBankCopyIntoStore(I, MRI);
2080 MachineOperand &SrcOp = I.getOperand(0);
2081 if (MRI.getType(SrcOp.getReg()).isPointer()) {
2082 // Allow matching with imported patterns for stores of pointers. Unlike
2083 // G_LOAD/G_PTR_ADD, we may not have selected all users. So, emit a copy
2084 // and constrain.
2085 auto Copy = MIB.buildCopy(LLT::scalar(64), SrcOp);
2086 Register NewSrc = Copy.getReg(0);
2087 SrcOp.setReg(NewSrc);
2088 RBI.constrainGenericRegister(NewSrc, AArch64::GPR64RegClass, MRI);
2089 Changed = true;
2090 }
2091 return Changed;
2092 }
2093 case TargetOpcode::G_PTR_ADD:
2094 return convertPtrAddToAdd(I, MRI);
2095 case TargetOpcode::G_LOAD: {
2096 // For scalar loads of pointers, we try to convert the dest type from p0
2097 // to s64 so that our imported patterns can match. Like with the G_PTR_ADD
2098 // conversion, this should be ok because all users should have been
2099 // selected already, so the type doesn't matter for them.
2100 Register DstReg = I.getOperand(0).getReg();
2101 const LLT DstTy = MRI.getType(DstReg);
2102 if (!DstTy.isPointer())
2103 return false;
2104 MRI.setType(DstReg, LLT::scalar(64));
2105 return true;
2106 }
2107 case AArch64::G_DUP: {
2108 // Convert the type from p0 to s64 to help selection.
2109 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2110 if (!DstTy.isPointerVector())
2111 return false;
2112 auto NewSrc = MIB.buildCopy(LLT::scalar(64), I.getOperand(1).getReg());
2113 MRI.setType(I.getOperand(0).getReg(),
2114 DstTy.changeElementType(LLT::scalar(64)));
2115 MRI.setRegClass(NewSrc.getReg(0), &AArch64::GPR64RegClass);
2116 I.getOperand(1).setReg(NewSrc.getReg(0));
2117 return true;
2118 }
2119 case TargetOpcode::G_UITOFP:
2120 case TargetOpcode::G_SITOFP: {
2121 // If both source and destination regbanks are FPR, then convert the opcode
2122 // to G_SITOF so that the importer can select it to an fpr variant.
2123 // Otherwise, it ends up matching an fpr/gpr variant and adding a cross-bank
2124 // copy.
2125 Register SrcReg = I.getOperand(1).getReg();
2126 LLT SrcTy = MRI.getType(SrcReg);
2127 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2128 if (SrcTy.isVector() || SrcTy.getSizeInBits() != DstTy.getSizeInBits())
2129 return false;
2130
2131 if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::FPRRegBankID) {
2132 if (I.getOpcode() == TargetOpcode::G_SITOFP)
2133 I.setDesc(TII.get(AArch64::G_SITOF));
2134 else
2135 I.setDesc(TII.get(AArch64::G_UITOF));
2136 return true;
2137 }
2138 return false;
2139 }
2140 default:
2141 return false;
2142 }
2143 }
2144
2145 /// This lowering tries to look for G_PTR_ADD instructions and then converts
2146 /// them to a standard G_ADD with a COPY on the source.
2147 ///
2148 /// The motivation behind this is to expose the add semantics to the imported
2149 /// tablegen patterns. We shouldn't need to check for uses being loads/stores,
2150 /// because the selector works bottom up, uses before defs. By the time we
2151 /// end up trying to select a G_PTR_ADD, we should have already attempted to
2152 /// fold this into addressing modes and were therefore unsuccessful.
convertPtrAddToAdd(MachineInstr & I,MachineRegisterInfo & MRI)2153 bool AArch64InstructionSelector::convertPtrAddToAdd(
2154 MachineInstr &I, MachineRegisterInfo &MRI) {
2155 assert(I.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
2156 Register DstReg = I.getOperand(0).getReg();
2157 Register AddOp1Reg = I.getOperand(1).getReg();
2158 const LLT PtrTy = MRI.getType(DstReg);
2159 if (PtrTy.getAddressSpace() != 0)
2160 return false;
2161
2162 const LLT CastPtrTy =
2163 PtrTy.isVector() ? LLT::fixed_vector(2, 64) : LLT::scalar(64);
2164 auto PtrToInt = MIB.buildPtrToInt(CastPtrTy, AddOp1Reg);
2165 // Set regbanks on the registers.
2166 if (PtrTy.isVector())
2167 MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::FPRRegBankID));
2168 else
2169 MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
2170
2171 // Now turn the %dst(p0) = G_PTR_ADD %base, off into:
2172 // %dst(intty) = G_ADD %intbase, off
2173 I.setDesc(TII.get(TargetOpcode::G_ADD));
2174 MRI.setType(DstReg, CastPtrTy);
2175 I.getOperand(1).setReg(PtrToInt.getReg(0));
2176 if (!select(*PtrToInt)) {
2177 LLVM_DEBUG(dbgs() << "Failed to select G_PTRTOINT in convertPtrAddToAdd");
2178 return false;
2179 }
2180
2181 // Also take the opportunity here to try to do some optimization.
2182 // Try to convert this into a G_SUB if the offset is a 0-x negate idiom.
2183 Register NegatedReg;
2184 if (!mi_match(I.getOperand(2).getReg(), MRI, m_Neg(m_Reg(NegatedReg))))
2185 return true;
2186 I.getOperand(2).setReg(NegatedReg);
2187 I.setDesc(TII.get(TargetOpcode::G_SUB));
2188 return true;
2189 }
2190
earlySelectSHL(MachineInstr & I,MachineRegisterInfo & MRI)2191 bool AArch64InstructionSelector::earlySelectSHL(MachineInstr &I,
2192 MachineRegisterInfo &MRI) {
2193 // We try to match the immediate variant of LSL, which is actually an alias
2194 // for a special case of UBFM. Otherwise, we fall back to the imported
2195 // selector which will match the register variant.
2196 assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op");
2197 const auto &MO = I.getOperand(2);
2198 auto VRegAndVal = getIConstantVRegVal(MO.getReg(), MRI);
2199 if (!VRegAndVal)
2200 return false;
2201
2202 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2203 if (DstTy.isVector())
2204 return false;
2205 bool Is64Bit = DstTy.getSizeInBits() == 64;
2206 auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO);
2207 auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO);
2208
2209 if (!Imm1Fn || !Imm2Fn)
2210 return false;
2211
2212 auto NewI =
2213 MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri,
2214 {I.getOperand(0).getReg()}, {I.getOperand(1).getReg()});
2215
2216 for (auto &RenderFn : *Imm1Fn)
2217 RenderFn(NewI);
2218 for (auto &RenderFn : *Imm2Fn)
2219 RenderFn(NewI);
2220
2221 I.eraseFromParent();
2222 return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
2223 }
2224
contractCrossBankCopyIntoStore(MachineInstr & I,MachineRegisterInfo & MRI)2225 bool AArch64InstructionSelector::contractCrossBankCopyIntoStore(
2226 MachineInstr &I, MachineRegisterInfo &MRI) {
2227 assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE");
2228 // If we're storing a scalar, it doesn't matter what register bank that
2229 // scalar is on. All that matters is the size.
2230 //
2231 // So, if we see something like this (with a 32-bit scalar as an example):
2232 //
2233 // %x:gpr(s32) = ... something ...
2234 // %y:fpr(s32) = COPY %x:gpr(s32)
2235 // G_STORE %y:fpr(s32)
2236 //
2237 // We can fix this up into something like this:
2238 //
2239 // G_STORE %x:gpr(s32)
2240 //
2241 // And then continue the selection process normally.
2242 Register DefDstReg = getSrcRegIgnoringCopies(I.getOperand(0).getReg(), MRI);
2243 if (!DefDstReg.isValid())
2244 return false;
2245 LLT DefDstTy = MRI.getType(DefDstReg);
2246 Register StoreSrcReg = I.getOperand(0).getReg();
2247 LLT StoreSrcTy = MRI.getType(StoreSrcReg);
2248
2249 // If we get something strange like a physical register, then we shouldn't
2250 // go any further.
2251 if (!DefDstTy.isValid())
2252 return false;
2253
2254 // Are the source and dst types the same size?
2255 if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits())
2256 return false;
2257
2258 if (RBI.getRegBank(StoreSrcReg, MRI, TRI) ==
2259 RBI.getRegBank(DefDstReg, MRI, TRI))
2260 return false;
2261
2262 // We have a cross-bank copy, which is entering a store. Let's fold it.
2263 I.getOperand(0).setReg(DefDstReg);
2264 return true;
2265 }
2266
earlySelect(MachineInstr & I)2267 bool AArch64InstructionSelector::earlySelect(MachineInstr &I) {
2268 assert(I.getParent() && "Instruction should be in a basic block!");
2269 assert(I.getParent()->getParent() && "Instruction should be in a function!");
2270
2271 MachineBasicBlock &MBB = *I.getParent();
2272 MachineFunction &MF = *MBB.getParent();
2273 MachineRegisterInfo &MRI = MF.getRegInfo();
2274
2275 switch (I.getOpcode()) {
2276 case AArch64::G_DUP: {
2277 // Before selecting a DUP instruction, check if it is better selected as a
2278 // MOV or load from a constant pool.
2279 Register Src = I.getOperand(1).getReg();
2280 auto ValAndVReg = getAnyConstantVRegValWithLookThrough(Src, MRI);
2281 if (!ValAndVReg)
2282 return false;
2283 LLVMContext &Ctx = MF.getFunction().getContext();
2284 Register Dst = I.getOperand(0).getReg();
2285 auto *CV = ConstantDataVector::getSplat(
2286 MRI.getType(Dst).getNumElements(),
2287 ConstantInt::get(Type::getIntNTy(Ctx, MRI.getType(Src).getSizeInBits()),
2288 ValAndVReg->Value));
2289 if (!emitConstantVector(Dst, CV, MIB, MRI))
2290 return false;
2291 I.eraseFromParent();
2292 return true;
2293 }
2294 case TargetOpcode::G_SEXT:
2295 // Check for i64 sext(i32 vector_extract) prior to tablegen to select SMOV
2296 // over a normal extend.
2297 if (selectUSMovFromExtend(I, MRI))
2298 return true;
2299 return false;
2300 case TargetOpcode::G_BR:
2301 return false;
2302 case TargetOpcode::G_SHL:
2303 return earlySelectSHL(I, MRI);
2304 case TargetOpcode::G_CONSTANT: {
2305 bool IsZero = false;
2306 if (I.getOperand(1).isCImm())
2307 IsZero = I.getOperand(1).getCImm()->isZero();
2308 else if (I.getOperand(1).isImm())
2309 IsZero = I.getOperand(1).getImm() == 0;
2310
2311 if (!IsZero)
2312 return false;
2313
2314 Register DefReg = I.getOperand(0).getReg();
2315 LLT Ty = MRI.getType(DefReg);
2316 if (Ty.getSizeInBits() == 64) {
2317 I.getOperand(1).ChangeToRegister(AArch64::XZR, false);
2318 RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
2319 } else if (Ty.getSizeInBits() == 32) {
2320 I.getOperand(1).ChangeToRegister(AArch64::WZR, false);
2321 RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI);
2322 } else
2323 return false;
2324
2325 I.setDesc(TII.get(TargetOpcode::COPY));
2326 return true;
2327 }
2328
2329 case TargetOpcode::G_ADD: {
2330 // Check if this is being fed by a G_ICMP on either side.
2331 //
2332 // (cmp pred, x, y) + z
2333 //
2334 // In the above case, when the cmp is true, we increment z by 1. So, we can
2335 // fold the add into the cset for the cmp by using cinc.
2336 //
2337 // FIXME: This would probably be a lot nicer in PostLegalizerLowering.
2338 Register AddDst = I.getOperand(0).getReg();
2339 Register AddLHS = I.getOperand(1).getReg();
2340 Register AddRHS = I.getOperand(2).getReg();
2341 // Only handle scalars.
2342 LLT Ty = MRI.getType(AddLHS);
2343 if (Ty.isVector())
2344 return false;
2345 // Since G_ICMP is modeled as ADDS/SUBS/ANDS, we can handle 32 bits or 64
2346 // bits.
2347 unsigned Size = Ty.getSizeInBits();
2348 if (Size != 32 && Size != 64)
2349 return false;
2350 auto MatchCmp = [&](Register Reg) -> MachineInstr * {
2351 if (!MRI.hasOneNonDBGUse(Reg))
2352 return nullptr;
2353 // If the LHS of the add is 32 bits, then we want to fold a 32-bit
2354 // compare.
2355 if (Size == 32)
2356 return getOpcodeDef(TargetOpcode::G_ICMP, Reg, MRI);
2357 // We model scalar compares using 32-bit destinations right now.
2358 // If it's a 64-bit compare, it'll have 64-bit sources.
2359 Register ZExt;
2360 if (!mi_match(Reg, MRI,
2361 m_OneNonDBGUse(m_GZExt(m_OneNonDBGUse(m_Reg(ZExt))))))
2362 return nullptr;
2363 auto *Cmp = getOpcodeDef(TargetOpcode::G_ICMP, ZExt, MRI);
2364 if (!Cmp ||
2365 MRI.getType(Cmp->getOperand(2).getReg()).getSizeInBits() != 64)
2366 return nullptr;
2367 return Cmp;
2368 };
2369 // Try to match
2370 // z + (cmp pred, x, y)
2371 MachineInstr *Cmp = MatchCmp(AddRHS);
2372 if (!Cmp) {
2373 // (cmp pred, x, y) + z
2374 std::swap(AddLHS, AddRHS);
2375 Cmp = MatchCmp(AddRHS);
2376 if (!Cmp)
2377 return false;
2378 }
2379 auto &PredOp = Cmp->getOperand(1);
2380 auto Pred = static_cast<CmpInst::Predicate>(PredOp.getPredicate());
2381 const AArch64CC::CondCode InvCC =
2382 changeICMPPredToAArch64CC(CmpInst::getInversePredicate(Pred));
2383 MIB.setInstrAndDebugLoc(I);
2384 emitIntegerCompare(/*LHS=*/Cmp->getOperand(2),
2385 /*RHS=*/Cmp->getOperand(3), PredOp, MIB);
2386 emitCSINC(/*Dst=*/AddDst, /*Src =*/AddLHS, /*Src2=*/AddLHS, InvCC, MIB);
2387 I.eraseFromParent();
2388 return true;
2389 }
2390 case TargetOpcode::G_OR: {
2391 // Look for operations that take the lower `Width=Size-ShiftImm` bits of
2392 // `ShiftSrc` and insert them into the upper `Width` bits of `MaskSrc` via
2393 // shifting and masking that we can replace with a BFI (encoded as a BFM).
2394 Register Dst = I.getOperand(0).getReg();
2395 LLT Ty = MRI.getType(Dst);
2396
2397 if (!Ty.isScalar())
2398 return false;
2399
2400 unsigned Size = Ty.getSizeInBits();
2401 if (Size != 32 && Size != 64)
2402 return false;
2403
2404 Register ShiftSrc;
2405 int64_t ShiftImm;
2406 Register MaskSrc;
2407 int64_t MaskImm;
2408 if (!mi_match(
2409 Dst, MRI,
2410 m_GOr(m_OneNonDBGUse(m_GShl(m_Reg(ShiftSrc), m_ICst(ShiftImm))),
2411 m_OneNonDBGUse(m_GAnd(m_Reg(MaskSrc), m_ICst(MaskImm))))))
2412 return false;
2413
2414 if (ShiftImm > Size || ((1ULL << ShiftImm) - 1ULL) != uint64_t(MaskImm))
2415 return false;
2416
2417 int64_t Immr = Size - ShiftImm;
2418 int64_t Imms = Size - ShiftImm - 1;
2419 unsigned Opc = Size == 32 ? AArch64::BFMWri : AArch64::BFMXri;
2420 emitInstr(Opc, {Dst}, {MaskSrc, ShiftSrc, Immr, Imms}, MIB);
2421 I.eraseFromParent();
2422 return true;
2423 }
2424 case TargetOpcode::G_FENCE: {
2425 if (I.getOperand(1).getImm() == 0)
2426 BuildMI(MBB, I, MIMetadata(I), TII.get(TargetOpcode::MEMBARRIER));
2427 else
2428 BuildMI(MBB, I, MIMetadata(I), TII.get(AArch64::DMB))
2429 .addImm(I.getOperand(0).getImm() == 4 ? 0x9 : 0xb);
2430 I.eraseFromParent();
2431 return true;
2432 }
2433 default:
2434 return false;
2435 }
2436 }
2437
select(MachineInstr & I)2438 bool AArch64InstructionSelector::select(MachineInstr &I) {
2439 assert(I.getParent() && "Instruction should be in a basic block!");
2440 assert(I.getParent()->getParent() && "Instruction should be in a function!");
2441
2442 MachineBasicBlock &MBB = *I.getParent();
2443 MachineFunction &MF = *MBB.getParent();
2444 MachineRegisterInfo &MRI = MF.getRegInfo();
2445
2446 const AArch64Subtarget *Subtarget = &MF.getSubtarget<AArch64Subtarget>();
2447 if (Subtarget->requiresStrictAlign()) {
2448 // We don't support this feature yet.
2449 LLVM_DEBUG(dbgs() << "AArch64 GISel does not support strict-align yet\n");
2450 return false;
2451 }
2452
2453 MIB.setInstrAndDebugLoc(I);
2454
2455 unsigned Opcode = I.getOpcode();
2456 // G_PHI requires same handling as PHI
2457 if (!I.isPreISelOpcode() || Opcode == TargetOpcode::G_PHI) {
2458 // Certain non-generic instructions also need some special handling.
2459
2460 if (Opcode == TargetOpcode::LOAD_STACK_GUARD)
2461 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2462
2463 if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) {
2464 const Register DefReg = I.getOperand(0).getReg();
2465 const LLT DefTy = MRI.getType(DefReg);
2466
2467 const RegClassOrRegBank &RegClassOrBank =
2468 MRI.getRegClassOrRegBank(DefReg);
2469
2470 const TargetRegisterClass *DefRC
2471 = RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
2472 if (!DefRC) {
2473 if (!DefTy.isValid()) {
2474 LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
2475 return false;
2476 }
2477 const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
2478 DefRC = getRegClassForTypeOnBank(DefTy, RB);
2479 if (!DefRC) {
2480 LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
2481 return false;
2482 }
2483 }
2484
2485 I.setDesc(TII.get(TargetOpcode::PHI));
2486
2487 return RBI.constrainGenericRegister(DefReg, *DefRC, MRI);
2488 }
2489
2490 if (I.isCopy())
2491 return selectCopy(I, TII, MRI, TRI, RBI);
2492
2493 if (I.isDebugInstr())
2494 return selectDebugInstr(I, MRI, RBI);
2495
2496 return true;
2497 }
2498
2499
2500 if (I.getNumOperands() != I.getNumExplicitOperands()) {
2501 LLVM_DEBUG(
2502 dbgs() << "Generic instruction has unexpected implicit operands\n");
2503 return false;
2504 }
2505
2506 // Try to do some lowering before we start instruction selecting. These
2507 // lowerings are purely transformations on the input G_MIR and so selection
2508 // must continue after any modification of the instruction.
2509 if (preISelLower(I)) {
2510 Opcode = I.getOpcode(); // The opcode may have been modified, refresh it.
2511 }
2512
2513 // There may be patterns where the importer can't deal with them optimally,
2514 // but does select it to a suboptimal sequence so our custom C++ selection
2515 // code later never has a chance to work on it. Therefore, we have an early
2516 // selection attempt here to give priority to certain selection routines
2517 // over the imported ones.
2518 if (earlySelect(I))
2519 return true;
2520
2521 if (selectImpl(I, *CoverageInfo))
2522 return true;
2523
2524 LLT Ty =
2525 I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{};
2526
2527 switch (Opcode) {
2528 case TargetOpcode::G_SBFX:
2529 case TargetOpcode::G_UBFX: {
2530 static const unsigned OpcTable[2][2] = {
2531 {AArch64::UBFMWri, AArch64::UBFMXri},
2532 {AArch64::SBFMWri, AArch64::SBFMXri}};
2533 bool IsSigned = Opcode == TargetOpcode::G_SBFX;
2534 unsigned Size = Ty.getSizeInBits();
2535 unsigned Opc = OpcTable[IsSigned][Size == 64];
2536 auto Cst1 =
2537 getIConstantVRegValWithLookThrough(I.getOperand(2).getReg(), MRI);
2538 assert(Cst1 && "Should have gotten a constant for src 1?");
2539 auto Cst2 =
2540 getIConstantVRegValWithLookThrough(I.getOperand(3).getReg(), MRI);
2541 assert(Cst2 && "Should have gotten a constant for src 2?");
2542 auto LSB = Cst1->Value.getZExtValue();
2543 auto Width = Cst2->Value.getZExtValue();
2544 auto BitfieldInst =
2545 MIB.buildInstr(Opc, {I.getOperand(0)}, {I.getOperand(1)})
2546 .addImm(LSB)
2547 .addImm(LSB + Width - 1);
2548 I.eraseFromParent();
2549 return constrainSelectedInstRegOperands(*BitfieldInst, TII, TRI, RBI);
2550 }
2551 case TargetOpcode::G_BRCOND:
2552 return selectCompareBranch(I, MF, MRI);
2553
2554 case TargetOpcode::G_BRINDIRECT: {
2555 const Function &Fn = MF.getFunction();
2556 if (std::optional<uint16_t> BADisc =
2557 STI.getPtrAuthBlockAddressDiscriminatorIfEnabled(Fn)) {
2558 auto MI = MIB.buildInstr(AArch64::BRA, {}, {I.getOperand(0).getReg()});
2559 MI.addImm(AArch64PACKey::IA);
2560 MI.addImm(*BADisc);
2561 MI.addReg(/*AddrDisc=*/AArch64::XZR);
2562 I.eraseFromParent();
2563 return constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
2564 }
2565 I.setDesc(TII.get(AArch64::BR));
2566 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2567 }
2568
2569 case TargetOpcode::G_BRJT:
2570 return selectBrJT(I, MRI);
2571
2572 case AArch64::G_ADD_LOW: {
2573 // This op may have been separated from it's ADRP companion by the localizer
2574 // or some other code motion pass. Given that many CPUs will try to
2575 // macro fuse these operations anyway, select this into a MOVaddr pseudo
2576 // which will later be expanded into an ADRP+ADD pair after scheduling.
2577 MachineInstr *BaseMI = MRI.getVRegDef(I.getOperand(1).getReg());
2578 if (BaseMI->getOpcode() != AArch64::ADRP) {
2579 I.setDesc(TII.get(AArch64::ADDXri));
2580 I.addOperand(MachineOperand::CreateImm(0));
2581 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2582 }
2583 assert(TM.getCodeModel() == CodeModel::Small &&
2584 "Expected small code model");
2585 auto Op1 = BaseMI->getOperand(1);
2586 auto Op2 = I.getOperand(2);
2587 auto MovAddr = MIB.buildInstr(AArch64::MOVaddr, {I.getOperand(0)}, {})
2588 .addGlobalAddress(Op1.getGlobal(), Op1.getOffset(),
2589 Op1.getTargetFlags())
2590 .addGlobalAddress(Op2.getGlobal(), Op2.getOffset(),
2591 Op2.getTargetFlags());
2592 I.eraseFromParent();
2593 return constrainSelectedInstRegOperands(*MovAddr, TII, TRI, RBI);
2594 }
2595
2596 case TargetOpcode::G_FCONSTANT:
2597 case TargetOpcode::G_CONSTANT: {
2598 const bool isFP = Opcode == TargetOpcode::G_FCONSTANT;
2599
2600 const LLT s8 = LLT::scalar(8);
2601 const LLT s16 = LLT::scalar(16);
2602 const LLT s32 = LLT::scalar(32);
2603 const LLT s64 = LLT::scalar(64);
2604 const LLT s128 = LLT::scalar(128);
2605 const LLT p0 = LLT::pointer(0, 64);
2606
2607 const Register DefReg = I.getOperand(0).getReg();
2608 const LLT DefTy = MRI.getType(DefReg);
2609 const unsigned DefSize = DefTy.getSizeInBits();
2610 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
2611
2612 // FIXME: Redundant check, but even less readable when factored out.
2613 if (isFP) {
2614 if (Ty != s16 && Ty != s32 && Ty != s64 && Ty != s128) {
2615 LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
2616 << " constant, expected: " << s16 << " or " << s32
2617 << " or " << s64 << " or " << s128 << '\n');
2618 return false;
2619 }
2620
2621 if (RB.getID() != AArch64::FPRRegBankID) {
2622 LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
2623 << " constant on bank: " << RB
2624 << ", expected: FPR\n");
2625 return false;
2626 }
2627
2628 // The case when we have 0.0 is covered by tablegen. Reject it here so we
2629 // can be sure tablegen works correctly and isn't rescued by this code.
2630 // 0.0 is not covered by tablegen for FP128. So we will handle this
2631 // scenario in the code here.
2632 if (DefSize != 128 && I.getOperand(1).getFPImm()->isExactlyValue(0.0))
2633 return false;
2634 } else {
2635 // s32 and s64 are covered by tablegen.
2636 if (Ty != p0 && Ty != s8 && Ty != s16) {
2637 LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
2638 << " constant, expected: " << s32 << ", " << s64
2639 << ", or " << p0 << '\n');
2640 return false;
2641 }
2642
2643 if (RB.getID() != AArch64::GPRRegBankID) {
2644 LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
2645 << " constant on bank: " << RB
2646 << ", expected: GPR\n");
2647 return false;
2648 }
2649 }
2650
2651 if (isFP) {
2652 const TargetRegisterClass &FPRRC = *getRegClassForTypeOnBank(DefTy, RB);
2653 // For 16, 64, and 128b values, emit a constant pool load.
2654 switch (DefSize) {
2655 default:
2656 llvm_unreachable("Unexpected destination size for G_FCONSTANT?");
2657 case 32:
2658 case 64: {
2659 bool OptForSize = shouldOptForSize(&MF);
2660 const auto &TLI = MF.getSubtarget().getTargetLowering();
2661 // If TLI says that this fpimm is illegal, then we'll expand to a
2662 // constant pool load.
2663 if (TLI->isFPImmLegal(I.getOperand(1).getFPImm()->getValueAPF(),
2664 EVT::getFloatingPointVT(DefSize), OptForSize))
2665 break;
2666 [[fallthrough]];
2667 }
2668 case 16:
2669 case 128: {
2670 auto *FPImm = I.getOperand(1).getFPImm();
2671 auto *LoadMI = emitLoadFromConstantPool(FPImm, MIB);
2672 if (!LoadMI) {
2673 LLVM_DEBUG(dbgs() << "Failed to load double constant pool entry\n");
2674 return false;
2675 }
2676 MIB.buildCopy({DefReg}, {LoadMI->getOperand(0).getReg()});
2677 I.eraseFromParent();
2678 return RBI.constrainGenericRegister(DefReg, FPRRC, MRI);
2679 }
2680 }
2681
2682 assert((DefSize == 32 || DefSize == 64) && "Unexpected const def size");
2683 // Either emit a FMOV, or emit a copy to emit a normal mov.
2684 const Register DefGPRReg = MRI.createVirtualRegister(
2685 DefSize == 32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass);
2686 MachineOperand &RegOp = I.getOperand(0);
2687 RegOp.setReg(DefGPRReg);
2688 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
2689 MIB.buildCopy({DefReg}, {DefGPRReg});
2690
2691 if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) {
2692 LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n");
2693 return false;
2694 }
2695
2696 MachineOperand &ImmOp = I.getOperand(1);
2697 // FIXME: Is going through int64_t always correct?
2698 ImmOp.ChangeToImmediate(
2699 ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
2700 } else if (I.getOperand(1).isCImm()) {
2701 uint64_t Val = I.getOperand(1).getCImm()->getZExtValue();
2702 I.getOperand(1).ChangeToImmediate(Val);
2703 } else if (I.getOperand(1).isImm()) {
2704 uint64_t Val = I.getOperand(1).getImm();
2705 I.getOperand(1).ChangeToImmediate(Val);
2706 }
2707
2708 const unsigned MovOpc =
2709 DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm;
2710 I.setDesc(TII.get(MovOpc));
2711 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2712 return true;
2713 }
2714 case TargetOpcode::G_EXTRACT: {
2715 Register DstReg = I.getOperand(0).getReg();
2716 Register SrcReg = I.getOperand(1).getReg();
2717 LLT SrcTy = MRI.getType(SrcReg);
2718 LLT DstTy = MRI.getType(DstReg);
2719 (void)DstTy;
2720 unsigned SrcSize = SrcTy.getSizeInBits();
2721
2722 if (SrcTy.getSizeInBits() > 64) {
2723 // This should be an extract of an s128, which is like a vector extract.
2724 if (SrcTy.getSizeInBits() != 128)
2725 return false;
2726 // Only support extracting 64 bits from an s128 at the moment.
2727 if (DstTy.getSizeInBits() != 64)
2728 return false;
2729
2730 unsigned Offset = I.getOperand(2).getImm();
2731 if (Offset % 64 != 0)
2732 return false;
2733
2734 // Check we have the right regbank always.
2735 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
2736 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
2737 assert(SrcRB.getID() == DstRB.getID() && "Wrong extract regbank!");
2738
2739 if (SrcRB.getID() == AArch64::GPRRegBankID) {
2740 auto NewI =
2741 MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {})
2742 .addUse(SrcReg, 0,
2743 Offset == 0 ? AArch64::sube64 : AArch64::subo64);
2744 constrainOperandRegClass(MF, TRI, MRI, TII, RBI, *NewI,
2745 AArch64::GPR64RegClass, NewI->getOperand(0));
2746 I.eraseFromParent();
2747 return true;
2748 }
2749
2750 // Emit the same code as a vector extract.
2751 // Offset must be a multiple of 64.
2752 unsigned LaneIdx = Offset / 64;
2753 MachineInstr *Extract = emitExtractVectorElt(
2754 DstReg, DstRB, LLT::scalar(64), SrcReg, LaneIdx, MIB);
2755 if (!Extract)
2756 return false;
2757 I.eraseFromParent();
2758 return true;
2759 }
2760
2761 I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri));
2762 MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() +
2763 Ty.getSizeInBits() - 1);
2764
2765 if (SrcSize < 64) {
2766 assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 &&
2767 "unexpected G_EXTRACT types");
2768 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2769 }
2770
2771 DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
2772 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
2773 MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
2774 .addReg(DstReg, 0, AArch64::sub_32);
2775 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
2776 AArch64::GPR32RegClass, MRI);
2777 I.getOperand(0).setReg(DstReg);
2778
2779 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2780 }
2781
2782 case TargetOpcode::G_INSERT: {
2783 LLT SrcTy = MRI.getType(I.getOperand(2).getReg());
2784 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2785 unsigned DstSize = DstTy.getSizeInBits();
2786 // Larger inserts are vectors, same-size ones should be something else by
2787 // now (split up or turned into COPYs).
2788 if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32)
2789 return false;
2790
2791 I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri));
2792 unsigned LSB = I.getOperand(3).getImm();
2793 unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
2794 I.getOperand(3).setImm((DstSize - LSB) % DstSize);
2795 MachineInstrBuilder(MF, I).addImm(Width - 1);
2796
2797 if (DstSize < 64) {
2798 assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 &&
2799 "unexpected G_INSERT types");
2800 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2801 }
2802
2803 Register SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
2804 BuildMI(MBB, I.getIterator(), I.getDebugLoc(),
2805 TII.get(AArch64::SUBREG_TO_REG))
2806 .addDef(SrcReg)
2807 .addImm(0)
2808 .addUse(I.getOperand(2).getReg())
2809 .addImm(AArch64::sub_32);
2810 RBI.constrainGenericRegister(I.getOperand(2).getReg(),
2811 AArch64::GPR32RegClass, MRI);
2812 I.getOperand(2).setReg(SrcReg);
2813
2814 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2815 }
2816 case TargetOpcode::G_FRAME_INDEX: {
2817 // allocas and G_FRAME_INDEX are only supported in addrspace(0).
2818 if (Ty != LLT::pointer(0, 64)) {
2819 LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty
2820 << ", expected: " << LLT::pointer(0, 64) << '\n');
2821 return false;
2822 }
2823 I.setDesc(TII.get(AArch64::ADDXri));
2824
2825 // MOs for a #0 shifted immediate.
2826 I.addOperand(MachineOperand::CreateImm(0));
2827 I.addOperand(MachineOperand::CreateImm(0));
2828
2829 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2830 }
2831
2832 case TargetOpcode::G_GLOBAL_VALUE: {
2833 const GlobalValue *GV = nullptr;
2834 unsigned OpFlags;
2835 if (I.getOperand(1).isSymbol()) {
2836 OpFlags = I.getOperand(1).getTargetFlags();
2837 // Currently only used by "RtLibUseGOT".
2838 assert(OpFlags == AArch64II::MO_GOT);
2839 } else {
2840 GV = I.getOperand(1).getGlobal();
2841 if (GV->isThreadLocal())
2842 return selectTLSGlobalValue(I, MRI);
2843 OpFlags = STI.ClassifyGlobalReference(GV, TM);
2844 }
2845
2846 if (OpFlags & AArch64II::MO_GOT) {
2847 I.setDesc(TII.get(AArch64::LOADgot));
2848 I.getOperand(1).setTargetFlags(OpFlags);
2849 } else if (TM.getCodeModel() == CodeModel::Large &&
2850 !TM.isPositionIndependent()) {
2851 // Materialize the global using movz/movk instructions.
2852 materializeLargeCMVal(I, GV, OpFlags);
2853 I.eraseFromParent();
2854 return true;
2855 } else if (TM.getCodeModel() == CodeModel::Tiny) {
2856 I.setDesc(TII.get(AArch64::ADR));
2857 I.getOperand(1).setTargetFlags(OpFlags);
2858 } else {
2859 I.setDesc(TII.get(AArch64::MOVaddr));
2860 I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE);
2861 MachineInstrBuilder MIB(MF, I);
2862 MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(),
2863 OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2864 }
2865 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2866 }
2867
2868 case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE:
2869 return selectPtrAuthGlobalValue(I, MRI);
2870
2871 case TargetOpcode::G_ZEXTLOAD:
2872 case TargetOpcode::G_LOAD:
2873 case TargetOpcode::G_STORE: {
2874 GLoadStore &LdSt = cast<GLoadStore>(I);
2875 bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD;
2876 LLT PtrTy = MRI.getType(LdSt.getPointerReg());
2877
2878 if (PtrTy != LLT::pointer(0, 64)) {
2879 LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
2880 << ", expected: " << LLT::pointer(0, 64) << '\n');
2881 return false;
2882 }
2883
2884 uint64_t MemSizeInBytes = LdSt.getMemSize().getValue();
2885 unsigned MemSizeInBits = LdSt.getMemSizeInBits().getValue();
2886 AtomicOrdering Order = LdSt.getMMO().getSuccessOrdering();
2887
2888 // Need special instructions for atomics that affect ordering.
2889 if (Order != AtomicOrdering::NotAtomic &&
2890 Order != AtomicOrdering::Unordered &&
2891 Order != AtomicOrdering::Monotonic) {
2892 assert(!isa<GZExtLoad>(LdSt));
2893 assert(MemSizeInBytes <= 8 &&
2894 "128-bit atomics should already be custom-legalized");
2895
2896 if (isa<GLoad>(LdSt)) {
2897 static constexpr unsigned LDAPROpcodes[] = {
2898 AArch64::LDAPRB, AArch64::LDAPRH, AArch64::LDAPRW, AArch64::LDAPRX};
2899 static constexpr unsigned LDAROpcodes[] = {
2900 AArch64::LDARB, AArch64::LDARH, AArch64::LDARW, AArch64::LDARX};
2901 ArrayRef<unsigned> Opcodes =
2902 STI.hasRCPC() && Order != AtomicOrdering::SequentiallyConsistent
2903 ? LDAPROpcodes
2904 : LDAROpcodes;
2905 I.setDesc(TII.get(Opcodes[Log2_32(MemSizeInBytes)]));
2906 } else {
2907 static constexpr unsigned Opcodes[] = {AArch64::STLRB, AArch64::STLRH,
2908 AArch64::STLRW, AArch64::STLRX};
2909 Register ValReg = LdSt.getReg(0);
2910 if (MRI.getType(ValReg).getSizeInBits() == 64 && MemSizeInBits != 64) {
2911 // Emit a subreg copy of 32 bits.
2912 Register NewVal = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
2913 MIB.buildInstr(TargetOpcode::COPY, {NewVal}, {})
2914 .addReg(I.getOperand(0).getReg(), 0, AArch64::sub_32);
2915 I.getOperand(0).setReg(NewVal);
2916 }
2917 I.setDesc(TII.get(Opcodes[Log2_32(MemSizeInBytes)]));
2918 }
2919 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2920 return true;
2921 }
2922
2923 #ifndef NDEBUG
2924 const Register PtrReg = LdSt.getPointerReg();
2925 const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI);
2926 // Check that the pointer register is valid.
2927 assert(PtrRB.getID() == AArch64::GPRRegBankID &&
2928 "Load/Store pointer operand isn't a GPR");
2929 assert(MRI.getType(PtrReg).isPointer() &&
2930 "Load/Store pointer operand isn't a pointer");
2931 #endif
2932
2933 const Register ValReg = LdSt.getReg(0);
2934 const LLT ValTy = MRI.getType(ValReg);
2935 const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI);
2936
2937 // The code below doesn't support truncating stores, so we need to split it
2938 // again.
2939 if (isa<GStore>(LdSt) && ValTy.getSizeInBits() > MemSizeInBits) {
2940 unsigned SubReg;
2941 LLT MemTy = LdSt.getMMO().getMemoryType();
2942 auto *RC = getRegClassForTypeOnBank(MemTy, RB);
2943 if (!getSubRegForClass(RC, TRI, SubReg))
2944 return false;
2945
2946 // Generate a subreg copy.
2947 auto Copy = MIB.buildInstr(TargetOpcode::COPY, {MemTy}, {})
2948 .addReg(ValReg, 0, SubReg)
2949 .getReg(0);
2950 RBI.constrainGenericRegister(Copy, *RC, MRI);
2951 LdSt.getOperand(0).setReg(Copy);
2952 } else if (isa<GLoad>(LdSt) && ValTy.getSizeInBits() > MemSizeInBits) {
2953 // If this is an any-extending load from the FPR bank, split it into a regular
2954 // load + extend.
2955 if (RB.getID() == AArch64::FPRRegBankID) {
2956 unsigned SubReg;
2957 LLT MemTy = LdSt.getMMO().getMemoryType();
2958 auto *RC = getRegClassForTypeOnBank(MemTy, RB);
2959 if (!getSubRegForClass(RC, TRI, SubReg))
2960 return false;
2961 Register OldDst = LdSt.getReg(0);
2962 Register NewDst =
2963 MRI.createGenericVirtualRegister(LdSt.getMMO().getMemoryType());
2964 LdSt.getOperand(0).setReg(NewDst);
2965 MRI.setRegBank(NewDst, RB);
2966 // Generate a SUBREG_TO_REG to extend it.
2967 MIB.setInsertPt(MIB.getMBB(), std::next(LdSt.getIterator()));
2968 MIB.buildInstr(AArch64::SUBREG_TO_REG, {OldDst}, {})
2969 .addImm(0)
2970 .addUse(NewDst)
2971 .addImm(SubReg);
2972 auto SubRegRC = getRegClassForTypeOnBank(MRI.getType(OldDst), RB);
2973 RBI.constrainGenericRegister(OldDst, *SubRegRC, MRI);
2974 MIB.setInstr(LdSt);
2975 }
2976 }
2977
2978 // Helper lambda for partially selecting I. Either returns the original
2979 // instruction with an updated opcode, or a new instruction.
2980 auto SelectLoadStoreAddressingMode = [&]() -> MachineInstr * {
2981 bool IsStore = isa<GStore>(I);
2982 const unsigned NewOpc =
2983 selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits);
2984 if (NewOpc == I.getOpcode())
2985 return nullptr;
2986 // Check if we can fold anything into the addressing mode.
2987 auto AddrModeFns =
2988 selectAddrModeIndexed(I.getOperand(1), MemSizeInBytes);
2989 if (!AddrModeFns) {
2990 // Can't fold anything. Use the original instruction.
2991 I.setDesc(TII.get(NewOpc));
2992 I.addOperand(MachineOperand::CreateImm(0));
2993 return &I;
2994 }
2995
2996 // Folded something. Create a new instruction and return it.
2997 auto NewInst = MIB.buildInstr(NewOpc, {}, {}, I.getFlags());
2998 Register CurValReg = I.getOperand(0).getReg();
2999 IsStore ? NewInst.addUse(CurValReg) : NewInst.addDef(CurValReg);
3000 NewInst.cloneMemRefs(I);
3001 for (auto &Fn : *AddrModeFns)
3002 Fn(NewInst);
3003 I.eraseFromParent();
3004 return &*NewInst;
3005 };
3006
3007 MachineInstr *LoadStore = SelectLoadStoreAddressingMode();
3008 if (!LoadStore)
3009 return false;
3010
3011 // If we're storing a 0, use WZR/XZR.
3012 if (Opcode == TargetOpcode::G_STORE) {
3013 auto CVal = getIConstantVRegValWithLookThrough(
3014 LoadStore->getOperand(0).getReg(), MRI);
3015 if (CVal && CVal->Value == 0) {
3016 switch (LoadStore->getOpcode()) {
3017 case AArch64::STRWui:
3018 case AArch64::STRHHui:
3019 case AArch64::STRBBui:
3020 LoadStore->getOperand(0).setReg(AArch64::WZR);
3021 break;
3022 case AArch64::STRXui:
3023 LoadStore->getOperand(0).setReg(AArch64::XZR);
3024 break;
3025 }
3026 }
3027 }
3028
3029 if (IsZExtLoad || (Opcode == TargetOpcode::G_LOAD &&
3030 ValTy == LLT::scalar(64) && MemSizeInBits == 32)) {
3031 // The any/zextload from a smaller type to i32 should be handled by the
3032 // importer.
3033 if (MRI.getType(LoadStore->getOperand(0).getReg()).getSizeInBits() != 64)
3034 return false;
3035 // If we have an extending load then change the load's type to be a
3036 // narrower reg and zero_extend with SUBREG_TO_REG.
3037 Register LdReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
3038 Register DstReg = LoadStore->getOperand(0).getReg();
3039 LoadStore->getOperand(0).setReg(LdReg);
3040
3041 MIB.setInsertPt(MIB.getMBB(), std::next(LoadStore->getIterator()));
3042 MIB.buildInstr(AArch64::SUBREG_TO_REG, {DstReg}, {})
3043 .addImm(0)
3044 .addUse(LdReg)
3045 .addImm(AArch64::sub_32);
3046 constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
3047 return RBI.constrainGenericRegister(DstReg, AArch64::GPR64allRegClass,
3048 MRI);
3049 }
3050 return constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
3051 }
3052
3053 case TargetOpcode::G_INDEXED_ZEXTLOAD:
3054 case TargetOpcode::G_INDEXED_SEXTLOAD:
3055 return selectIndexedExtLoad(I, MRI);
3056 case TargetOpcode::G_INDEXED_LOAD:
3057 return selectIndexedLoad(I, MRI);
3058 case TargetOpcode::G_INDEXED_STORE:
3059 return selectIndexedStore(cast<GIndexedStore>(I), MRI);
3060
3061 case TargetOpcode::G_LSHR:
3062 case TargetOpcode::G_ASHR:
3063 if (MRI.getType(I.getOperand(0).getReg()).isVector())
3064 return selectVectorAshrLshr(I, MRI);
3065 [[fallthrough]];
3066 case TargetOpcode::G_SHL:
3067 if (Opcode == TargetOpcode::G_SHL &&
3068 MRI.getType(I.getOperand(0).getReg()).isVector())
3069 return selectVectorSHL(I, MRI);
3070
3071 // These shifts were legalized to have 64 bit shift amounts because we
3072 // want to take advantage of the selection patterns that assume the
3073 // immediates are s64s, however, selectBinaryOp will assume both operands
3074 // will have the same bit size.
3075 {
3076 Register SrcReg = I.getOperand(1).getReg();
3077 Register ShiftReg = I.getOperand(2).getReg();
3078 const LLT ShiftTy = MRI.getType(ShiftReg);
3079 const LLT SrcTy = MRI.getType(SrcReg);
3080 if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
3081 ShiftTy.getSizeInBits() == 64) {
3082 assert(!ShiftTy.isVector() && "unexpected vector shift ty");
3083 // Insert a subregister copy to implement a 64->32 trunc
3084 auto Trunc = MIB.buildInstr(TargetOpcode::COPY, {SrcTy}, {})
3085 .addReg(ShiftReg, 0, AArch64::sub_32);
3086 MRI.setRegBank(Trunc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
3087 I.getOperand(2).setReg(Trunc.getReg(0));
3088 }
3089 }
3090 [[fallthrough]];
3091 case TargetOpcode::G_OR: {
3092 // Reject the various things we don't support yet.
3093 if (unsupportedBinOp(I, RBI, MRI, TRI))
3094 return false;
3095
3096 const unsigned OpSize = Ty.getSizeInBits();
3097
3098 const Register DefReg = I.getOperand(0).getReg();
3099 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
3100
3101 const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize);
3102 if (NewOpc == I.getOpcode())
3103 return false;
3104
3105 I.setDesc(TII.get(NewOpc));
3106 // FIXME: Should the type be always reset in setDesc?
3107
3108 // Now that we selected an opcode, we need to constrain the register
3109 // operands to use appropriate classes.
3110 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3111 }
3112
3113 case TargetOpcode::G_PTR_ADD: {
3114 emitADD(I.getOperand(0).getReg(), I.getOperand(1), I.getOperand(2), MIB);
3115 I.eraseFromParent();
3116 return true;
3117 }
3118
3119 case TargetOpcode::G_SADDE:
3120 case TargetOpcode::G_UADDE:
3121 case TargetOpcode::G_SSUBE:
3122 case TargetOpcode::G_USUBE:
3123 case TargetOpcode::G_SADDO:
3124 case TargetOpcode::G_UADDO:
3125 case TargetOpcode::G_SSUBO:
3126 case TargetOpcode::G_USUBO:
3127 return selectOverflowOp(I, MRI);
3128
3129 case TargetOpcode::G_PTRMASK: {
3130 Register MaskReg = I.getOperand(2).getReg();
3131 std::optional<int64_t> MaskVal = getIConstantVRegSExtVal(MaskReg, MRI);
3132 // TODO: Implement arbitrary cases
3133 if (!MaskVal || !isShiftedMask_64(*MaskVal))
3134 return false;
3135
3136 uint64_t Mask = *MaskVal;
3137 I.setDesc(TII.get(AArch64::ANDXri));
3138 I.getOperand(2).ChangeToImmediate(
3139 AArch64_AM::encodeLogicalImmediate(Mask, 64));
3140
3141 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3142 }
3143 case TargetOpcode::G_PTRTOINT:
3144 case TargetOpcode::G_TRUNC: {
3145 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3146 const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
3147
3148 const Register DstReg = I.getOperand(0).getReg();
3149 const Register SrcReg = I.getOperand(1).getReg();
3150
3151 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
3152 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
3153
3154 if (DstRB.getID() != SrcRB.getID()) {
3155 LLVM_DEBUG(
3156 dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n");
3157 return false;
3158 }
3159
3160 if (DstRB.getID() == AArch64::GPRRegBankID) {
3161 const TargetRegisterClass *DstRC = getRegClassForTypeOnBank(DstTy, DstRB);
3162 if (!DstRC)
3163 return false;
3164
3165 const TargetRegisterClass *SrcRC = getRegClassForTypeOnBank(SrcTy, SrcRB);
3166 if (!SrcRC)
3167 return false;
3168
3169 if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
3170 !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
3171 LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n");
3172 return false;
3173 }
3174
3175 if (DstRC == SrcRC) {
3176 // Nothing to be done
3177 } else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) &&
3178 SrcTy == LLT::scalar(64)) {
3179 llvm_unreachable("TableGen can import this case");
3180 return false;
3181 } else if (DstRC == &AArch64::GPR32RegClass &&
3182 SrcRC == &AArch64::GPR64RegClass) {
3183 I.getOperand(1).setSubReg(AArch64::sub_32);
3184 } else {
3185 LLVM_DEBUG(
3186 dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n");
3187 return false;
3188 }
3189
3190 I.setDesc(TII.get(TargetOpcode::COPY));
3191 return true;
3192 } else if (DstRB.getID() == AArch64::FPRRegBankID) {
3193 if (DstTy == LLT::fixed_vector(4, 16) &&
3194 SrcTy == LLT::fixed_vector(4, 32)) {
3195 I.setDesc(TII.get(AArch64::XTNv4i16));
3196 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3197 return true;
3198 }
3199
3200 if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) {
3201 MachineInstr *Extract = emitExtractVectorElt(
3202 DstReg, DstRB, LLT::scalar(DstTy.getSizeInBits()), SrcReg, 0, MIB);
3203 if (!Extract)
3204 return false;
3205 I.eraseFromParent();
3206 return true;
3207 }
3208
3209 // We might have a vector G_PTRTOINT, in which case just emit a COPY.
3210 if (Opcode == TargetOpcode::G_PTRTOINT) {
3211 assert(DstTy.isVector() && "Expected an FPR ptrtoint to be a vector");
3212 I.setDesc(TII.get(TargetOpcode::COPY));
3213 return selectCopy(I, TII, MRI, TRI, RBI);
3214 }
3215 }
3216
3217 return false;
3218 }
3219
3220 case TargetOpcode::G_ANYEXT: {
3221 if (selectUSMovFromExtend(I, MRI))
3222 return true;
3223
3224 const Register DstReg = I.getOperand(0).getReg();
3225 const Register SrcReg = I.getOperand(1).getReg();
3226
3227 const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI);
3228 if (RBDst.getID() != AArch64::GPRRegBankID) {
3229 LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst
3230 << ", expected: GPR\n");
3231 return false;
3232 }
3233
3234 const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI);
3235 if (RBSrc.getID() != AArch64::GPRRegBankID) {
3236 LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc
3237 << ", expected: GPR\n");
3238 return false;
3239 }
3240
3241 const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
3242
3243 if (DstSize == 0) {
3244 LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n");
3245 return false;
3246 }
3247
3248 if (DstSize != 64 && DstSize > 32) {
3249 LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize
3250 << ", expected: 32 or 64\n");
3251 return false;
3252 }
3253 // At this point G_ANYEXT is just like a plain COPY, but we need
3254 // to explicitly form the 64-bit value if any.
3255 if (DstSize > 32) {
3256 Register ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass);
3257 BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG))
3258 .addDef(ExtSrc)
3259 .addImm(0)
3260 .addUse(SrcReg)
3261 .addImm(AArch64::sub_32);
3262 I.getOperand(1).setReg(ExtSrc);
3263 }
3264 return selectCopy(I, TII, MRI, TRI, RBI);
3265 }
3266
3267 case TargetOpcode::G_ZEXT:
3268 case TargetOpcode::G_SEXT_INREG:
3269 case TargetOpcode::G_SEXT: {
3270 if (selectUSMovFromExtend(I, MRI))
3271 return true;
3272
3273 unsigned Opcode = I.getOpcode();
3274 const bool IsSigned = Opcode != TargetOpcode::G_ZEXT;
3275 const Register DefReg = I.getOperand(0).getReg();
3276 Register SrcReg = I.getOperand(1).getReg();
3277 const LLT DstTy = MRI.getType(DefReg);
3278 const LLT SrcTy = MRI.getType(SrcReg);
3279 unsigned DstSize = DstTy.getSizeInBits();
3280 unsigned SrcSize = SrcTy.getSizeInBits();
3281
3282 // SEXT_INREG has the same src reg size as dst, the size of the value to be
3283 // extended is encoded in the imm.
3284 if (Opcode == TargetOpcode::G_SEXT_INREG)
3285 SrcSize = I.getOperand(2).getImm();
3286
3287 if (DstTy.isVector())
3288 return false; // Should be handled by imported patterns.
3289
3290 assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() ==
3291 AArch64::GPRRegBankID &&
3292 "Unexpected ext regbank");
3293
3294 MachineInstr *ExtI;
3295
3296 // First check if we're extending the result of a load which has a dest type
3297 // smaller than 32 bits, then this zext is redundant. GPR32 is the smallest
3298 // GPR register on AArch64 and all loads which are smaller automatically
3299 // zero-extend the upper bits. E.g.
3300 // %v(s8) = G_LOAD %p, :: (load 1)
3301 // %v2(s32) = G_ZEXT %v(s8)
3302 if (!IsSigned) {
3303 auto *LoadMI = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
3304 bool IsGPR =
3305 RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID;
3306 if (LoadMI && IsGPR) {
3307 const MachineMemOperand *MemOp = *LoadMI->memoperands_begin();
3308 unsigned BytesLoaded = MemOp->getSize().getValue();
3309 if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded)
3310 return selectCopy(I, TII, MRI, TRI, RBI);
3311 }
3312
3313 // For the 32-bit -> 64-bit case, we can emit a mov (ORRWrs)
3314 // + SUBREG_TO_REG.
3315 if (IsGPR && SrcSize == 32 && DstSize == 64) {
3316 Register SubregToRegSrc =
3317 MRI.createVirtualRegister(&AArch64::GPR32RegClass);
3318 const Register ZReg = AArch64::WZR;
3319 MIB.buildInstr(AArch64::ORRWrs, {SubregToRegSrc}, {ZReg, SrcReg})
3320 .addImm(0);
3321
3322 MIB.buildInstr(AArch64::SUBREG_TO_REG, {DefReg}, {})
3323 .addImm(0)
3324 .addUse(SubregToRegSrc)
3325 .addImm(AArch64::sub_32);
3326
3327 if (!RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass,
3328 MRI)) {
3329 LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT destination\n");
3330 return false;
3331 }
3332
3333 if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
3334 MRI)) {
3335 LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT source\n");
3336 return false;
3337 }
3338
3339 I.eraseFromParent();
3340 return true;
3341 }
3342 }
3343
3344 if (DstSize == 64) {
3345 if (Opcode != TargetOpcode::G_SEXT_INREG) {
3346 // FIXME: Can we avoid manually doing this?
3347 if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
3348 MRI)) {
3349 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode)
3350 << " operand\n");
3351 return false;
3352 }
3353 SrcReg = MIB.buildInstr(AArch64::SUBREG_TO_REG,
3354 {&AArch64::GPR64RegClass}, {})
3355 .addImm(0)
3356 .addUse(SrcReg)
3357 .addImm(AArch64::sub_32)
3358 .getReg(0);
3359 }
3360
3361 ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri,
3362 {DefReg}, {SrcReg})
3363 .addImm(0)
3364 .addImm(SrcSize - 1);
3365 } else if (DstSize <= 32) {
3366 ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri,
3367 {DefReg}, {SrcReg})
3368 .addImm(0)
3369 .addImm(SrcSize - 1);
3370 } else {
3371 return false;
3372 }
3373
3374 constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
3375 I.eraseFromParent();
3376 return true;
3377 }
3378
3379 case TargetOpcode::G_SITOFP:
3380 case TargetOpcode::G_UITOFP:
3381 case TargetOpcode::G_FPTOSI:
3382 case TargetOpcode::G_FPTOUI: {
3383 const LLT DstTy = MRI.getType(I.getOperand(0).getReg()),
3384 SrcTy = MRI.getType(I.getOperand(1).getReg());
3385 const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy);
3386 if (NewOpc == Opcode)
3387 return false;
3388
3389 I.setDesc(TII.get(NewOpc));
3390 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3391 I.setFlags(MachineInstr::NoFPExcept);
3392
3393 return true;
3394 }
3395
3396 case TargetOpcode::G_FREEZE:
3397 return selectCopy(I, TII, MRI, TRI, RBI);
3398
3399 case TargetOpcode::G_INTTOPTR:
3400 // The importer is currently unable to import pointer types since they
3401 // didn't exist in SelectionDAG.
3402 return selectCopy(I, TII, MRI, TRI, RBI);
3403
3404 case TargetOpcode::G_BITCAST:
3405 // Imported SelectionDAG rules can handle every bitcast except those that
3406 // bitcast from a type to the same type. Ideally, these shouldn't occur
3407 // but we might not run an optimizer that deletes them. The other exception
3408 // is bitcasts involving pointer types, as SelectionDAG has no knowledge
3409 // of them.
3410 return selectCopy(I, TII, MRI, TRI, RBI);
3411
3412 case TargetOpcode::G_SELECT: {
3413 auto &Sel = cast<GSelect>(I);
3414 const Register CondReg = Sel.getCondReg();
3415 const Register TReg = Sel.getTrueReg();
3416 const Register FReg = Sel.getFalseReg();
3417
3418 if (tryOptSelect(Sel))
3419 return true;
3420
3421 // Make sure to use an unused vreg instead of wzr, so that the peephole
3422 // optimizations will be able to optimize these.
3423 Register DeadVReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
3424 auto TstMI = MIB.buildInstr(AArch64::ANDSWri, {DeadVReg}, {CondReg})
3425 .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
3426 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
3427 if (!emitSelect(Sel.getReg(0), TReg, FReg, AArch64CC::NE, MIB))
3428 return false;
3429 Sel.eraseFromParent();
3430 return true;
3431 }
3432 case TargetOpcode::G_ICMP: {
3433 if (Ty.isVector())
3434 return false;
3435
3436 if (Ty != LLT::scalar(32)) {
3437 LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty
3438 << ", expected: " << LLT::scalar(32) << '\n');
3439 return false;
3440 }
3441
3442 auto Pred = static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
3443 const AArch64CC::CondCode InvCC =
3444 changeICMPPredToAArch64CC(CmpInst::getInversePredicate(Pred));
3445 emitIntegerCompare(I.getOperand(2), I.getOperand(3), I.getOperand(1), MIB);
3446 emitCSINC(/*Dst=*/I.getOperand(0).getReg(), /*Src1=*/AArch64::WZR,
3447 /*Src2=*/AArch64::WZR, InvCC, MIB);
3448 I.eraseFromParent();
3449 return true;
3450 }
3451
3452 case TargetOpcode::G_FCMP: {
3453 CmpInst::Predicate Pred =
3454 static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
3455 if (!emitFPCompare(I.getOperand(2).getReg(), I.getOperand(3).getReg(), MIB,
3456 Pred) ||
3457 !emitCSetForFCmp(I.getOperand(0).getReg(), Pred, MIB))
3458 return false;
3459 I.eraseFromParent();
3460 return true;
3461 }
3462 case TargetOpcode::G_VASTART:
3463 return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI)
3464 : selectVaStartAAPCS(I, MF, MRI);
3465 case TargetOpcode::G_INTRINSIC:
3466 return selectIntrinsic(I, MRI);
3467 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
3468 return selectIntrinsicWithSideEffects(I, MRI);
3469 case TargetOpcode::G_IMPLICIT_DEF: {
3470 I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
3471 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3472 const Register DstReg = I.getOperand(0).getReg();
3473 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
3474 const TargetRegisterClass *DstRC = getRegClassForTypeOnBank(DstTy, DstRB);
3475 RBI.constrainGenericRegister(DstReg, *DstRC, MRI);
3476 return true;
3477 }
3478 case TargetOpcode::G_BLOCK_ADDR: {
3479 Function *BAFn = I.getOperand(1).getBlockAddress()->getFunction();
3480 if (std::optional<uint16_t> BADisc =
3481 STI.getPtrAuthBlockAddressDiscriminatorIfEnabled(*BAFn)) {
3482 MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {AArch64::X16}, {});
3483 MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {AArch64::X17}, {});
3484 MIB.buildInstr(AArch64::MOVaddrPAC)
3485 .addBlockAddress(I.getOperand(1).getBlockAddress())
3486 .addImm(AArch64PACKey::IA)
3487 .addReg(/*AddrDisc=*/AArch64::XZR)
3488 .addImm(*BADisc)
3489 .constrainAllUses(TII, TRI, RBI);
3490 MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X16));
3491 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
3492 AArch64::GPR64RegClass, MRI);
3493 I.eraseFromParent();
3494 return true;
3495 }
3496 if (TM.getCodeModel() == CodeModel::Large && !TM.isPositionIndependent()) {
3497 materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0);
3498 I.eraseFromParent();
3499 return true;
3500 } else {
3501 I.setDesc(TII.get(AArch64::MOVaddrBA));
3502 auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA),
3503 I.getOperand(0).getReg())
3504 .addBlockAddress(I.getOperand(1).getBlockAddress(),
3505 /* Offset */ 0, AArch64II::MO_PAGE)
3506 .addBlockAddress(
3507 I.getOperand(1).getBlockAddress(), /* Offset */ 0,
3508 AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
3509 I.eraseFromParent();
3510 return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
3511 }
3512 }
3513 case AArch64::G_DUP: {
3514 // When the scalar of G_DUP is an s8/s16 gpr, they can't be selected by
3515 // imported patterns. Do it manually here. Avoiding generating s16 gpr is
3516 // difficult because at RBS we may end up pessimizing the fpr case if we
3517 // decided to add an anyextend to fix this. Manual selection is the most
3518 // robust solution for now.
3519 if (RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
3520 AArch64::GPRRegBankID)
3521 return false; // We expect the fpr regbank case to be imported.
3522 LLT VecTy = MRI.getType(I.getOperand(0).getReg());
3523 if (VecTy == LLT::fixed_vector(8, 8))
3524 I.setDesc(TII.get(AArch64::DUPv8i8gpr));
3525 else if (VecTy == LLT::fixed_vector(16, 8))
3526 I.setDesc(TII.get(AArch64::DUPv16i8gpr));
3527 else if (VecTy == LLT::fixed_vector(4, 16))
3528 I.setDesc(TII.get(AArch64::DUPv4i16gpr));
3529 else if (VecTy == LLT::fixed_vector(8, 16))
3530 I.setDesc(TII.get(AArch64::DUPv8i16gpr));
3531 else
3532 return false;
3533 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3534 }
3535 case TargetOpcode::G_BUILD_VECTOR:
3536 return selectBuildVector(I, MRI);
3537 case TargetOpcode::G_MERGE_VALUES:
3538 return selectMergeValues(I, MRI);
3539 case TargetOpcode::G_UNMERGE_VALUES:
3540 return selectUnmergeValues(I, MRI);
3541 case TargetOpcode::G_SHUFFLE_VECTOR:
3542 return selectShuffleVector(I, MRI);
3543 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3544 return selectExtractElt(I, MRI);
3545 case TargetOpcode::G_CONCAT_VECTORS:
3546 return selectConcatVectors(I, MRI);
3547 case TargetOpcode::G_JUMP_TABLE:
3548 return selectJumpTable(I, MRI);
3549 case TargetOpcode::G_MEMCPY:
3550 case TargetOpcode::G_MEMCPY_INLINE:
3551 case TargetOpcode::G_MEMMOVE:
3552 case TargetOpcode::G_MEMSET:
3553 assert(STI.hasMOPS() && "Shouldn't get here without +mops feature");
3554 return selectMOPS(I, MRI);
3555 }
3556
3557 return false;
3558 }
3559
selectAndRestoreState(MachineInstr & I)3560 bool AArch64InstructionSelector::selectAndRestoreState(MachineInstr &I) {
3561 MachineIRBuilderState OldMIBState = MIB.getState();
3562 bool Success = select(I);
3563 MIB.setState(OldMIBState);
3564 return Success;
3565 }
3566
selectMOPS(MachineInstr & GI,MachineRegisterInfo & MRI)3567 bool AArch64InstructionSelector::selectMOPS(MachineInstr &GI,
3568 MachineRegisterInfo &MRI) {
3569 unsigned Mopcode;
3570 switch (GI.getOpcode()) {
3571 case TargetOpcode::G_MEMCPY:
3572 case TargetOpcode::G_MEMCPY_INLINE:
3573 Mopcode = AArch64::MOPSMemoryCopyPseudo;
3574 break;
3575 case TargetOpcode::G_MEMMOVE:
3576 Mopcode = AArch64::MOPSMemoryMovePseudo;
3577 break;
3578 case TargetOpcode::G_MEMSET:
3579 // For tagged memset see llvm.aarch64.mops.memset.tag
3580 Mopcode = AArch64::MOPSMemorySetPseudo;
3581 break;
3582 }
3583
3584 auto &DstPtr = GI.getOperand(0);
3585 auto &SrcOrVal = GI.getOperand(1);
3586 auto &Size = GI.getOperand(2);
3587
3588 // Create copies of the registers that can be clobbered.
3589 const Register DstPtrCopy = MRI.cloneVirtualRegister(DstPtr.getReg());
3590 const Register SrcValCopy = MRI.cloneVirtualRegister(SrcOrVal.getReg());
3591 const Register SizeCopy = MRI.cloneVirtualRegister(Size.getReg());
3592
3593 const bool IsSet = Mopcode == AArch64::MOPSMemorySetPseudo;
3594 const auto &SrcValRegClass =
3595 IsSet ? AArch64::GPR64RegClass : AArch64::GPR64commonRegClass;
3596
3597 // Constrain to specific registers
3598 RBI.constrainGenericRegister(DstPtrCopy, AArch64::GPR64commonRegClass, MRI);
3599 RBI.constrainGenericRegister(SrcValCopy, SrcValRegClass, MRI);
3600 RBI.constrainGenericRegister(SizeCopy, AArch64::GPR64RegClass, MRI);
3601
3602 MIB.buildCopy(DstPtrCopy, DstPtr);
3603 MIB.buildCopy(SrcValCopy, SrcOrVal);
3604 MIB.buildCopy(SizeCopy, Size);
3605
3606 // New instruction uses the copied registers because it must update them.
3607 // The defs are not used since they don't exist in G_MEM*. They are still
3608 // tied.
3609 // Note: order of operands is different from G_MEMSET, G_MEMCPY, G_MEMMOVE
3610 Register DefDstPtr = MRI.createVirtualRegister(&AArch64::GPR64commonRegClass);
3611 Register DefSize = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3612 if (IsSet) {
3613 MIB.buildInstr(Mopcode, {DefDstPtr, DefSize},
3614 {DstPtrCopy, SizeCopy, SrcValCopy});
3615 } else {
3616 Register DefSrcPtr = MRI.createVirtualRegister(&SrcValRegClass);
3617 MIB.buildInstr(Mopcode, {DefDstPtr, DefSrcPtr, DefSize},
3618 {DstPtrCopy, SrcValCopy, SizeCopy});
3619 }
3620
3621 GI.eraseFromParent();
3622 return true;
3623 }
3624
selectBrJT(MachineInstr & I,MachineRegisterInfo & MRI)3625 bool AArch64InstructionSelector::selectBrJT(MachineInstr &I,
3626 MachineRegisterInfo &MRI) {
3627 assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT");
3628 Register JTAddr = I.getOperand(0).getReg();
3629 unsigned JTI = I.getOperand(1).getIndex();
3630 Register Index = I.getOperand(2).getReg();
3631
3632 MF->getInfo<AArch64FunctionInfo>()->setJumpTableEntryInfo(JTI, 4, nullptr);
3633
3634 // With aarch64-jump-table-hardening, we only expand the jump table dispatch
3635 // sequence later, to guarantee the integrity of the intermediate values.
3636 if (MF->getFunction().hasFnAttribute("aarch64-jump-table-hardening")) {
3637 CodeModel::Model CM = TM.getCodeModel();
3638 if (STI.isTargetMachO()) {
3639 if (CM != CodeModel::Small && CM != CodeModel::Large)
3640 report_fatal_error("Unsupported code-model for hardened jump-table");
3641 } else {
3642 // Note that COFF support would likely also need JUMP_TABLE_DEBUG_INFO.
3643 assert(STI.isTargetELF() &&
3644 "jump table hardening only supported on MachO/ELF");
3645 if (CM != CodeModel::Small)
3646 report_fatal_error("Unsupported code-model for hardened jump-table");
3647 }
3648
3649 MIB.buildCopy({AArch64::X16}, I.getOperand(2).getReg());
3650 MIB.buildInstr(AArch64::BR_JumpTable)
3651 .addJumpTableIndex(I.getOperand(1).getIndex());
3652 I.eraseFromParent();
3653 return true;
3654 }
3655
3656 Register TargetReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3657 Register ScratchReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
3658
3659 auto JumpTableInst = MIB.buildInstr(AArch64::JumpTableDest32,
3660 {TargetReg, ScratchReg}, {JTAddr, Index})
3661 .addJumpTableIndex(JTI);
3662 // Save the jump table info.
3663 MIB.buildInstr(TargetOpcode::JUMP_TABLE_DEBUG_INFO, {},
3664 {static_cast<int64_t>(JTI)});
3665 // Build the indirect branch.
3666 MIB.buildInstr(AArch64::BR, {}, {TargetReg});
3667 I.eraseFromParent();
3668 return constrainSelectedInstRegOperands(*JumpTableInst, TII, TRI, RBI);
3669 }
3670
selectJumpTable(MachineInstr & I,MachineRegisterInfo & MRI)3671 bool AArch64InstructionSelector::selectJumpTable(MachineInstr &I,
3672 MachineRegisterInfo &MRI) {
3673 assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table");
3674 assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!");
3675
3676 Register DstReg = I.getOperand(0).getReg();
3677 unsigned JTI = I.getOperand(1).getIndex();
3678 // We generate a MOVaddrJT which will get expanded to an ADRP + ADD later.
3679 auto MovMI =
3680 MIB.buildInstr(AArch64::MOVaddrJT, {DstReg}, {})
3681 .addJumpTableIndex(JTI, AArch64II::MO_PAGE)
3682 .addJumpTableIndex(JTI, AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
3683 I.eraseFromParent();
3684 return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
3685 }
3686
selectTLSGlobalValue(MachineInstr & I,MachineRegisterInfo & MRI)3687 bool AArch64InstructionSelector::selectTLSGlobalValue(
3688 MachineInstr &I, MachineRegisterInfo &MRI) {
3689 if (!STI.isTargetMachO())
3690 return false;
3691 MachineFunction &MF = *I.getParent()->getParent();
3692 MF.getFrameInfo().setAdjustsStack(true);
3693
3694 const auto &GlobalOp = I.getOperand(1);
3695 assert(GlobalOp.getOffset() == 0 &&
3696 "Shouldn't have an offset on TLS globals!");
3697 const GlobalValue &GV = *GlobalOp.getGlobal();
3698
3699 auto LoadGOT =
3700 MIB.buildInstr(AArch64::LOADgot, {&AArch64::GPR64commonRegClass}, {})
3701 .addGlobalAddress(&GV, 0, AArch64II::MO_TLS);
3702
3703 auto Load = MIB.buildInstr(AArch64::LDRXui, {&AArch64::GPR64commonRegClass},
3704 {LoadGOT.getReg(0)})
3705 .addImm(0);
3706
3707 MIB.buildCopy(Register(AArch64::X0), LoadGOT.getReg(0));
3708 // TLS calls preserve all registers except those that absolutely must be
3709 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3710 // silly).
3711 unsigned Opcode = getBLRCallOpcode(MF);
3712
3713 // With ptrauth-calls, the tlv access thunk pointer is authenticated (IA, 0).
3714 if (MF.getFunction().hasFnAttribute("ptrauth-calls")) {
3715 assert(Opcode == AArch64::BLR);
3716 Opcode = AArch64::BLRAAZ;
3717 }
3718
3719 MIB.buildInstr(Opcode, {}, {Load})
3720 .addUse(AArch64::X0, RegState::Implicit)
3721 .addDef(AArch64::X0, RegState::Implicit)
3722 .addRegMask(TRI.getTLSCallPreservedMask());
3723
3724 MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X0));
3725 RBI.constrainGenericRegister(I.getOperand(0).getReg(), AArch64::GPR64RegClass,
3726 MRI);
3727 I.eraseFromParent();
3728 return true;
3729 }
3730
emitScalarToVector(unsigned EltSize,const TargetRegisterClass * DstRC,Register Scalar,MachineIRBuilder & MIRBuilder) const3731 MachineInstr *AArch64InstructionSelector::emitScalarToVector(
3732 unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar,
3733 MachineIRBuilder &MIRBuilder) const {
3734 auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {});
3735
3736 auto BuildFn = [&](unsigned SubregIndex) {
3737 auto Ins =
3738 MIRBuilder
3739 .buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar})
3740 .addImm(SubregIndex);
3741 constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI);
3742 constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI);
3743 return &*Ins;
3744 };
3745
3746 switch (EltSize) {
3747 case 8:
3748 return BuildFn(AArch64::bsub);
3749 case 16:
3750 return BuildFn(AArch64::hsub);
3751 case 32:
3752 return BuildFn(AArch64::ssub);
3753 case 64:
3754 return BuildFn(AArch64::dsub);
3755 default:
3756 return nullptr;
3757 }
3758 }
3759
3760 MachineInstr *
emitNarrowVector(Register DstReg,Register SrcReg,MachineIRBuilder & MIB,MachineRegisterInfo & MRI) const3761 AArch64InstructionSelector::emitNarrowVector(Register DstReg, Register SrcReg,
3762 MachineIRBuilder &MIB,
3763 MachineRegisterInfo &MRI) const {
3764 LLT DstTy = MRI.getType(DstReg);
3765 const TargetRegisterClass *RC =
3766 getRegClassForTypeOnBank(DstTy, *RBI.getRegBank(SrcReg, MRI, TRI));
3767 if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
3768 LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
3769 return nullptr;
3770 }
3771 unsigned SubReg = 0;
3772 if (!getSubRegForClass(RC, TRI, SubReg))
3773 return nullptr;
3774 if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
3775 LLVM_DEBUG(dbgs() << "Unsupported destination size! ("
3776 << DstTy.getSizeInBits() << "\n");
3777 return nullptr;
3778 }
3779 auto Copy = MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {})
3780 .addReg(SrcReg, 0, SubReg);
3781 RBI.constrainGenericRegister(DstReg, *RC, MRI);
3782 return Copy;
3783 }
3784
selectMergeValues(MachineInstr & I,MachineRegisterInfo & MRI)3785 bool AArch64InstructionSelector::selectMergeValues(
3786 MachineInstr &I, MachineRegisterInfo &MRI) {
3787 assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode");
3788 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3789 const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
3790 assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation");
3791 const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
3792
3793 if (I.getNumOperands() != 3)
3794 return false;
3795
3796 // Merging 2 s64s into an s128.
3797 if (DstTy == LLT::scalar(128)) {
3798 if (SrcTy.getSizeInBits() != 64)
3799 return false;
3800 Register DstReg = I.getOperand(0).getReg();
3801 Register Src1Reg = I.getOperand(1).getReg();
3802 Register Src2Reg = I.getOperand(2).getReg();
3803 auto Tmp = MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstTy}, {});
3804 MachineInstr *InsMI = emitLaneInsert(std::nullopt, Tmp.getReg(0), Src1Reg,
3805 /* LaneIdx */ 0, RB, MIB);
3806 if (!InsMI)
3807 return false;
3808 MachineInstr *Ins2MI = emitLaneInsert(DstReg, InsMI->getOperand(0).getReg(),
3809 Src2Reg, /* LaneIdx */ 1, RB, MIB);
3810 if (!Ins2MI)
3811 return false;
3812 constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
3813 constrainSelectedInstRegOperands(*Ins2MI, TII, TRI, RBI);
3814 I.eraseFromParent();
3815 return true;
3816 }
3817
3818 if (RB.getID() != AArch64::GPRRegBankID)
3819 return false;
3820
3821 if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32)
3822 return false;
3823
3824 auto *DstRC = &AArch64::GPR64RegClass;
3825 Register SubToRegDef = MRI.createVirtualRegister(DstRC);
3826 MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
3827 TII.get(TargetOpcode::SUBREG_TO_REG))
3828 .addDef(SubToRegDef)
3829 .addImm(0)
3830 .addUse(I.getOperand(1).getReg())
3831 .addImm(AArch64::sub_32);
3832 Register SubToRegDef2 = MRI.createVirtualRegister(DstRC);
3833 // Need to anyext the second scalar before we can use bfm
3834 MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
3835 TII.get(TargetOpcode::SUBREG_TO_REG))
3836 .addDef(SubToRegDef2)
3837 .addImm(0)
3838 .addUse(I.getOperand(2).getReg())
3839 .addImm(AArch64::sub_32);
3840 MachineInstr &BFM =
3841 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri))
3842 .addDef(I.getOperand(0).getReg())
3843 .addUse(SubToRegDef)
3844 .addUse(SubToRegDef2)
3845 .addImm(32)
3846 .addImm(31);
3847 constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI);
3848 constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI);
3849 constrainSelectedInstRegOperands(BFM, TII, TRI, RBI);
3850 I.eraseFromParent();
3851 return true;
3852 }
3853
getLaneCopyOpcode(unsigned & CopyOpc,unsigned & ExtractSubReg,const unsigned EltSize)3854 static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg,
3855 const unsigned EltSize) {
3856 // Choose a lane copy opcode and subregister based off of the size of the
3857 // vector's elements.
3858 switch (EltSize) {
3859 case 8:
3860 CopyOpc = AArch64::DUPi8;
3861 ExtractSubReg = AArch64::bsub;
3862 break;
3863 case 16:
3864 CopyOpc = AArch64::DUPi16;
3865 ExtractSubReg = AArch64::hsub;
3866 break;
3867 case 32:
3868 CopyOpc = AArch64::DUPi32;
3869 ExtractSubReg = AArch64::ssub;
3870 break;
3871 case 64:
3872 CopyOpc = AArch64::DUPi64;
3873 ExtractSubReg = AArch64::dsub;
3874 break;
3875 default:
3876 // Unknown size, bail out.
3877 LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n");
3878 return false;
3879 }
3880 return true;
3881 }
3882
emitExtractVectorElt(std::optional<Register> DstReg,const RegisterBank & DstRB,LLT ScalarTy,Register VecReg,unsigned LaneIdx,MachineIRBuilder & MIRBuilder) const3883 MachineInstr *AArch64InstructionSelector::emitExtractVectorElt(
3884 std::optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy,
3885 Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const {
3886 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
3887 unsigned CopyOpc = 0;
3888 unsigned ExtractSubReg = 0;
3889 if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) {
3890 LLVM_DEBUG(
3891 dbgs() << "Couldn't determine lane copy opcode for instruction.\n");
3892 return nullptr;
3893 }
3894
3895 const TargetRegisterClass *DstRC =
3896 getRegClassForTypeOnBank(ScalarTy, DstRB, true);
3897 if (!DstRC) {
3898 LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n");
3899 return nullptr;
3900 }
3901
3902 const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI);
3903 const LLT &VecTy = MRI.getType(VecReg);
3904 const TargetRegisterClass *VecRC =
3905 getRegClassForTypeOnBank(VecTy, VecRB, true);
3906 if (!VecRC) {
3907 LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
3908 return nullptr;
3909 }
3910
3911 // The register that we're going to copy into.
3912 Register InsertReg = VecReg;
3913 if (!DstReg)
3914 DstReg = MRI.createVirtualRegister(DstRC);
3915 // If the lane index is 0, we just use a subregister COPY.
3916 if (LaneIdx == 0) {
3917 auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {})
3918 .addReg(VecReg, 0, ExtractSubReg);
3919 RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
3920 return &*Copy;
3921 }
3922
3923 // Lane copies require 128-bit wide registers. If we're dealing with an
3924 // unpacked vector, then we need to move up to that width. Insert an implicit
3925 // def and a subregister insert to get us there.
3926 if (VecTy.getSizeInBits() != 128) {
3927 MachineInstr *ScalarToVector = emitScalarToVector(
3928 VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder);
3929 if (!ScalarToVector)
3930 return nullptr;
3931 InsertReg = ScalarToVector->getOperand(0).getReg();
3932 }
3933
3934 MachineInstr *LaneCopyMI =
3935 MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx);
3936 constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI);
3937
3938 // Make sure that we actually constrain the initial copy.
3939 RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
3940 return LaneCopyMI;
3941 }
3942
selectExtractElt(MachineInstr & I,MachineRegisterInfo & MRI)3943 bool AArch64InstructionSelector::selectExtractElt(
3944 MachineInstr &I, MachineRegisterInfo &MRI) {
3945 assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT &&
3946 "unexpected opcode!");
3947 Register DstReg = I.getOperand(0).getReg();
3948 const LLT NarrowTy = MRI.getType(DstReg);
3949 const Register SrcReg = I.getOperand(1).getReg();
3950 const LLT WideTy = MRI.getType(SrcReg);
3951 (void)WideTy;
3952 assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() &&
3953 "source register size too small!");
3954 assert(!NarrowTy.isVector() && "cannot extract vector into vector!");
3955
3956 // Need the lane index to determine the correct copy opcode.
3957 MachineOperand &LaneIdxOp = I.getOperand(2);
3958 assert(LaneIdxOp.isReg() && "Lane index operand was not a register?");
3959
3960 if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
3961 LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n");
3962 return false;
3963 }
3964
3965 // Find the index to extract from.
3966 auto VRegAndVal = getIConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI);
3967 if (!VRegAndVal)
3968 return false;
3969 unsigned LaneIdx = VRegAndVal->Value.getSExtValue();
3970
3971
3972 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
3973 MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg,
3974 LaneIdx, MIB);
3975 if (!Extract)
3976 return false;
3977
3978 I.eraseFromParent();
3979 return true;
3980 }
3981
selectSplitVectorUnmerge(MachineInstr & I,MachineRegisterInfo & MRI)3982 bool AArch64InstructionSelector::selectSplitVectorUnmerge(
3983 MachineInstr &I, MachineRegisterInfo &MRI) {
3984 unsigned NumElts = I.getNumOperands() - 1;
3985 Register SrcReg = I.getOperand(NumElts).getReg();
3986 const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
3987 const LLT SrcTy = MRI.getType(SrcReg);
3988
3989 assert(NarrowTy.isVector() && "Expected an unmerge into vectors");
3990 if (SrcTy.getSizeInBits() > 128) {
3991 LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge");
3992 return false;
3993 }
3994
3995 // We implement a split vector operation by treating the sub-vectors as
3996 // scalars and extracting them.
3997 const RegisterBank &DstRB =
3998 *RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI);
3999 for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) {
4000 Register Dst = I.getOperand(OpIdx).getReg();
4001 MachineInstr *Extract =
4002 emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB);
4003 if (!Extract)
4004 return false;
4005 }
4006 I.eraseFromParent();
4007 return true;
4008 }
4009
selectUnmergeValues(MachineInstr & I,MachineRegisterInfo & MRI)4010 bool AArch64InstructionSelector::selectUnmergeValues(MachineInstr &I,
4011 MachineRegisterInfo &MRI) {
4012 assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
4013 "unexpected opcode");
4014
4015 // TODO: Handle unmerging into GPRs and from scalars to scalars.
4016 if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
4017 AArch64::FPRRegBankID ||
4018 RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
4019 AArch64::FPRRegBankID) {
4020 LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar "
4021 "currently unsupported.\n");
4022 return false;
4023 }
4024
4025 // The last operand is the vector source register, and every other operand is
4026 // a register to unpack into.
4027 unsigned NumElts = I.getNumOperands() - 1;
4028 Register SrcReg = I.getOperand(NumElts).getReg();
4029 const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
4030 const LLT WideTy = MRI.getType(SrcReg);
4031 (void)WideTy;
4032 assert((WideTy.isVector() || WideTy.getSizeInBits() == 128) &&
4033 "can only unmerge from vector or s128 types!");
4034 assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() &&
4035 "source register size too small!");
4036
4037 if (!NarrowTy.isScalar())
4038 return selectSplitVectorUnmerge(I, MRI);
4039
4040 // Choose a lane copy opcode and subregister based off of the size of the
4041 // vector's elements.
4042 unsigned CopyOpc = 0;
4043 unsigned ExtractSubReg = 0;
4044 if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits()))
4045 return false;
4046
4047 // Set up for the lane copies.
4048 MachineBasicBlock &MBB = *I.getParent();
4049
4050 // Stores the registers we'll be copying from.
4051 SmallVector<Register, 4> InsertRegs;
4052
4053 // We'll use the first register twice, so we only need NumElts-1 registers.
4054 unsigned NumInsertRegs = NumElts - 1;
4055
4056 // If our elements fit into exactly 128 bits, then we can copy from the source
4057 // directly. Otherwise, we need to do a bit of setup with some subregister
4058 // inserts.
4059 if (NarrowTy.getSizeInBits() * NumElts == 128) {
4060 InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg);
4061 } else {
4062 // No. We have to perform subregister inserts. For each insert, create an
4063 // implicit def and a subregister insert, and save the register we create.
4064 const TargetRegisterClass *RC = getRegClassForTypeOnBank(
4065 LLT::fixed_vector(NumElts, WideTy.getScalarSizeInBits()),
4066 *RBI.getRegBank(SrcReg, MRI, TRI));
4067 unsigned SubReg = 0;
4068 bool Found = getSubRegForClass(RC, TRI, SubReg);
4069 (void)Found;
4070 assert(Found && "expected to find last operand's subeg idx");
4071 for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) {
4072 Register ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
4073 MachineInstr &ImpDefMI =
4074 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
4075 ImpDefReg);
4076
4077 // Now, create the subregister insert from SrcReg.
4078 Register InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
4079 MachineInstr &InsMI =
4080 *BuildMI(MBB, I, I.getDebugLoc(),
4081 TII.get(TargetOpcode::INSERT_SUBREG), InsertReg)
4082 .addUse(ImpDefReg)
4083 .addUse(SrcReg)
4084 .addImm(SubReg);
4085
4086 constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI);
4087 constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI);
4088
4089 // Save the register so that we can copy from it after.
4090 InsertRegs.push_back(InsertReg);
4091 }
4092 }
4093
4094 // Now that we've created any necessary subregister inserts, we can
4095 // create the copies.
4096 //
4097 // Perform the first copy separately as a subregister copy.
4098 Register CopyTo = I.getOperand(0).getReg();
4099 auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {})
4100 .addReg(InsertRegs[0], 0, ExtractSubReg);
4101 constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI);
4102
4103 // Now, perform the remaining copies as vector lane copies.
4104 unsigned LaneIdx = 1;
4105 for (Register InsReg : InsertRegs) {
4106 Register CopyTo = I.getOperand(LaneIdx).getReg();
4107 MachineInstr &CopyInst =
4108 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo)
4109 .addUse(InsReg)
4110 .addImm(LaneIdx);
4111 constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI);
4112 ++LaneIdx;
4113 }
4114
4115 // Separately constrain the first copy's destination. Because of the
4116 // limitation in constrainOperandRegClass, we can't guarantee that this will
4117 // actually be constrained. So, do it ourselves using the second operand.
4118 const TargetRegisterClass *RC =
4119 MRI.getRegClassOrNull(I.getOperand(1).getReg());
4120 if (!RC) {
4121 LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n");
4122 return false;
4123 }
4124
4125 RBI.constrainGenericRegister(CopyTo, *RC, MRI);
4126 I.eraseFromParent();
4127 return true;
4128 }
4129
selectConcatVectors(MachineInstr & I,MachineRegisterInfo & MRI)4130 bool AArch64InstructionSelector::selectConcatVectors(
4131 MachineInstr &I, MachineRegisterInfo &MRI) {
4132 assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
4133 "Unexpected opcode");
4134 Register Dst = I.getOperand(0).getReg();
4135 Register Op1 = I.getOperand(1).getReg();
4136 Register Op2 = I.getOperand(2).getReg();
4137 MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIB);
4138 if (!ConcatMI)
4139 return false;
4140 I.eraseFromParent();
4141 return true;
4142 }
4143
4144 unsigned
emitConstantPoolEntry(const Constant * CPVal,MachineFunction & MF) const4145 AArch64InstructionSelector::emitConstantPoolEntry(const Constant *CPVal,
4146 MachineFunction &MF) const {
4147 Type *CPTy = CPVal->getType();
4148 Align Alignment = MF.getDataLayout().getPrefTypeAlign(CPTy);
4149
4150 MachineConstantPool *MCP = MF.getConstantPool();
4151 return MCP->getConstantPoolIndex(CPVal, Alignment);
4152 }
4153
emitLoadFromConstantPool(const Constant * CPVal,MachineIRBuilder & MIRBuilder) const4154 MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool(
4155 const Constant *CPVal, MachineIRBuilder &MIRBuilder) const {
4156 const TargetRegisterClass *RC;
4157 unsigned Opc;
4158 bool IsTiny = TM.getCodeModel() == CodeModel::Tiny;
4159 unsigned Size = MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType());
4160 switch (Size) {
4161 case 16:
4162 RC = &AArch64::FPR128RegClass;
4163 Opc = IsTiny ? AArch64::LDRQl : AArch64::LDRQui;
4164 break;
4165 case 8:
4166 RC = &AArch64::FPR64RegClass;
4167 Opc = IsTiny ? AArch64::LDRDl : AArch64::LDRDui;
4168 break;
4169 case 4:
4170 RC = &AArch64::FPR32RegClass;
4171 Opc = IsTiny ? AArch64::LDRSl : AArch64::LDRSui;
4172 break;
4173 case 2:
4174 RC = &AArch64::FPR16RegClass;
4175 Opc = AArch64::LDRHui;
4176 break;
4177 default:
4178 LLVM_DEBUG(dbgs() << "Could not load from constant pool of type "
4179 << *CPVal->getType());
4180 return nullptr;
4181 }
4182
4183 MachineInstr *LoadMI = nullptr;
4184 auto &MF = MIRBuilder.getMF();
4185 unsigned CPIdx = emitConstantPoolEntry(CPVal, MF);
4186 if (IsTiny && (Size == 16 || Size == 8 || Size == 4)) {
4187 // Use load(literal) for tiny code model.
4188 LoadMI = &*MIRBuilder.buildInstr(Opc, {RC}, {}).addConstantPoolIndex(CPIdx);
4189 } else {
4190 auto Adrp =
4191 MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {})
4192 .addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE);
4193
4194 LoadMI = &*MIRBuilder.buildInstr(Opc, {RC}, {Adrp})
4195 .addConstantPoolIndex(
4196 CPIdx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4197
4198 constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI);
4199 }
4200
4201 MachinePointerInfo PtrInfo = MachinePointerInfo::getConstantPool(MF);
4202 LoadMI->addMemOperand(MF, MF.getMachineMemOperand(PtrInfo,
4203 MachineMemOperand::MOLoad,
4204 Size, Align(Size)));
4205 constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI);
4206 return LoadMI;
4207 }
4208
4209 /// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given
4210 /// size and RB.
4211 static std::pair<unsigned, unsigned>
getInsertVecEltOpInfo(const RegisterBank & RB,unsigned EltSize)4212 getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) {
4213 unsigned Opc, SubregIdx;
4214 if (RB.getID() == AArch64::GPRRegBankID) {
4215 if (EltSize == 8) {
4216 Opc = AArch64::INSvi8gpr;
4217 SubregIdx = AArch64::bsub;
4218 } else if (EltSize == 16) {
4219 Opc = AArch64::INSvi16gpr;
4220 SubregIdx = AArch64::ssub;
4221 } else if (EltSize == 32) {
4222 Opc = AArch64::INSvi32gpr;
4223 SubregIdx = AArch64::ssub;
4224 } else if (EltSize == 64) {
4225 Opc = AArch64::INSvi64gpr;
4226 SubregIdx = AArch64::dsub;
4227 } else {
4228 llvm_unreachable("invalid elt size!");
4229 }
4230 } else {
4231 if (EltSize == 8) {
4232 Opc = AArch64::INSvi8lane;
4233 SubregIdx = AArch64::bsub;
4234 } else if (EltSize == 16) {
4235 Opc = AArch64::INSvi16lane;
4236 SubregIdx = AArch64::hsub;
4237 } else if (EltSize == 32) {
4238 Opc = AArch64::INSvi32lane;
4239 SubregIdx = AArch64::ssub;
4240 } else if (EltSize == 64) {
4241 Opc = AArch64::INSvi64lane;
4242 SubregIdx = AArch64::dsub;
4243 } else {
4244 llvm_unreachable("invalid elt size!");
4245 }
4246 }
4247 return std::make_pair(Opc, SubregIdx);
4248 }
4249
emitInstr(unsigned Opcode,std::initializer_list<llvm::DstOp> DstOps,std::initializer_list<llvm::SrcOp> SrcOps,MachineIRBuilder & MIRBuilder,const ComplexRendererFns & RenderFns) const4250 MachineInstr *AArch64InstructionSelector::emitInstr(
4251 unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps,
4252 std::initializer_list<llvm::SrcOp> SrcOps, MachineIRBuilder &MIRBuilder,
4253 const ComplexRendererFns &RenderFns) const {
4254 assert(Opcode && "Expected an opcode?");
4255 assert(!isPreISelGenericOpcode(Opcode) &&
4256 "Function should only be used to produce selected instructions!");
4257 auto MI = MIRBuilder.buildInstr(Opcode, DstOps, SrcOps);
4258 if (RenderFns)
4259 for (auto &Fn : *RenderFns)
4260 Fn(MI);
4261 constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
4262 return &*MI;
4263 }
4264
emitAddSub(const std::array<std::array<unsigned,2>,5> & AddrModeAndSizeToOpcode,Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4265 MachineInstr *AArch64InstructionSelector::emitAddSub(
4266 const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode,
4267 Register Dst, MachineOperand &LHS, MachineOperand &RHS,
4268 MachineIRBuilder &MIRBuilder) const {
4269 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4270 assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4271 auto Ty = MRI.getType(LHS.getReg());
4272 assert(!Ty.isVector() && "Expected a scalar or pointer?");
4273 unsigned Size = Ty.getSizeInBits();
4274 assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit type only");
4275 bool Is32Bit = Size == 32;
4276
4277 // INSTRri form with positive arithmetic immediate.
4278 if (auto Fns = selectArithImmed(RHS))
4279 return emitInstr(AddrModeAndSizeToOpcode[0][Is32Bit], {Dst}, {LHS},
4280 MIRBuilder, Fns);
4281
4282 // INSTRri form with negative arithmetic immediate.
4283 if (auto Fns = selectNegArithImmed(RHS))
4284 return emitInstr(AddrModeAndSizeToOpcode[3][Is32Bit], {Dst}, {LHS},
4285 MIRBuilder, Fns);
4286
4287 // INSTRrx form.
4288 if (auto Fns = selectArithExtendedRegister(RHS))
4289 return emitInstr(AddrModeAndSizeToOpcode[4][Is32Bit], {Dst}, {LHS},
4290 MIRBuilder, Fns);
4291
4292 // INSTRrs form.
4293 if (auto Fns = selectShiftedRegister(RHS))
4294 return emitInstr(AddrModeAndSizeToOpcode[1][Is32Bit], {Dst}, {LHS},
4295 MIRBuilder, Fns);
4296 return emitInstr(AddrModeAndSizeToOpcode[2][Is32Bit], {Dst}, {LHS, RHS},
4297 MIRBuilder);
4298 }
4299
4300 MachineInstr *
emitADD(Register DefReg,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4301 AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS,
4302 MachineOperand &RHS,
4303 MachineIRBuilder &MIRBuilder) const {
4304 const std::array<std::array<unsigned, 2>, 5> OpcTable{
4305 {{AArch64::ADDXri, AArch64::ADDWri},
4306 {AArch64::ADDXrs, AArch64::ADDWrs},
4307 {AArch64::ADDXrr, AArch64::ADDWrr},
4308 {AArch64::SUBXri, AArch64::SUBWri},
4309 {AArch64::ADDXrx, AArch64::ADDWrx}}};
4310 return emitAddSub(OpcTable, DefReg, LHS, RHS, MIRBuilder);
4311 }
4312
4313 MachineInstr *
emitADDS(Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4314 AArch64InstructionSelector::emitADDS(Register Dst, MachineOperand &LHS,
4315 MachineOperand &RHS,
4316 MachineIRBuilder &MIRBuilder) const {
4317 const std::array<std::array<unsigned, 2>, 5> OpcTable{
4318 {{AArch64::ADDSXri, AArch64::ADDSWri},
4319 {AArch64::ADDSXrs, AArch64::ADDSWrs},
4320 {AArch64::ADDSXrr, AArch64::ADDSWrr},
4321 {AArch64::SUBSXri, AArch64::SUBSWri},
4322 {AArch64::ADDSXrx, AArch64::ADDSWrx}}};
4323 return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder);
4324 }
4325
4326 MachineInstr *
emitSUBS(Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4327 AArch64InstructionSelector::emitSUBS(Register Dst, MachineOperand &LHS,
4328 MachineOperand &RHS,
4329 MachineIRBuilder &MIRBuilder) const {
4330 const std::array<std::array<unsigned, 2>, 5> OpcTable{
4331 {{AArch64::SUBSXri, AArch64::SUBSWri},
4332 {AArch64::SUBSXrs, AArch64::SUBSWrs},
4333 {AArch64::SUBSXrr, AArch64::SUBSWrr},
4334 {AArch64::ADDSXri, AArch64::ADDSWri},
4335 {AArch64::SUBSXrx, AArch64::SUBSWrx}}};
4336 return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder);
4337 }
4338
4339 MachineInstr *
emitADCS(Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4340 AArch64InstructionSelector::emitADCS(Register Dst, MachineOperand &LHS,
4341 MachineOperand &RHS,
4342 MachineIRBuilder &MIRBuilder) const {
4343 assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4344 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4345 bool Is32Bit = (MRI->getType(LHS.getReg()).getSizeInBits() == 32);
4346 static const unsigned OpcTable[2] = {AArch64::ADCSXr, AArch64::ADCSWr};
4347 return emitInstr(OpcTable[Is32Bit], {Dst}, {LHS, RHS}, MIRBuilder);
4348 }
4349
4350 MachineInstr *
emitSBCS(Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4351 AArch64InstructionSelector::emitSBCS(Register Dst, MachineOperand &LHS,
4352 MachineOperand &RHS,
4353 MachineIRBuilder &MIRBuilder) const {
4354 assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4355 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4356 bool Is32Bit = (MRI->getType(LHS.getReg()).getSizeInBits() == 32);
4357 static const unsigned OpcTable[2] = {AArch64::SBCSXr, AArch64::SBCSWr};
4358 return emitInstr(OpcTable[Is32Bit], {Dst}, {LHS, RHS}, MIRBuilder);
4359 }
4360
4361 MachineInstr *
emitCMN(MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4362 AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS,
4363 MachineIRBuilder &MIRBuilder) const {
4364 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4365 bool Is32Bit = (MRI.getType(LHS.getReg()).getSizeInBits() == 32);
4366 auto RC = Is32Bit ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass;
4367 return emitADDS(MRI.createVirtualRegister(RC), LHS, RHS, MIRBuilder);
4368 }
4369
4370 MachineInstr *
emitTST(MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4371 AArch64InstructionSelector::emitTST(MachineOperand &LHS, MachineOperand &RHS,
4372 MachineIRBuilder &MIRBuilder) const {
4373 assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4374 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4375 LLT Ty = MRI.getType(LHS.getReg());
4376 unsigned RegSize = Ty.getSizeInBits();
4377 bool Is32Bit = (RegSize == 32);
4378 const unsigned OpcTable[3][2] = {{AArch64::ANDSXri, AArch64::ANDSWri},
4379 {AArch64::ANDSXrs, AArch64::ANDSWrs},
4380 {AArch64::ANDSXrr, AArch64::ANDSWrr}};
4381 // ANDS needs a logical immediate for its immediate form. Check if we can
4382 // fold one in.
4383 if (auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS.getReg(), MRI)) {
4384 int64_t Imm = ValAndVReg->Value.getSExtValue();
4385
4386 if (AArch64_AM::isLogicalImmediate(Imm, RegSize)) {
4387 auto TstMI = MIRBuilder.buildInstr(OpcTable[0][Is32Bit], {Ty}, {LHS});
4388 TstMI.addImm(AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
4389 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
4390 return &*TstMI;
4391 }
4392 }
4393
4394 if (auto Fns = selectLogicalShiftedRegister(RHS))
4395 return emitInstr(OpcTable[1][Is32Bit], {Ty}, {LHS}, MIRBuilder, Fns);
4396 return emitInstr(OpcTable[2][Is32Bit], {Ty}, {LHS, RHS}, MIRBuilder);
4397 }
4398
emitIntegerCompare(MachineOperand & LHS,MachineOperand & RHS,MachineOperand & Predicate,MachineIRBuilder & MIRBuilder) const4399 MachineInstr *AArch64InstructionSelector::emitIntegerCompare(
4400 MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
4401 MachineIRBuilder &MIRBuilder) const {
4402 assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
4403 assert(Predicate.isPredicate() && "Expected predicate?");
4404 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4405 LLT CmpTy = MRI.getType(LHS.getReg());
4406 assert(!CmpTy.isVector() && "Expected scalar or pointer");
4407 unsigned Size = CmpTy.getSizeInBits();
4408 (void)Size;
4409 assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit LHS/RHS?");
4410 // Fold the compare into a cmn or tst if possible.
4411 if (auto FoldCmp = tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder))
4412 return FoldCmp;
4413 auto Dst = MRI.cloneVirtualRegister(LHS.getReg());
4414 return emitSUBS(Dst, LHS, RHS, MIRBuilder);
4415 }
4416
emitCSetForFCmp(Register Dst,CmpInst::Predicate Pred,MachineIRBuilder & MIRBuilder) const4417 MachineInstr *AArch64InstructionSelector::emitCSetForFCmp(
4418 Register Dst, CmpInst::Predicate Pred, MachineIRBuilder &MIRBuilder) const {
4419 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4420 #ifndef NDEBUG
4421 LLT Ty = MRI.getType(Dst);
4422 assert(!Ty.isVector() && Ty.getSizeInBits() == 32 &&
4423 "Expected a 32-bit scalar register?");
4424 #endif
4425 const Register ZReg = AArch64::WZR;
4426 AArch64CC::CondCode CC1, CC2;
4427 changeFCMPPredToAArch64CC(Pred, CC1, CC2);
4428 auto InvCC1 = AArch64CC::getInvertedCondCode(CC1);
4429 if (CC2 == AArch64CC::AL)
4430 return emitCSINC(/*Dst=*/Dst, /*Src1=*/ZReg, /*Src2=*/ZReg, InvCC1,
4431 MIRBuilder);
4432 const TargetRegisterClass *RC = &AArch64::GPR32RegClass;
4433 Register Def1Reg = MRI.createVirtualRegister(RC);
4434 Register Def2Reg = MRI.createVirtualRegister(RC);
4435 auto InvCC2 = AArch64CC::getInvertedCondCode(CC2);
4436 emitCSINC(/*Dst=*/Def1Reg, /*Src1=*/ZReg, /*Src2=*/ZReg, InvCC1, MIRBuilder);
4437 emitCSINC(/*Dst=*/Def2Reg, /*Src1=*/ZReg, /*Src2=*/ZReg, InvCC2, MIRBuilder);
4438 auto OrMI = MIRBuilder.buildInstr(AArch64::ORRWrr, {Dst}, {Def1Reg, Def2Reg});
4439 constrainSelectedInstRegOperands(*OrMI, TII, TRI, RBI);
4440 return &*OrMI;
4441 }
4442
emitFPCompare(Register LHS,Register RHS,MachineIRBuilder & MIRBuilder,std::optional<CmpInst::Predicate> Pred) const4443 MachineInstr *AArch64InstructionSelector::emitFPCompare(
4444 Register LHS, Register RHS, MachineIRBuilder &MIRBuilder,
4445 std::optional<CmpInst::Predicate> Pred) const {
4446 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4447 LLT Ty = MRI.getType(LHS);
4448 if (Ty.isVector())
4449 return nullptr;
4450 unsigned OpSize = Ty.getSizeInBits();
4451 assert(OpSize == 16 || OpSize == 32 || OpSize == 64);
4452
4453 // If this is a compare against +0.0, then we don't have
4454 // to explicitly materialize a constant.
4455 const ConstantFP *FPImm = getConstantFPVRegVal(RHS, MRI);
4456 bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative());
4457
4458 auto IsEqualityPred = [](CmpInst::Predicate P) {
4459 return P == CmpInst::FCMP_OEQ || P == CmpInst::FCMP_ONE ||
4460 P == CmpInst::FCMP_UEQ || P == CmpInst::FCMP_UNE;
4461 };
4462 if (!ShouldUseImm && Pred && IsEqualityPred(*Pred)) {
4463 // Try commutating the operands.
4464 const ConstantFP *LHSImm = getConstantFPVRegVal(LHS, MRI);
4465 if (LHSImm && (LHSImm->isZero() && !LHSImm->isNegative())) {
4466 ShouldUseImm = true;
4467 std::swap(LHS, RHS);
4468 }
4469 }
4470 unsigned CmpOpcTbl[2][3] = {
4471 {AArch64::FCMPHrr, AArch64::FCMPSrr, AArch64::FCMPDrr},
4472 {AArch64::FCMPHri, AArch64::FCMPSri, AArch64::FCMPDri}};
4473 unsigned CmpOpc =
4474 CmpOpcTbl[ShouldUseImm][OpSize == 16 ? 0 : (OpSize == 32 ? 1 : 2)];
4475
4476 // Partially build the compare. Decide if we need to add a use for the
4477 // third operand based off whether or not we're comparing against 0.0.
4478 auto CmpMI = MIRBuilder.buildInstr(CmpOpc).addUse(LHS);
4479 CmpMI.setMIFlags(MachineInstr::NoFPExcept);
4480 if (!ShouldUseImm)
4481 CmpMI.addUse(RHS);
4482 constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
4483 return &*CmpMI;
4484 }
4485
emitVectorConcat(std::optional<Register> Dst,Register Op1,Register Op2,MachineIRBuilder & MIRBuilder) const4486 MachineInstr *AArch64InstructionSelector::emitVectorConcat(
4487 std::optional<Register> Dst, Register Op1, Register Op2,
4488 MachineIRBuilder &MIRBuilder) const {
4489 // We implement a vector concat by:
4490 // 1. Use scalar_to_vector to insert the lower vector into the larger dest
4491 // 2. Insert the upper vector into the destination's upper element
4492 // TODO: some of this code is common with G_BUILD_VECTOR handling.
4493 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4494
4495 const LLT Op1Ty = MRI.getType(Op1);
4496 const LLT Op2Ty = MRI.getType(Op2);
4497
4498 if (Op1Ty != Op2Ty) {
4499 LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys");
4500 return nullptr;
4501 }
4502 assert(Op1Ty.isVector() && "Expected a vector for vector concat");
4503
4504 if (Op1Ty.getSizeInBits() >= 128) {
4505 LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors");
4506 return nullptr;
4507 }
4508
4509 // At the moment we just support 64 bit vector concats.
4510 if (Op1Ty.getSizeInBits() != 64) {
4511 LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors");
4512 return nullptr;
4513 }
4514
4515 const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits());
4516 const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI);
4517 const TargetRegisterClass *DstRC =
4518 getRegClassForTypeOnBank(Op1Ty.multiplyElements(2), FPRBank);
4519
4520 MachineInstr *WidenedOp1 =
4521 emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder);
4522 MachineInstr *WidenedOp2 =
4523 emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder);
4524 if (!WidenedOp1 || !WidenedOp2) {
4525 LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value");
4526 return nullptr;
4527 }
4528
4529 // Now do the insert of the upper element.
4530 unsigned InsertOpc, InsSubRegIdx;
4531 std::tie(InsertOpc, InsSubRegIdx) =
4532 getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits());
4533
4534 if (!Dst)
4535 Dst = MRI.createVirtualRegister(DstRC);
4536 auto InsElt =
4537 MIRBuilder
4538 .buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()})
4539 .addImm(1) /* Lane index */
4540 .addUse(WidenedOp2->getOperand(0).getReg())
4541 .addImm(0);
4542 constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
4543 return &*InsElt;
4544 }
4545
4546 MachineInstr *
emitCSINC(Register Dst,Register Src1,Register Src2,AArch64CC::CondCode Pred,MachineIRBuilder & MIRBuilder) const4547 AArch64InstructionSelector::emitCSINC(Register Dst, Register Src1,
4548 Register Src2, AArch64CC::CondCode Pred,
4549 MachineIRBuilder &MIRBuilder) const {
4550 auto &MRI = *MIRBuilder.getMRI();
4551 const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Dst);
4552 // If we used a register class, then this won't necessarily have an LLT.
4553 // Compute the size based off whether or not we have a class or bank.
4554 unsigned Size;
4555 if (const auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
4556 Size = TRI.getRegSizeInBits(*RC);
4557 else
4558 Size = MRI.getType(Dst).getSizeInBits();
4559 // Some opcodes use s1.
4560 assert(Size <= 64 && "Expected 64 bits or less only!");
4561 static const unsigned OpcTable[2] = {AArch64::CSINCWr, AArch64::CSINCXr};
4562 unsigned Opc = OpcTable[Size == 64];
4563 auto CSINC = MIRBuilder.buildInstr(Opc, {Dst}, {Src1, Src2}).addImm(Pred);
4564 constrainSelectedInstRegOperands(*CSINC, TII, TRI, RBI);
4565 return &*CSINC;
4566 }
4567
emitCarryIn(MachineInstr & I,Register CarryReg)4568 MachineInstr *AArch64InstructionSelector::emitCarryIn(MachineInstr &I,
4569 Register CarryReg) {
4570 MachineRegisterInfo *MRI = MIB.getMRI();
4571 unsigned Opcode = I.getOpcode();
4572
4573 // If the instruction is a SUB, we need to negate the carry,
4574 // because borrowing is indicated by carry-flag == 0.
4575 bool NeedsNegatedCarry =
4576 (Opcode == TargetOpcode::G_USUBE || Opcode == TargetOpcode::G_SSUBE);
4577
4578 // If the previous instruction will already produce the correct carry, do not
4579 // emit a carry generating instruction. E.g. for G_UADDE/G_USUBE sequences
4580 // generated during legalization of wide add/sub. This optimization depends on
4581 // these sequences not being interrupted by other instructions.
4582 // We have to select the previous instruction before the carry-using
4583 // instruction is deleted by the calling function, otherwise the previous
4584 // instruction might become dead and would get deleted.
4585 MachineInstr *SrcMI = MRI->getVRegDef(CarryReg);
4586 if (SrcMI == I.getPrevNode()) {
4587 if (auto *CarrySrcMI = dyn_cast<GAddSubCarryOut>(SrcMI)) {
4588 bool ProducesNegatedCarry = CarrySrcMI->isSub();
4589 if (NeedsNegatedCarry == ProducesNegatedCarry &&
4590 CarrySrcMI->isUnsigned() &&
4591 CarrySrcMI->getCarryOutReg() == CarryReg &&
4592 selectAndRestoreState(*SrcMI))
4593 return nullptr;
4594 }
4595 }
4596
4597 Register DeadReg = MRI->createVirtualRegister(&AArch64::GPR32RegClass);
4598
4599 if (NeedsNegatedCarry) {
4600 // (0 - Carry) sets !C in NZCV when Carry == 1
4601 Register ZReg = AArch64::WZR;
4602 return emitInstr(AArch64::SUBSWrr, {DeadReg}, {ZReg, CarryReg}, MIB);
4603 }
4604
4605 // (Carry - 1) sets !C in NZCV when Carry == 0
4606 auto Fns = select12BitValueWithLeftShift(1);
4607 return emitInstr(AArch64::SUBSWri, {DeadReg}, {CarryReg}, MIB, Fns);
4608 }
4609
selectOverflowOp(MachineInstr & I,MachineRegisterInfo & MRI)4610 bool AArch64InstructionSelector::selectOverflowOp(MachineInstr &I,
4611 MachineRegisterInfo &MRI) {
4612 auto &CarryMI = cast<GAddSubCarryOut>(I);
4613
4614 if (auto *CarryInMI = dyn_cast<GAddSubCarryInOut>(&I)) {
4615 // Set NZCV carry according to carry-in VReg
4616 emitCarryIn(I, CarryInMI->getCarryInReg());
4617 }
4618
4619 // Emit the operation and get the correct condition code.
4620 auto OpAndCC = emitOverflowOp(I.getOpcode(), CarryMI.getDstReg(),
4621 CarryMI.getLHS(), CarryMI.getRHS(), MIB);
4622
4623 Register CarryOutReg = CarryMI.getCarryOutReg();
4624
4625 // Don't convert carry-out to VReg if it is never used
4626 if (!MRI.use_nodbg_empty(CarryOutReg)) {
4627 // Now, put the overflow result in the register given by the first operand
4628 // to the overflow op. CSINC increments the result when the predicate is
4629 // false, so to get the increment when it's true, we need to use the
4630 // inverse. In this case, we want to increment when carry is set.
4631 Register ZReg = AArch64::WZR;
4632 emitCSINC(/*Dst=*/CarryOutReg, /*Src1=*/ZReg, /*Src2=*/ZReg,
4633 getInvertedCondCode(OpAndCC.second), MIB);
4634 }
4635
4636 I.eraseFromParent();
4637 return true;
4638 }
4639
4640 std::pair<MachineInstr *, AArch64CC::CondCode>
emitOverflowOp(unsigned Opcode,Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4641 AArch64InstructionSelector::emitOverflowOp(unsigned Opcode, Register Dst,
4642 MachineOperand &LHS,
4643 MachineOperand &RHS,
4644 MachineIRBuilder &MIRBuilder) const {
4645 switch (Opcode) {
4646 default:
4647 llvm_unreachable("Unexpected opcode!");
4648 case TargetOpcode::G_SADDO:
4649 return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4650 case TargetOpcode::G_UADDO:
4651 return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::HS);
4652 case TargetOpcode::G_SSUBO:
4653 return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4654 case TargetOpcode::G_USUBO:
4655 return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::LO);
4656 case TargetOpcode::G_SADDE:
4657 return std::make_pair(emitADCS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4658 case TargetOpcode::G_UADDE:
4659 return std::make_pair(emitADCS(Dst, LHS, RHS, MIRBuilder), AArch64CC::HS);
4660 case TargetOpcode::G_SSUBE:
4661 return std::make_pair(emitSBCS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4662 case TargetOpcode::G_USUBE:
4663 return std::make_pair(emitSBCS(Dst, LHS, RHS, MIRBuilder), AArch64CC::LO);
4664 }
4665 }
4666
4667 /// Returns true if @p Val is a tree of AND/OR/CMP operations that can be
4668 /// expressed as a conjunction.
4669 /// \param CanNegate Set to true if we can negate the whole sub-tree just by
4670 /// changing the conditions on the CMP tests.
4671 /// (this means we can call emitConjunctionRec() with
4672 /// Negate==true on this sub-tree)
4673 /// \param MustBeFirst Set to true if this subtree needs to be negated and we
4674 /// cannot do the negation naturally. We are required to
4675 /// emit the subtree first in this case.
4676 /// \param WillNegate Is true if are called when the result of this
4677 /// subexpression must be negated. This happens when the
4678 /// outer expression is an OR. We can use this fact to know
4679 /// that we have a double negation (or (or ...) ...) that
4680 /// can be implemented for free.
canEmitConjunction(Register Val,bool & CanNegate,bool & MustBeFirst,bool WillNegate,MachineRegisterInfo & MRI,unsigned Depth=0)4681 static bool canEmitConjunction(Register Val, bool &CanNegate, bool &MustBeFirst,
4682 bool WillNegate, MachineRegisterInfo &MRI,
4683 unsigned Depth = 0) {
4684 if (!MRI.hasOneNonDBGUse(Val))
4685 return false;
4686 MachineInstr *ValDef = MRI.getVRegDef(Val);
4687 unsigned Opcode = ValDef->getOpcode();
4688 if (isa<GAnyCmp>(ValDef)) {
4689 CanNegate = true;
4690 MustBeFirst = false;
4691 return true;
4692 }
4693 // Protect against exponential runtime and stack overflow.
4694 if (Depth > 6)
4695 return false;
4696 if (Opcode == TargetOpcode::G_AND || Opcode == TargetOpcode::G_OR) {
4697 bool IsOR = Opcode == TargetOpcode::G_OR;
4698 Register O0 = ValDef->getOperand(1).getReg();
4699 Register O1 = ValDef->getOperand(2).getReg();
4700 bool CanNegateL;
4701 bool MustBeFirstL;
4702 if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, MRI, Depth + 1))
4703 return false;
4704 bool CanNegateR;
4705 bool MustBeFirstR;
4706 if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, MRI, Depth + 1))
4707 return false;
4708
4709 if (MustBeFirstL && MustBeFirstR)
4710 return false;
4711
4712 if (IsOR) {
4713 // For an OR expression we need to be able to naturally negate at least
4714 // one side or we cannot do the transformation at all.
4715 if (!CanNegateL && !CanNegateR)
4716 return false;
4717 // If we the result of the OR will be negated and we can naturally negate
4718 // the leaves, then this sub-tree as a whole negates naturally.
4719 CanNegate = WillNegate && CanNegateL && CanNegateR;
4720 // If we cannot naturally negate the whole sub-tree, then this must be
4721 // emitted first.
4722 MustBeFirst = !CanNegate;
4723 } else {
4724 assert(Opcode == TargetOpcode::G_AND && "Must be G_AND");
4725 // We cannot naturally negate an AND operation.
4726 CanNegate = false;
4727 MustBeFirst = MustBeFirstL || MustBeFirstR;
4728 }
4729 return true;
4730 }
4731 return false;
4732 }
4733
emitConditionalComparison(Register LHS,Register RHS,CmpInst::Predicate CC,AArch64CC::CondCode Predicate,AArch64CC::CondCode OutCC,MachineIRBuilder & MIB) const4734 MachineInstr *AArch64InstructionSelector::emitConditionalComparison(
4735 Register LHS, Register RHS, CmpInst::Predicate CC,
4736 AArch64CC::CondCode Predicate, AArch64CC::CondCode OutCC,
4737 MachineIRBuilder &MIB) const {
4738 auto &MRI = *MIB.getMRI();
4739 LLT OpTy = MRI.getType(LHS);
4740 unsigned CCmpOpc;
4741 std::optional<ValueAndVReg> C;
4742 if (CmpInst::isIntPredicate(CC)) {
4743 assert(OpTy.getSizeInBits() == 32 || OpTy.getSizeInBits() == 64);
4744 C = getIConstantVRegValWithLookThrough(RHS, MRI);
4745 if (!C || C->Value.sgt(31) || C->Value.slt(-31))
4746 CCmpOpc = OpTy.getSizeInBits() == 32 ? AArch64::CCMPWr : AArch64::CCMPXr;
4747 else if (C->Value.ule(31))
4748 CCmpOpc = OpTy.getSizeInBits() == 32 ? AArch64::CCMPWi : AArch64::CCMPXi;
4749 else
4750 CCmpOpc = OpTy.getSizeInBits() == 32 ? AArch64::CCMNWi : AArch64::CCMNXi;
4751 } else {
4752 assert(OpTy.getSizeInBits() == 16 || OpTy.getSizeInBits() == 32 ||
4753 OpTy.getSizeInBits() == 64);
4754 switch (OpTy.getSizeInBits()) {
4755 case 16:
4756 assert(STI.hasFullFP16() && "Expected Full FP16 for fp16 comparisons");
4757 CCmpOpc = AArch64::FCCMPHrr;
4758 break;
4759 case 32:
4760 CCmpOpc = AArch64::FCCMPSrr;
4761 break;
4762 case 64:
4763 CCmpOpc = AArch64::FCCMPDrr;
4764 break;
4765 default:
4766 return nullptr;
4767 }
4768 }
4769 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
4770 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
4771 auto CCmp =
4772 MIB.buildInstr(CCmpOpc, {}, {LHS});
4773 if (CCmpOpc == AArch64::CCMPWi || CCmpOpc == AArch64::CCMPXi)
4774 CCmp.addImm(C->Value.getZExtValue());
4775 else if (CCmpOpc == AArch64::CCMNWi || CCmpOpc == AArch64::CCMNXi)
4776 CCmp.addImm(C->Value.abs().getZExtValue());
4777 else
4778 CCmp.addReg(RHS);
4779 CCmp.addImm(NZCV).addImm(Predicate);
4780 constrainSelectedInstRegOperands(*CCmp, TII, TRI, RBI);
4781 return &*CCmp;
4782 }
4783
emitConjunctionRec(Register Val,AArch64CC::CondCode & OutCC,bool Negate,Register CCOp,AArch64CC::CondCode Predicate,MachineIRBuilder & MIB) const4784 MachineInstr *AArch64InstructionSelector::emitConjunctionRec(
4785 Register Val, AArch64CC::CondCode &OutCC, bool Negate, Register CCOp,
4786 AArch64CC::CondCode Predicate, MachineIRBuilder &MIB) const {
4787 // We're at a tree leaf, produce a conditional comparison operation.
4788 auto &MRI = *MIB.getMRI();
4789 MachineInstr *ValDef = MRI.getVRegDef(Val);
4790 unsigned Opcode = ValDef->getOpcode();
4791 if (auto *Cmp = dyn_cast<GAnyCmp>(ValDef)) {
4792 Register LHS = Cmp->getLHSReg();
4793 Register RHS = Cmp->getRHSReg();
4794 CmpInst::Predicate CC = Cmp->getCond();
4795 if (Negate)
4796 CC = CmpInst::getInversePredicate(CC);
4797 if (isa<GICmp>(Cmp)) {
4798 OutCC = changeICMPPredToAArch64CC(CC);
4799 } else {
4800 // Handle special FP cases.
4801 AArch64CC::CondCode ExtraCC;
4802 changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
4803 // Some floating point conditions can't be tested with a single condition
4804 // code. Construct an additional comparison in this case.
4805 if (ExtraCC != AArch64CC::AL) {
4806 MachineInstr *ExtraCmp;
4807 if (!CCOp)
4808 ExtraCmp = emitFPCompare(LHS, RHS, MIB, CC);
4809 else
4810 ExtraCmp =
4811 emitConditionalComparison(LHS, RHS, CC, Predicate, ExtraCC, MIB);
4812 CCOp = ExtraCmp->getOperand(0).getReg();
4813 Predicate = ExtraCC;
4814 }
4815 }
4816
4817 // Produce a normal comparison if we are first in the chain
4818 if (!CCOp) {
4819 auto Dst = MRI.cloneVirtualRegister(LHS);
4820 if (isa<GICmp>(Cmp))
4821 return emitSUBS(Dst, Cmp->getOperand(2), Cmp->getOperand(3), MIB);
4822 return emitFPCompare(Cmp->getOperand(2).getReg(),
4823 Cmp->getOperand(3).getReg(), MIB);
4824 }
4825 // Otherwise produce a ccmp.
4826 return emitConditionalComparison(LHS, RHS, CC, Predicate, OutCC, MIB);
4827 }
4828 assert(MRI.hasOneNonDBGUse(Val) && "Valid conjunction/disjunction tree");
4829
4830 bool IsOR = Opcode == TargetOpcode::G_OR;
4831
4832 Register LHS = ValDef->getOperand(1).getReg();
4833 bool CanNegateL;
4834 bool MustBeFirstL;
4835 bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR, MRI);
4836 assert(ValidL && "Valid conjunction/disjunction tree");
4837 (void)ValidL;
4838
4839 Register RHS = ValDef->getOperand(2).getReg();
4840 bool CanNegateR;
4841 bool MustBeFirstR;
4842 bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR, MRI);
4843 assert(ValidR && "Valid conjunction/disjunction tree");
4844 (void)ValidR;
4845
4846 // Swap sub-tree that must come first to the right side.
4847 if (MustBeFirstL) {
4848 assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
4849 std::swap(LHS, RHS);
4850 std::swap(CanNegateL, CanNegateR);
4851 std::swap(MustBeFirstL, MustBeFirstR);
4852 }
4853
4854 bool NegateR;
4855 bool NegateAfterR;
4856 bool NegateL;
4857 bool NegateAfterAll;
4858 if (Opcode == TargetOpcode::G_OR) {
4859 // Swap the sub-tree that we can negate naturally to the left.
4860 if (!CanNegateL) {
4861 assert(CanNegateR && "at least one side must be negatable");
4862 assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
4863 assert(!Negate);
4864 std::swap(LHS, RHS);
4865 NegateR = false;
4866 NegateAfterR = true;
4867 } else {
4868 // Negate the left sub-tree if possible, otherwise negate the result.
4869 NegateR = CanNegateR;
4870 NegateAfterR = !CanNegateR;
4871 }
4872 NegateL = true;
4873 NegateAfterAll = !Negate;
4874 } else {
4875 assert(Opcode == TargetOpcode::G_AND &&
4876 "Valid conjunction/disjunction tree");
4877 assert(!Negate && "Valid conjunction/disjunction tree");
4878
4879 NegateL = false;
4880 NegateR = false;
4881 NegateAfterR = false;
4882 NegateAfterAll = false;
4883 }
4884
4885 // Emit sub-trees.
4886 AArch64CC::CondCode RHSCC;
4887 MachineInstr *CmpR =
4888 emitConjunctionRec(RHS, RHSCC, NegateR, CCOp, Predicate, MIB);
4889 if (NegateAfterR)
4890 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
4891 MachineInstr *CmpL = emitConjunctionRec(
4892 LHS, OutCC, NegateL, CmpR->getOperand(0).getReg(), RHSCC, MIB);
4893 if (NegateAfterAll)
4894 OutCC = AArch64CC::getInvertedCondCode(OutCC);
4895 return CmpL;
4896 }
4897
emitConjunction(Register Val,AArch64CC::CondCode & OutCC,MachineIRBuilder & MIB) const4898 MachineInstr *AArch64InstructionSelector::emitConjunction(
4899 Register Val, AArch64CC::CondCode &OutCC, MachineIRBuilder &MIB) const {
4900 bool DummyCanNegate;
4901 bool DummyMustBeFirst;
4902 if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false,
4903 *MIB.getMRI()))
4904 return nullptr;
4905 return emitConjunctionRec(Val, OutCC, false, Register(), AArch64CC::AL, MIB);
4906 }
4907
tryOptSelectConjunction(GSelect & SelI,MachineInstr & CondMI)4908 bool AArch64InstructionSelector::tryOptSelectConjunction(GSelect &SelI,
4909 MachineInstr &CondMI) {
4910 AArch64CC::CondCode AArch64CC;
4911 MachineInstr *ConjMI = emitConjunction(SelI.getCondReg(), AArch64CC, MIB);
4912 if (!ConjMI)
4913 return false;
4914
4915 emitSelect(SelI.getReg(0), SelI.getTrueReg(), SelI.getFalseReg(), AArch64CC, MIB);
4916 SelI.eraseFromParent();
4917 return true;
4918 }
4919
tryOptSelect(GSelect & I)4920 bool AArch64InstructionSelector::tryOptSelect(GSelect &I) {
4921 MachineRegisterInfo &MRI = *MIB.getMRI();
4922 // We want to recognize this pattern:
4923 //
4924 // $z = G_FCMP pred, $x, $y
4925 // ...
4926 // $w = G_SELECT $z, $a, $b
4927 //
4928 // Where the value of $z is *only* ever used by the G_SELECT (possibly with
4929 // some copies/truncs in between.)
4930 //
4931 // If we see this, then we can emit something like this:
4932 //
4933 // fcmp $x, $y
4934 // fcsel $w, $a, $b, pred
4935 //
4936 // Rather than emitting both of the rather long sequences in the standard
4937 // G_FCMP/G_SELECT select methods.
4938
4939 // First, check if the condition is defined by a compare.
4940 MachineInstr *CondDef = MRI.getVRegDef(I.getOperand(1).getReg());
4941
4942 // We can only fold if all of the defs have one use.
4943 Register CondDefReg = CondDef->getOperand(0).getReg();
4944 if (!MRI.hasOneNonDBGUse(CondDefReg)) {
4945 // Unless it's another select.
4946 for (const MachineInstr &UI : MRI.use_nodbg_instructions(CondDefReg)) {
4947 if (CondDef == &UI)
4948 continue;
4949 if (UI.getOpcode() != TargetOpcode::G_SELECT)
4950 return false;
4951 }
4952 }
4953
4954 // Is the condition defined by a compare?
4955 unsigned CondOpc = CondDef->getOpcode();
4956 if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP) {
4957 if (tryOptSelectConjunction(I, *CondDef))
4958 return true;
4959 return false;
4960 }
4961
4962 AArch64CC::CondCode CondCode;
4963 if (CondOpc == TargetOpcode::G_ICMP) {
4964 auto Pred =
4965 static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate());
4966 CondCode = changeICMPPredToAArch64CC(Pred);
4967 emitIntegerCompare(CondDef->getOperand(2), CondDef->getOperand(3),
4968 CondDef->getOperand(1), MIB);
4969 } else {
4970 // Get the condition code for the select.
4971 auto Pred =
4972 static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate());
4973 AArch64CC::CondCode CondCode2;
4974 changeFCMPPredToAArch64CC(Pred, CondCode, CondCode2);
4975
4976 // changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two
4977 // instructions to emit the comparison.
4978 // TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be
4979 // unnecessary.
4980 if (CondCode2 != AArch64CC::AL)
4981 return false;
4982
4983 if (!emitFPCompare(CondDef->getOperand(2).getReg(),
4984 CondDef->getOperand(3).getReg(), MIB)) {
4985 LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n");
4986 return false;
4987 }
4988 }
4989
4990 // Emit the select.
4991 emitSelect(I.getOperand(0).getReg(), I.getOperand(2).getReg(),
4992 I.getOperand(3).getReg(), CondCode, MIB);
4993 I.eraseFromParent();
4994 return true;
4995 }
4996
tryFoldIntegerCompare(MachineOperand & LHS,MachineOperand & RHS,MachineOperand & Predicate,MachineIRBuilder & MIRBuilder) const4997 MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare(
4998 MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
4999 MachineIRBuilder &MIRBuilder) const {
5000 assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() &&
5001 "Unexpected MachineOperand");
5002 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
5003 // We want to find this sort of thing:
5004 // x = G_SUB 0, y
5005 // G_ICMP z, x
5006 //
5007 // In this case, we can fold the G_SUB into the G_ICMP using a CMN instead.
5008 // e.g:
5009 //
5010 // cmn z, y
5011
5012 // Check if the RHS or LHS of the G_ICMP is defined by a SUB
5013 MachineInstr *LHSDef = getDefIgnoringCopies(LHS.getReg(), MRI);
5014 MachineInstr *RHSDef = getDefIgnoringCopies(RHS.getReg(), MRI);
5015 auto P = static_cast<CmpInst::Predicate>(Predicate.getPredicate());
5016 // Given this:
5017 //
5018 // x = G_SUB 0, y
5019 // G_ICMP x, z
5020 //
5021 // Produce this:
5022 //
5023 // cmn y, z
5024 if (isCMN(LHSDef, P, MRI))
5025 return emitCMN(LHSDef->getOperand(2), RHS, MIRBuilder);
5026
5027 // Same idea here, but with the RHS of the compare instead:
5028 //
5029 // Given this:
5030 //
5031 // x = G_SUB 0, y
5032 // G_ICMP z, x
5033 //
5034 // Produce this:
5035 //
5036 // cmn z, y
5037 if (isCMN(RHSDef, P, MRI))
5038 return emitCMN(LHS, RHSDef->getOperand(2), MIRBuilder);
5039
5040 // Given this:
5041 //
5042 // z = G_AND x, y
5043 // G_ICMP z, 0
5044 //
5045 // Produce this if the compare is signed:
5046 //
5047 // tst x, y
5048 if (!CmpInst::isUnsigned(P) && LHSDef &&
5049 LHSDef->getOpcode() == TargetOpcode::G_AND) {
5050 // Make sure that the RHS is 0.
5051 auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS.getReg(), MRI);
5052 if (!ValAndVReg || ValAndVReg->Value != 0)
5053 return nullptr;
5054
5055 return emitTST(LHSDef->getOperand(1),
5056 LHSDef->getOperand(2), MIRBuilder);
5057 }
5058
5059 return nullptr;
5060 }
5061
selectShuffleVector(MachineInstr & I,MachineRegisterInfo & MRI)5062 bool AArch64InstructionSelector::selectShuffleVector(
5063 MachineInstr &I, MachineRegisterInfo &MRI) {
5064 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
5065 Register Src1Reg = I.getOperand(1).getReg();
5066 const LLT Src1Ty = MRI.getType(Src1Reg);
5067 Register Src2Reg = I.getOperand(2).getReg();
5068 const LLT Src2Ty = MRI.getType(Src2Reg);
5069 ArrayRef<int> Mask = I.getOperand(3).getShuffleMask();
5070
5071 MachineBasicBlock &MBB = *I.getParent();
5072 MachineFunction &MF = *MBB.getParent();
5073 LLVMContext &Ctx = MF.getFunction().getContext();
5074
5075 // G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if
5076 // it's originated from a <1 x T> type. Those should have been lowered into
5077 // G_BUILD_VECTOR earlier.
5078 if (!Src1Ty.isVector() || !Src2Ty.isVector()) {
5079 LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n");
5080 return false;
5081 }
5082
5083 unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8;
5084
5085 SmallVector<Constant *, 64> CstIdxs;
5086 for (int Val : Mask) {
5087 // For now, any undef indexes we'll just assume to be 0. This should be
5088 // optimized in future, e.g. to select DUP etc.
5089 Val = Val < 0 ? 0 : Val;
5090 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5091 unsigned Offset = Byte + Val * BytesPerElt;
5092 CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset));
5093 }
5094 }
5095
5096 // Use a constant pool to load the index vector for TBL.
5097 Constant *CPVal = ConstantVector::get(CstIdxs);
5098 MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIB);
5099 if (!IndexLoad) {
5100 LLVM_DEBUG(dbgs() << "Could not load from a constant pool");
5101 return false;
5102 }
5103
5104 if (DstTy.getSizeInBits() != 128) {
5105 assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty");
5106 // This case can be done with TBL1.
5107 MachineInstr *Concat =
5108 emitVectorConcat(std::nullopt, Src1Reg, Src2Reg, MIB);
5109 if (!Concat) {
5110 LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1");
5111 return false;
5112 }
5113
5114 // The constant pool load will be 64 bits, so need to convert to FPR128 reg.
5115 IndexLoad = emitScalarToVector(64, &AArch64::FPR128RegClass,
5116 IndexLoad->getOperand(0).getReg(), MIB);
5117
5118 auto TBL1 = MIB.buildInstr(
5119 AArch64::TBLv16i8One, {&AArch64::FPR128RegClass},
5120 {Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()});
5121 constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI);
5122
5123 auto Copy =
5124 MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
5125 .addReg(TBL1.getReg(0), 0, AArch64::dsub);
5126 RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI);
5127 I.eraseFromParent();
5128 return true;
5129 }
5130
5131 // For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive
5132 // Q registers for regalloc.
5133 SmallVector<Register, 2> Regs = {Src1Reg, Src2Reg};
5134 auto RegSeq = createQTuple(Regs, MIB);
5135 auto TBL2 = MIB.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0)},
5136 {RegSeq, IndexLoad->getOperand(0)});
5137 constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI);
5138 I.eraseFromParent();
5139 return true;
5140 }
5141
emitLaneInsert(std::optional<Register> DstReg,Register SrcReg,Register EltReg,unsigned LaneIdx,const RegisterBank & RB,MachineIRBuilder & MIRBuilder) const5142 MachineInstr *AArch64InstructionSelector::emitLaneInsert(
5143 std::optional<Register> DstReg, Register SrcReg, Register EltReg,
5144 unsigned LaneIdx, const RegisterBank &RB,
5145 MachineIRBuilder &MIRBuilder) const {
5146 MachineInstr *InsElt = nullptr;
5147 const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
5148 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
5149
5150 // Create a register to define with the insert if one wasn't passed in.
5151 if (!DstReg)
5152 DstReg = MRI.createVirtualRegister(DstRC);
5153
5154 unsigned EltSize = MRI.getType(EltReg).getSizeInBits();
5155 unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first;
5156
5157 if (RB.getID() == AArch64::FPRRegBankID) {
5158 auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder);
5159 InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
5160 .addImm(LaneIdx)
5161 .addUse(InsSub->getOperand(0).getReg())
5162 .addImm(0);
5163 } else {
5164 InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
5165 .addImm(LaneIdx)
5166 .addUse(EltReg);
5167 }
5168
5169 constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
5170 return InsElt;
5171 }
5172
selectUSMovFromExtend(MachineInstr & MI,MachineRegisterInfo & MRI)5173 bool AArch64InstructionSelector::selectUSMovFromExtend(
5174 MachineInstr &MI, MachineRegisterInfo &MRI) {
5175 if (MI.getOpcode() != TargetOpcode::G_SEXT &&
5176 MI.getOpcode() != TargetOpcode::G_ZEXT &&
5177 MI.getOpcode() != TargetOpcode::G_ANYEXT)
5178 return false;
5179 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SEXT;
5180 const Register DefReg = MI.getOperand(0).getReg();
5181 const LLT DstTy = MRI.getType(DefReg);
5182 unsigned DstSize = DstTy.getSizeInBits();
5183
5184 if (DstSize != 32 && DstSize != 64)
5185 return false;
5186
5187 MachineInstr *Extract = getOpcodeDef(TargetOpcode::G_EXTRACT_VECTOR_ELT,
5188 MI.getOperand(1).getReg(), MRI);
5189 int64_t Lane;
5190 if (!Extract || !mi_match(Extract->getOperand(2).getReg(), MRI, m_ICst(Lane)))
5191 return false;
5192 Register Src0 = Extract->getOperand(1).getReg();
5193
5194 const LLT &VecTy = MRI.getType(Src0);
5195
5196 if (VecTy.getSizeInBits() != 128) {
5197 const MachineInstr *ScalarToVector = emitScalarToVector(
5198 VecTy.getSizeInBits(), &AArch64::FPR128RegClass, Src0, MIB);
5199 assert(ScalarToVector && "Didn't expect emitScalarToVector to fail!");
5200 Src0 = ScalarToVector->getOperand(0).getReg();
5201 }
5202
5203 unsigned Opcode;
5204 if (DstSize == 64 && VecTy.getScalarSizeInBits() == 32)
5205 Opcode = IsSigned ? AArch64::SMOVvi32to64 : AArch64::UMOVvi32;
5206 else if (DstSize == 64 && VecTy.getScalarSizeInBits() == 16)
5207 Opcode = IsSigned ? AArch64::SMOVvi16to64 : AArch64::UMOVvi16;
5208 else if (DstSize == 64 && VecTy.getScalarSizeInBits() == 8)
5209 Opcode = IsSigned ? AArch64::SMOVvi8to64 : AArch64::UMOVvi8;
5210 else if (DstSize == 32 && VecTy.getScalarSizeInBits() == 16)
5211 Opcode = IsSigned ? AArch64::SMOVvi16to32 : AArch64::UMOVvi16;
5212 else if (DstSize == 32 && VecTy.getScalarSizeInBits() == 8)
5213 Opcode = IsSigned ? AArch64::SMOVvi8to32 : AArch64::UMOVvi8;
5214 else
5215 llvm_unreachable("Unexpected type combo for S/UMov!");
5216
5217 // We may need to generate one of these, depending on the type and sign of the
5218 // input:
5219 // DstReg = SMOV Src0, Lane;
5220 // NewReg = UMOV Src0, Lane; DstReg = SUBREG_TO_REG NewReg, sub_32;
5221 MachineInstr *ExtI = nullptr;
5222 if (DstSize == 64 && !IsSigned) {
5223 Register NewReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
5224 MIB.buildInstr(Opcode, {NewReg}, {Src0}).addImm(Lane);
5225 ExtI = MIB.buildInstr(AArch64::SUBREG_TO_REG, {DefReg}, {})
5226 .addImm(0)
5227 .addUse(NewReg)
5228 .addImm(AArch64::sub_32);
5229 RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
5230 } else
5231 ExtI = MIB.buildInstr(Opcode, {DefReg}, {Src0}).addImm(Lane);
5232
5233 constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
5234 MI.eraseFromParent();
5235 return true;
5236 }
5237
tryAdvSIMDModImm8(Register Dst,unsigned DstSize,APInt Bits,MachineIRBuilder & Builder)5238 MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm8(
5239 Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder) {
5240 unsigned int Op;
5241 if (DstSize == 128) {
5242 if (Bits.getHiBits(64) != Bits.getLoBits(64))
5243 return nullptr;
5244 Op = AArch64::MOVIv16b_ns;
5245 } else {
5246 Op = AArch64::MOVIv8b_ns;
5247 }
5248
5249 uint64_t Val = Bits.zextOrTrunc(64).getZExtValue();
5250
5251 if (AArch64_AM::isAdvSIMDModImmType9(Val)) {
5252 Val = AArch64_AM::encodeAdvSIMDModImmType9(Val);
5253 auto Mov = Builder.buildInstr(Op, {Dst}, {}).addImm(Val);
5254 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5255 return &*Mov;
5256 }
5257 return nullptr;
5258 }
5259
tryAdvSIMDModImm16(Register Dst,unsigned DstSize,APInt Bits,MachineIRBuilder & Builder,bool Inv)5260 MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm16(
5261 Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder,
5262 bool Inv) {
5263
5264 unsigned int Op;
5265 if (DstSize == 128) {
5266 if (Bits.getHiBits(64) != Bits.getLoBits(64))
5267 return nullptr;
5268 Op = Inv ? AArch64::MVNIv8i16 : AArch64::MOVIv8i16;
5269 } else {
5270 Op = Inv ? AArch64::MVNIv4i16 : AArch64::MOVIv4i16;
5271 }
5272
5273 uint64_t Val = Bits.zextOrTrunc(64).getZExtValue();
5274 uint64_t Shift;
5275
5276 if (AArch64_AM::isAdvSIMDModImmType5(Val)) {
5277 Val = AArch64_AM::encodeAdvSIMDModImmType5(Val);
5278 Shift = 0;
5279 } else if (AArch64_AM::isAdvSIMDModImmType6(Val)) {
5280 Val = AArch64_AM::encodeAdvSIMDModImmType6(Val);
5281 Shift = 8;
5282 } else
5283 return nullptr;
5284
5285 auto Mov = Builder.buildInstr(Op, {Dst}, {}).addImm(Val).addImm(Shift);
5286 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5287 return &*Mov;
5288 }
5289
tryAdvSIMDModImm32(Register Dst,unsigned DstSize,APInt Bits,MachineIRBuilder & Builder,bool Inv)5290 MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm32(
5291 Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder,
5292 bool Inv) {
5293
5294 unsigned int Op;
5295 if (DstSize == 128) {
5296 if (Bits.getHiBits(64) != Bits.getLoBits(64))
5297 return nullptr;
5298 Op = Inv ? AArch64::MVNIv4i32 : AArch64::MOVIv4i32;
5299 } else {
5300 Op = Inv ? AArch64::MVNIv2i32 : AArch64::MOVIv2i32;
5301 }
5302
5303 uint64_t Val = Bits.zextOrTrunc(64).getZExtValue();
5304 uint64_t Shift;
5305
5306 if ((AArch64_AM::isAdvSIMDModImmType1(Val))) {
5307 Val = AArch64_AM::encodeAdvSIMDModImmType1(Val);
5308 Shift = 0;
5309 } else if ((AArch64_AM::isAdvSIMDModImmType2(Val))) {
5310 Val = AArch64_AM::encodeAdvSIMDModImmType2(Val);
5311 Shift = 8;
5312 } else if ((AArch64_AM::isAdvSIMDModImmType3(Val))) {
5313 Val = AArch64_AM::encodeAdvSIMDModImmType3(Val);
5314 Shift = 16;
5315 } else if ((AArch64_AM::isAdvSIMDModImmType4(Val))) {
5316 Val = AArch64_AM::encodeAdvSIMDModImmType4(Val);
5317 Shift = 24;
5318 } else
5319 return nullptr;
5320
5321 auto Mov = Builder.buildInstr(Op, {Dst}, {}).addImm(Val).addImm(Shift);
5322 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5323 return &*Mov;
5324 }
5325
tryAdvSIMDModImm64(Register Dst,unsigned DstSize,APInt Bits,MachineIRBuilder & Builder)5326 MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm64(
5327 Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder) {
5328
5329 unsigned int Op;
5330 if (DstSize == 128) {
5331 if (Bits.getHiBits(64) != Bits.getLoBits(64))
5332 return nullptr;
5333 Op = AArch64::MOVIv2d_ns;
5334 } else {
5335 Op = AArch64::MOVID;
5336 }
5337
5338 uint64_t Val = Bits.zextOrTrunc(64).getZExtValue();
5339 if (AArch64_AM::isAdvSIMDModImmType10(Val)) {
5340 Val = AArch64_AM::encodeAdvSIMDModImmType10(Val);
5341 auto Mov = Builder.buildInstr(Op, {Dst}, {}).addImm(Val);
5342 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5343 return &*Mov;
5344 }
5345 return nullptr;
5346 }
5347
tryAdvSIMDModImm321s(Register Dst,unsigned DstSize,APInt Bits,MachineIRBuilder & Builder,bool Inv)5348 MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm321s(
5349 Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder,
5350 bool Inv) {
5351
5352 unsigned int Op;
5353 if (DstSize == 128) {
5354 if (Bits.getHiBits(64) != Bits.getLoBits(64))
5355 return nullptr;
5356 Op = Inv ? AArch64::MVNIv4s_msl : AArch64::MOVIv4s_msl;
5357 } else {
5358 Op = Inv ? AArch64::MVNIv2s_msl : AArch64::MOVIv2s_msl;
5359 }
5360
5361 uint64_t Val = Bits.zextOrTrunc(64).getZExtValue();
5362 uint64_t Shift;
5363
5364 if (AArch64_AM::isAdvSIMDModImmType7(Val)) {
5365 Val = AArch64_AM::encodeAdvSIMDModImmType7(Val);
5366 Shift = 264;
5367 } else if (AArch64_AM::isAdvSIMDModImmType8(Val)) {
5368 Val = AArch64_AM::encodeAdvSIMDModImmType8(Val);
5369 Shift = 272;
5370 } else
5371 return nullptr;
5372
5373 auto Mov = Builder.buildInstr(Op, {Dst}, {}).addImm(Val).addImm(Shift);
5374 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5375 return &*Mov;
5376 }
5377
tryAdvSIMDModImmFP(Register Dst,unsigned DstSize,APInt Bits,MachineIRBuilder & Builder)5378 MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImmFP(
5379 Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder) {
5380
5381 unsigned int Op;
5382 bool IsWide = false;
5383 if (DstSize == 128) {
5384 if (Bits.getHiBits(64) != Bits.getLoBits(64))
5385 return nullptr;
5386 Op = AArch64::FMOVv4f32_ns;
5387 IsWide = true;
5388 } else {
5389 Op = AArch64::FMOVv2f32_ns;
5390 }
5391
5392 uint64_t Val = Bits.zextOrTrunc(64).getZExtValue();
5393
5394 if (AArch64_AM::isAdvSIMDModImmType11(Val)) {
5395 Val = AArch64_AM::encodeAdvSIMDModImmType11(Val);
5396 } else if (IsWide && AArch64_AM::isAdvSIMDModImmType12(Val)) {
5397 Val = AArch64_AM::encodeAdvSIMDModImmType12(Val);
5398 Op = AArch64::FMOVv2f64_ns;
5399 } else
5400 return nullptr;
5401
5402 auto Mov = Builder.buildInstr(Op, {Dst}, {}).addImm(Val);
5403 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5404 return &*Mov;
5405 }
5406
selectIndexedExtLoad(MachineInstr & MI,MachineRegisterInfo & MRI)5407 bool AArch64InstructionSelector::selectIndexedExtLoad(
5408 MachineInstr &MI, MachineRegisterInfo &MRI) {
5409 auto &ExtLd = cast<GIndexedAnyExtLoad>(MI);
5410 Register Dst = ExtLd.getDstReg();
5411 Register WriteBack = ExtLd.getWritebackReg();
5412 Register Base = ExtLd.getBaseReg();
5413 Register Offset = ExtLd.getOffsetReg();
5414 LLT Ty = MRI.getType(Dst);
5415 assert(Ty.getSizeInBits() <= 64); // Only for scalar GPRs.
5416 unsigned MemSizeBits = ExtLd.getMMO().getMemoryType().getSizeInBits();
5417 bool IsPre = ExtLd.isPre();
5418 bool IsSExt = isa<GIndexedSExtLoad>(ExtLd);
5419 bool InsertIntoXReg = false;
5420 bool IsDst64 = Ty.getSizeInBits() == 64;
5421
5422 unsigned Opc = 0;
5423 LLT NewLdDstTy;
5424 LLT s32 = LLT::scalar(32);
5425 LLT s64 = LLT::scalar(64);
5426
5427 if (MemSizeBits == 8) {
5428 if (IsSExt) {
5429 if (IsDst64)
5430 Opc = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
5431 else
5432 Opc = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
5433 NewLdDstTy = IsDst64 ? s64 : s32;
5434 } else {
5435 Opc = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
5436 InsertIntoXReg = IsDst64;
5437 NewLdDstTy = s32;
5438 }
5439 } else if (MemSizeBits == 16) {
5440 if (IsSExt) {
5441 if (IsDst64)
5442 Opc = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
5443 else
5444 Opc = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
5445 NewLdDstTy = IsDst64 ? s64 : s32;
5446 } else {
5447 Opc = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
5448 InsertIntoXReg = IsDst64;
5449 NewLdDstTy = s32;
5450 }
5451 } else if (MemSizeBits == 32) {
5452 if (IsSExt) {
5453 Opc = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
5454 NewLdDstTy = s64;
5455 } else {
5456 Opc = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
5457 InsertIntoXReg = IsDst64;
5458 NewLdDstTy = s32;
5459 }
5460 } else {
5461 llvm_unreachable("Unexpected size for indexed load");
5462 }
5463
5464 if (RBI.getRegBank(Dst, MRI, TRI)->getID() == AArch64::FPRRegBankID)
5465 return false; // We should be on gpr.
5466
5467 auto Cst = getIConstantVRegVal(Offset, MRI);
5468 if (!Cst)
5469 return false; // Shouldn't happen, but just in case.
5470
5471 auto LdMI = MIB.buildInstr(Opc, {WriteBack, NewLdDstTy}, {Base})
5472 .addImm(Cst->getSExtValue());
5473 LdMI.cloneMemRefs(ExtLd);
5474 constrainSelectedInstRegOperands(*LdMI, TII, TRI, RBI);
5475 // Make sure to select the load with the MemTy as the dest type, and then
5476 // insert into X reg if needed.
5477 if (InsertIntoXReg) {
5478 // Generate a SUBREG_TO_REG.
5479 auto SubToReg = MIB.buildInstr(TargetOpcode::SUBREG_TO_REG, {Dst}, {})
5480 .addImm(0)
5481 .addUse(LdMI.getReg(1))
5482 .addImm(AArch64::sub_32);
5483 RBI.constrainGenericRegister(SubToReg.getReg(0), AArch64::GPR64RegClass,
5484 MRI);
5485 } else {
5486 auto Copy = MIB.buildCopy(Dst, LdMI.getReg(1));
5487 selectCopy(*Copy, TII, MRI, TRI, RBI);
5488 }
5489 MI.eraseFromParent();
5490
5491 return true;
5492 }
5493
selectIndexedLoad(MachineInstr & MI,MachineRegisterInfo & MRI)5494 bool AArch64InstructionSelector::selectIndexedLoad(MachineInstr &MI,
5495 MachineRegisterInfo &MRI) {
5496 auto &Ld = cast<GIndexedLoad>(MI);
5497 Register Dst = Ld.getDstReg();
5498 Register WriteBack = Ld.getWritebackReg();
5499 Register Base = Ld.getBaseReg();
5500 Register Offset = Ld.getOffsetReg();
5501 assert(MRI.getType(Dst).getSizeInBits() <= 128 &&
5502 "Unexpected type for indexed load");
5503 unsigned MemSize = Ld.getMMO().getMemoryType().getSizeInBytes();
5504
5505 if (MemSize < MRI.getType(Dst).getSizeInBytes())
5506 return selectIndexedExtLoad(MI, MRI);
5507
5508 unsigned Opc = 0;
5509 if (Ld.isPre()) {
5510 static constexpr unsigned GPROpcodes[] = {
5511 AArch64::LDRBBpre, AArch64::LDRHHpre, AArch64::LDRWpre,
5512 AArch64::LDRXpre};
5513 static constexpr unsigned FPROpcodes[] = {
5514 AArch64::LDRBpre, AArch64::LDRHpre, AArch64::LDRSpre, AArch64::LDRDpre,
5515 AArch64::LDRQpre};
5516 if (RBI.getRegBank(Dst, MRI, TRI)->getID() == AArch64::FPRRegBankID)
5517 Opc = FPROpcodes[Log2_32(MemSize)];
5518 else
5519 Opc = GPROpcodes[Log2_32(MemSize)];
5520 } else {
5521 static constexpr unsigned GPROpcodes[] = {
5522 AArch64::LDRBBpost, AArch64::LDRHHpost, AArch64::LDRWpost,
5523 AArch64::LDRXpost};
5524 static constexpr unsigned FPROpcodes[] = {
5525 AArch64::LDRBpost, AArch64::LDRHpost, AArch64::LDRSpost,
5526 AArch64::LDRDpost, AArch64::LDRQpost};
5527 if (RBI.getRegBank(Dst, MRI, TRI)->getID() == AArch64::FPRRegBankID)
5528 Opc = FPROpcodes[Log2_32(MemSize)];
5529 else
5530 Opc = GPROpcodes[Log2_32(MemSize)];
5531 }
5532 auto Cst = getIConstantVRegVal(Offset, MRI);
5533 if (!Cst)
5534 return false; // Shouldn't happen, but just in case.
5535 auto LdMI =
5536 MIB.buildInstr(Opc, {WriteBack, Dst}, {Base}).addImm(Cst->getSExtValue());
5537 LdMI.cloneMemRefs(Ld);
5538 constrainSelectedInstRegOperands(*LdMI, TII, TRI, RBI);
5539 MI.eraseFromParent();
5540 return true;
5541 }
5542
selectIndexedStore(GIndexedStore & I,MachineRegisterInfo & MRI)5543 bool AArch64InstructionSelector::selectIndexedStore(GIndexedStore &I,
5544 MachineRegisterInfo &MRI) {
5545 Register Dst = I.getWritebackReg();
5546 Register Val = I.getValueReg();
5547 Register Base = I.getBaseReg();
5548 Register Offset = I.getOffsetReg();
5549 LLT ValTy = MRI.getType(Val);
5550 assert(ValTy.getSizeInBits() <= 128 && "Unexpected type for indexed store");
5551
5552 unsigned Opc = 0;
5553 if (I.isPre()) {
5554 static constexpr unsigned GPROpcodes[] = {
5555 AArch64::STRBBpre, AArch64::STRHHpre, AArch64::STRWpre,
5556 AArch64::STRXpre};
5557 static constexpr unsigned FPROpcodes[] = {
5558 AArch64::STRBpre, AArch64::STRHpre, AArch64::STRSpre, AArch64::STRDpre,
5559 AArch64::STRQpre};
5560
5561 if (RBI.getRegBank(Val, MRI, TRI)->getID() == AArch64::FPRRegBankID)
5562 Opc = FPROpcodes[Log2_32(ValTy.getSizeInBytes())];
5563 else
5564 Opc = GPROpcodes[Log2_32(ValTy.getSizeInBytes())];
5565 } else {
5566 static constexpr unsigned GPROpcodes[] = {
5567 AArch64::STRBBpost, AArch64::STRHHpost, AArch64::STRWpost,
5568 AArch64::STRXpost};
5569 static constexpr unsigned FPROpcodes[] = {
5570 AArch64::STRBpost, AArch64::STRHpost, AArch64::STRSpost,
5571 AArch64::STRDpost, AArch64::STRQpost};
5572
5573 if (RBI.getRegBank(Val, MRI, TRI)->getID() == AArch64::FPRRegBankID)
5574 Opc = FPROpcodes[Log2_32(ValTy.getSizeInBytes())];
5575 else
5576 Opc = GPROpcodes[Log2_32(ValTy.getSizeInBytes())];
5577 }
5578
5579 auto Cst = getIConstantVRegVal(Offset, MRI);
5580 if (!Cst)
5581 return false; // Shouldn't happen, but just in case.
5582 auto Str =
5583 MIB.buildInstr(Opc, {Dst}, {Val, Base}).addImm(Cst->getSExtValue());
5584 Str.cloneMemRefs(I);
5585 constrainSelectedInstRegOperands(*Str, TII, TRI, RBI);
5586 I.eraseFromParent();
5587 return true;
5588 }
5589
5590 MachineInstr *
emitConstantVector(Register Dst,Constant * CV,MachineIRBuilder & MIRBuilder,MachineRegisterInfo & MRI)5591 AArch64InstructionSelector::emitConstantVector(Register Dst, Constant *CV,
5592 MachineIRBuilder &MIRBuilder,
5593 MachineRegisterInfo &MRI) {
5594 LLT DstTy = MRI.getType(Dst);
5595 unsigned DstSize = DstTy.getSizeInBits();
5596 if (CV->isNullValue()) {
5597 if (DstSize == 128) {
5598 auto Mov =
5599 MIRBuilder.buildInstr(AArch64::MOVIv2d_ns, {Dst}, {}).addImm(0);
5600 constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5601 return &*Mov;
5602 }
5603
5604 if (DstSize == 64) {
5605 auto Mov =
5606 MIRBuilder
5607 .buildInstr(AArch64::MOVIv2d_ns, {&AArch64::FPR128RegClass}, {})
5608 .addImm(0);
5609 auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {Dst}, {})
5610 .addReg(Mov.getReg(0), 0, AArch64::dsub);
5611 RBI.constrainGenericRegister(Dst, AArch64::FPR64RegClass, MRI);
5612 return &*Copy;
5613 }
5614 }
5615
5616 if (CV->getSplatValue()) {
5617 APInt DefBits = APInt::getSplat(DstSize, CV->getUniqueInteger());
5618 auto TryMOVIWithBits = [&](APInt DefBits) -> MachineInstr * {
5619 MachineInstr *NewOp;
5620 bool Inv = false;
5621 if ((NewOp = tryAdvSIMDModImm64(Dst, DstSize, DefBits, MIRBuilder)) ||
5622 (NewOp =
5623 tryAdvSIMDModImm32(Dst, DstSize, DefBits, MIRBuilder, Inv)) ||
5624 (NewOp =
5625 tryAdvSIMDModImm321s(Dst, DstSize, DefBits, MIRBuilder, Inv)) ||
5626 (NewOp =
5627 tryAdvSIMDModImm16(Dst, DstSize, DefBits, MIRBuilder, Inv)) ||
5628 (NewOp = tryAdvSIMDModImm8(Dst, DstSize, DefBits, MIRBuilder)) ||
5629 (NewOp = tryAdvSIMDModImmFP(Dst, DstSize, DefBits, MIRBuilder)))
5630 return NewOp;
5631
5632 DefBits = ~DefBits;
5633 Inv = true;
5634 if ((NewOp =
5635 tryAdvSIMDModImm32(Dst, DstSize, DefBits, MIRBuilder, Inv)) ||
5636 (NewOp =
5637 tryAdvSIMDModImm321s(Dst, DstSize, DefBits, MIRBuilder, Inv)) ||
5638 (NewOp = tryAdvSIMDModImm16(Dst, DstSize, DefBits, MIRBuilder, Inv)))
5639 return NewOp;
5640 return nullptr;
5641 };
5642
5643 if (auto *NewOp = TryMOVIWithBits(DefBits))
5644 return NewOp;
5645
5646 // See if a fneg of the constant can be materialized with a MOVI, etc
5647 auto TryWithFNeg = [&](APInt DefBits, int NumBits,
5648 unsigned NegOpc) -> MachineInstr * {
5649 // FNegate each sub-element of the constant
5650 APInt Neg = APInt::getHighBitsSet(NumBits, 1).zext(DstSize);
5651 APInt NegBits(DstSize, 0);
5652 unsigned NumElts = DstSize / NumBits;
5653 for (unsigned i = 0; i < NumElts; i++)
5654 NegBits |= Neg << (NumBits * i);
5655 NegBits = DefBits ^ NegBits;
5656
5657 // Try to create the new constants with MOVI, and if so generate a fneg
5658 // for it.
5659 if (auto *NewOp = TryMOVIWithBits(NegBits)) {
5660 Register NewDst = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
5661 NewOp->getOperand(0).setReg(NewDst);
5662 return MIRBuilder.buildInstr(NegOpc, {Dst}, {NewDst});
5663 }
5664 return nullptr;
5665 };
5666 MachineInstr *R;
5667 if ((R = TryWithFNeg(DefBits, 32, AArch64::FNEGv4f32)) ||
5668 (R = TryWithFNeg(DefBits, 64, AArch64::FNEGv2f64)) ||
5669 (STI.hasFullFP16() &&
5670 (R = TryWithFNeg(DefBits, 16, AArch64::FNEGv8f16))))
5671 return R;
5672 }
5673
5674 auto *CPLoad = emitLoadFromConstantPool(CV, MIRBuilder);
5675 if (!CPLoad) {
5676 LLVM_DEBUG(dbgs() << "Could not generate cp load for constant vector!");
5677 return nullptr;
5678 }
5679
5680 auto Copy = MIRBuilder.buildCopy(Dst, CPLoad->getOperand(0));
5681 RBI.constrainGenericRegister(
5682 Dst, *MRI.getRegClass(CPLoad->getOperand(0).getReg()), MRI);
5683 return &*Copy;
5684 }
5685
tryOptConstantBuildVec(MachineInstr & I,LLT DstTy,MachineRegisterInfo & MRI)5686 bool AArch64InstructionSelector::tryOptConstantBuildVec(
5687 MachineInstr &I, LLT DstTy, MachineRegisterInfo &MRI) {
5688 assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
5689 unsigned DstSize = DstTy.getSizeInBits();
5690 assert(DstSize <= 128 && "Unexpected build_vec type!");
5691 if (DstSize < 32)
5692 return false;
5693 // Check if we're building a constant vector, in which case we want to
5694 // generate a constant pool load instead of a vector insert sequence.
5695 SmallVector<Constant *, 16> Csts;
5696 for (unsigned Idx = 1; Idx < I.getNumOperands(); ++Idx) {
5697 // Try to find G_CONSTANT or G_FCONSTANT
5698 auto *OpMI =
5699 getOpcodeDef(TargetOpcode::G_CONSTANT, I.getOperand(Idx).getReg(), MRI);
5700 if (OpMI)
5701 Csts.emplace_back(
5702 const_cast<ConstantInt *>(OpMI->getOperand(1).getCImm()));
5703 else if ((OpMI = getOpcodeDef(TargetOpcode::G_FCONSTANT,
5704 I.getOperand(Idx).getReg(), MRI)))
5705 Csts.emplace_back(
5706 const_cast<ConstantFP *>(OpMI->getOperand(1).getFPImm()));
5707 else
5708 return false;
5709 }
5710 Constant *CV = ConstantVector::get(Csts);
5711 if (!emitConstantVector(I.getOperand(0).getReg(), CV, MIB, MRI))
5712 return false;
5713 I.eraseFromParent();
5714 return true;
5715 }
5716
tryOptBuildVecToSubregToReg(MachineInstr & I,MachineRegisterInfo & MRI)5717 bool AArch64InstructionSelector::tryOptBuildVecToSubregToReg(
5718 MachineInstr &I, MachineRegisterInfo &MRI) {
5719 // Given:
5720 // %vec = G_BUILD_VECTOR %elt, %undef, %undef, ... %undef
5721 //
5722 // Select the G_BUILD_VECTOR as a SUBREG_TO_REG from %elt.
5723 Register Dst = I.getOperand(0).getReg();
5724 Register EltReg = I.getOperand(1).getReg();
5725 LLT EltTy = MRI.getType(EltReg);
5726 // If the index isn't on the same bank as its elements, then this can't be a
5727 // SUBREG_TO_REG.
5728 const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI);
5729 const RegisterBank &DstRB = *RBI.getRegBank(Dst, MRI, TRI);
5730 if (EltRB != DstRB)
5731 return false;
5732 if (any_of(drop_begin(I.operands(), 2), [&MRI](const MachineOperand &Op) {
5733 return !getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, Op.getReg(), MRI);
5734 }))
5735 return false;
5736 unsigned SubReg;
5737 const TargetRegisterClass *EltRC = getRegClassForTypeOnBank(EltTy, EltRB);
5738 if (!EltRC)
5739 return false;
5740 const TargetRegisterClass *DstRC =
5741 getRegClassForTypeOnBank(MRI.getType(Dst), DstRB);
5742 if (!DstRC)
5743 return false;
5744 if (!getSubRegForClass(EltRC, TRI, SubReg))
5745 return false;
5746 auto SubregToReg = MIB.buildInstr(AArch64::SUBREG_TO_REG, {Dst}, {})
5747 .addImm(0)
5748 .addUse(EltReg)
5749 .addImm(SubReg);
5750 I.eraseFromParent();
5751 constrainSelectedInstRegOperands(*SubregToReg, TII, TRI, RBI);
5752 return RBI.constrainGenericRegister(Dst, *DstRC, MRI);
5753 }
5754
selectBuildVector(MachineInstr & I,MachineRegisterInfo & MRI)5755 bool AArch64InstructionSelector::selectBuildVector(MachineInstr &I,
5756 MachineRegisterInfo &MRI) {
5757 assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
5758 // Until we port more of the optimized selections, for now just use a vector
5759 // insert sequence.
5760 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
5761 const LLT EltTy = MRI.getType(I.getOperand(1).getReg());
5762 unsigned EltSize = EltTy.getSizeInBits();
5763
5764 if (tryOptConstantBuildVec(I, DstTy, MRI))
5765 return true;
5766 if (tryOptBuildVecToSubregToReg(I, MRI))
5767 return true;
5768
5769 if (EltSize != 8 && EltSize != 16 && EltSize != 32 && EltSize != 64)
5770 return false; // Don't support all element types yet.
5771 const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
5772
5773 const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
5774 MachineInstr *ScalarToVec =
5775 emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC,
5776 I.getOperand(1).getReg(), MIB);
5777 if (!ScalarToVec)
5778 return false;
5779
5780 Register DstVec = ScalarToVec->getOperand(0).getReg();
5781 unsigned DstSize = DstTy.getSizeInBits();
5782
5783 // Keep track of the last MI we inserted. Later on, we might be able to save
5784 // a copy using it.
5785 MachineInstr *PrevMI = ScalarToVec;
5786 for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) {
5787 // Note that if we don't do a subregister copy, we can end up making an
5788 // extra register.
5789 Register OpReg = I.getOperand(i).getReg();
5790 // Do not emit inserts for undefs
5791 if (!getOpcodeDef<GImplicitDef>(OpReg, MRI)) {
5792 PrevMI = &*emitLaneInsert(std::nullopt, DstVec, OpReg, i - 1, RB, MIB);
5793 DstVec = PrevMI->getOperand(0).getReg();
5794 }
5795 }
5796
5797 // If DstTy's size in bits is less than 128, then emit a subregister copy
5798 // from DstVec to the last register we've defined.
5799 if (DstSize < 128) {
5800 // Force this to be FPR using the destination vector.
5801 const TargetRegisterClass *RC =
5802 getRegClassForTypeOnBank(DstTy, *RBI.getRegBank(DstVec, MRI, TRI));
5803 if (!RC)
5804 return false;
5805 if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
5806 LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
5807 return false;
5808 }
5809
5810 unsigned SubReg = 0;
5811 if (!getSubRegForClass(RC, TRI, SubReg))
5812 return false;
5813 if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
5814 LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize
5815 << "\n");
5816 return false;
5817 }
5818
5819 Register Reg = MRI.createVirtualRegister(RC);
5820 Register DstReg = I.getOperand(0).getReg();
5821
5822 MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {}).addReg(DstVec, 0, SubReg);
5823 MachineOperand &RegOp = I.getOperand(1);
5824 RegOp.setReg(Reg);
5825 RBI.constrainGenericRegister(DstReg, *RC, MRI);
5826 } else {
5827 // We either have a vector with all elements (except the first one) undef or
5828 // at least one non-undef non-first element. In the first case, we need to
5829 // constrain the output register ourselves as we may have generated an
5830 // INSERT_SUBREG operation which is a generic operation for which the
5831 // output regclass cannot be automatically chosen.
5832 //
5833 // In the second case, there is no need to do this as it may generate an
5834 // instruction like INSvi32gpr where the regclass can be automatically
5835 // chosen.
5836 //
5837 // Also, we save a copy by re-using the destination register on the final
5838 // insert.
5839 PrevMI->getOperand(0).setReg(I.getOperand(0).getReg());
5840 constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI);
5841
5842 Register DstReg = PrevMI->getOperand(0).getReg();
5843 if (PrevMI == ScalarToVec && DstReg.isVirtual()) {
5844 const TargetRegisterClass *RC =
5845 getRegClassForTypeOnBank(DstTy, *RBI.getRegBank(DstVec, MRI, TRI));
5846 RBI.constrainGenericRegister(DstReg, *RC, MRI);
5847 }
5848 }
5849
5850 I.eraseFromParent();
5851 return true;
5852 }
5853
selectVectorLoadIntrinsic(unsigned Opc,unsigned NumVecs,MachineInstr & I)5854 bool AArch64InstructionSelector::selectVectorLoadIntrinsic(unsigned Opc,
5855 unsigned NumVecs,
5856 MachineInstr &I) {
5857 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
5858 assert(Opc && "Expected an opcode?");
5859 assert(NumVecs > 1 && NumVecs < 5 && "Only support 2, 3, or 4 vectors");
5860 auto &MRI = *MIB.getMRI();
5861 LLT Ty = MRI.getType(I.getOperand(0).getReg());
5862 unsigned Size = Ty.getSizeInBits();
5863 assert((Size == 64 || Size == 128) &&
5864 "Destination must be 64 bits or 128 bits?");
5865 unsigned SubReg = Size == 64 ? AArch64::dsub0 : AArch64::qsub0;
5866 auto Ptr = I.getOperand(I.getNumOperands() - 1).getReg();
5867 assert(MRI.getType(Ptr).isPointer() && "Expected a pointer type?");
5868 auto Load = MIB.buildInstr(Opc, {Ty}, {Ptr});
5869 Load.cloneMemRefs(I);
5870 constrainSelectedInstRegOperands(*Load, TII, TRI, RBI);
5871 Register SelectedLoadDst = Load->getOperand(0).getReg();
5872 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
5873 auto Vec = MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(Idx)}, {})
5874 .addReg(SelectedLoadDst, 0, SubReg + Idx);
5875 // Emit the subreg copies and immediately select them.
5876 // FIXME: We should refactor our copy code into an emitCopy helper and
5877 // clean up uses of this pattern elsewhere in the selector.
5878 selectCopy(*Vec, TII, MRI, TRI, RBI);
5879 }
5880 return true;
5881 }
5882
selectVectorLoadLaneIntrinsic(unsigned Opc,unsigned NumVecs,MachineInstr & I)5883 bool AArch64InstructionSelector::selectVectorLoadLaneIntrinsic(
5884 unsigned Opc, unsigned NumVecs, MachineInstr &I) {
5885 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
5886 assert(Opc && "Expected an opcode?");
5887 assert(NumVecs > 1 && NumVecs < 5 && "Only support 2, 3, or 4 vectors");
5888 auto &MRI = *MIB.getMRI();
5889 LLT Ty = MRI.getType(I.getOperand(0).getReg());
5890 bool Narrow = Ty.getSizeInBits() == 64;
5891
5892 auto FirstSrcRegIt = I.operands_begin() + NumVecs + 1;
5893 SmallVector<Register, 4> Regs(NumVecs);
5894 std::transform(FirstSrcRegIt, FirstSrcRegIt + NumVecs, Regs.begin(),
5895 [](auto MO) { return MO.getReg(); });
5896
5897 if (Narrow) {
5898 transform(Regs, Regs.begin(), [this](Register Reg) {
5899 return emitScalarToVector(64, &AArch64::FPR128RegClass, Reg, MIB)
5900 ->getOperand(0)
5901 .getReg();
5902 });
5903 Ty = Ty.multiplyElements(2);
5904 }
5905
5906 Register Tuple = createQTuple(Regs, MIB);
5907 auto LaneNo = getIConstantVRegVal((FirstSrcRegIt + NumVecs)->getReg(), MRI);
5908 if (!LaneNo)
5909 return false;
5910
5911 Register Ptr = (FirstSrcRegIt + NumVecs + 1)->getReg();
5912 auto Load = MIB.buildInstr(Opc, {Ty}, {})
5913 .addReg(Tuple)
5914 .addImm(LaneNo->getZExtValue())
5915 .addReg(Ptr);
5916 Load.cloneMemRefs(I);
5917 constrainSelectedInstRegOperands(*Load, TII, TRI, RBI);
5918 Register SelectedLoadDst = Load->getOperand(0).getReg();
5919 unsigned SubReg = AArch64::qsub0;
5920 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
5921 auto Vec = MIB.buildInstr(TargetOpcode::COPY,
5922 {Narrow ? DstOp(&AArch64::FPR128RegClass)
5923 : DstOp(I.getOperand(Idx).getReg())},
5924 {})
5925 .addReg(SelectedLoadDst, 0, SubReg + Idx);
5926 Register WideReg = Vec.getReg(0);
5927 // Emit the subreg copies and immediately select them.
5928 selectCopy(*Vec, TII, MRI, TRI, RBI);
5929 if (Narrow &&
5930 !emitNarrowVector(I.getOperand(Idx).getReg(), WideReg, MIB, MRI))
5931 return false;
5932 }
5933 return true;
5934 }
5935
selectVectorStoreIntrinsic(MachineInstr & I,unsigned NumVecs,unsigned Opc)5936 void AArch64InstructionSelector::selectVectorStoreIntrinsic(MachineInstr &I,
5937 unsigned NumVecs,
5938 unsigned Opc) {
5939 MachineRegisterInfo &MRI = I.getParent()->getParent()->getRegInfo();
5940 LLT Ty = MRI.getType(I.getOperand(1).getReg());
5941 Register Ptr = I.getOperand(1 + NumVecs).getReg();
5942
5943 SmallVector<Register, 2> Regs(NumVecs);
5944 std::transform(I.operands_begin() + 1, I.operands_begin() + 1 + NumVecs,
5945 Regs.begin(), [](auto MO) { return MO.getReg(); });
5946
5947 Register Tuple = Ty.getSizeInBits() == 128 ? createQTuple(Regs, MIB)
5948 : createDTuple(Regs, MIB);
5949 auto Store = MIB.buildInstr(Opc, {}, {Tuple, Ptr});
5950 Store.cloneMemRefs(I);
5951 constrainSelectedInstRegOperands(*Store, TII, TRI, RBI);
5952 }
5953
selectVectorStoreLaneIntrinsic(MachineInstr & I,unsigned NumVecs,unsigned Opc)5954 bool AArch64InstructionSelector::selectVectorStoreLaneIntrinsic(
5955 MachineInstr &I, unsigned NumVecs, unsigned Opc) {
5956 MachineRegisterInfo &MRI = I.getParent()->getParent()->getRegInfo();
5957 LLT Ty = MRI.getType(I.getOperand(1).getReg());
5958 bool Narrow = Ty.getSizeInBits() == 64;
5959
5960 SmallVector<Register, 2> Regs(NumVecs);
5961 std::transform(I.operands_begin() + 1, I.operands_begin() + 1 + NumVecs,
5962 Regs.begin(), [](auto MO) { return MO.getReg(); });
5963
5964 if (Narrow)
5965 transform(Regs, Regs.begin(), [this](Register Reg) {
5966 return emitScalarToVector(64, &AArch64::FPR128RegClass, Reg, MIB)
5967 ->getOperand(0)
5968 .getReg();
5969 });
5970
5971 Register Tuple = createQTuple(Regs, MIB);
5972
5973 auto LaneNo = getIConstantVRegVal(I.getOperand(1 + NumVecs).getReg(), MRI);
5974 if (!LaneNo)
5975 return false;
5976 Register Ptr = I.getOperand(1 + NumVecs + 1).getReg();
5977 auto Store = MIB.buildInstr(Opc, {}, {})
5978 .addReg(Tuple)
5979 .addImm(LaneNo->getZExtValue())
5980 .addReg(Ptr);
5981 Store.cloneMemRefs(I);
5982 constrainSelectedInstRegOperands(*Store, TII, TRI, RBI);
5983 return true;
5984 }
5985
selectIntrinsicWithSideEffects(MachineInstr & I,MachineRegisterInfo & MRI)5986 bool AArch64InstructionSelector::selectIntrinsicWithSideEffects(
5987 MachineInstr &I, MachineRegisterInfo &MRI) {
5988 // Find the intrinsic ID.
5989 unsigned IntrinID = cast<GIntrinsic>(I).getIntrinsicID();
5990
5991 const LLT S8 = LLT::scalar(8);
5992 const LLT S16 = LLT::scalar(16);
5993 const LLT S32 = LLT::scalar(32);
5994 const LLT S64 = LLT::scalar(64);
5995 const LLT P0 = LLT::pointer(0, 64);
5996 // Select the instruction.
5997 switch (IntrinID) {
5998 default:
5999 return false;
6000 case Intrinsic::aarch64_ldxp:
6001 case Intrinsic::aarch64_ldaxp: {
6002 auto NewI = MIB.buildInstr(
6003 IntrinID == Intrinsic::aarch64_ldxp ? AArch64::LDXPX : AArch64::LDAXPX,
6004 {I.getOperand(0).getReg(), I.getOperand(1).getReg()},
6005 {I.getOperand(3)});
6006 NewI.cloneMemRefs(I);
6007 constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
6008 break;
6009 }
6010 case Intrinsic::aarch64_neon_ld1x2: {
6011 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6012 unsigned Opc = 0;
6013 if (Ty == LLT::fixed_vector(8, S8))
6014 Opc = AArch64::LD1Twov8b;
6015 else if (Ty == LLT::fixed_vector(16, S8))
6016 Opc = AArch64::LD1Twov16b;
6017 else if (Ty == LLT::fixed_vector(4, S16))
6018 Opc = AArch64::LD1Twov4h;
6019 else if (Ty == LLT::fixed_vector(8, S16))
6020 Opc = AArch64::LD1Twov8h;
6021 else if (Ty == LLT::fixed_vector(2, S32))
6022 Opc = AArch64::LD1Twov2s;
6023 else if (Ty == LLT::fixed_vector(4, S32))
6024 Opc = AArch64::LD1Twov4s;
6025 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6026 Opc = AArch64::LD1Twov2d;
6027 else if (Ty == S64 || Ty == P0)
6028 Opc = AArch64::LD1Twov1d;
6029 else
6030 llvm_unreachable("Unexpected type for ld1x2!");
6031 selectVectorLoadIntrinsic(Opc, 2, I);
6032 break;
6033 }
6034 case Intrinsic::aarch64_neon_ld1x3: {
6035 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6036 unsigned Opc = 0;
6037 if (Ty == LLT::fixed_vector(8, S8))
6038 Opc = AArch64::LD1Threev8b;
6039 else if (Ty == LLT::fixed_vector(16, S8))
6040 Opc = AArch64::LD1Threev16b;
6041 else if (Ty == LLT::fixed_vector(4, S16))
6042 Opc = AArch64::LD1Threev4h;
6043 else if (Ty == LLT::fixed_vector(8, S16))
6044 Opc = AArch64::LD1Threev8h;
6045 else if (Ty == LLT::fixed_vector(2, S32))
6046 Opc = AArch64::LD1Threev2s;
6047 else if (Ty == LLT::fixed_vector(4, S32))
6048 Opc = AArch64::LD1Threev4s;
6049 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6050 Opc = AArch64::LD1Threev2d;
6051 else if (Ty == S64 || Ty == P0)
6052 Opc = AArch64::LD1Threev1d;
6053 else
6054 llvm_unreachable("Unexpected type for ld1x3!");
6055 selectVectorLoadIntrinsic(Opc, 3, I);
6056 break;
6057 }
6058 case Intrinsic::aarch64_neon_ld1x4: {
6059 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6060 unsigned Opc = 0;
6061 if (Ty == LLT::fixed_vector(8, S8))
6062 Opc = AArch64::LD1Fourv8b;
6063 else if (Ty == LLT::fixed_vector(16, S8))
6064 Opc = AArch64::LD1Fourv16b;
6065 else if (Ty == LLT::fixed_vector(4, S16))
6066 Opc = AArch64::LD1Fourv4h;
6067 else if (Ty == LLT::fixed_vector(8, S16))
6068 Opc = AArch64::LD1Fourv8h;
6069 else if (Ty == LLT::fixed_vector(2, S32))
6070 Opc = AArch64::LD1Fourv2s;
6071 else if (Ty == LLT::fixed_vector(4, S32))
6072 Opc = AArch64::LD1Fourv4s;
6073 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6074 Opc = AArch64::LD1Fourv2d;
6075 else if (Ty == S64 || Ty == P0)
6076 Opc = AArch64::LD1Fourv1d;
6077 else
6078 llvm_unreachable("Unexpected type for ld1x4!");
6079 selectVectorLoadIntrinsic(Opc, 4, I);
6080 break;
6081 }
6082 case Intrinsic::aarch64_neon_ld2: {
6083 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6084 unsigned Opc = 0;
6085 if (Ty == LLT::fixed_vector(8, S8))
6086 Opc = AArch64::LD2Twov8b;
6087 else if (Ty == LLT::fixed_vector(16, S8))
6088 Opc = AArch64::LD2Twov16b;
6089 else if (Ty == LLT::fixed_vector(4, S16))
6090 Opc = AArch64::LD2Twov4h;
6091 else if (Ty == LLT::fixed_vector(8, S16))
6092 Opc = AArch64::LD2Twov8h;
6093 else if (Ty == LLT::fixed_vector(2, S32))
6094 Opc = AArch64::LD2Twov2s;
6095 else if (Ty == LLT::fixed_vector(4, S32))
6096 Opc = AArch64::LD2Twov4s;
6097 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6098 Opc = AArch64::LD2Twov2d;
6099 else if (Ty == S64 || Ty == P0)
6100 Opc = AArch64::LD1Twov1d;
6101 else
6102 llvm_unreachable("Unexpected type for ld2!");
6103 selectVectorLoadIntrinsic(Opc, 2, I);
6104 break;
6105 }
6106 case Intrinsic::aarch64_neon_ld2lane: {
6107 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6108 unsigned Opc;
6109 if (Ty == LLT::fixed_vector(8, S8) || Ty == LLT::fixed_vector(16, S8))
6110 Opc = AArch64::LD2i8;
6111 else if (Ty == LLT::fixed_vector(4, S16) || Ty == LLT::fixed_vector(8, S16))
6112 Opc = AArch64::LD2i16;
6113 else if (Ty == LLT::fixed_vector(2, S32) || Ty == LLT::fixed_vector(4, S32))
6114 Opc = AArch64::LD2i32;
6115 else if (Ty == LLT::fixed_vector(2, S64) ||
6116 Ty == LLT::fixed_vector(2, P0) || Ty == S64 || Ty == P0)
6117 Opc = AArch64::LD2i64;
6118 else
6119 llvm_unreachable("Unexpected type for st2lane!");
6120 if (!selectVectorLoadLaneIntrinsic(Opc, 2, I))
6121 return false;
6122 break;
6123 }
6124 case Intrinsic::aarch64_neon_ld2r: {
6125 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6126 unsigned Opc = 0;
6127 if (Ty == LLT::fixed_vector(8, S8))
6128 Opc = AArch64::LD2Rv8b;
6129 else if (Ty == LLT::fixed_vector(16, S8))
6130 Opc = AArch64::LD2Rv16b;
6131 else if (Ty == LLT::fixed_vector(4, S16))
6132 Opc = AArch64::LD2Rv4h;
6133 else if (Ty == LLT::fixed_vector(8, S16))
6134 Opc = AArch64::LD2Rv8h;
6135 else if (Ty == LLT::fixed_vector(2, S32))
6136 Opc = AArch64::LD2Rv2s;
6137 else if (Ty == LLT::fixed_vector(4, S32))
6138 Opc = AArch64::LD2Rv4s;
6139 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6140 Opc = AArch64::LD2Rv2d;
6141 else if (Ty == S64 || Ty == P0)
6142 Opc = AArch64::LD2Rv1d;
6143 else
6144 llvm_unreachable("Unexpected type for ld2r!");
6145 selectVectorLoadIntrinsic(Opc, 2, I);
6146 break;
6147 }
6148 case Intrinsic::aarch64_neon_ld3: {
6149 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6150 unsigned Opc = 0;
6151 if (Ty == LLT::fixed_vector(8, S8))
6152 Opc = AArch64::LD3Threev8b;
6153 else if (Ty == LLT::fixed_vector(16, S8))
6154 Opc = AArch64::LD3Threev16b;
6155 else if (Ty == LLT::fixed_vector(4, S16))
6156 Opc = AArch64::LD3Threev4h;
6157 else if (Ty == LLT::fixed_vector(8, S16))
6158 Opc = AArch64::LD3Threev8h;
6159 else if (Ty == LLT::fixed_vector(2, S32))
6160 Opc = AArch64::LD3Threev2s;
6161 else if (Ty == LLT::fixed_vector(4, S32))
6162 Opc = AArch64::LD3Threev4s;
6163 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6164 Opc = AArch64::LD3Threev2d;
6165 else if (Ty == S64 || Ty == P0)
6166 Opc = AArch64::LD1Threev1d;
6167 else
6168 llvm_unreachable("Unexpected type for ld3!");
6169 selectVectorLoadIntrinsic(Opc, 3, I);
6170 break;
6171 }
6172 case Intrinsic::aarch64_neon_ld3lane: {
6173 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6174 unsigned Opc;
6175 if (Ty == LLT::fixed_vector(8, S8) || Ty == LLT::fixed_vector(16, S8))
6176 Opc = AArch64::LD3i8;
6177 else if (Ty == LLT::fixed_vector(4, S16) || Ty == LLT::fixed_vector(8, S16))
6178 Opc = AArch64::LD3i16;
6179 else if (Ty == LLT::fixed_vector(2, S32) || Ty == LLT::fixed_vector(4, S32))
6180 Opc = AArch64::LD3i32;
6181 else if (Ty == LLT::fixed_vector(2, S64) ||
6182 Ty == LLT::fixed_vector(2, P0) || Ty == S64 || Ty == P0)
6183 Opc = AArch64::LD3i64;
6184 else
6185 llvm_unreachable("Unexpected type for st3lane!");
6186 if (!selectVectorLoadLaneIntrinsic(Opc, 3, I))
6187 return false;
6188 break;
6189 }
6190 case Intrinsic::aarch64_neon_ld3r: {
6191 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6192 unsigned Opc = 0;
6193 if (Ty == LLT::fixed_vector(8, S8))
6194 Opc = AArch64::LD3Rv8b;
6195 else if (Ty == LLT::fixed_vector(16, S8))
6196 Opc = AArch64::LD3Rv16b;
6197 else if (Ty == LLT::fixed_vector(4, S16))
6198 Opc = AArch64::LD3Rv4h;
6199 else if (Ty == LLT::fixed_vector(8, S16))
6200 Opc = AArch64::LD3Rv8h;
6201 else if (Ty == LLT::fixed_vector(2, S32))
6202 Opc = AArch64::LD3Rv2s;
6203 else if (Ty == LLT::fixed_vector(4, S32))
6204 Opc = AArch64::LD3Rv4s;
6205 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6206 Opc = AArch64::LD3Rv2d;
6207 else if (Ty == S64 || Ty == P0)
6208 Opc = AArch64::LD3Rv1d;
6209 else
6210 llvm_unreachable("Unexpected type for ld3r!");
6211 selectVectorLoadIntrinsic(Opc, 3, I);
6212 break;
6213 }
6214 case Intrinsic::aarch64_neon_ld4: {
6215 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6216 unsigned Opc = 0;
6217 if (Ty == LLT::fixed_vector(8, S8))
6218 Opc = AArch64::LD4Fourv8b;
6219 else if (Ty == LLT::fixed_vector(16, S8))
6220 Opc = AArch64::LD4Fourv16b;
6221 else if (Ty == LLT::fixed_vector(4, S16))
6222 Opc = AArch64::LD4Fourv4h;
6223 else if (Ty == LLT::fixed_vector(8, S16))
6224 Opc = AArch64::LD4Fourv8h;
6225 else if (Ty == LLT::fixed_vector(2, S32))
6226 Opc = AArch64::LD4Fourv2s;
6227 else if (Ty == LLT::fixed_vector(4, S32))
6228 Opc = AArch64::LD4Fourv4s;
6229 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6230 Opc = AArch64::LD4Fourv2d;
6231 else if (Ty == S64 || Ty == P0)
6232 Opc = AArch64::LD1Fourv1d;
6233 else
6234 llvm_unreachable("Unexpected type for ld4!");
6235 selectVectorLoadIntrinsic(Opc, 4, I);
6236 break;
6237 }
6238 case Intrinsic::aarch64_neon_ld4lane: {
6239 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6240 unsigned Opc;
6241 if (Ty == LLT::fixed_vector(8, S8) || Ty == LLT::fixed_vector(16, S8))
6242 Opc = AArch64::LD4i8;
6243 else if (Ty == LLT::fixed_vector(4, S16) || Ty == LLT::fixed_vector(8, S16))
6244 Opc = AArch64::LD4i16;
6245 else if (Ty == LLT::fixed_vector(2, S32) || Ty == LLT::fixed_vector(4, S32))
6246 Opc = AArch64::LD4i32;
6247 else if (Ty == LLT::fixed_vector(2, S64) ||
6248 Ty == LLT::fixed_vector(2, P0) || Ty == S64 || Ty == P0)
6249 Opc = AArch64::LD4i64;
6250 else
6251 llvm_unreachable("Unexpected type for st4lane!");
6252 if (!selectVectorLoadLaneIntrinsic(Opc, 4, I))
6253 return false;
6254 break;
6255 }
6256 case Intrinsic::aarch64_neon_ld4r: {
6257 LLT Ty = MRI.getType(I.getOperand(0).getReg());
6258 unsigned Opc = 0;
6259 if (Ty == LLT::fixed_vector(8, S8))
6260 Opc = AArch64::LD4Rv8b;
6261 else if (Ty == LLT::fixed_vector(16, S8))
6262 Opc = AArch64::LD4Rv16b;
6263 else if (Ty == LLT::fixed_vector(4, S16))
6264 Opc = AArch64::LD4Rv4h;
6265 else if (Ty == LLT::fixed_vector(8, S16))
6266 Opc = AArch64::LD4Rv8h;
6267 else if (Ty == LLT::fixed_vector(2, S32))
6268 Opc = AArch64::LD4Rv2s;
6269 else if (Ty == LLT::fixed_vector(4, S32))
6270 Opc = AArch64::LD4Rv4s;
6271 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6272 Opc = AArch64::LD4Rv2d;
6273 else if (Ty == S64 || Ty == P0)
6274 Opc = AArch64::LD4Rv1d;
6275 else
6276 llvm_unreachable("Unexpected type for ld4r!");
6277 selectVectorLoadIntrinsic(Opc, 4, I);
6278 break;
6279 }
6280 case Intrinsic::aarch64_neon_st1x2: {
6281 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6282 unsigned Opc;
6283 if (Ty == LLT::fixed_vector(8, S8))
6284 Opc = AArch64::ST1Twov8b;
6285 else if (Ty == LLT::fixed_vector(16, S8))
6286 Opc = AArch64::ST1Twov16b;
6287 else if (Ty == LLT::fixed_vector(4, S16))
6288 Opc = AArch64::ST1Twov4h;
6289 else if (Ty == LLT::fixed_vector(8, S16))
6290 Opc = AArch64::ST1Twov8h;
6291 else if (Ty == LLT::fixed_vector(2, S32))
6292 Opc = AArch64::ST1Twov2s;
6293 else if (Ty == LLT::fixed_vector(4, S32))
6294 Opc = AArch64::ST1Twov4s;
6295 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6296 Opc = AArch64::ST1Twov2d;
6297 else if (Ty == S64 || Ty == P0)
6298 Opc = AArch64::ST1Twov1d;
6299 else
6300 llvm_unreachable("Unexpected type for st1x2!");
6301 selectVectorStoreIntrinsic(I, 2, Opc);
6302 break;
6303 }
6304 case Intrinsic::aarch64_neon_st1x3: {
6305 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6306 unsigned Opc;
6307 if (Ty == LLT::fixed_vector(8, S8))
6308 Opc = AArch64::ST1Threev8b;
6309 else if (Ty == LLT::fixed_vector(16, S8))
6310 Opc = AArch64::ST1Threev16b;
6311 else if (Ty == LLT::fixed_vector(4, S16))
6312 Opc = AArch64::ST1Threev4h;
6313 else if (Ty == LLT::fixed_vector(8, S16))
6314 Opc = AArch64::ST1Threev8h;
6315 else if (Ty == LLT::fixed_vector(2, S32))
6316 Opc = AArch64::ST1Threev2s;
6317 else if (Ty == LLT::fixed_vector(4, S32))
6318 Opc = AArch64::ST1Threev4s;
6319 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6320 Opc = AArch64::ST1Threev2d;
6321 else if (Ty == S64 || Ty == P0)
6322 Opc = AArch64::ST1Threev1d;
6323 else
6324 llvm_unreachable("Unexpected type for st1x3!");
6325 selectVectorStoreIntrinsic(I, 3, Opc);
6326 break;
6327 }
6328 case Intrinsic::aarch64_neon_st1x4: {
6329 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6330 unsigned Opc;
6331 if (Ty == LLT::fixed_vector(8, S8))
6332 Opc = AArch64::ST1Fourv8b;
6333 else if (Ty == LLT::fixed_vector(16, S8))
6334 Opc = AArch64::ST1Fourv16b;
6335 else if (Ty == LLT::fixed_vector(4, S16))
6336 Opc = AArch64::ST1Fourv4h;
6337 else if (Ty == LLT::fixed_vector(8, S16))
6338 Opc = AArch64::ST1Fourv8h;
6339 else if (Ty == LLT::fixed_vector(2, S32))
6340 Opc = AArch64::ST1Fourv2s;
6341 else if (Ty == LLT::fixed_vector(4, S32))
6342 Opc = AArch64::ST1Fourv4s;
6343 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6344 Opc = AArch64::ST1Fourv2d;
6345 else if (Ty == S64 || Ty == P0)
6346 Opc = AArch64::ST1Fourv1d;
6347 else
6348 llvm_unreachable("Unexpected type for st1x4!");
6349 selectVectorStoreIntrinsic(I, 4, Opc);
6350 break;
6351 }
6352 case Intrinsic::aarch64_neon_st2: {
6353 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6354 unsigned Opc;
6355 if (Ty == LLT::fixed_vector(8, S8))
6356 Opc = AArch64::ST2Twov8b;
6357 else if (Ty == LLT::fixed_vector(16, S8))
6358 Opc = AArch64::ST2Twov16b;
6359 else if (Ty == LLT::fixed_vector(4, S16))
6360 Opc = AArch64::ST2Twov4h;
6361 else if (Ty == LLT::fixed_vector(8, S16))
6362 Opc = AArch64::ST2Twov8h;
6363 else if (Ty == LLT::fixed_vector(2, S32))
6364 Opc = AArch64::ST2Twov2s;
6365 else if (Ty == LLT::fixed_vector(4, S32))
6366 Opc = AArch64::ST2Twov4s;
6367 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6368 Opc = AArch64::ST2Twov2d;
6369 else if (Ty == S64 || Ty == P0)
6370 Opc = AArch64::ST1Twov1d;
6371 else
6372 llvm_unreachable("Unexpected type for st2!");
6373 selectVectorStoreIntrinsic(I, 2, Opc);
6374 break;
6375 }
6376 case Intrinsic::aarch64_neon_st3: {
6377 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6378 unsigned Opc;
6379 if (Ty == LLT::fixed_vector(8, S8))
6380 Opc = AArch64::ST3Threev8b;
6381 else if (Ty == LLT::fixed_vector(16, S8))
6382 Opc = AArch64::ST3Threev16b;
6383 else if (Ty == LLT::fixed_vector(4, S16))
6384 Opc = AArch64::ST3Threev4h;
6385 else if (Ty == LLT::fixed_vector(8, S16))
6386 Opc = AArch64::ST3Threev8h;
6387 else if (Ty == LLT::fixed_vector(2, S32))
6388 Opc = AArch64::ST3Threev2s;
6389 else if (Ty == LLT::fixed_vector(4, S32))
6390 Opc = AArch64::ST3Threev4s;
6391 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6392 Opc = AArch64::ST3Threev2d;
6393 else if (Ty == S64 || Ty == P0)
6394 Opc = AArch64::ST1Threev1d;
6395 else
6396 llvm_unreachable("Unexpected type for st3!");
6397 selectVectorStoreIntrinsic(I, 3, Opc);
6398 break;
6399 }
6400 case Intrinsic::aarch64_neon_st4: {
6401 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6402 unsigned Opc;
6403 if (Ty == LLT::fixed_vector(8, S8))
6404 Opc = AArch64::ST4Fourv8b;
6405 else if (Ty == LLT::fixed_vector(16, S8))
6406 Opc = AArch64::ST4Fourv16b;
6407 else if (Ty == LLT::fixed_vector(4, S16))
6408 Opc = AArch64::ST4Fourv4h;
6409 else if (Ty == LLT::fixed_vector(8, S16))
6410 Opc = AArch64::ST4Fourv8h;
6411 else if (Ty == LLT::fixed_vector(2, S32))
6412 Opc = AArch64::ST4Fourv2s;
6413 else if (Ty == LLT::fixed_vector(4, S32))
6414 Opc = AArch64::ST4Fourv4s;
6415 else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
6416 Opc = AArch64::ST4Fourv2d;
6417 else if (Ty == S64 || Ty == P0)
6418 Opc = AArch64::ST1Fourv1d;
6419 else
6420 llvm_unreachable("Unexpected type for st4!");
6421 selectVectorStoreIntrinsic(I, 4, Opc);
6422 break;
6423 }
6424 case Intrinsic::aarch64_neon_st2lane: {
6425 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6426 unsigned Opc;
6427 if (Ty == LLT::fixed_vector(8, S8) || Ty == LLT::fixed_vector(16, S8))
6428 Opc = AArch64::ST2i8;
6429 else if (Ty == LLT::fixed_vector(4, S16) || Ty == LLT::fixed_vector(8, S16))
6430 Opc = AArch64::ST2i16;
6431 else if (Ty == LLT::fixed_vector(2, S32) || Ty == LLT::fixed_vector(4, S32))
6432 Opc = AArch64::ST2i32;
6433 else if (Ty == LLT::fixed_vector(2, S64) ||
6434 Ty == LLT::fixed_vector(2, P0) || Ty == S64 || Ty == P0)
6435 Opc = AArch64::ST2i64;
6436 else
6437 llvm_unreachable("Unexpected type for st2lane!");
6438 if (!selectVectorStoreLaneIntrinsic(I, 2, Opc))
6439 return false;
6440 break;
6441 }
6442 case Intrinsic::aarch64_neon_st3lane: {
6443 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6444 unsigned Opc;
6445 if (Ty == LLT::fixed_vector(8, S8) || Ty == LLT::fixed_vector(16, S8))
6446 Opc = AArch64::ST3i8;
6447 else if (Ty == LLT::fixed_vector(4, S16) || Ty == LLT::fixed_vector(8, S16))
6448 Opc = AArch64::ST3i16;
6449 else if (Ty == LLT::fixed_vector(2, S32) || Ty == LLT::fixed_vector(4, S32))
6450 Opc = AArch64::ST3i32;
6451 else if (Ty == LLT::fixed_vector(2, S64) ||
6452 Ty == LLT::fixed_vector(2, P0) || Ty == S64 || Ty == P0)
6453 Opc = AArch64::ST3i64;
6454 else
6455 llvm_unreachable("Unexpected type for st3lane!");
6456 if (!selectVectorStoreLaneIntrinsic(I, 3, Opc))
6457 return false;
6458 break;
6459 }
6460 case Intrinsic::aarch64_neon_st4lane: {
6461 LLT Ty = MRI.getType(I.getOperand(1).getReg());
6462 unsigned Opc;
6463 if (Ty == LLT::fixed_vector(8, S8) || Ty == LLT::fixed_vector(16, S8))
6464 Opc = AArch64::ST4i8;
6465 else if (Ty == LLT::fixed_vector(4, S16) || Ty == LLT::fixed_vector(8, S16))
6466 Opc = AArch64::ST4i16;
6467 else if (Ty == LLT::fixed_vector(2, S32) || Ty == LLT::fixed_vector(4, S32))
6468 Opc = AArch64::ST4i32;
6469 else if (Ty == LLT::fixed_vector(2, S64) ||
6470 Ty == LLT::fixed_vector(2, P0) || Ty == S64 || Ty == P0)
6471 Opc = AArch64::ST4i64;
6472 else
6473 llvm_unreachable("Unexpected type for st4lane!");
6474 if (!selectVectorStoreLaneIntrinsic(I, 4, Opc))
6475 return false;
6476 break;
6477 }
6478 case Intrinsic::aarch64_mops_memset_tag: {
6479 // Transform
6480 // %dst:gpr(p0) = \
6481 // G_INTRINSIC_W_SIDE_EFFECTS intrinsic(@llvm.aarch64.mops.memset.tag),
6482 // \ %dst:gpr(p0), %val:gpr(s64), %n:gpr(s64)
6483 // where %dst is updated, into
6484 // %Rd:GPR64common, %Rn:GPR64) = \
6485 // MOPSMemorySetTaggingPseudo \
6486 // %Rd:GPR64common, %Rn:GPR64, %Rm:GPR64
6487 // where Rd and Rn are tied.
6488 // It is expected that %val has been extended to s64 in legalization.
6489 // Note that the order of the size/value operands are swapped.
6490
6491 Register DstDef = I.getOperand(0).getReg();
6492 // I.getOperand(1) is the intrinsic function
6493 Register DstUse = I.getOperand(2).getReg();
6494 Register ValUse = I.getOperand(3).getReg();
6495 Register SizeUse = I.getOperand(4).getReg();
6496
6497 // MOPSMemorySetTaggingPseudo has two defs; the intrinsic call has only one.
6498 // Therefore an additional virtual register is requried for the updated size
6499 // operand. This value is not accessible via the semantics of the intrinsic.
6500 Register SizeDef = MRI.createGenericVirtualRegister(LLT::scalar(64));
6501
6502 auto Memset = MIB.buildInstr(AArch64::MOPSMemorySetTaggingPseudo,
6503 {DstDef, SizeDef}, {DstUse, SizeUse, ValUse});
6504 Memset.cloneMemRefs(I);
6505 constrainSelectedInstRegOperands(*Memset, TII, TRI, RBI);
6506 break;
6507 }
6508 }
6509
6510 I.eraseFromParent();
6511 return true;
6512 }
6513
selectIntrinsic(MachineInstr & I,MachineRegisterInfo & MRI)6514 bool AArch64InstructionSelector::selectIntrinsic(MachineInstr &I,
6515 MachineRegisterInfo &MRI) {
6516 unsigned IntrinID = cast<GIntrinsic>(I).getIntrinsicID();
6517
6518 switch (IntrinID) {
6519 default:
6520 break;
6521 case Intrinsic::aarch64_crypto_sha1h: {
6522 Register DstReg = I.getOperand(0).getReg();
6523 Register SrcReg = I.getOperand(2).getReg();
6524
6525 // FIXME: Should this be an assert?
6526 if (MRI.getType(DstReg).getSizeInBits() != 32 ||
6527 MRI.getType(SrcReg).getSizeInBits() != 32)
6528 return false;
6529
6530 // The operation has to happen on FPRs. Set up some new FPR registers for
6531 // the source and destination if they are on GPRs.
6532 if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
6533 SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
6534 MIB.buildCopy({SrcReg}, {I.getOperand(2)});
6535
6536 // Make sure the copy ends up getting constrained properly.
6537 RBI.constrainGenericRegister(I.getOperand(2).getReg(),
6538 AArch64::GPR32RegClass, MRI);
6539 }
6540
6541 if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID)
6542 DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
6543
6544 // Actually insert the instruction.
6545 auto SHA1Inst = MIB.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg});
6546 constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI);
6547
6548 // Did we create a new register for the destination?
6549 if (DstReg != I.getOperand(0).getReg()) {
6550 // Yep. Copy the result of the instruction back into the original
6551 // destination.
6552 MIB.buildCopy({I.getOperand(0)}, {DstReg});
6553 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
6554 AArch64::GPR32RegClass, MRI);
6555 }
6556
6557 I.eraseFromParent();
6558 return true;
6559 }
6560 case Intrinsic::ptrauth_resign: {
6561 Register DstReg = I.getOperand(0).getReg();
6562 Register ValReg = I.getOperand(2).getReg();
6563 uint64_t AUTKey = I.getOperand(3).getImm();
6564 Register AUTDisc = I.getOperand(4).getReg();
6565 uint64_t PACKey = I.getOperand(5).getImm();
6566 Register PACDisc = I.getOperand(6).getReg();
6567
6568 Register AUTAddrDisc = AUTDisc;
6569 uint16_t AUTConstDiscC = 0;
6570 std::tie(AUTConstDiscC, AUTAddrDisc) =
6571 extractPtrauthBlendDiscriminators(AUTDisc, MRI);
6572
6573 Register PACAddrDisc = PACDisc;
6574 uint16_t PACConstDiscC = 0;
6575 std::tie(PACConstDiscC, PACAddrDisc) =
6576 extractPtrauthBlendDiscriminators(PACDisc, MRI);
6577
6578 MIB.buildCopy({AArch64::X16}, {ValReg});
6579 MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {AArch64::X17}, {});
6580 MIB.buildInstr(AArch64::AUTPAC)
6581 .addImm(AUTKey)
6582 .addImm(AUTConstDiscC)
6583 .addUse(AUTAddrDisc)
6584 .addImm(PACKey)
6585 .addImm(PACConstDiscC)
6586 .addUse(PACAddrDisc)
6587 .constrainAllUses(TII, TRI, RBI);
6588 MIB.buildCopy({DstReg}, Register(AArch64::X16));
6589
6590 RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
6591 I.eraseFromParent();
6592 return true;
6593 }
6594 case Intrinsic::ptrauth_auth: {
6595 Register DstReg = I.getOperand(0).getReg();
6596 Register ValReg = I.getOperand(2).getReg();
6597 uint64_t AUTKey = I.getOperand(3).getImm();
6598 Register AUTDisc = I.getOperand(4).getReg();
6599
6600 Register AUTAddrDisc = AUTDisc;
6601 uint16_t AUTConstDiscC = 0;
6602 std::tie(AUTConstDiscC, AUTAddrDisc) =
6603 extractPtrauthBlendDiscriminators(AUTDisc, MRI);
6604
6605 MIB.buildCopy({AArch64::X16}, {ValReg});
6606 MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {AArch64::X17}, {});
6607 MIB.buildInstr(AArch64::AUT)
6608 .addImm(AUTKey)
6609 .addImm(AUTConstDiscC)
6610 .addUse(AUTAddrDisc)
6611 .constrainAllUses(TII, TRI, RBI);
6612 MIB.buildCopy({DstReg}, Register(AArch64::X16));
6613
6614 RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
6615 I.eraseFromParent();
6616 return true;
6617 }
6618 case Intrinsic::frameaddress:
6619 case Intrinsic::returnaddress: {
6620 MachineFunction &MF = *I.getParent()->getParent();
6621 MachineFrameInfo &MFI = MF.getFrameInfo();
6622
6623 unsigned Depth = I.getOperand(2).getImm();
6624 Register DstReg = I.getOperand(0).getReg();
6625 RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
6626
6627 if (Depth == 0 && IntrinID == Intrinsic::returnaddress) {
6628 if (!MFReturnAddr) {
6629 // Insert the copy from LR/X30 into the entry block, before it can be
6630 // clobbered by anything.
6631 MFI.setReturnAddressIsTaken(true);
6632 MFReturnAddr = getFunctionLiveInPhysReg(
6633 MF, TII, AArch64::LR, AArch64::GPR64RegClass, I.getDebugLoc());
6634 }
6635
6636 if (STI.hasPAuth()) {
6637 MIB.buildInstr(AArch64::XPACI, {DstReg}, {MFReturnAddr});
6638 } else {
6639 MIB.buildCopy({Register(AArch64::LR)}, {MFReturnAddr});
6640 MIB.buildInstr(AArch64::XPACLRI);
6641 MIB.buildCopy({DstReg}, {Register(AArch64::LR)});
6642 }
6643
6644 I.eraseFromParent();
6645 return true;
6646 }
6647
6648 MFI.setFrameAddressIsTaken(true);
6649 Register FrameAddr(AArch64::FP);
6650 while (Depth--) {
6651 Register NextFrame = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
6652 auto Ldr =
6653 MIB.buildInstr(AArch64::LDRXui, {NextFrame}, {FrameAddr}).addImm(0);
6654 constrainSelectedInstRegOperands(*Ldr, TII, TRI, RBI);
6655 FrameAddr = NextFrame;
6656 }
6657
6658 if (IntrinID == Intrinsic::frameaddress)
6659 MIB.buildCopy({DstReg}, {FrameAddr});
6660 else {
6661 MFI.setReturnAddressIsTaken(true);
6662
6663 if (STI.hasPAuth()) {
6664 Register TmpReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
6665 MIB.buildInstr(AArch64::LDRXui, {TmpReg}, {FrameAddr}).addImm(1);
6666 MIB.buildInstr(AArch64::XPACI, {DstReg}, {TmpReg});
6667 } else {
6668 MIB.buildInstr(AArch64::LDRXui, {Register(AArch64::LR)}, {FrameAddr})
6669 .addImm(1);
6670 MIB.buildInstr(AArch64::XPACLRI);
6671 MIB.buildCopy({DstReg}, {Register(AArch64::LR)});
6672 }
6673 }
6674
6675 I.eraseFromParent();
6676 return true;
6677 }
6678 case Intrinsic::aarch64_neon_tbl2:
6679 SelectTable(I, MRI, 2, AArch64::TBLv8i8Two, AArch64::TBLv16i8Two, false);
6680 return true;
6681 case Intrinsic::aarch64_neon_tbl3:
6682 SelectTable(I, MRI, 3, AArch64::TBLv8i8Three, AArch64::TBLv16i8Three,
6683 false);
6684 return true;
6685 case Intrinsic::aarch64_neon_tbl4:
6686 SelectTable(I, MRI, 4, AArch64::TBLv8i8Four, AArch64::TBLv16i8Four, false);
6687 return true;
6688 case Intrinsic::aarch64_neon_tbx2:
6689 SelectTable(I, MRI, 2, AArch64::TBXv8i8Two, AArch64::TBXv16i8Two, true);
6690 return true;
6691 case Intrinsic::aarch64_neon_tbx3:
6692 SelectTable(I, MRI, 3, AArch64::TBXv8i8Three, AArch64::TBXv16i8Three, true);
6693 return true;
6694 case Intrinsic::aarch64_neon_tbx4:
6695 SelectTable(I, MRI, 4, AArch64::TBXv8i8Four, AArch64::TBXv16i8Four, true);
6696 return true;
6697 case Intrinsic::swift_async_context_addr:
6698 auto Sub = MIB.buildInstr(AArch64::SUBXri, {I.getOperand(0).getReg()},
6699 {Register(AArch64::FP)})
6700 .addImm(8)
6701 .addImm(0);
6702 constrainSelectedInstRegOperands(*Sub, TII, TRI, RBI);
6703
6704 MF->getFrameInfo().setFrameAddressIsTaken(true);
6705 MF->getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
6706 I.eraseFromParent();
6707 return true;
6708 }
6709 return false;
6710 }
6711
6712 // G_PTRAUTH_GLOBAL_VALUE lowering
6713 //
6714 // We have 3 lowering alternatives to choose from:
6715 // - MOVaddrPAC: similar to MOVaddr, with added PAC.
6716 // If the GV doesn't need a GOT load (i.e., is locally defined)
6717 // materialize the pointer using adrp+add+pac. See LowerMOVaddrPAC.
6718 //
6719 // - LOADgotPAC: similar to LOADgot, with added PAC.
6720 // If the GV needs a GOT load, materialize the pointer using the usual
6721 // GOT adrp+ldr, +pac. Pointers in GOT are assumed to be not signed, the GOT
6722 // section is assumed to be read-only (for example, via relro mechanism). See
6723 // LowerMOVaddrPAC.
6724 //
6725 // - LOADauthptrstatic: similar to LOADgot, but use a
6726 // special stub slot instead of a GOT slot.
6727 // Load a signed pointer for symbol 'sym' from a stub slot named
6728 // 'sym$auth_ptr$key$disc' filled by dynamic linker during relocation
6729 // resolving. This usually lowers to adrp+ldr, but also emits an entry into
6730 // .data with an
6731 // @AUTH relocation. See LowerLOADauthptrstatic.
6732 //
6733 // All 3 are pseudos that are expand late to longer sequences: this lets us
6734 // provide integrity guarantees on the to-be-signed intermediate values.
6735 //
6736 // LOADauthptrstatic is undesirable because it requires a large section filled
6737 // with often similarly-signed pointers, making it a good harvesting target.
6738 // Thus, it's only used for ptrauth references to extern_weak to avoid null
6739 // checks.
6740
selectPtrAuthGlobalValue(MachineInstr & I,MachineRegisterInfo & MRI) const6741 bool AArch64InstructionSelector::selectPtrAuthGlobalValue(
6742 MachineInstr &I, MachineRegisterInfo &MRI) const {
6743 Register DefReg = I.getOperand(0).getReg();
6744 Register Addr = I.getOperand(1).getReg();
6745 uint64_t Key = I.getOperand(2).getImm();
6746 Register AddrDisc = I.getOperand(3).getReg();
6747 uint64_t Disc = I.getOperand(4).getImm();
6748 int64_t Offset = 0;
6749
6750 if (Key > AArch64PACKey::LAST)
6751 report_fatal_error("key in ptrauth global out of range [0, " +
6752 Twine((int)AArch64PACKey::LAST) + "]");
6753
6754 // Blend only works if the integer discriminator is 16-bit wide.
6755 if (!isUInt<16>(Disc))
6756 report_fatal_error(
6757 "constant discriminator in ptrauth global out of range [0, 0xffff]");
6758
6759 // Choosing between 3 lowering alternatives is target-specific.
6760 if (!STI.isTargetELF() && !STI.isTargetMachO())
6761 report_fatal_error("ptrauth global lowering only supported on MachO/ELF");
6762
6763 if (!MRI.hasOneDef(Addr))
6764 return false;
6765
6766 // First match any offset we take from the real global.
6767 const MachineInstr *DefMI = &*MRI.def_instr_begin(Addr);
6768 if (DefMI->getOpcode() == TargetOpcode::G_PTR_ADD) {
6769 Register OffsetReg = DefMI->getOperand(2).getReg();
6770 if (!MRI.hasOneDef(OffsetReg))
6771 return false;
6772 const MachineInstr &OffsetMI = *MRI.def_instr_begin(OffsetReg);
6773 if (OffsetMI.getOpcode() != TargetOpcode::G_CONSTANT)
6774 return false;
6775
6776 Addr = DefMI->getOperand(1).getReg();
6777 if (!MRI.hasOneDef(Addr))
6778 return false;
6779
6780 DefMI = &*MRI.def_instr_begin(Addr);
6781 Offset = OffsetMI.getOperand(1).getCImm()->getSExtValue();
6782 }
6783
6784 // We should be left with a genuine unauthenticated GlobalValue.
6785 const GlobalValue *GV;
6786 if (DefMI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
6787 GV = DefMI->getOperand(1).getGlobal();
6788 Offset += DefMI->getOperand(1).getOffset();
6789 } else if (DefMI->getOpcode() == AArch64::G_ADD_LOW) {
6790 GV = DefMI->getOperand(2).getGlobal();
6791 Offset += DefMI->getOperand(2).getOffset();
6792 } else {
6793 return false;
6794 }
6795
6796 MachineIRBuilder MIB(I);
6797
6798 // Classify the reference to determine whether it needs a GOT load.
6799 unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM);
6800 const bool NeedsGOTLoad = ((OpFlags & AArch64II::MO_GOT) != 0);
6801 assert(((OpFlags & (~AArch64II::MO_GOT)) == 0) &&
6802 "unsupported non-GOT op flags on ptrauth global reference");
6803 assert((!GV->hasExternalWeakLinkage() || NeedsGOTLoad) &&
6804 "unsupported non-GOT reference to weak ptrauth global");
6805
6806 std::optional<APInt> AddrDiscVal = getIConstantVRegVal(AddrDisc, MRI);
6807 bool HasAddrDisc = !AddrDiscVal || *AddrDiscVal != 0;
6808
6809 // Non-extern_weak:
6810 // - No GOT load needed -> MOVaddrPAC
6811 // - GOT load for non-extern_weak -> LOADgotPAC
6812 // Note that we disallow extern_weak refs to avoid null checks later.
6813 if (!GV->hasExternalWeakLinkage()) {
6814 MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {AArch64::X16}, {});
6815 MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {AArch64::X17}, {});
6816 MIB.buildInstr(NeedsGOTLoad ? AArch64::LOADgotPAC : AArch64::MOVaddrPAC)
6817 .addGlobalAddress(GV, Offset)
6818 .addImm(Key)
6819 .addReg(HasAddrDisc ? AddrDisc : AArch64::XZR)
6820 .addImm(Disc)
6821 .constrainAllUses(TII, TRI, RBI);
6822 MIB.buildCopy(DefReg, Register(AArch64::X16));
6823 RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
6824 I.eraseFromParent();
6825 return true;
6826 }
6827
6828 // extern_weak -> LOADauthptrstatic
6829
6830 // Offsets and extern_weak don't mix well: ptrauth aside, you'd get the
6831 // offset alone as a pointer if the symbol wasn't available, which would
6832 // probably break null checks in users. Ptrauth complicates things further:
6833 // error out.
6834 if (Offset != 0)
6835 report_fatal_error(
6836 "unsupported non-zero offset in weak ptrauth global reference");
6837
6838 if (HasAddrDisc)
6839 report_fatal_error("unsupported weak addr-div ptrauth global");
6840
6841 MIB.buildInstr(AArch64::LOADauthptrstatic, {DefReg}, {})
6842 .addGlobalAddress(GV, Offset)
6843 .addImm(Key)
6844 .addImm(Disc);
6845 RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
6846
6847 I.eraseFromParent();
6848 return true;
6849 }
6850
SelectTable(MachineInstr & I,MachineRegisterInfo & MRI,unsigned NumVec,unsigned Opc1,unsigned Opc2,bool isExt)6851 void AArch64InstructionSelector::SelectTable(MachineInstr &I,
6852 MachineRegisterInfo &MRI,
6853 unsigned NumVec, unsigned Opc1,
6854 unsigned Opc2, bool isExt) {
6855 Register DstReg = I.getOperand(0).getReg();
6856 unsigned Opc = MRI.getType(DstReg) == LLT::fixed_vector(8, 8) ? Opc1 : Opc2;
6857
6858 // Create the REG_SEQUENCE
6859 SmallVector<Register, 4> Regs;
6860 for (unsigned i = 0; i < NumVec; i++)
6861 Regs.push_back(I.getOperand(i + 2 + isExt).getReg());
6862 Register RegSeq = createQTuple(Regs, MIB);
6863
6864 Register IdxReg = I.getOperand(2 + NumVec + isExt).getReg();
6865 MachineInstrBuilder Instr;
6866 if (isExt) {
6867 Register Reg = I.getOperand(2).getReg();
6868 Instr = MIB.buildInstr(Opc, {DstReg}, {Reg, RegSeq, IdxReg});
6869 } else
6870 Instr = MIB.buildInstr(Opc, {DstReg}, {RegSeq, IdxReg});
6871 constrainSelectedInstRegOperands(*Instr, TII, TRI, RBI);
6872 I.eraseFromParent();
6873 }
6874
6875 InstructionSelector::ComplexRendererFns
selectShiftA_32(const MachineOperand & Root) const6876 AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const {
6877 auto MaybeImmed = getImmedFromMO(Root);
6878 if (MaybeImmed == std::nullopt || *MaybeImmed > 31)
6879 return std::nullopt;
6880 uint64_t Enc = (32 - *MaybeImmed) & 0x1f;
6881 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
6882 }
6883
6884 InstructionSelector::ComplexRendererFns
selectShiftB_32(const MachineOperand & Root) const6885 AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const {
6886 auto MaybeImmed = getImmedFromMO(Root);
6887 if (MaybeImmed == std::nullopt || *MaybeImmed > 31)
6888 return std::nullopt;
6889 uint64_t Enc = 31 - *MaybeImmed;
6890 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
6891 }
6892
6893 InstructionSelector::ComplexRendererFns
selectShiftA_64(const MachineOperand & Root) const6894 AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const {
6895 auto MaybeImmed = getImmedFromMO(Root);
6896 if (MaybeImmed == std::nullopt || *MaybeImmed > 63)
6897 return std::nullopt;
6898 uint64_t Enc = (64 - *MaybeImmed) & 0x3f;
6899 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
6900 }
6901
6902 InstructionSelector::ComplexRendererFns
selectShiftB_64(const MachineOperand & Root) const6903 AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const {
6904 auto MaybeImmed = getImmedFromMO(Root);
6905 if (MaybeImmed == std::nullopt || *MaybeImmed > 63)
6906 return std::nullopt;
6907 uint64_t Enc = 63 - *MaybeImmed;
6908 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
6909 }
6910
6911 /// Helper to select an immediate value that can be represented as a 12-bit
6912 /// value shifted left by either 0 or 12. If it is possible to do so, return
6913 /// the immediate and shift value. If not, return std::nullopt.
6914 ///
6915 /// Used by selectArithImmed and selectNegArithImmed.
6916 InstructionSelector::ComplexRendererFns
select12BitValueWithLeftShift(uint64_t Immed) const6917 AArch64InstructionSelector::select12BitValueWithLeftShift(
6918 uint64_t Immed) const {
6919 unsigned ShiftAmt;
6920 if (Immed >> 12 == 0) {
6921 ShiftAmt = 0;
6922 } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
6923 ShiftAmt = 12;
6924 Immed = Immed >> 12;
6925 } else
6926 return std::nullopt;
6927
6928 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
6929 return {{
6930 [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); },
6931 [=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); },
6932 }};
6933 }
6934
6935 /// SelectArithImmed - Select an immediate value that can be represented as
6936 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
6937 /// Val set to the 12-bit value and Shift set to the shifter operand.
6938 InstructionSelector::ComplexRendererFns
selectArithImmed(MachineOperand & Root) const6939 AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const {
6940 // This function is called from the addsub_shifted_imm ComplexPattern,
6941 // which lists [imm] as the list of opcode it's interested in, however
6942 // we still need to check whether the operand is actually an immediate
6943 // here because the ComplexPattern opcode list is only used in
6944 // root-level opcode matching.
6945 auto MaybeImmed = getImmedFromMO(Root);
6946 if (MaybeImmed == std::nullopt)
6947 return std::nullopt;
6948 return select12BitValueWithLeftShift(*MaybeImmed);
6949 }
6950
6951 /// SelectNegArithImmed - As above, but negates the value before trying to
6952 /// select it.
6953 InstructionSelector::ComplexRendererFns
selectNegArithImmed(MachineOperand & Root) const6954 AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const {
6955 // We need a register here, because we need to know if we have a 64 or 32
6956 // bit immediate.
6957 if (!Root.isReg())
6958 return std::nullopt;
6959 auto MaybeImmed = getImmedFromMO(Root);
6960 if (MaybeImmed == std::nullopt)
6961 return std::nullopt;
6962 uint64_t Immed = *MaybeImmed;
6963
6964 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
6965 // have the opposite effect on the C flag, so this pattern mustn't match under
6966 // those circumstances.
6967 if (Immed == 0)
6968 return std::nullopt;
6969
6970 // Check if we're dealing with a 32-bit type on the root or a 64-bit type on
6971 // the root.
6972 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
6973 if (MRI.getType(Root.getReg()).getSizeInBits() == 32)
6974 Immed = ~((uint32_t)Immed) + 1;
6975 else
6976 Immed = ~Immed + 1ULL;
6977
6978 if (Immed & 0xFFFFFFFFFF000000ULL)
6979 return std::nullopt;
6980
6981 Immed &= 0xFFFFFFULL;
6982 return select12BitValueWithLeftShift(Immed);
6983 }
6984
6985 /// Checks if we are sure that folding MI into load/store addressing mode is
6986 /// beneficial or not.
6987 ///
6988 /// Returns:
6989 /// - true if folding MI would be beneficial.
6990 /// - false if folding MI would be bad.
6991 /// - std::nullopt if it is not sure whether folding MI is beneficial.
6992 ///
6993 /// \p MI can be the offset operand of G_PTR_ADD, e.g. G_SHL in the example:
6994 ///
6995 /// %13:gpr(s64) = G_CONSTANT i64 1
6996 /// %8:gpr(s64) = G_SHL %6, %13(s64)
6997 /// %9:gpr(p0) = G_PTR_ADD %0, %8(s64)
6998 /// %12:gpr(s32) = G_LOAD %9(p0) :: (load (s16))
isWorthFoldingIntoAddrMode(MachineInstr & MI,const MachineRegisterInfo & MRI) const6999 std::optional<bool> AArch64InstructionSelector::isWorthFoldingIntoAddrMode(
7000 MachineInstr &MI, const MachineRegisterInfo &MRI) const {
7001 if (MI.getOpcode() == AArch64::G_SHL) {
7002 // Address operands with shifts are free, except for running on subtargets
7003 // with AddrLSLSlow14.
7004 if (const auto ValAndVeg = getIConstantVRegValWithLookThrough(
7005 MI.getOperand(2).getReg(), MRI)) {
7006 const APInt ShiftVal = ValAndVeg->Value;
7007
7008 // Don't fold if we know this will be slow.
7009 return !(STI.hasAddrLSLSlow14() && (ShiftVal == 1 || ShiftVal == 4));
7010 }
7011 }
7012 return std::nullopt;
7013 }
7014
7015 /// Return true if it is worth folding MI into an extended register. That is,
7016 /// if it's safe to pull it into the addressing mode of a load or store as a
7017 /// shift.
7018 /// \p IsAddrOperand whether the def of MI is used as an address operand
7019 /// (e.g. feeding into an LDR/STR).
isWorthFoldingIntoExtendedReg(MachineInstr & MI,const MachineRegisterInfo & MRI,bool IsAddrOperand) const7020 bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg(
7021 MachineInstr &MI, const MachineRegisterInfo &MRI,
7022 bool IsAddrOperand) const {
7023
7024 // Always fold if there is one use, or if we're optimizing for size.
7025 Register DefReg = MI.getOperand(0).getReg();
7026 if (MRI.hasOneNonDBGUse(DefReg) ||
7027 MI.getParent()->getParent()->getFunction().hasOptSize())
7028 return true;
7029
7030 if (IsAddrOperand) {
7031 // If we are already sure that folding MI is good or bad, return the result.
7032 if (const auto Worth = isWorthFoldingIntoAddrMode(MI, MRI))
7033 return *Worth;
7034
7035 // Fold G_PTR_ADD if its offset operand can be folded
7036 if (MI.getOpcode() == AArch64::G_PTR_ADD) {
7037 MachineInstr *OffsetInst =
7038 getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI);
7039
7040 // Note, we already know G_PTR_ADD is used by at least two instructions.
7041 // If we are also sure about whether folding is beneficial or not,
7042 // return the result.
7043 if (const auto Worth = isWorthFoldingIntoAddrMode(*OffsetInst, MRI))
7044 return *Worth;
7045 }
7046 }
7047
7048 // FIXME: Consider checking HasALULSLFast as appropriate.
7049
7050 // We have a fastpath, so folding a shift in and potentially computing it
7051 // many times may be beneficial. Check if this is only used in memory ops.
7052 // If it is, then we should fold.
7053 return all_of(MRI.use_nodbg_instructions(DefReg),
7054 [](MachineInstr &Use) { return Use.mayLoadOrStore(); });
7055 }
7056
isSignExtendShiftType(AArch64_AM::ShiftExtendType Type)7057 static bool isSignExtendShiftType(AArch64_AM::ShiftExtendType Type) {
7058 switch (Type) {
7059 case AArch64_AM::SXTB:
7060 case AArch64_AM::SXTH:
7061 case AArch64_AM::SXTW:
7062 return true;
7063 default:
7064 return false;
7065 }
7066 }
7067
7068 InstructionSelector::ComplexRendererFns
selectExtendedSHL(MachineOperand & Root,MachineOperand & Base,MachineOperand & Offset,unsigned SizeInBytes,bool WantsExt) const7069 AArch64InstructionSelector::selectExtendedSHL(
7070 MachineOperand &Root, MachineOperand &Base, MachineOperand &Offset,
7071 unsigned SizeInBytes, bool WantsExt) const {
7072 assert(Base.isReg() && "Expected base to be a register operand");
7073 assert(Offset.isReg() && "Expected offset to be a register operand");
7074
7075 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
7076 MachineInstr *OffsetInst = MRI.getVRegDef(Offset.getReg());
7077
7078 unsigned OffsetOpc = OffsetInst->getOpcode();
7079 bool LookedThroughZExt = false;
7080 if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL) {
7081 // Try to look through a ZEXT.
7082 if (OffsetOpc != TargetOpcode::G_ZEXT || !WantsExt)
7083 return std::nullopt;
7084
7085 OffsetInst = MRI.getVRegDef(OffsetInst->getOperand(1).getReg());
7086 OffsetOpc = OffsetInst->getOpcode();
7087 LookedThroughZExt = true;
7088
7089 if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL)
7090 return std::nullopt;
7091 }
7092 // Make sure that the memory op is a valid size.
7093 int64_t LegalShiftVal = Log2_32(SizeInBytes);
7094 if (LegalShiftVal == 0)
7095 return std::nullopt;
7096 if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI, true))
7097 return std::nullopt;
7098
7099 // Now, try to find the specific G_CONSTANT. Start by assuming that the
7100 // register we will offset is the LHS, and the register containing the
7101 // constant is the RHS.
7102 Register OffsetReg = OffsetInst->getOperand(1).getReg();
7103 Register ConstantReg = OffsetInst->getOperand(2).getReg();
7104 auto ValAndVReg = getIConstantVRegValWithLookThrough(ConstantReg, MRI);
7105 if (!ValAndVReg) {
7106 // We didn't get a constant on the RHS. If the opcode is a shift, then
7107 // we're done.
7108 if (OffsetOpc == TargetOpcode::G_SHL)
7109 return std::nullopt;
7110
7111 // If we have a G_MUL, we can use either register. Try looking at the RHS.
7112 std::swap(OffsetReg, ConstantReg);
7113 ValAndVReg = getIConstantVRegValWithLookThrough(ConstantReg, MRI);
7114 if (!ValAndVReg)
7115 return std::nullopt;
7116 }
7117
7118 // The value must fit into 3 bits, and must be positive. Make sure that is
7119 // true.
7120 int64_t ImmVal = ValAndVReg->Value.getSExtValue();
7121
7122 // Since we're going to pull this into a shift, the constant value must be
7123 // a power of 2. If we got a multiply, then we need to check this.
7124 if (OffsetOpc == TargetOpcode::G_MUL) {
7125 if (!llvm::has_single_bit<uint32_t>(ImmVal))
7126 return std::nullopt;
7127
7128 // Got a power of 2. So, the amount we'll shift is the log base-2 of that.
7129 ImmVal = Log2_32(ImmVal);
7130 }
7131
7132 if ((ImmVal & 0x7) != ImmVal)
7133 return std::nullopt;
7134
7135 // We are only allowed to shift by LegalShiftVal. This shift value is built
7136 // into the instruction, so we can't just use whatever we want.
7137 if (ImmVal != LegalShiftVal)
7138 return std::nullopt;
7139
7140 unsigned SignExtend = 0;
7141 if (WantsExt) {
7142 // Check if the offset is defined by an extend, unless we looked through a
7143 // G_ZEXT earlier.
7144 if (!LookedThroughZExt) {
7145 MachineInstr *ExtInst = getDefIgnoringCopies(OffsetReg, MRI);
7146 auto Ext = getExtendTypeForInst(*ExtInst, MRI, true);
7147 if (Ext == AArch64_AM::InvalidShiftExtend)
7148 return std::nullopt;
7149
7150 SignExtend = isSignExtendShiftType(Ext) ? 1 : 0;
7151 // We only support SXTW for signed extension here.
7152 if (SignExtend && Ext != AArch64_AM::SXTW)
7153 return std::nullopt;
7154 OffsetReg = ExtInst->getOperand(1).getReg();
7155 }
7156
7157 // Need a 32-bit wide register here.
7158 MachineIRBuilder MIB(*MRI.getVRegDef(Root.getReg()));
7159 OffsetReg = moveScalarRegClass(OffsetReg, AArch64::GPR32RegClass, MIB);
7160 }
7161
7162 // We can use the LHS of the GEP as the base, and the LHS of the shift as an
7163 // offset. Signify that we are shifting by setting the shift flag to 1.
7164 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(Base.getReg()); },
7165 [=](MachineInstrBuilder &MIB) { MIB.addUse(OffsetReg); },
7166 [=](MachineInstrBuilder &MIB) {
7167 // Need to add both immediates here to make sure that they are both
7168 // added to the instruction.
7169 MIB.addImm(SignExtend);
7170 MIB.addImm(1);
7171 }}};
7172 }
7173
7174 /// This is used for computing addresses like this:
7175 ///
7176 /// ldr x1, [x2, x3, lsl #3]
7177 ///
7178 /// Where x2 is the base register, and x3 is an offset register. The shift-left
7179 /// is a constant value specific to this load instruction. That is, we'll never
7180 /// see anything other than a 3 here (which corresponds to the size of the
7181 /// element being loaded.)
7182 InstructionSelector::ComplexRendererFns
selectAddrModeShiftedExtendXReg(MachineOperand & Root,unsigned SizeInBytes) const7183 AArch64InstructionSelector::selectAddrModeShiftedExtendXReg(
7184 MachineOperand &Root, unsigned SizeInBytes) const {
7185 if (!Root.isReg())
7186 return std::nullopt;
7187 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
7188
7189 // We want to find something like this:
7190 //
7191 // val = G_CONSTANT LegalShiftVal
7192 // shift = G_SHL off_reg val
7193 // ptr = G_PTR_ADD base_reg shift
7194 // x = G_LOAD ptr
7195 //
7196 // And fold it into this addressing mode:
7197 //
7198 // ldr x, [base_reg, off_reg, lsl #LegalShiftVal]
7199
7200 // Check if we can find the G_PTR_ADD.
7201 MachineInstr *PtrAdd =
7202 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
7203 if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI, true))
7204 return std::nullopt;
7205
7206 // Now, try to match an opcode which will match our specific offset.
7207 // We want a G_SHL or a G_MUL.
7208 MachineInstr *OffsetInst =
7209 getDefIgnoringCopies(PtrAdd->getOperand(2).getReg(), MRI);
7210 return selectExtendedSHL(Root, PtrAdd->getOperand(1),
7211 OffsetInst->getOperand(0), SizeInBytes,
7212 /*WantsExt=*/false);
7213 }
7214
7215 /// This is used for computing addresses like this:
7216 ///
7217 /// ldr x1, [x2, x3]
7218 ///
7219 /// Where x2 is the base register, and x3 is an offset register.
7220 ///
7221 /// When possible (or profitable) to fold a G_PTR_ADD into the address
7222 /// calculation, this will do so. Otherwise, it will return std::nullopt.
7223 InstructionSelector::ComplexRendererFns
selectAddrModeRegisterOffset(MachineOperand & Root) const7224 AArch64InstructionSelector::selectAddrModeRegisterOffset(
7225 MachineOperand &Root) const {
7226 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
7227
7228 // We need a GEP.
7229 MachineInstr *Gep = MRI.getVRegDef(Root.getReg());
7230 if (Gep->getOpcode() != TargetOpcode::G_PTR_ADD)
7231 return std::nullopt;
7232
7233 // If this is used more than once, let's not bother folding.
7234 // TODO: Check if they are memory ops. If they are, then we can still fold
7235 // without having to recompute anything.
7236 if (!MRI.hasOneNonDBGUse(Gep->getOperand(0).getReg()))
7237 return std::nullopt;
7238
7239 // Base is the GEP's LHS, offset is its RHS.
7240 return {{[=](MachineInstrBuilder &MIB) {
7241 MIB.addUse(Gep->getOperand(1).getReg());
7242 },
7243 [=](MachineInstrBuilder &MIB) {
7244 MIB.addUse(Gep->getOperand(2).getReg());
7245 },
7246 [=](MachineInstrBuilder &MIB) {
7247 // Need to add both immediates here to make sure that they are both
7248 // added to the instruction.
7249 MIB.addImm(0);
7250 MIB.addImm(0);
7251 }}};
7252 }
7253
7254 /// This is intended to be equivalent to selectAddrModeXRO in
7255 /// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads.
7256 InstructionSelector::ComplexRendererFns
selectAddrModeXRO(MachineOperand & Root,unsigned SizeInBytes) const7257 AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root,
7258 unsigned SizeInBytes) const {
7259 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
7260 if (!Root.isReg())
7261 return std::nullopt;
7262 MachineInstr *PtrAdd =
7263 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
7264 if (!PtrAdd)
7265 return std::nullopt;
7266
7267 // Check for an immediates which cannot be encoded in the [base + imm]
7268 // addressing mode, and can't be encoded in an add/sub. If this happens, we'll
7269 // end up with code like:
7270 //
7271 // mov x0, wide
7272 // add x1 base, x0
7273 // ldr x2, [x1, x0]
7274 //
7275 // In this situation, we can use the [base, xreg] addressing mode to save an
7276 // add/sub:
7277 //
7278 // mov x0, wide
7279 // ldr x2, [base, x0]
7280 auto ValAndVReg =
7281 getIConstantVRegValWithLookThrough(PtrAdd->getOperand(2).getReg(), MRI);
7282 if (ValAndVReg) {
7283 unsigned Scale = Log2_32(SizeInBytes);
7284 int64_t ImmOff = ValAndVReg->Value.getSExtValue();
7285
7286 // Skip immediates that can be selected in the load/store addresing
7287 // mode.
7288 if (ImmOff % SizeInBytes == 0 && ImmOff >= 0 &&
7289 ImmOff < (0x1000 << Scale))
7290 return std::nullopt;
7291
7292 // Helper lambda to decide whether or not it is preferable to emit an add.
7293 auto isPreferredADD = [](int64_t ImmOff) {
7294 // Constants in [0x0, 0xfff] can be encoded in an add.
7295 if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
7296 return true;
7297
7298 // Can it be encoded in an add lsl #12?
7299 if ((ImmOff & 0xffffffffff000fffLL) != 0x0LL)
7300 return false;
7301
7302 // It can be encoded in an add lsl #12, but we may not want to. If it is
7303 // possible to select this as a single movz, then prefer that. A single
7304 // movz is faster than an add with a shift.
7305 return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
7306 (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
7307 };
7308
7309 // If the immediate can be encoded in a single add/sub, then bail out.
7310 if (isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
7311 return std::nullopt;
7312 }
7313
7314 // Try to fold shifts into the addressing mode.
7315 auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes);
7316 if (AddrModeFns)
7317 return AddrModeFns;
7318
7319 // If that doesn't work, see if it's possible to fold in registers from
7320 // a GEP.
7321 return selectAddrModeRegisterOffset(Root);
7322 }
7323
7324 /// This is used for computing addresses like this:
7325 ///
7326 /// ldr x0, [xBase, wOffset, sxtw #LegalShiftVal]
7327 ///
7328 /// Where we have a 64-bit base register, a 32-bit offset register, and an
7329 /// extend (which may or may not be signed).
7330 InstructionSelector::ComplexRendererFns
selectAddrModeWRO(MachineOperand & Root,unsigned SizeInBytes) const7331 AArch64InstructionSelector::selectAddrModeWRO(MachineOperand &Root,
7332 unsigned SizeInBytes) const {
7333 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
7334
7335 MachineInstr *PtrAdd =
7336 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
7337 if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI, true))
7338 return std::nullopt;
7339
7340 MachineOperand &LHS = PtrAdd->getOperand(1);
7341 MachineOperand &RHS = PtrAdd->getOperand(2);
7342 MachineInstr *OffsetInst = getDefIgnoringCopies(RHS.getReg(), MRI);
7343
7344 // The first case is the same as selectAddrModeXRO, except we need an extend.
7345 // In this case, we try to find a shift and extend, and fold them into the
7346 // addressing mode.
7347 //
7348 // E.g.
7349 //
7350 // off_reg = G_Z/S/ANYEXT ext_reg
7351 // val = G_CONSTANT LegalShiftVal
7352 // shift = G_SHL off_reg val
7353 // ptr = G_PTR_ADD base_reg shift
7354 // x = G_LOAD ptr
7355 //
7356 // In this case we can get a load like this:
7357 //
7358 // ldr x0, [base_reg, ext_reg, sxtw #LegalShiftVal]
7359 auto ExtendedShl = selectExtendedSHL(Root, LHS, OffsetInst->getOperand(0),
7360 SizeInBytes, /*WantsExt=*/true);
7361 if (ExtendedShl)
7362 return ExtendedShl;
7363
7364 // There was no shift. We can try and fold a G_Z/S/ANYEXT in alone though.
7365 //
7366 // e.g.
7367 // ldr something, [base_reg, ext_reg, sxtw]
7368 if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI, true))
7369 return std::nullopt;
7370
7371 // Check if this is an extend. We'll get an extend type if it is.
7372 AArch64_AM::ShiftExtendType Ext =
7373 getExtendTypeForInst(*OffsetInst, MRI, /*IsLoadStore=*/true);
7374 if (Ext == AArch64_AM::InvalidShiftExtend)
7375 return std::nullopt;
7376
7377 // Need a 32-bit wide register.
7378 MachineIRBuilder MIB(*PtrAdd);
7379 Register ExtReg = moveScalarRegClass(OffsetInst->getOperand(1).getReg(),
7380 AArch64::GPR32RegClass, MIB);
7381 unsigned SignExtend = Ext == AArch64_AM::SXTW;
7382
7383 // Base is LHS, offset is ExtReg.
7384 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(LHS.getReg()); },
7385 [=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
7386 [=](MachineInstrBuilder &MIB) {
7387 MIB.addImm(SignExtend);
7388 MIB.addImm(0);
7389 }}};
7390 }
7391
7392 /// Select a "register plus unscaled signed 9-bit immediate" address. This
7393 /// should only match when there is an offset that is not valid for a scaled
7394 /// immediate addressing mode. The "Size" argument is the size in bytes of the
7395 /// memory reference, which is needed here to know what is valid for a scaled
7396 /// immediate.
7397 InstructionSelector::ComplexRendererFns
selectAddrModeUnscaled(MachineOperand & Root,unsigned Size) const7398 AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root,
7399 unsigned Size) const {
7400 MachineRegisterInfo &MRI =
7401 Root.getParent()->getParent()->getParent()->getRegInfo();
7402
7403 if (!Root.isReg())
7404 return std::nullopt;
7405
7406 if (!isBaseWithConstantOffset(Root, MRI))
7407 return std::nullopt;
7408
7409 MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
7410
7411 MachineOperand &OffImm = RootDef->getOperand(2);
7412 if (!OffImm.isReg())
7413 return std::nullopt;
7414 MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg());
7415 if (RHS->getOpcode() != TargetOpcode::G_CONSTANT)
7416 return std::nullopt;
7417 int64_t RHSC;
7418 MachineOperand &RHSOp1 = RHS->getOperand(1);
7419 if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64)
7420 return std::nullopt;
7421 RHSC = RHSOp1.getCImm()->getSExtValue();
7422
7423 if (RHSC >= -256 && RHSC < 256) {
7424 MachineOperand &Base = RootDef->getOperand(1);
7425 return {{
7426 [=](MachineInstrBuilder &MIB) { MIB.add(Base); },
7427 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); },
7428 }};
7429 }
7430 return std::nullopt;
7431 }
7432
7433 InstructionSelector::ComplexRendererFns
tryFoldAddLowIntoImm(MachineInstr & RootDef,unsigned Size,MachineRegisterInfo & MRI) const7434 AArch64InstructionSelector::tryFoldAddLowIntoImm(MachineInstr &RootDef,
7435 unsigned Size,
7436 MachineRegisterInfo &MRI) const {
7437 if (RootDef.getOpcode() != AArch64::G_ADD_LOW)
7438 return std::nullopt;
7439 MachineInstr &Adrp = *MRI.getVRegDef(RootDef.getOperand(1).getReg());
7440 if (Adrp.getOpcode() != AArch64::ADRP)
7441 return std::nullopt;
7442
7443 // TODO: add heuristics like isWorthFoldingADDlow() from SelectionDAG.
7444 auto Offset = Adrp.getOperand(1).getOffset();
7445 if (Offset % Size != 0)
7446 return std::nullopt;
7447
7448 auto GV = Adrp.getOperand(1).getGlobal();
7449 if (GV->isThreadLocal())
7450 return std::nullopt;
7451
7452 auto &MF = *RootDef.getParent()->getParent();
7453 if (GV->getPointerAlignment(MF.getDataLayout()) < Size)
7454 return std::nullopt;
7455
7456 unsigned OpFlags = STI.ClassifyGlobalReference(GV, MF.getTarget());
7457 MachineIRBuilder MIRBuilder(RootDef);
7458 Register AdrpReg = Adrp.getOperand(0).getReg();
7459 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(AdrpReg); },
7460 [=](MachineInstrBuilder &MIB) {
7461 MIB.addGlobalAddress(GV, Offset,
7462 OpFlags | AArch64II::MO_PAGEOFF |
7463 AArch64II::MO_NC);
7464 }}};
7465 }
7466
7467 /// Select a "register plus scaled unsigned 12-bit immediate" address. The
7468 /// "Size" argument is the size in bytes of the memory reference, which
7469 /// determines the scale.
7470 InstructionSelector::ComplexRendererFns
selectAddrModeIndexed(MachineOperand & Root,unsigned Size) const7471 AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root,
7472 unsigned Size) const {
7473 MachineFunction &MF = *Root.getParent()->getParent()->getParent();
7474 MachineRegisterInfo &MRI = MF.getRegInfo();
7475
7476 if (!Root.isReg())
7477 return std::nullopt;
7478
7479 MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
7480 if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
7481 return {{
7482 [=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); },
7483 [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
7484 }};
7485 }
7486
7487 CodeModel::Model CM = MF.getTarget().getCodeModel();
7488 // Check if we can fold in the ADD of small code model ADRP + ADD address.
7489 if (CM == CodeModel::Small) {
7490 auto OpFns = tryFoldAddLowIntoImm(*RootDef, Size, MRI);
7491 if (OpFns)
7492 return OpFns;
7493 }
7494
7495 if (isBaseWithConstantOffset(Root, MRI)) {
7496 MachineOperand &LHS = RootDef->getOperand(1);
7497 MachineOperand &RHS = RootDef->getOperand(2);
7498 MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg());
7499 MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg());
7500
7501 int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue();
7502 unsigned Scale = Log2_32(Size);
7503 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
7504 if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
7505 return {{
7506 [=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); },
7507 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
7508 }};
7509
7510 return {{
7511 [=](MachineInstrBuilder &MIB) { MIB.add(LHS); },
7512 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
7513 }};
7514 }
7515 }
7516
7517 // Before falling back to our general case, check if the unscaled
7518 // instructions can handle this. If so, that's preferable.
7519 if (selectAddrModeUnscaled(Root, Size))
7520 return std::nullopt;
7521
7522 return {{
7523 [=](MachineInstrBuilder &MIB) { MIB.add(Root); },
7524 [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
7525 }};
7526 }
7527
7528 /// Given a shift instruction, return the correct shift type for that
7529 /// instruction.
getShiftTypeForInst(MachineInstr & MI)7530 static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) {
7531 switch (MI.getOpcode()) {
7532 default:
7533 return AArch64_AM::InvalidShiftExtend;
7534 case TargetOpcode::G_SHL:
7535 return AArch64_AM::LSL;
7536 case TargetOpcode::G_LSHR:
7537 return AArch64_AM::LSR;
7538 case TargetOpcode::G_ASHR:
7539 return AArch64_AM::ASR;
7540 case TargetOpcode::G_ROTR:
7541 return AArch64_AM::ROR;
7542 }
7543 }
7544
7545 /// Select a "shifted register" operand. If the value is not shifted, set the
7546 /// shift operand to a default value of "lsl 0".
7547 InstructionSelector::ComplexRendererFns
selectShiftedRegister(MachineOperand & Root,bool AllowROR) const7548 AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root,
7549 bool AllowROR) const {
7550 if (!Root.isReg())
7551 return std::nullopt;
7552 MachineRegisterInfo &MRI =
7553 Root.getParent()->getParent()->getParent()->getRegInfo();
7554
7555 // Check if the operand is defined by an instruction which corresponds to
7556 // a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc.
7557 MachineInstr *ShiftInst = MRI.getVRegDef(Root.getReg());
7558 AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(*ShiftInst);
7559 if (ShType == AArch64_AM::InvalidShiftExtend)
7560 return std::nullopt;
7561 if (ShType == AArch64_AM::ROR && !AllowROR)
7562 return std::nullopt;
7563 if (!isWorthFoldingIntoExtendedReg(*ShiftInst, MRI, false))
7564 return std::nullopt;
7565
7566 // Need an immediate on the RHS.
7567 MachineOperand &ShiftRHS = ShiftInst->getOperand(2);
7568 auto Immed = getImmedFromMO(ShiftRHS);
7569 if (!Immed)
7570 return std::nullopt;
7571
7572 // We have something that we can fold. Fold in the shift's LHS and RHS into
7573 // the instruction.
7574 MachineOperand &ShiftLHS = ShiftInst->getOperand(1);
7575 Register ShiftReg = ShiftLHS.getReg();
7576
7577 unsigned NumBits = MRI.getType(ShiftReg).getSizeInBits();
7578 unsigned Val = *Immed & (NumBits - 1);
7579 unsigned ShiftVal = AArch64_AM::getShifterImm(ShType, Val);
7580
7581 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ShiftReg); },
7582 [=](MachineInstrBuilder &MIB) { MIB.addImm(ShiftVal); }}};
7583 }
7584
getExtendTypeForInst(MachineInstr & MI,MachineRegisterInfo & MRI,bool IsLoadStore) const7585 AArch64_AM::ShiftExtendType AArch64InstructionSelector::getExtendTypeForInst(
7586 MachineInstr &MI, MachineRegisterInfo &MRI, bool IsLoadStore) const {
7587 unsigned Opc = MI.getOpcode();
7588
7589 // Handle explicit extend instructions first.
7590 if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) {
7591 unsigned Size;
7592 if (Opc == TargetOpcode::G_SEXT)
7593 Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
7594 else
7595 Size = MI.getOperand(2).getImm();
7596 assert(Size != 64 && "Extend from 64 bits?");
7597 switch (Size) {
7598 case 8:
7599 return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::SXTB;
7600 case 16:
7601 return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::SXTH;
7602 case 32:
7603 return AArch64_AM::SXTW;
7604 default:
7605 return AArch64_AM::InvalidShiftExtend;
7606 }
7607 }
7608
7609 if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) {
7610 unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
7611 assert(Size != 64 && "Extend from 64 bits?");
7612 switch (Size) {
7613 case 8:
7614 return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::UXTB;
7615 case 16:
7616 return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::UXTH;
7617 case 32:
7618 return AArch64_AM::UXTW;
7619 default:
7620 return AArch64_AM::InvalidShiftExtend;
7621 }
7622 }
7623
7624 // Don't have an explicit extend. Try to handle a G_AND with a constant mask
7625 // on the RHS.
7626 if (Opc != TargetOpcode::G_AND)
7627 return AArch64_AM::InvalidShiftExtend;
7628
7629 std::optional<uint64_t> MaybeAndMask = getImmedFromMO(MI.getOperand(2));
7630 if (!MaybeAndMask)
7631 return AArch64_AM::InvalidShiftExtend;
7632 uint64_t AndMask = *MaybeAndMask;
7633 switch (AndMask) {
7634 default:
7635 return AArch64_AM::InvalidShiftExtend;
7636 case 0xFF:
7637 return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
7638 case 0xFFFF:
7639 return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
7640 case 0xFFFFFFFF:
7641 return AArch64_AM::UXTW;
7642 }
7643 }
7644
moveScalarRegClass(Register Reg,const TargetRegisterClass & RC,MachineIRBuilder & MIB) const7645 Register AArch64InstructionSelector::moveScalarRegClass(
7646 Register Reg, const TargetRegisterClass &RC, MachineIRBuilder &MIB) const {
7647 MachineRegisterInfo &MRI = *MIB.getMRI();
7648 auto Ty = MRI.getType(Reg);
7649 assert(!Ty.isVector() && "Expected scalars only!");
7650 if (Ty.getSizeInBits() == TRI.getRegSizeInBits(RC))
7651 return Reg;
7652
7653 // Create a copy and immediately select it.
7654 // FIXME: We should have an emitCopy function?
7655 auto Copy = MIB.buildCopy({&RC}, {Reg});
7656 selectCopy(*Copy, TII, MRI, TRI, RBI);
7657 return Copy.getReg(0);
7658 }
7659
7660 /// Select an "extended register" operand. This operand folds in an extend
7661 /// followed by an optional left shift.
7662 InstructionSelector::ComplexRendererFns
selectArithExtendedRegister(MachineOperand & Root) const7663 AArch64InstructionSelector::selectArithExtendedRegister(
7664 MachineOperand &Root) const {
7665 if (!Root.isReg())
7666 return std::nullopt;
7667 MachineRegisterInfo &MRI =
7668 Root.getParent()->getParent()->getParent()->getRegInfo();
7669
7670 uint64_t ShiftVal = 0;
7671 Register ExtReg;
7672 AArch64_AM::ShiftExtendType Ext;
7673 MachineInstr *RootDef = getDefIgnoringCopies(Root.getReg(), MRI);
7674 if (!RootDef)
7675 return std::nullopt;
7676
7677 if (!isWorthFoldingIntoExtendedReg(*RootDef, MRI, false))
7678 return std::nullopt;
7679
7680 // Check if we can fold a shift and an extend.
7681 if (RootDef->getOpcode() == TargetOpcode::G_SHL) {
7682 // Look for a constant on the RHS of the shift.
7683 MachineOperand &RHS = RootDef->getOperand(2);
7684 std::optional<uint64_t> MaybeShiftVal = getImmedFromMO(RHS);
7685 if (!MaybeShiftVal)
7686 return std::nullopt;
7687 ShiftVal = *MaybeShiftVal;
7688 if (ShiftVal > 4)
7689 return std::nullopt;
7690 // Look for a valid extend instruction on the LHS of the shift.
7691 MachineOperand &LHS = RootDef->getOperand(1);
7692 MachineInstr *ExtDef = getDefIgnoringCopies(LHS.getReg(), MRI);
7693 if (!ExtDef)
7694 return std::nullopt;
7695 Ext = getExtendTypeForInst(*ExtDef, MRI);
7696 if (Ext == AArch64_AM::InvalidShiftExtend)
7697 return std::nullopt;
7698 ExtReg = ExtDef->getOperand(1).getReg();
7699 } else {
7700 // Didn't get a shift. Try just folding an extend.
7701 Ext = getExtendTypeForInst(*RootDef, MRI);
7702 if (Ext == AArch64_AM::InvalidShiftExtend)
7703 return std::nullopt;
7704 ExtReg = RootDef->getOperand(1).getReg();
7705
7706 // If we have a 32 bit instruction which zeroes out the high half of a
7707 // register, we get an implicit zero extend for free. Check if we have one.
7708 // FIXME: We actually emit the extend right now even though we don't have
7709 // to.
7710 if (Ext == AArch64_AM::UXTW && MRI.getType(ExtReg).getSizeInBits() == 32) {
7711 MachineInstr *ExtInst = MRI.getVRegDef(ExtReg);
7712 if (isDef32(*ExtInst))
7713 return std::nullopt;
7714 }
7715 }
7716
7717 // We require a GPR32 here. Narrow the ExtReg if needed using a subregister
7718 // copy.
7719 MachineIRBuilder MIB(*RootDef);
7720 ExtReg = moveScalarRegClass(ExtReg, AArch64::GPR32RegClass, MIB);
7721
7722 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
7723 [=](MachineInstrBuilder &MIB) {
7724 MIB.addImm(getArithExtendImm(Ext, ShiftVal));
7725 }}};
7726 }
7727
7728 InstructionSelector::ComplexRendererFns
selectExtractHigh(MachineOperand & Root) const7729 AArch64InstructionSelector::selectExtractHigh(MachineOperand &Root) const {
7730 if (!Root.isReg())
7731 return std::nullopt;
7732 MachineRegisterInfo &MRI =
7733 Root.getParent()->getParent()->getParent()->getRegInfo();
7734
7735 auto Extract = getDefSrcRegIgnoringCopies(Root.getReg(), MRI);
7736 while (Extract && Extract->MI->getOpcode() == TargetOpcode::G_BITCAST &&
7737 STI.isLittleEndian())
7738 Extract =
7739 getDefSrcRegIgnoringCopies(Extract->MI->getOperand(1).getReg(), MRI);
7740 if (!Extract)
7741 return std::nullopt;
7742
7743 if (Extract->MI->getOpcode() == TargetOpcode::G_UNMERGE_VALUES) {
7744 if (Extract->Reg == Extract->MI->getOperand(1).getReg()) {
7745 Register ExtReg = Extract->MI->getOperand(2).getReg();
7746 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); }}};
7747 }
7748 }
7749 if (Extract->MI->getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) {
7750 LLT SrcTy = MRI.getType(Extract->MI->getOperand(1).getReg());
7751 auto LaneIdx = getIConstantVRegValWithLookThrough(
7752 Extract->MI->getOperand(2).getReg(), MRI);
7753 if (LaneIdx && SrcTy == LLT::fixed_vector(2, 64) &&
7754 LaneIdx->Value.getSExtValue() == 1) {
7755 Register ExtReg = Extract->MI->getOperand(1).getReg();
7756 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); }}};
7757 }
7758 }
7759
7760 return std::nullopt;
7761 }
7762
renderTruncImm(MachineInstrBuilder & MIB,const MachineInstr & MI,int OpIdx) const7763 void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB,
7764 const MachineInstr &MI,
7765 int OpIdx) const {
7766 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
7767 assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
7768 "Expected G_CONSTANT");
7769 std::optional<int64_t> CstVal =
7770 getIConstantVRegSExtVal(MI.getOperand(0).getReg(), MRI);
7771 assert(CstVal && "Expected constant value");
7772 MIB.addImm(*CstVal);
7773 }
7774
renderLogicalImm32(MachineInstrBuilder & MIB,const MachineInstr & I,int OpIdx) const7775 void AArch64InstructionSelector::renderLogicalImm32(
7776 MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
7777 assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
7778 "Expected G_CONSTANT");
7779 uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
7780 uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 32);
7781 MIB.addImm(Enc);
7782 }
7783
renderLogicalImm64(MachineInstrBuilder & MIB,const MachineInstr & I,int OpIdx) const7784 void AArch64InstructionSelector::renderLogicalImm64(
7785 MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
7786 assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
7787 "Expected G_CONSTANT");
7788 uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
7789 uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 64);
7790 MIB.addImm(Enc);
7791 }
7792
renderUbsanTrap(MachineInstrBuilder & MIB,const MachineInstr & MI,int OpIdx) const7793 void AArch64InstructionSelector::renderUbsanTrap(MachineInstrBuilder &MIB,
7794 const MachineInstr &MI,
7795 int OpIdx) const {
7796 assert(MI.getOpcode() == TargetOpcode::G_UBSANTRAP && OpIdx == 0 &&
7797 "Expected G_UBSANTRAP");
7798 MIB.addImm(MI.getOperand(0).getImm() | ('U' << 8));
7799 }
7800
renderFPImm16(MachineInstrBuilder & MIB,const MachineInstr & MI,int OpIdx) const7801 void AArch64InstructionSelector::renderFPImm16(MachineInstrBuilder &MIB,
7802 const MachineInstr &MI,
7803 int OpIdx) const {
7804 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
7805 "Expected G_FCONSTANT");
7806 MIB.addImm(
7807 AArch64_AM::getFP16Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
7808 }
7809
renderFPImm32(MachineInstrBuilder & MIB,const MachineInstr & MI,int OpIdx) const7810 void AArch64InstructionSelector::renderFPImm32(MachineInstrBuilder &MIB,
7811 const MachineInstr &MI,
7812 int OpIdx) const {
7813 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
7814 "Expected G_FCONSTANT");
7815 MIB.addImm(
7816 AArch64_AM::getFP32Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
7817 }
7818
renderFPImm64(MachineInstrBuilder & MIB,const MachineInstr & MI,int OpIdx) const7819 void AArch64InstructionSelector::renderFPImm64(MachineInstrBuilder &MIB,
7820 const MachineInstr &MI,
7821 int OpIdx) const {
7822 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
7823 "Expected G_FCONSTANT");
7824 MIB.addImm(
7825 AArch64_AM::getFP64Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
7826 }
7827
renderFPImm32SIMDModImmType4(MachineInstrBuilder & MIB,const MachineInstr & MI,int OpIdx) const7828 void AArch64InstructionSelector::renderFPImm32SIMDModImmType4(
7829 MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const {
7830 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
7831 "Expected G_FCONSTANT");
7832 MIB.addImm(AArch64_AM::encodeAdvSIMDModImmType4(MI.getOperand(1)
7833 .getFPImm()
7834 ->getValueAPF()
7835 .bitcastToAPInt()
7836 .getZExtValue()));
7837 }
7838
isLoadStoreOfNumBytes(const MachineInstr & MI,unsigned NumBytes) const7839 bool AArch64InstructionSelector::isLoadStoreOfNumBytes(
7840 const MachineInstr &MI, unsigned NumBytes) const {
7841 if (!MI.mayLoadOrStore())
7842 return false;
7843 assert(MI.hasOneMemOperand() &&
7844 "Expected load/store to have only one mem op!");
7845 return (*MI.memoperands_begin())->getSize() == NumBytes;
7846 }
7847
isDef32(const MachineInstr & MI) const7848 bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const {
7849 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
7850 if (MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() != 32)
7851 return false;
7852
7853 // Only return true if we know the operation will zero-out the high half of
7854 // the 64-bit register. Truncates can be subregister copies, which don't
7855 // zero out the high bits. Copies and other copy-like instructions can be
7856 // fed by truncates, or could be lowered as subregister copies.
7857 switch (MI.getOpcode()) {
7858 default:
7859 return true;
7860 case TargetOpcode::COPY:
7861 case TargetOpcode::G_BITCAST:
7862 case TargetOpcode::G_TRUNC:
7863 case TargetOpcode::G_PHI:
7864 return false;
7865 }
7866 }
7867
7868
7869 // Perform fixups on the given PHI instruction's operands to force them all
7870 // to be the same as the destination regbank.
fixupPHIOpBanks(MachineInstr & MI,MachineRegisterInfo & MRI,const AArch64RegisterBankInfo & RBI)7871 static void fixupPHIOpBanks(MachineInstr &MI, MachineRegisterInfo &MRI,
7872 const AArch64RegisterBankInfo &RBI) {
7873 assert(MI.getOpcode() == TargetOpcode::G_PHI && "Expected a G_PHI");
7874 Register DstReg = MI.getOperand(0).getReg();
7875 const RegisterBank *DstRB = MRI.getRegBankOrNull(DstReg);
7876 assert(DstRB && "Expected PHI dst to have regbank assigned");
7877 MachineIRBuilder MIB(MI);
7878
7879 // Go through each operand and ensure it has the same regbank.
7880 for (MachineOperand &MO : llvm::drop_begin(MI.operands())) {
7881 if (!MO.isReg())
7882 continue;
7883 Register OpReg = MO.getReg();
7884 const RegisterBank *RB = MRI.getRegBankOrNull(OpReg);
7885 if (RB != DstRB) {
7886 // Insert a cross-bank copy.
7887 auto *OpDef = MRI.getVRegDef(OpReg);
7888 const LLT &Ty = MRI.getType(OpReg);
7889 MachineBasicBlock &OpDefBB = *OpDef->getParent();
7890
7891 // Any instruction we insert must appear after all PHIs in the block
7892 // for the block to be valid MIR.
7893 MachineBasicBlock::iterator InsertPt = std::next(OpDef->getIterator());
7894 if (InsertPt != OpDefBB.end() && InsertPt->isPHI())
7895 InsertPt = OpDefBB.getFirstNonPHI();
7896 MIB.setInsertPt(*OpDef->getParent(), InsertPt);
7897 auto Copy = MIB.buildCopy(Ty, OpReg);
7898 MRI.setRegBank(Copy.getReg(0), *DstRB);
7899 MO.setReg(Copy.getReg(0));
7900 }
7901 }
7902 }
7903
processPHIs(MachineFunction & MF)7904 void AArch64InstructionSelector::processPHIs(MachineFunction &MF) {
7905 // We're looking for PHIs, build a list so we don't invalidate iterators.
7906 MachineRegisterInfo &MRI = MF.getRegInfo();
7907 SmallVector<MachineInstr *, 32> Phis;
7908 for (auto &BB : MF) {
7909 for (auto &MI : BB) {
7910 if (MI.getOpcode() == TargetOpcode::G_PHI)
7911 Phis.emplace_back(&MI);
7912 }
7913 }
7914
7915 for (auto *MI : Phis) {
7916 // We need to do some work here if the operand types are < 16 bit and they
7917 // are split across fpr/gpr banks. Since all types <32b on gpr
7918 // end up being assigned gpr32 regclasses, we can end up with PHIs here
7919 // which try to select between a gpr32 and an fpr16. Ideally RBS shouldn't
7920 // be selecting heterogenous regbanks for operands if possible, but we
7921 // still need to be able to deal with it here.
7922 //
7923 // To fix this, if we have a gpr-bank operand < 32b in size and at least
7924 // one other operand is on the fpr bank, then we add cross-bank copies
7925 // to homogenize the operand banks. For simplicity the bank that we choose
7926 // to settle on is whatever bank the def operand has. For example:
7927 //
7928 // %endbb:
7929 // %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2:fpr(s16), %bb2
7930 // =>
7931 // %bb2:
7932 // ...
7933 // %in2_copy:gpr(s16) = COPY %in2:fpr(s16)
7934 // ...
7935 // %endbb:
7936 // %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2_copy:gpr(s16), %bb2
7937 bool HasGPROp = false, HasFPROp = false;
7938 for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) {
7939 if (!MO.isReg())
7940 continue;
7941 const LLT &Ty = MRI.getType(MO.getReg());
7942 if (!Ty.isValid() || !Ty.isScalar())
7943 break;
7944 if (Ty.getSizeInBits() >= 32)
7945 break;
7946 const RegisterBank *RB = MRI.getRegBankOrNull(MO.getReg());
7947 // If for some reason we don't have a regbank yet. Don't try anything.
7948 if (!RB)
7949 break;
7950
7951 if (RB->getID() == AArch64::GPRRegBankID)
7952 HasGPROp = true;
7953 else
7954 HasFPROp = true;
7955 }
7956 // We have heterogenous regbanks, need to fixup.
7957 if (HasGPROp && HasFPROp)
7958 fixupPHIOpBanks(*MI, MRI, RBI);
7959 }
7960 }
7961
7962 namespace llvm {
7963 InstructionSelector *
createAArch64InstructionSelector(const AArch64TargetMachine & TM,const AArch64Subtarget & Subtarget,const AArch64RegisterBankInfo & RBI)7964 createAArch64InstructionSelector(const AArch64TargetMachine &TM,
7965 const AArch64Subtarget &Subtarget,
7966 const AArch64RegisterBankInfo &RBI) {
7967 return new AArch64InstructionSelector(TM, Subtarget, RBI);
7968 }
7969 }
7970