1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
10 //
11 // On AArch64, stack frames are structured as follows:
12 //
13 // The stack grows downward.
14 //
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
18 //
19 // At function entry, the "frame" looks as follows:
20 //
21 // | | Higher address
22 // |-----------------------------------|
23 // | |
24 // | arguments passed on the stack |
25 // | |
26 // |-----------------------------------| <- sp
27 // | | Lower address
28 //
29 //
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
35 //
36 // | | Higher address
37 // |-----------------------------------|
38 // | |
39 // | arguments passed on the stack |
40 // | |
41 // |-----------------------------------|
42 // | |
43 // | (Win64 only) varargs from reg |
44 // | |
45 // |-----------------------------------|
46 // | |
47 // | callee-saved gpr registers | <--.
48 // | | | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
50 // | prev_lr | | (frame record first)
51 // | prev_fp | <--'
52 // | async context if needed |
53 // | (a.k.a. "frame record") |
54 // |-----------------------------------| <- fp(=x29)
55 // | <hazard padding> |
56 // |-----------------------------------|
57 // | |
58 // | callee-saved fp/simd/SVE regs |
59 // | |
60 // |-----------------------------------|
61 // | |
62 // | SVE stack objects |
63 // | |
64 // |-----------------------------------|
65 // |.empty.space.to.make.part.below....|
66 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
67 // |.the.standard.16-byte.alignment....| compile time; if present)
68 // |-----------------------------------|
69 // | local variables of fixed size |
70 // | including spill slots |
71 // | <FPR> |
72 // | <hazard padding> |
73 // | <GPR> |
74 // |-----------------------------------| <- bp(not defined by ABI,
75 // |.variable-sized.local.variables....| LLVM chooses X19)
76 // |.(VLAs)............................| (size of this area is unknown at
77 // |...................................| compile time)
78 // |-----------------------------------| <- sp
79 // | | Lower address
80 //
81 //
82 // To access the data in a frame, at-compile time, a constant offset must be
83 // computable from one of the pointers (fp, bp, sp) to access it. The size
84 // of the areas with a dotted background cannot be computed at compile-time
85 // if they are present, making it required to have all three of fp, bp and
86 // sp to be set up to be able to access all contents in the frame areas,
87 // assuming all of the frame areas are non-empty.
88 //
89 // For most functions, some of the frame areas are empty. For those functions,
90 // it may not be necessary to set up fp or bp:
91 // * A base pointer is definitely needed when there are both VLAs and local
92 // variables with more-than-default alignment requirements.
93 // * A frame pointer is definitely needed when there are local variables with
94 // more-than-default alignment requirements.
95 //
96 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
97 // callee-saved area, since the unwind encoding does not allow for encoding
98 // this dynamically and existing tools depend on this layout. For other
99 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
100 // area to allow SVE stack objects (allocated directly below the callee-saves,
101 // if available) to be accessed directly from the framepointer.
102 // The SVE spill/fill instructions have VL-scaled addressing modes such
103 // as:
104 // ldr z8, [fp, #-7 mul vl]
105 // For SVE the size of the vector length (VL) is not known at compile-time, so
106 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
107 // layout, we don't need to add an unscaled offset to the framepointer before
108 // accessing the SVE object in the frame.
109 //
110 // In some cases when a base pointer is not strictly needed, it is generated
111 // anyway when offsets from the frame pointer to access local variables become
112 // so large that the offset can't be encoded in the immediate fields of loads
113 // or stores.
114 //
115 // Outgoing function arguments must be at the bottom of the stack frame when
116 // calling another function. If we do not have variable-sized stack objects, we
117 // can allocate a "reserved call frame" area at the bottom of the local
118 // variable area, large enough for all outgoing calls. If we do have VLAs, then
119 // the stack pointer must be decremented and incremented around each call to
120 // make space for the arguments below the VLAs.
121 //
122 // FIXME: also explain the redzone concept.
123 //
124 // About stack hazards: Under some SME contexts, a coprocessor with its own
125 // separate cache can used for FP operations. This can create hazards if the CPU
126 // and the SME unit try to access the same area of memory, including if the
127 // access is to an area of the stack. To try to alleviate this we attempt to
128 // introduce extra padding into the stack frame between FP and GPR accesses,
129 // controlled by the StackHazardSize option. Without changing the layout of the
130 // stack frame in the diagram above, a stack object of size StackHazardSize is
131 // added between GPR and FPR CSRs. Another is added to the stack objects
132 // section, and stack objects are sorted so that FPR > Hazard padding slot >
133 // GPRs (where possible). Unfortunately some things are not handled well (VLA
134 // area, arguments on the stack, object with both GPR and FPR accesses), but if
135 // those are controlled by the user then the entire stack frame becomes GPR at
136 // the start/end with FPR in the middle, surrounded by Hazard padding.
137 //
138 // An example of the prologue:
139 //
140 // .globl __foo
141 // .align 2
142 // __foo:
143 // Ltmp0:
144 // .cfi_startproc
145 // .cfi_personality 155, ___gxx_personality_v0
146 // Leh_func_begin:
147 // .cfi_lsda 16, Lexception33
148 //
149 // stp xa,bx, [sp, -#offset]!
150 // ...
151 // stp x28, x27, [sp, #offset-32]
152 // stp fp, lr, [sp, #offset-16]
153 // add fp, sp, #offset - 16
154 // sub sp, sp, #1360
155 //
156 // The Stack:
157 // +-------------------------------------------+
158 // 10000 | ........ | ........ | ........ | ........ |
159 // 10004 | ........ | ........ | ........ | ........ |
160 // +-------------------------------------------+
161 // 10008 | ........ | ........ | ........ | ........ |
162 // 1000c | ........ | ........ | ........ | ........ |
163 // +===========================================+
164 // 10010 | X28 Register |
165 // 10014 | X28 Register |
166 // +-------------------------------------------+
167 // 10018 | X27 Register |
168 // 1001c | X27 Register |
169 // +===========================================+
170 // 10020 | Frame Pointer |
171 // 10024 | Frame Pointer |
172 // +-------------------------------------------+
173 // 10028 | Link Register |
174 // 1002c | Link Register |
175 // +===========================================+
176 // 10030 | ........ | ........ | ........ | ........ |
177 // 10034 | ........ | ........ | ........ | ........ |
178 // +-------------------------------------------+
179 // 10038 | ........ | ........ | ........ | ........ |
180 // 1003c | ........ | ........ | ........ | ........ |
181 // +-------------------------------------------+
182 //
183 // [sp] = 10030 :: >>initial value<<
184 // sp = 10020 :: stp fp, lr, [sp, #-16]!
185 // fp = sp == 10020 :: mov fp, sp
186 // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
187 // sp == 10010 :: >>final value<<
188 //
189 // The frame pointer (w29) points to address 10020. If we use an offset of
190 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
191 // for w27, and -32 for w28:
192 //
193 // Ltmp1:
194 // .cfi_def_cfa w29, 16
195 // Ltmp2:
196 // .cfi_offset w30, -8
197 // Ltmp3:
198 // .cfi_offset w29, -16
199 // Ltmp4:
200 // .cfi_offset w27, -24
201 // Ltmp5:
202 // .cfi_offset w28, -32
203 //
204 //===----------------------------------------------------------------------===//
205
206 #include "AArch64FrameLowering.h"
207 #include "AArch64InstrInfo.h"
208 #include "AArch64MachineFunctionInfo.h"
209 #include "AArch64RegisterInfo.h"
210 #include "AArch64Subtarget.h"
211 #include "AArch64TargetMachine.h"
212 #include "MCTargetDesc/AArch64AddressingModes.h"
213 #include "MCTargetDesc/AArch64MCTargetDesc.h"
214 #include "llvm/ADT/ScopeExit.h"
215 #include "llvm/ADT/SmallVector.h"
216 #include "llvm/ADT/Statistic.h"
217 #include "llvm/Analysis/ValueTracking.h"
218 #include "llvm/CodeGen/LivePhysRegs.h"
219 #include "llvm/CodeGen/MachineBasicBlock.h"
220 #include "llvm/CodeGen/MachineFrameInfo.h"
221 #include "llvm/CodeGen/MachineFunction.h"
222 #include "llvm/CodeGen/MachineInstr.h"
223 #include "llvm/CodeGen/MachineInstrBuilder.h"
224 #include "llvm/CodeGen/MachineMemOperand.h"
225 #include "llvm/CodeGen/MachineModuleInfo.h"
226 #include "llvm/CodeGen/MachineOperand.h"
227 #include "llvm/CodeGen/MachineRegisterInfo.h"
228 #include "llvm/CodeGen/RegisterScavenging.h"
229 #include "llvm/CodeGen/TargetInstrInfo.h"
230 #include "llvm/CodeGen/TargetRegisterInfo.h"
231 #include "llvm/CodeGen/TargetSubtargetInfo.h"
232 #include "llvm/CodeGen/WinEHFuncInfo.h"
233 #include "llvm/IR/Attributes.h"
234 #include "llvm/IR/CallingConv.h"
235 #include "llvm/IR/DataLayout.h"
236 #include "llvm/IR/DebugLoc.h"
237 #include "llvm/IR/Function.h"
238 #include "llvm/MC/MCAsmInfo.h"
239 #include "llvm/MC/MCDwarf.h"
240 #include "llvm/Support/CommandLine.h"
241 #include "llvm/Support/Debug.h"
242 #include "llvm/Support/ErrorHandling.h"
243 #include "llvm/Support/FormatVariadic.h"
244 #include "llvm/Support/MathExtras.h"
245 #include "llvm/Support/raw_ostream.h"
246 #include "llvm/Target/TargetMachine.h"
247 #include "llvm/Target/TargetOptions.h"
248 #include <cassert>
249 #include <cstdint>
250 #include <iterator>
251 #include <optional>
252 #include <vector>
253
254 using namespace llvm;
255
256 #define DEBUG_TYPE "frame-info"
257
258 static cl::opt<bool> EnableRedZone("aarch64-redzone",
259 cl::desc("enable use of redzone on AArch64"),
260 cl::init(false), cl::Hidden);
261
262 static cl::opt<bool> StackTaggingMergeSetTag(
263 "stack-tagging-merge-settag",
264 cl::desc("merge settag instruction in function epilog"), cl::init(true),
265 cl::Hidden);
266
267 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
268 cl::desc("sort stack allocations"),
269 cl::init(true), cl::Hidden);
270
271 cl::opt<bool> EnableHomogeneousPrologEpilog(
272 "homogeneous-prolog-epilog", cl::Hidden,
273 cl::desc("Emit homogeneous prologue and epilogue for the size "
274 "optimization (default = off)"));
275
276 // Stack hazard padding size. 0 = disabled.
277 static cl::opt<unsigned> StackHazardSize("aarch64-stack-hazard-size",
278 cl::init(0), cl::Hidden);
279 // Stack hazard size for analysis remarks. StackHazardSize takes precedence.
280 static cl::opt<unsigned>
281 StackHazardRemarkSize("aarch64-stack-hazard-remark-size", cl::init(0),
282 cl::Hidden);
283 // Whether to insert padding into non-streaming functions (for testing).
284 static cl::opt<bool>
285 StackHazardInNonStreaming("aarch64-stack-hazard-in-non-streaming",
286 cl::init(false), cl::Hidden);
287
288 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
289
290 /// Returns how much of the incoming argument stack area (in bytes) we should
291 /// clean up in an epilogue. For the C calling convention this will be 0, for
292 /// guaranteed tail call conventions it can be positive (a normal return or a
293 /// tail call to a function that uses less stack space for arguments) or
294 /// negative (for a tail call to a function that needs more stack space than us
295 /// for arguments).
getArgumentStackToRestore(MachineFunction & MF,MachineBasicBlock & MBB)296 static int64_t getArgumentStackToRestore(MachineFunction &MF,
297 MachineBasicBlock &MBB) {
298 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
299 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
300 bool IsTailCallReturn = (MBB.end() != MBBI)
301 ? AArch64InstrInfo::isTailCallReturnInst(*MBBI)
302 : false;
303
304 int64_t ArgumentPopSize = 0;
305 if (IsTailCallReturn) {
306 MachineOperand &StackAdjust = MBBI->getOperand(1);
307
308 // For a tail-call in a callee-pops-arguments environment, some or all of
309 // the stack may actually be in use for the call's arguments, this is
310 // calculated during LowerCall and consumed here...
311 ArgumentPopSize = StackAdjust.getImm();
312 } else {
313 // ... otherwise the amount to pop is *all* of the argument space,
314 // conveniently stored in the MachineFunctionInfo by
315 // LowerFormalArguments. This will, of course, be zero for the C calling
316 // convention.
317 ArgumentPopSize = AFI->getArgumentStackToRestore();
318 }
319
320 return ArgumentPopSize;
321 }
322
323 static bool produceCompactUnwindFrame(MachineFunction &MF);
324 static bool needsWinCFI(const MachineFunction &MF);
325 static StackOffset getSVEStackSize(const MachineFunction &MF);
326 static Register findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB);
327
328 /// Returns true if a homogeneous prolog or epilog code can be emitted
329 /// for the size optimization. If possible, a frame helper call is injected.
330 /// When Exit block is given, this check is for epilog.
homogeneousPrologEpilog(MachineFunction & MF,MachineBasicBlock * Exit) const331 bool AArch64FrameLowering::homogeneousPrologEpilog(
332 MachineFunction &MF, MachineBasicBlock *Exit) const {
333 if (!MF.getFunction().hasMinSize())
334 return false;
335 if (!EnableHomogeneousPrologEpilog)
336 return false;
337 if (EnableRedZone)
338 return false;
339
340 // TODO: Window is supported yet.
341 if (needsWinCFI(MF))
342 return false;
343 // TODO: SVE is not supported yet.
344 if (getSVEStackSize(MF))
345 return false;
346
347 // Bail on stack adjustment needed on return for simplicity.
348 const MachineFrameInfo &MFI = MF.getFrameInfo();
349 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
350 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))
351 return false;
352 if (Exit && getArgumentStackToRestore(MF, *Exit))
353 return false;
354
355 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
356 if (AFI->hasSwiftAsyncContext() || AFI->hasStreamingModeChanges())
357 return false;
358
359 // If there are an odd number of GPRs before LR and FP in the CSRs list,
360 // they will not be paired into one RegPairInfo, which is incompatible with
361 // the assumption made by the homogeneous prolog epilog pass.
362 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
363 unsigned NumGPRs = 0;
364 for (unsigned I = 0; CSRegs[I]; ++I) {
365 Register Reg = CSRegs[I];
366 if (Reg == AArch64::LR) {
367 assert(CSRegs[I + 1] == AArch64::FP);
368 if (NumGPRs % 2 != 0)
369 return false;
370 break;
371 }
372 if (AArch64::GPR64RegClass.contains(Reg))
373 ++NumGPRs;
374 }
375
376 return true;
377 }
378
379 /// Returns true if CSRs should be paired.
producePairRegisters(MachineFunction & MF) const380 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const {
381 return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF);
382 }
383
384 /// This is the biggest offset to the stack pointer we can encode in aarch64
385 /// instructions (without using a separate calculation and a temp register).
386 /// Note that the exception here are vector stores/loads which cannot encode any
387 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
388 static const unsigned DefaultSafeSPDisplacement = 255;
389
390 /// Look at each instruction that references stack frames and return the stack
391 /// size limit beyond which some of these instructions will require a scratch
392 /// register during their expansion later.
estimateRSStackSizeLimit(MachineFunction & MF)393 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
394 // FIXME: For now, just conservatively guestimate based on unscaled indexing
395 // range. We'll end up allocating an unnecessary spill slot a lot, but
396 // realistically that's not a big deal at this stage of the game.
397 for (MachineBasicBlock &MBB : MF) {
398 for (MachineInstr &MI : MBB) {
399 if (MI.isDebugInstr() || MI.isPseudo() ||
400 MI.getOpcode() == AArch64::ADDXri ||
401 MI.getOpcode() == AArch64::ADDSXri)
402 continue;
403
404 for (const MachineOperand &MO : MI.operands()) {
405 if (!MO.isFI())
406 continue;
407
408 StackOffset Offset;
409 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
410 AArch64FrameOffsetCannotUpdate)
411 return 0;
412 }
413 }
414 }
415 return DefaultSafeSPDisplacement;
416 }
417
418 TargetStackID::Value
getStackIDForScalableVectors() const419 AArch64FrameLowering::getStackIDForScalableVectors() const {
420 return TargetStackID::ScalableVector;
421 }
422
423 /// Returns the size of the fixed object area (allocated next to sp on entry)
424 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
getFixedObjectSize(const MachineFunction & MF,const AArch64FunctionInfo * AFI,bool IsWin64,bool IsFunclet)425 static unsigned getFixedObjectSize(const MachineFunction &MF,
426 const AArch64FunctionInfo *AFI, bool IsWin64,
427 bool IsFunclet) {
428 if (!IsWin64 || IsFunclet) {
429 return AFI->getTailCallReservedStack();
430 } else {
431 if (AFI->getTailCallReservedStack() != 0 &&
432 !MF.getFunction().getAttributes().hasAttrSomewhere(
433 Attribute::SwiftAsync))
434 report_fatal_error("cannot generate ABI-changing tail call for Win64");
435 // Var args are stored here in the primary function.
436 const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
437 // To support EH funclets we allocate an UnwindHelp object
438 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
439 return AFI->getTailCallReservedStack() +
440 alignTo(VarArgsArea + UnwindHelpObject, 16);
441 }
442 }
443
444 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
getSVEStackSize(const MachineFunction & MF)445 static StackOffset getSVEStackSize(const MachineFunction &MF) {
446 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
447 return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE());
448 }
449
canUseRedZone(const MachineFunction & MF) const450 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
451 if (!EnableRedZone)
452 return false;
453
454 // Don't use the red zone if the function explicitly asks us not to.
455 // This is typically used for kernel code.
456 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
457 const unsigned RedZoneSize =
458 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
459 if (!RedZoneSize)
460 return false;
461
462 const MachineFrameInfo &MFI = MF.getFrameInfo();
463 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
464 uint64_t NumBytes = AFI->getLocalStackSize();
465
466 // If neither NEON or SVE are available, a COPY from one Q-reg to
467 // another requires a spill -> reload sequence. We can do that
468 // using a pre-decrementing store/post-decrementing load, but
469 // if we do so, we can't use the Red Zone.
470 bool LowerQRegCopyThroughMem = Subtarget.hasFPARMv8() &&
471 !Subtarget.isNeonAvailable() &&
472 !Subtarget.hasSVE();
473
474 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize ||
475 getSVEStackSize(MF) || LowerQRegCopyThroughMem);
476 }
477
478 /// hasFP - Return true if the specified function should have a dedicated frame
479 /// pointer register.
hasFP(const MachineFunction & MF) const480 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
481 const MachineFrameInfo &MFI = MF.getFrameInfo();
482 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
483
484 // Win64 EH requires a frame pointer if funclets are present, as the locals
485 // are accessed off the frame pointer in both the parent function and the
486 // funclets.
487 if (MF.hasEHFunclets())
488 return true;
489 // Retain behavior of always omitting the FP for leaf functions when possible.
490 if (MF.getTarget().Options.DisableFramePointerElim(MF))
491 return true;
492 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
493 MFI.hasStackMap() || MFI.hasPatchPoint() ||
494 RegInfo->hasStackRealignment(MF))
495 return true;
496 // With large callframes around we may need to use FP to access the scavenging
497 // emergency spillslot.
498 //
499 // Unfortunately some calls to hasFP() like machine verifier ->
500 // getReservedReg() -> hasFP in the middle of global isel are too early
501 // to know the max call frame size. Hopefully conservatively returning "true"
502 // in those cases is fine.
503 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
504 if (!MFI.isMaxCallFrameSizeComputed() ||
505 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
506 return true;
507
508 return false;
509 }
510
511 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
512 /// not required, we reserve argument space for call sites in the function
513 /// immediately on entry to the current function. This eliminates the need for
514 /// add/sub sp brackets around call sites. Returns true if the call frame is
515 /// included as part of the stack frame.
hasReservedCallFrame(const MachineFunction & MF) const516 bool AArch64FrameLowering::hasReservedCallFrame(
517 const MachineFunction &MF) const {
518 // The stack probing code for the dynamically allocated outgoing arguments
519 // area assumes that the stack is probed at the top - either by the prologue
520 // code, which issues a probe if `hasVarSizedObjects` return true, or by the
521 // most recent variable-sized object allocation. Changing the condition here
522 // may need to be followed up by changes to the probe issuing logic.
523 return !MF.getFrameInfo().hasVarSizedObjects();
524 }
525
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const526 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
527 MachineFunction &MF, MachineBasicBlock &MBB,
528 MachineBasicBlock::iterator I) const {
529 const AArch64InstrInfo *TII =
530 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
531 const AArch64TargetLowering *TLI =
532 MF.getSubtarget<AArch64Subtarget>().getTargetLowering();
533 [[maybe_unused]] MachineFrameInfo &MFI = MF.getFrameInfo();
534 DebugLoc DL = I->getDebugLoc();
535 unsigned Opc = I->getOpcode();
536 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
537 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
538
539 if (!hasReservedCallFrame(MF)) {
540 int64_t Amount = I->getOperand(0).getImm();
541 Amount = alignTo(Amount, getStackAlign());
542 if (!IsDestroy)
543 Amount = -Amount;
544
545 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
546 // doesn't have to pop anything), then the first operand will be zero too so
547 // this adjustment is a no-op.
548 if (CalleePopAmount == 0) {
549 // FIXME: in-function stack adjustment for calls is limited to 24-bits
550 // because there's no guaranteed temporary register available.
551 //
552 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
553 // 1) For offset <= 12-bit, we use LSL #0
554 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
555 // LSL #0, and the other uses LSL #12.
556 //
557 // Most call frames will be allocated at the start of a function so
558 // this is OK, but it is a limitation that needs dealing with.
559 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
560
561 if (TLI->hasInlineStackProbe(MF) &&
562 -Amount >= AArch64::StackProbeMaxUnprobedStack) {
563 // When stack probing is enabled, the decrement of SP may need to be
564 // probed. We only need to do this if the call site needs 1024 bytes of
565 // space or more, because a region smaller than that is allowed to be
566 // unprobed at an ABI boundary. We rely on the fact that SP has been
567 // probed exactly at this point, either by the prologue or most recent
568 // dynamic allocation.
569 assert(MFI.hasVarSizedObjects() &&
570 "non-reserved call frame without var sized objects?");
571 Register ScratchReg =
572 MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
573 inlineStackProbeFixed(I, ScratchReg, -Amount, StackOffset::get(0, 0));
574 } else {
575 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
576 StackOffset::getFixed(Amount), TII);
577 }
578 }
579 } else if (CalleePopAmount != 0) {
580 // If the calling convention demands that the callee pops arguments from the
581 // stack, we want to add it back if we have a reserved call frame.
582 assert(CalleePopAmount < 0xffffff && "call frame too large");
583 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
584 StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
585 }
586 return MBB.erase(I);
587 }
588
emitCalleeSavedGPRLocations(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const589 void AArch64FrameLowering::emitCalleeSavedGPRLocations(
590 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
591 MachineFunction &MF = *MBB.getParent();
592 MachineFrameInfo &MFI = MF.getFrameInfo();
593 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
594 SMEAttrs Attrs(MF.getFunction());
595 bool LocallyStreaming =
596 Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface();
597
598 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
599 if (CSI.empty())
600 return;
601
602 const TargetSubtargetInfo &STI = MF.getSubtarget();
603 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
604 const TargetInstrInfo &TII = *STI.getInstrInfo();
605 DebugLoc DL = MBB.findDebugLoc(MBBI);
606
607 for (const auto &Info : CSI) {
608 unsigned FrameIdx = Info.getFrameIdx();
609 if (MFI.getStackID(FrameIdx) == TargetStackID::ScalableVector)
610 continue;
611
612 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
613 int64_t DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true);
614 int64_t Offset = MFI.getObjectOffset(FrameIdx) - getOffsetOfLocalArea();
615
616 // The location of VG will be emitted before each streaming-mode change in
617 // the function. Only locally-streaming functions require emitting the
618 // non-streaming VG location here.
619 if ((LocallyStreaming && FrameIdx == AFI->getStreamingVGIdx()) ||
620 (!LocallyStreaming &&
621 DwarfReg == TRI.getDwarfRegNum(AArch64::VG, true)))
622 continue;
623
624 unsigned CFIIndex = MF.addFrameInst(
625 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
626 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
627 .addCFIIndex(CFIIndex)
628 .setMIFlags(MachineInstr::FrameSetup);
629 }
630 }
631
emitCalleeSavedSVELocations(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const632 void AArch64FrameLowering::emitCalleeSavedSVELocations(
633 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
634 MachineFunction &MF = *MBB.getParent();
635 MachineFrameInfo &MFI = MF.getFrameInfo();
636
637 // Add callee saved registers to move list.
638 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
639 if (CSI.empty())
640 return;
641
642 const TargetSubtargetInfo &STI = MF.getSubtarget();
643 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
644 const TargetInstrInfo &TII = *STI.getInstrInfo();
645 DebugLoc DL = MBB.findDebugLoc(MBBI);
646 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
647
648 for (const auto &Info : CSI) {
649 if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
650 continue;
651
652 // Not all unwinders may know about SVE registers, so assume the lowest
653 // common demoninator.
654 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
655 unsigned Reg = Info.getReg();
656 if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
657 continue;
658
659 StackOffset Offset =
660 StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) -
661 StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI));
662
663 unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset));
664 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
665 .addCFIIndex(CFIIndex)
666 .setMIFlags(MachineInstr::FrameSetup);
667 }
668 }
669
insertCFISameValue(const MCInstrDesc & Desc,MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,unsigned DwarfReg)670 static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF,
671 MachineBasicBlock &MBB,
672 MachineBasicBlock::iterator InsertPt,
673 unsigned DwarfReg) {
674 unsigned CFIIndex =
675 MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg));
676 BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex);
677 }
678
resetCFIToInitialState(MachineBasicBlock & MBB) const679 void AArch64FrameLowering::resetCFIToInitialState(
680 MachineBasicBlock &MBB) const {
681
682 MachineFunction &MF = *MBB.getParent();
683 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
684 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
685 const auto &TRI =
686 static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo());
687 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
688
689 const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION);
690 DebugLoc DL;
691
692 // Reset the CFA to `SP + 0`.
693 MachineBasicBlock::iterator InsertPt = MBB.begin();
694 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
695 nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0));
696 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
697
698 // Flip the RA sign state.
699 if (MFI.shouldSignReturnAddress(MF)) {
700 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
701 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
702 }
703
704 // Shadow call stack uses X18, reset it.
705 if (MFI.needsShadowCallStackPrologueEpilogue(MF))
706 insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
707 TRI.getDwarfRegNum(AArch64::X18, true));
708
709 // Emit .cfi_same_value for callee-saved registers.
710 const std::vector<CalleeSavedInfo> &CSI =
711 MF.getFrameInfo().getCalleeSavedInfo();
712 for (const auto &Info : CSI) {
713 unsigned Reg = Info.getReg();
714 if (!TRI.regNeedsCFI(Reg, Reg))
715 continue;
716 insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
717 TRI.getDwarfRegNum(Reg, true));
718 }
719 }
720
emitCalleeSavedRestores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,bool SVE)721 static void emitCalleeSavedRestores(MachineBasicBlock &MBB,
722 MachineBasicBlock::iterator MBBI,
723 bool SVE) {
724 MachineFunction &MF = *MBB.getParent();
725 MachineFrameInfo &MFI = MF.getFrameInfo();
726
727 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
728 if (CSI.empty())
729 return;
730
731 const TargetSubtargetInfo &STI = MF.getSubtarget();
732 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
733 const TargetInstrInfo &TII = *STI.getInstrInfo();
734 DebugLoc DL = MBB.findDebugLoc(MBBI);
735
736 for (const auto &Info : CSI) {
737 if (SVE !=
738 (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
739 continue;
740
741 unsigned Reg = Info.getReg();
742 if (SVE &&
743 !static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
744 continue;
745
746 if (!Info.isRestored())
747 continue;
748
749 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(
750 nullptr, TRI.getDwarfRegNum(Info.getReg(), true)));
751 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
752 .addCFIIndex(CFIIndex)
753 .setMIFlags(MachineInstr::FrameDestroy);
754 }
755 }
756
emitCalleeSavedGPRRestores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const757 void AArch64FrameLowering::emitCalleeSavedGPRRestores(
758 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
759 emitCalleeSavedRestores(MBB, MBBI, false);
760 }
761
emitCalleeSavedSVERestores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const762 void AArch64FrameLowering::emitCalleeSavedSVERestores(
763 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
764 emitCalleeSavedRestores(MBB, MBBI, true);
765 }
766
767 // Return the maximum possible number of bytes for `Size` due to the
768 // architectural limit on the size of a SVE register.
upperBound(StackOffset Size)769 static int64_t upperBound(StackOffset Size) {
770 static const int64_t MAX_BYTES_PER_SCALABLE_BYTE = 16;
771 return Size.getScalable() * MAX_BYTES_PER_SCALABLE_BYTE + Size.getFixed();
772 }
773
allocateStackSpace(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,int64_t RealignmentPadding,StackOffset AllocSize,bool NeedsWinCFI,bool * HasWinCFI,bool EmitCFI,StackOffset InitialOffset,bool FollowupAllocs) const774 void AArch64FrameLowering::allocateStackSpace(
775 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
776 int64_t RealignmentPadding, StackOffset AllocSize, bool NeedsWinCFI,
777 bool *HasWinCFI, bool EmitCFI, StackOffset InitialOffset,
778 bool FollowupAllocs) const {
779
780 if (!AllocSize)
781 return;
782
783 DebugLoc DL;
784 MachineFunction &MF = *MBB.getParent();
785 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
786 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
787 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
788 const MachineFrameInfo &MFI = MF.getFrameInfo();
789
790 const int64_t MaxAlign = MFI.getMaxAlign().value();
791 const uint64_t AndMask = ~(MaxAlign - 1);
792
793 if (!Subtarget.getTargetLowering()->hasInlineStackProbe(MF)) {
794 Register TargetReg = RealignmentPadding
795 ? findScratchNonCalleeSaveRegister(&MBB)
796 : AArch64::SP;
797 // SUB Xd/SP, SP, AllocSize
798 emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII,
799 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI,
800 EmitCFI, InitialOffset);
801
802 if (RealignmentPadding) {
803 // AND SP, X9, 0b11111...0000
804 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP)
805 .addReg(TargetReg, RegState::Kill)
806 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64))
807 .setMIFlags(MachineInstr::FrameSetup);
808 AFI.setStackRealigned(true);
809
810 // No need for SEH instructions here; if we're realigning the stack,
811 // we've set a frame pointer and already finished the SEH prologue.
812 assert(!NeedsWinCFI);
813 }
814 return;
815 }
816
817 //
818 // Stack probing allocation.
819 //
820
821 // Fixed length allocation. If we don't need to re-align the stack and don't
822 // have SVE objects, we can use a more efficient sequence for stack probing.
823 if (AllocSize.getScalable() == 0 && RealignmentPadding == 0) {
824 Register ScratchReg = findScratchNonCalleeSaveRegister(&MBB);
825 assert(ScratchReg != AArch64::NoRegister);
826 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC))
827 .addDef(ScratchReg)
828 .addImm(AllocSize.getFixed())
829 .addImm(InitialOffset.getFixed())
830 .addImm(InitialOffset.getScalable());
831 // The fixed allocation may leave unprobed bytes at the top of the
832 // stack. If we have subsequent alocation (e.g. if we have variable-sized
833 // objects), we need to issue an extra probe, so these allocations start in
834 // a known state.
835 if (FollowupAllocs) {
836 // STR XZR, [SP]
837 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui))
838 .addReg(AArch64::XZR)
839 .addReg(AArch64::SP)
840 .addImm(0)
841 .setMIFlags(MachineInstr::FrameSetup);
842 }
843
844 return;
845 }
846
847 // Variable length allocation.
848
849 // If the (unknown) allocation size cannot exceed the probe size, decrement
850 // the stack pointer right away.
851 int64_t ProbeSize = AFI.getStackProbeSize();
852 if (upperBound(AllocSize) + RealignmentPadding <= ProbeSize) {
853 Register ScratchReg = RealignmentPadding
854 ? findScratchNonCalleeSaveRegister(&MBB)
855 : AArch64::SP;
856 assert(ScratchReg != AArch64::NoRegister);
857 // SUB Xd, SP, AllocSize
858 emitFrameOffset(MBB, MBBI, DL, ScratchReg, AArch64::SP, -AllocSize, &TII,
859 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI,
860 EmitCFI, InitialOffset);
861 if (RealignmentPadding) {
862 // AND SP, Xn, 0b11111...0000
863 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP)
864 .addReg(ScratchReg, RegState::Kill)
865 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64))
866 .setMIFlags(MachineInstr::FrameSetup);
867 AFI.setStackRealigned(true);
868 }
869 if (FollowupAllocs || upperBound(AllocSize) + RealignmentPadding >
870 AArch64::StackProbeMaxUnprobedStack) {
871 // STR XZR, [SP]
872 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui))
873 .addReg(AArch64::XZR)
874 .addReg(AArch64::SP)
875 .addImm(0)
876 .setMIFlags(MachineInstr::FrameSetup);
877 }
878 return;
879 }
880
881 // Emit a variable-length allocation probing loop.
882 // TODO: As an optimisation, the loop can be "unrolled" into a few parts,
883 // each of them guaranteed to adjust the stack by less than the probe size.
884 Register TargetReg = findScratchNonCalleeSaveRegister(&MBB);
885 assert(TargetReg != AArch64::NoRegister);
886 // SUB Xd, SP, AllocSize
887 emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII,
888 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI,
889 EmitCFI, InitialOffset);
890 if (RealignmentPadding) {
891 // AND Xn, Xn, 0b11111...0000
892 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), TargetReg)
893 .addReg(TargetReg, RegState::Kill)
894 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64))
895 .setMIFlags(MachineInstr::FrameSetup);
896 }
897
898 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC_VAR))
899 .addReg(TargetReg);
900 if (EmitCFI) {
901 // Set the CFA register back to SP.
902 unsigned Reg =
903 Subtarget.getRegisterInfo()->getDwarfRegNum(AArch64::SP, true);
904 unsigned CFIIndex =
905 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
906 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
907 .addCFIIndex(CFIIndex)
908 .setMIFlags(MachineInstr::FrameSetup);
909 }
910 if (RealignmentPadding)
911 AFI.setStackRealigned(true);
912 }
913
getRegisterOrZero(MCRegister Reg,bool HasSVE)914 static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) {
915 switch (Reg.id()) {
916 default:
917 // The called routine is expected to preserve r19-r28
918 // r29 and r30 are used as frame pointer and link register resp.
919 return 0;
920
921 // GPRs
922 #define CASE(n) \
923 case AArch64::W##n: \
924 case AArch64::X##n: \
925 return AArch64::X##n
926 CASE(0);
927 CASE(1);
928 CASE(2);
929 CASE(3);
930 CASE(4);
931 CASE(5);
932 CASE(6);
933 CASE(7);
934 CASE(8);
935 CASE(9);
936 CASE(10);
937 CASE(11);
938 CASE(12);
939 CASE(13);
940 CASE(14);
941 CASE(15);
942 CASE(16);
943 CASE(17);
944 CASE(18);
945 #undef CASE
946
947 // FPRs
948 #define CASE(n) \
949 case AArch64::B##n: \
950 case AArch64::H##n: \
951 case AArch64::S##n: \
952 case AArch64::D##n: \
953 case AArch64::Q##n: \
954 return HasSVE ? AArch64::Z##n : AArch64::Q##n
955 CASE(0);
956 CASE(1);
957 CASE(2);
958 CASE(3);
959 CASE(4);
960 CASE(5);
961 CASE(6);
962 CASE(7);
963 CASE(8);
964 CASE(9);
965 CASE(10);
966 CASE(11);
967 CASE(12);
968 CASE(13);
969 CASE(14);
970 CASE(15);
971 CASE(16);
972 CASE(17);
973 CASE(18);
974 CASE(19);
975 CASE(20);
976 CASE(21);
977 CASE(22);
978 CASE(23);
979 CASE(24);
980 CASE(25);
981 CASE(26);
982 CASE(27);
983 CASE(28);
984 CASE(29);
985 CASE(30);
986 CASE(31);
987 #undef CASE
988 }
989 }
990
emitZeroCallUsedRegs(BitVector RegsToZero,MachineBasicBlock & MBB) const991 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
992 MachineBasicBlock &MBB) const {
993 // Insertion point.
994 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
995
996 // Fake a debug loc.
997 DebugLoc DL;
998 if (MBBI != MBB.end())
999 DL = MBBI->getDebugLoc();
1000
1001 const MachineFunction &MF = *MBB.getParent();
1002 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
1003 const AArch64RegisterInfo &TRI = *STI.getRegisterInfo();
1004
1005 BitVector GPRsToZero(TRI.getNumRegs());
1006 BitVector FPRsToZero(TRI.getNumRegs());
1007 bool HasSVE = STI.hasSVE();
1008 for (MCRegister Reg : RegsToZero.set_bits()) {
1009 if (TRI.isGeneralPurposeRegister(MF, Reg)) {
1010 // For GPRs, we only care to clear out the 64-bit register.
1011 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
1012 GPRsToZero.set(XReg);
1013 } else if (AArch64InstrInfo::isFpOrNEON(Reg)) {
1014 // For FPRs,
1015 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
1016 FPRsToZero.set(XReg);
1017 }
1018 }
1019
1020 const AArch64InstrInfo &TII = *STI.getInstrInfo();
1021
1022 // Zero out GPRs.
1023 for (MCRegister Reg : GPRsToZero.set_bits())
1024 TII.buildClearRegister(Reg, MBB, MBBI, DL);
1025
1026 // Zero out FP/vector registers.
1027 for (MCRegister Reg : FPRsToZero.set_bits())
1028 TII.buildClearRegister(Reg, MBB, MBBI, DL);
1029
1030 if (HasSVE) {
1031 for (MCRegister PReg :
1032 {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4,
1033 AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9,
1034 AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14,
1035 AArch64::P15}) {
1036 if (RegsToZero[PReg])
1037 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg);
1038 }
1039 }
1040 }
1041
getLiveRegsForEntryMBB(LivePhysRegs & LiveRegs,const MachineBasicBlock & MBB)1042 static void getLiveRegsForEntryMBB(LivePhysRegs &LiveRegs,
1043 const MachineBasicBlock &MBB) {
1044 const MachineFunction *MF = MBB.getParent();
1045 LiveRegs.addLiveIns(MBB);
1046 // Mark callee saved registers as used so we will not choose them.
1047 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
1048 for (unsigned i = 0; CSRegs[i]; ++i)
1049 LiveRegs.addReg(CSRegs[i]);
1050 }
1051
1052 // Find a scratch register that we can use at the start of the prologue to
1053 // re-align the stack pointer. We avoid using callee-save registers since they
1054 // may appear to be free when this is called from canUseAsPrologue (during
1055 // shrink wrapping), but then no longer be free when this is called from
1056 // emitPrologue.
1057 //
1058 // FIXME: This is a bit conservative, since in the above case we could use one
1059 // of the callee-save registers as a scratch temp to re-align the stack pointer,
1060 // but we would then have to make sure that we were in fact saving at least one
1061 // callee-save register in the prologue, which is additional complexity that
1062 // doesn't seem worth the benefit.
findScratchNonCalleeSaveRegister(MachineBasicBlock * MBB)1063 static Register findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
1064 MachineFunction *MF = MBB->getParent();
1065
1066 // If MBB is an entry block, use X9 as the scratch register
1067 // preserve_none functions may be using X9 to pass arguments,
1068 // so prefer to pick an available register below.
1069 if (&MF->front() == MBB &&
1070 MF->getFunction().getCallingConv() != CallingConv::PreserveNone)
1071 return AArch64::X9;
1072
1073 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
1074 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
1075 LivePhysRegs LiveRegs(TRI);
1076 getLiveRegsForEntryMBB(LiveRegs, *MBB);
1077
1078 // Prefer X9 since it was historically used for the prologue scratch reg.
1079 const MachineRegisterInfo &MRI = MF->getRegInfo();
1080 if (LiveRegs.available(MRI, AArch64::X9))
1081 return AArch64::X9;
1082
1083 for (unsigned Reg : AArch64::GPR64RegClass) {
1084 if (LiveRegs.available(MRI, Reg))
1085 return Reg;
1086 }
1087 return AArch64::NoRegister;
1088 }
1089
canUseAsPrologue(const MachineBasicBlock & MBB) const1090 bool AArch64FrameLowering::canUseAsPrologue(
1091 const MachineBasicBlock &MBB) const {
1092 const MachineFunction *MF = MBB.getParent();
1093 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
1094 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
1095 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1096 const AArch64TargetLowering *TLI = Subtarget.getTargetLowering();
1097 const AArch64FunctionInfo *AFI = MF->getInfo<AArch64FunctionInfo>();
1098
1099 if (AFI->hasSwiftAsyncContext()) {
1100 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
1101 const MachineRegisterInfo &MRI = MF->getRegInfo();
1102 LivePhysRegs LiveRegs(TRI);
1103 getLiveRegsForEntryMBB(LiveRegs, MBB);
1104 // The StoreSwiftAsyncContext clobbers X16 and X17. Make sure they are
1105 // available.
1106 if (!LiveRegs.available(MRI, AArch64::X16) ||
1107 !LiveRegs.available(MRI, AArch64::X17))
1108 return false;
1109 }
1110
1111 // Certain stack probing sequences might clobber flags, then we can't use
1112 // the block as a prologue if the flags register is a live-in.
1113 if (MF->getInfo<AArch64FunctionInfo>()->hasStackProbing() &&
1114 MBB.isLiveIn(AArch64::NZCV))
1115 return false;
1116
1117 // Don't need a scratch register if we're not going to re-align the stack or
1118 // emit stack probes.
1119 if (!RegInfo->hasStackRealignment(*MF) && !TLI->hasInlineStackProbe(*MF))
1120 return true;
1121 // Otherwise, we can use any block as long as it has a scratch register
1122 // available.
1123 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
1124 }
1125
windowsRequiresStackProbe(MachineFunction & MF,uint64_t StackSizeInBytes)1126 static bool windowsRequiresStackProbe(MachineFunction &MF,
1127 uint64_t StackSizeInBytes) {
1128 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1129 const AArch64FunctionInfo &MFI = *MF.getInfo<AArch64FunctionInfo>();
1130 // TODO: When implementing stack protectors, take that into account
1131 // for the probe threshold.
1132 return Subtarget.isTargetWindows() && MFI.hasStackProbing() &&
1133 StackSizeInBytes >= uint64_t(MFI.getStackProbeSize());
1134 }
1135
needsWinCFI(const MachineFunction & MF)1136 static bool needsWinCFI(const MachineFunction &MF) {
1137 const Function &F = MF.getFunction();
1138 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
1139 F.needsUnwindTableEntry();
1140 }
1141
shouldCombineCSRLocalStackBump(MachineFunction & MF,uint64_t StackBumpBytes) const1142 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
1143 MachineFunction &MF, uint64_t StackBumpBytes) const {
1144 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1145 const MachineFrameInfo &MFI = MF.getFrameInfo();
1146 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1147 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1148 if (homogeneousPrologEpilog(MF))
1149 return false;
1150
1151 if (AFI->getLocalStackSize() == 0)
1152 return false;
1153
1154 // For WinCFI, if optimizing for size, prefer to not combine the stack bump
1155 // (to force a stp with predecrement) to match the packed unwind format,
1156 // provided that there actually are any callee saved registers to merge the
1157 // decrement with.
1158 // This is potentially marginally slower, but allows using the packed
1159 // unwind format for functions that both have a local area and callee saved
1160 // registers. Using the packed unwind format notably reduces the size of
1161 // the unwind info.
1162 if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 &&
1163 MF.getFunction().hasOptSize())
1164 return false;
1165
1166 // 512 is the maximum immediate for stp/ldp that will be used for
1167 // callee-save save/restores
1168 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
1169 return false;
1170
1171 if (MFI.hasVarSizedObjects())
1172 return false;
1173
1174 if (RegInfo->hasStackRealignment(MF))
1175 return false;
1176
1177 // This isn't strictly necessary, but it simplifies things a bit since the
1178 // current RedZone handling code assumes the SP is adjusted by the
1179 // callee-save save/restore code.
1180 if (canUseRedZone(MF))
1181 return false;
1182
1183 // When there is an SVE area on the stack, always allocate the
1184 // callee-saves and spills/locals separately.
1185 if (getSVEStackSize(MF))
1186 return false;
1187
1188 return true;
1189 }
1190
shouldCombineCSRLocalStackBumpInEpilogue(MachineBasicBlock & MBB,unsigned StackBumpBytes) const1191 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
1192 MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
1193 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
1194 return false;
1195
1196 if (MBB.empty())
1197 return true;
1198
1199 // Disable combined SP bump if the last instruction is an MTE tag store. It
1200 // is almost always better to merge SP adjustment into those instructions.
1201 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
1202 MachineBasicBlock::iterator Begin = MBB.begin();
1203 while (LastI != Begin) {
1204 --LastI;
1205 if (LastI->isTransient())
1206 continue;
1207 if (!LastI->getFlag(MachineInstr::FrameDestroy))
1208 break;
1209 }
1210 switch (LastI->getOpcode()) {
1211 case AArch64::STGloop:
1212 case AArch64::STZGloop:
1213 case AArch64::STGi:
1214 case AArch64::STZGi:
1215 case AArch64::ST2Gi:
1216 case AArch64::STZ2Gi:
1217 return false;
1218 default:
1219 return true;
1220 }
1221 llvm_unreachable("unreachable");
1222 }
1223
1224 // Given a load or a store instruction, generate an appropriate unwinding SEH
1225 // code on Windows.
InsertSEH(MachineBasicBlock::iterator MBBI,const TargetInstrInfo & TII,MachineInstr::MIFlag Flag)1226 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
1227 const TargetInstrInfo &TII,
1228 MachineInstr::MIFlag Flag) {
1229 unsigned Opc = MBBI->getOpcode();
1230 MachineBasicBlock *MBB = MBBI->getParent();
1231 MachineFunction &MF = *MBB->getParent();
1232 DebugLoc DL = MBBI->getDebugLoc();
1233 unsigned ImmIdx = MBBI->getNumOperands() - 1;
1234 int Imm = MBBI->getOperand(ImmIdx).getImm();
1235 MachineInstrBuilder MIB;
1236 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1237 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1238
1239 switch (Opc) {
1240 default:
1241 llvm_unreachable("No SEH Opcode for this instruction");
1242 case AArch64::LDPDpost:
1243 Imm = -Imm;
1244 [[fallthrough]];
1245 case AArch64::STPDpre: {
1246 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1247 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1248 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
1249 .addImm(Reg0)
1250 .addImm(Reg1)
1251 .addImm(Imm * 8)
1252 .setMIFlag(Flag);
1253 break;
1254 }
1255 case AArch64::LDPXpost:
1256 Imm = -Imm;
1257 [[fallthrough]];
1258 case AArch64::STPXpre: {
1259 Register Reg0 = MBBI->getOperand(1).getReg();
1260 Register Reg1 = MBBI->getOperand(2).getReg();
1261 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1262 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
1263 .addImm(Imm * 8)
1264 .setMIFlag(Flag);
1265 else
1266 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
1267 .addImm(RegInfo->getSEHRegNum(Reg0))
1268 .addImm(RegInfo->getSEHRegNum(Reg1))
1269 .addImm(Imm * 8)
1270 .setMIFlag(Flag);
1271 break;
1272 }
1273 case AArch64::LDRDpost:
1274 Imm = -Imm;
1275 [[fallthrough]];
1276 case AArch64::STRDpre: {
1277 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1278 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
1279 .addImm(Reg)
1280 .addImm(Imm)
1281 .setMIFlag(Flag);
1282 break;
1283 }
1284 case AArch64::LDRXpost:
1285 Imm = -Imm;
1286 [[fallthrough]];
1287 case AArch64::STRXpre: {
1288 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1289 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
1290 .addImm(Reg)
1291 .addImm(Imm)
1292 .setMIFlag(Flag);
1293 break;
1294 }
1295 case AArch64::STPDi:
1296 case AArch64::LDPDi: {
1297 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1298 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1299 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
1300 .addImm(Reg0)
1301 .addImm(Reg1)
1302 .addImm(Imm * 8)
1303 .setMIFlag(Flag);
1304 break;
1305 }
1306 case AArch64::STPXi:
1307 case AArch64::LDPXi: {
1308 Register Reg0 = MBBI->getOperand(0).getReg();
1309 Register Reg1 = MBBI->getOperand(1).getReg();
1310 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1311 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
1312 .addImm(Imm * 8)
1313 .setMIFlag(Flag);
1314 else
1315 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
1316 .addImm(RegInfo->getSEHRegNum(Reg0))
1317 .addImm(RegInfo->getSEHRegNum(Reg1))
1318 .addImm(Imm * 8)
1319 .setMIFlag(Flag);
1320 break;
1321 }
1322 case AArch64::STRXui:
1323 case AArch64::LDRXui: {
1324 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1325 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
1326 .addImm(Reg)
1327 .addImm(Imm * 8)
1328 .setMIFlag(Flag);
1329 break;
1330 }
1331 case AArch64::STRDui:
1332 case AArch64::LDRDui: {
1333 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1334 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
1335 .addImm(Reg)
1336 .addImm(Imm * 8)
1337 .setMIFlag(Flag);
1338 break;
1339 }
1340 case AArch64::STPQi:
1341 case AArch64::LDPQi: {
1342 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1343 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1344 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQP))
1345 .addImm(Reg0)
1346 .addImm(Reg1)
1347 .addImm(Imm * 16)
1348 .setMIFlag(Flag);
1349 break;
1350 }
1351 case AArch64::LDPQpost:
1352 Imm = -Imm;
1353 [[fallthrough]];
1354 case AArch64::STPQpre: {
1355 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1356 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1357 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQPX))
1358 .addImm(Reg0)
1359 .addImm(Reg1)
1360 .addImm(Imm * 16)
1361 .setMIFlag(Flag);
1362 break;
1363 }
1364 }
1365 auto I = MBB->insertAfter(MBBI, MIB);
1366 return I;
1367 }
1368
1369 // Fix up the SEH opcode associated with the save/restore instruction.
fixupSEHOpcode(MachineBasicBlock::iterator MBBI,unsigned LocalStackSize)1370 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
1371 unsigned LocalStackSize) {
1372 MachineOperand *ImmOpnd = nullptr;
1373 unsigned ImmIdx = MBBI->getNumOperands() - 1;
1374 switch (MBBI->getOpcode()) {
1375 default:
1376 llvm_unreachable("Fix the offset in the SEH instruction");
1377 case AArch64::SEH_SaveFPLR:
1378 case AArch64::SEH_SaveRegP:
1379 case AArch64::SEH_SaveReg:
1380 case AArch64::SEH_SaveFRegP:
1381 case AArch64::SEH_SaveFReg:
1382 case AArch64::SEH_SaveAnyRegQP:
1383 case AArch64::SEH_SaveAnyRegQPX:
1384 ImmOpnd = &MBBI->getOperand(ImmIdx);
1385 break;
1386 }
1387 if (ImmOpnd)
1388 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
1389 }
1390
requiresGetVGCall(MachineFunction & MF)1391 bool requiresGetVGCall(MachineFunction &MF) {
1392 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1393 return AFI->hasStreamingModeChanges() &&
1394 !MF.getSubtarget<AArch64Subtarget>().hasSVE();
1395 }
1396
requiresSaveVG(MachineFunction & MF)1397 static bool requiresSaveVG(MachineFunction &MF) {
1398 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1399 // For Darwin platforms we don't save VG for non-SVE functions, even if SME
1400 // is enabled with streaming mode changes.
1401 if (!AFI->hasStreamingModeChanges())
1402 return false;
1403 auto &ST = MF.getSubtarget<AArch64Subtarget>();
1404 if (ST.isTargetDarwin())
1405 return ST.hasSVE();
1406 return true;
1407 }
1408
isVGInstruction(MachineBasicBlock::iterator MBBI)1409 bool isVGInstruction(MachineBasicBlock::iterator MBBI) {
1410 unsigned Opc = MBBI->getOpcode();
1411 if (Opc == AArch64::CNTD_XPiI || Opc == AArch64::RDSVLI_XI ||
1412 Opc == AArch64::UBFMXri)
1413 return true;
1414
1415 if (requiresGetVGCall(*MBBI->getMF())) {
1416 if (Opc == AArch64::ORRXrr)
1417 return true;
1418
1419 if (Opc == AArch64::BL) {
1420 auto Op1 = MBBI->getOperand(0);
1421 return Op1.isSymbol() &&
1422 (StringRef(Op1.getSymbolName()) == "__arm_get_current_vg");
1423 }
1424 }
1425
1426 return false;
1427 }
1428
1429 // Convert callee-save register save/restore instruction to do stack pointer
1430 // decrement/increment to allocate/deallocate the callee-save stack area by
1431 // converting store/load to use pre/post increment version.
convertCalleeSaveRestoreToSPPrePostIncDec(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const TargetInstrInfo * TII,int CSStackSizeInc,bool NeedsWinCFI,bool * HasWinCFI,bool EmitCFI,MachineInstr::MIFlag FrameFlag=MachineInstr::FrameSetup,int CFAOffset=0)1432 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
1433 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
1434 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
1435 bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI,
1436 MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup,
1437 int CFAOffset = 0) {
1438 unsigned NewOpc;
1439
1440 // If the function contains streaming mode changes, we expect instructions
1441 // to calculate the value of VG before spilling. For locally-streaming
1442 // functions, we need to do this for both the streaming and non-streaming
1443 // vector length. Move past these instructions if necessary.
1444 MachineFunction &MF = *MBB.getParent();
1445 if (requiresSaveVG(MF))
1446 while (isVGInstruction(MBBI))
1447 ++MBBI;
1448
1449 switch (MBBI->getOpcode()) {
1450 default:
1451 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1452 case AArch64::STPXi:
1453 NewOpc = AArch64::STPXpre;
1454 break;
1455 case AArch64::STPDi:
1456 NewOpc = AArch64::STPDpre;
1457 break;
1458 case AArch64::STPQi:
1459 NewOpc = AArch64::STPQpre;
1460 break;
1461 case AArch64::STRXui:
1462 NewOpc = AArch64::STRXpre;
1463 break;
1464 case AArch64::STRDui:
1465 NewOpc = AArch64::STRDpre;
1466 break;
1467 case AArch64::STRQui:
1468 NewOpc = AArch64::STRQpre;
1469 break;
1470 case AArch64::LDPXi:
1471 NewOpc = AArch64::LDPXpost;
1472 break;
1473 case AArch64::LDPDi:
1474 NewOpc = AArch64::LDPDpost;
1475 break;
1476 case AArch64::LDPQi:
1477 NewOpc = AArch64::LDPQpost;
1478 break;
1479 case AArch64::LDRXui:
1480 NewOpc = AArch64::LDRXpost;
1481 break;
1482 case AArch64::LDRDui:
1483 NewOpc = AArch64::LDRDpost;
1484 break;
1485 case AArch64::LDRQui:
1486 NewOpc = AArch64::LDRQpost;
1487 break;
1488 }
1489 // Get rid of the SEH code associated with the old instruction.
1490 if (NeedsWinCFI) {
1491 auto SEH = std::next(MBBI);
1492 if (AArch64InstrInfo::isSEHInstruction(*SEH))
1493 SEH->eraseFromParent();
1494 }
1495
1496 TypeSize Scale = TypeSize::getFixed(1), Width = TypeSize::getFixed(0);
1497 int64_t MinOffset, MaxOffset;
1498 bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo(
1499 NewOpc, Scale, Width, MinOffset, MaxOffset);
1500 (void)Success;
1501 assert(Success && "unknown load/store opcode");
1502
1503 // If the first store isn't right where we want SP then we can't fold the
1504 // update in so create a normal arithmetic instruction instead.
1505 if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 ||
1506 CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) {
1507 // If we are destroying the frame, make sure we add the increment after the
1508 // last frame operation.
1509 if (FrameFlag == MachineInstr::FrameDestroy)
1510 ++MBBI;
1511 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1512 StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag,
1513 false, false, nullptr, EmitCFI,
1514 StackOffset::getFixed(CFAOffset));
1515
1516 return std::prev(MBBI);
1517 }
1518
1519 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1520 MIB.addReg(AArch64::SP, RegState::Define);
1521
1522 // Copy all operands other than the immediate offset.
1523 unsigned OpndIdx = 0;
1524 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
1525 ++OpndIdx)
1526 MIB.add(MBBI->getOperand(OpndIdx));
1527
1528 assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
1529 "Unexpected immediate offset in first/last callee-save save/restore "
1530 "instruction!");
1531 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
1532 "Unexpected base register in callee-save save/restore instruction!");
1533 assert(CSStackSizeInc % Scale == 0);
1534 MIB.addImm(CSStackSizeInc / (int)Scale);
1535
1536 MIB.setMIFlags(MBBI->getFlags());
1537 MIB.setMemRefs(MBBI->memoperands());
1538
1539 // Generate a new SEH code that corresponds to the new instruction.
1540 if (NeedsWinCFI) {
1541 *HasWinCFI = true;
1542 InsertSEH(*MIB, *TII, FrameFlag);
1543 }
1544
1545 if (EmitCFI) {
1546 unsigned CFIIndex = MF.addFrameInst(
1547 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc));
1548 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1549 .addCFIIndex(CFIIndex)
1550 .setMIFlags(FrameFlag);
1551 }
1552
1553 return std::prev(MBB.erase(MBBI));
1554 }
1555
1556 // Fixup callee-save register save/restore instructions to take into account
1557 // combined SP bump by adding the local stack size to the stack offsets.
fixupCalleeSaveRestoreStackOffset(MachineInstr & MI,uint64_t LocalStackSize,bool NeedsWinCFI,bool * HasWinCFI)1558 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
1559 uint64_t LocalStackSize,
1560 bool NeedsWinCFI,
1561 bool *HasWinCFI) {
1562 if (AArch64InstrInfo::isSEHInstruction(MI))
1563 return;
1564
1565 unsigned Opc = MI.getOpcode();
1566 unsigned Scale;
1567 switch (Opc) {
1568 case AArch64::STPXi:
1569 case AArch64::STRXui:
1570 case AArch64::STPDi:
1571 case AArch64::STRDui:
1572 case AArch64::LDPXi:
1573 case AArch64::LDRXui:
1574 case AArch64::LDPDi:
1575 case AArch64::LDRDui:
1576 Scale = 8;
1577 break;
1578 case AArch64::STPQi:
1579 case AArch64::STRQui:
1580 case AArch64::LDPQi:
1581 case AArch64::LDRQui:
1582 Scale = 16;
1583 break;
1584 default:
1585 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1586 }
1587
1588 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
1589 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
1590 "Unexpected base register in callee-save save/restore instruction!");
1591 // Last operand is immediate offset that needs fixing.
1592 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
1593 // All generated opcodes have scaled offsets.
1594 assert(LocalStackSize % Scale == 0);
1595 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
1596
1597 if (NeedsWinCFI) {
1598 *HasWinCFI = true;
1599 auto MBBI = std::next(MachineBasicBlock::iterator(MI));
1600 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
1601 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
1602 "Expecting a SEH instruction");
1603 fixupSEHOpcode(MBBI, LocalStackSize);
1604 }
1605 }
1606
isTargetWindows(const MachineFunction & MF)1607 static bool isTargetWindows(const MachineFunction &MF) {
1608 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
1609 }
1610
1611 // Convenience function to determine whether I is an SVE callee save.
IsSVECalleeSave(MachineBasicBlock::iterator I)1612 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
1613 switch (I->getOpcode()) {
1614 default:
1615 return false;
1616 case AArch64::PTRUE_C_B:
1617 case AArch64::LD1B_2Z_IMM:
1618 case AArch64::ST1B_2Z_IMM:
1619 case AArch64::STR_ZXI:
1620 case AArch64::STR_PXI:
1621 case AArch64::LDR_ZXI:
1622 case AArch64::LDR_PXI:
1623 return I->getFlag(MachineInstr::FrameSetup) ||
1624 I->getFlag(MachineInstr::FrameDestroy);
1625 }
1626 }
1627
emitShadowCallStackPrologue(const TargetInstrInfo & TII,MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool NeedsWinCFI,bool NeedsUnwindInfo)1628 static void emitShadowCallStackPrologue(const TargetInstrInfo &TII,
1629 MachineFunction &MF,
1630 MachineBasicBlock &MBB,
1631 MachineBasicBlock::iterator MBBI,
1632 const DebugLoc &DL, bool NeedsWinCFI,
1633 bool NeedsUnwindInfo) {
1634 // Shadow call stack prolog: str x30, [x18], #8
1635 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost))
1636 .addReg(AArch64::X18, RegState::Define)
1637 .addReg(AArch64::LR)
1638 .addReg(AArch64::X18)
1639 .addImm(8)
1640 .setMIFlag(MachineInstr::FrameSetup);
1641
1642 // This instruction also makes x18 live-in to the entry block.
1643 MBB.addLiveIn(AArch64::X18);
1644
1645 if (NeedsWinCFI)
1646 BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop))
1647 .setMIFlag(MachineInstr::FrameSetup);
1648
1649 if (NeedsUnwindInfo) {
1650 // Emit a CFI instruction that causes 8 to be subtracted from the value of
1651 // x18 when unwinding past this frame.
1652 static const char CFIInst[] = {
1653 dwarf::DW_CFA_val_expression,
1654 18, // register
1655 2, // length
1656 static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
1657 static_cast<char>(-8) & 0x7f, // addend (sleb128)
1658 };
1659 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
1660 nullptr, StringRef(CFIInst, sizeof(CFIInst))));
1661 BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION))
1662 .addCFIIndex(CFIIndex)
1663 .setMIFlag(MachineInstr::FrameSetup);
1664 }
1665 }
1666
emitShadowCallStackEpilogue(const TargetInstrInfo & TII,MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL)1667 static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII,
1668 MachineFunction &MF,
1669 MachineBasicBlock &MBB,
1670 MachineBasicBlock::iterator MBBI,
1671 const DebugLoc &DL) {
1672 // Shadow call stack epilog: ldr x30, [x18, #-8]!
1673 BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre))
1674 .addReg(AArch64::X18, RegState::Define)
1675 .addReg(AArch64::LR, RegState::Define)
1676 .addReg(AArch64::X18)
1677 .addImm(-8)
1678 .setMIFlag(MachineInstr::FrameDestroy);
1679
1680 if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF)) {
1681 unsigned CFIIndex =
1682 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18));
1683 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1684 .addCFIIndex(CFIIndex)
1685 .setMIFlags(MachineInstr::FrameDestroy);
1686 }
1687 }
1688
1689 // Define the current CFA rule to use the provided FP.
emitDefineCFAWithFP(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned FixedObject)1690 static void emitDefineCFAWithFP(MachineFunction &MF, MachineBasicBlock &MBB,
1691 MachineBasicBlock::iterator MBBI,
1692 const DebugLoc &DL, unsigned FixedObject) {
1693 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
1694 const AArch64RegisterInfo *TRI = STI.getRegisterInfo();
1695 const TargetInstrInfo *TII = STI.getInstrInfo();
1696 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1697
1698 const int OffsetToFirstCalleeSaveFromFP =
1699 AFI->getCalleeSaveBaseToFrameRecordOffset() -
1700 AFI->getCalleeSavedStackSize();
1701 Register FramePtr = TRI->getFrameRegister(MF);
1702 unsigned Reg = TRI->getDwarfRegNum(FramePtr, true);
1703 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1704 nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP));
1705 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1706 .addCFIIndex(CFIIndex)
1707 .setMIFlags(MachineInstr::FrameSetup);
1708 }
1709
1710 #ifndef NDEBUG
1711 /// Collect live registers from the end of \p MI's parent up to (including) \p
1712 /// MI in \p LiveRegs.
getLivePhysRegsUpTo(MachineInstr & MI,const TargetRegisterInfo & TRI,LivePhysRegs & LiveRegs)1713 static void getLivePhysRegsUpTo(MachineInstr &MI, const TargetRegisterInfo &TRI,
1714 LivePhysRegs &LiveRegs) {
1715
1716 MachineBasicBlock &MBB = *MI.getParent();
1717 LiveRegs.addLiveOuts(MBB);
1718 for (const MachineInstr &MI :
1719 reverse(make_range(MI.getIterator(), MBB.instr_end())))
1720 LiveRegs.stepBackward(MI);
1721 }
1722 #endif
1723
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const1724 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
1725 MachineBasicBlock &MBB) const {
1726 MachineBasicBlock::iterator MBBI = MBB.begin();
1727 const MachineFrameInfo &MFI = MF.getFrameInfo();
1728 const Function &F = MF.getFunction();
1729 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1730 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1731 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1732
1733 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1734 bool EmitCFI = AFI->needsDwarfUnwindInfo(MF);
1735 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
1736 bool HasFP = hasFP(MF);
1737 bool NeedsWinCFI = needsWinCFI(MF);
1738 bool HasWinCFI = false;
1739 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
1740
1741 MachineBasicBlock::iterator End = MBB.end();
1742 #ifndef NDEBUG
1743 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1744 // Collect live register from the end of MBB up to the start of the existing
1745 // frame setup instructions.
1746 MachineBasicBlock::iterator NonFrameStart = MBB.begin();
1747 while (NonFrameStart != End &&
1748 NonFrameStart->getFlag(MachineInstr::FrameSetup))
1749 ++NonFrameStart;
1750
1751 LivePhysRegs LiveRegs(*TRI);
1752 if (NonFrameStart != MBB.end()) {
1753 getLivePhysRegsUpTo(*NonFrameStart, *TRI, LiveRegs);
1754 // Ignore registers used for stack management for now.
1755 LiveRegs.removeReg(AArch64::SP);
1756 LiveRegs.removeReg(AArch64::X19);
1757 LiveRegs.removeReg(AArch64::FP);
1758 LiveRegs.removeReg(AArch64::LR);
1759
1760 // X0 will be clobbered by a call to __arm_get_current_vg in the prologue.
1761 // This is necessary to spill VG if required where SVE is unavailable, but
1762 // X0 is preserved around this call.
1763 if (requiresGetVGCall(MF))
1764 LiveRegs.removeReg(AArch64::X0);
1765 }
1766
1767 auto VerifyClobberOnExit = make_scope_exit([&]() {
1768 if (NonFrameStart == MBB.end())
1769 return;
1770 // Check if any of the newly instructions clobber any of the live registers.
1771 for (MachineInstr &MI :
1772 make_range(MBB.instr_begin(), NonFrameStart->getIterator())) {
1773 for (auto &Op : MI.operands())
1774 if (Op.isReg() && Op.isDef())
1775 assert(!LiveRegs.contains(Op.getReg()) &&
1776 "live register clobbered by inserted prologue instructions");
1777 }
1778 });
1779 #endif
1780
1781 bool IsFunclet = MBB.isEHFuncletEntry();
1782
1783 // At this point, we're going to decide whether or not the function uses a
1784 // redzone. In most cases, the function doesn't have a redzone so let's
1785 // assume that's false and set it to true in the case that there's a redzone.
1786 AFI->setHasRedZone(false);
1787
1788 // Debug location must be unknown since the first debug location is used
1789 // to determine the end of the prologue.
1790 DebugLoc DL;
1791
1792 const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
1793 if (MFnI.needsShadowCallStackPrologueEpilogue(MF))
1794 emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI,
1795 MFnI.needsDwarfUnwindInfo(MF));
1796
1797 if (MFnI.shouldSignReturnAddress(MF)) {
1798 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_PROLOGUE))
1799 .setMIFlag(MachineInstr::FrameSetup);
1800 if (NeedsWinCFI)
1801 HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR
1802 }
1803
1804 if (EmitCFI && MFnI.isMTETagged()) {
1805 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED))
1806 .setMIFlag(MachineInstr::FrameSetup);
1807 }
1808
1809 // We signal the presence of a Swift extended frame to external tools by
1810 // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple
1811 // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI
1812 // bits so that is still true.
1813 if (HasFP && AFI->hasSwiftAsyncContext()) {
1814 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1815 case SwiftAsyncFramePointerMode::DeploymentBased:
1816 if (Subtarget.swiftAsyncContextIsDynamicallySet()) {
1817 // The special symbol below is absolute and has a *value* that can be
1818 // combined with the frame pointer to signal an extended frame.
1819 BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16)
1820 .addExternalSymbol("swift_async_extendedFramePointerFlags",
1821 AArch64II::MO_GOT);
1822 if (NeedsWinCFI) {
1823 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1824 .setMIFlags(MachineInstr::FrameSetup);
1825 HasWinCFI = true;
1826 }
1827 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP)
1828 .addUse(AArch64::FP)
1829 .addUse(AArch64::X16)
1830 .addImm(Subtarget.isTargetILP32() ? 32 : 0);
1831 if (NeedsWinCFI) {
1832 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1833 .setMIFlags(MachineInstr::FrameSetup);
1834 HasWinCFI = true;
1835 }
1836 break;
1837 }
1838 [[fallthrough]];
1839
1840 case SwiftAsyncFramePointerMode::Always:
1841 // ORR x29, x29, #0x1000_0000_0000_0000
1842 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP)
1843 .addUse(AArch64::FP)
1844 .addImm(0x1100)
1845 .setMIFlag(MachineInstr::FrameSetup);
1846 if (NeedsWinCFI) {
1847 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1848 .setMIFlags(MachineInstr::FrameSetup);
1849 HasWinCFI = true;
1850 }
1851 break;
1852
1853 case SwiftAsyncFramePointerMode::Never:
1854 break;
1855 }
1856 }
1857
1858 // All calls are tail calls in GHC calling conv, and functions have no
1859 // prologue/epilogue.
1860 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1861 return;
1862
1863 // Set tagged base pointer to the requested stack slot.
1864 // Ideally it should match SP value after prologue.
1865 std::optional<int> TBPI = AFI->getTaggedBasePointerIndex();
1866 if (TBPI)
1867 AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI));
1868 else
1869 AFI->setTaggedBasePointerOffset(MFI.getStackSize());
1870
1871 const StackOffset &SVEStackSize = getSVEStackSize(MF);
1872
1873 // getStackSize() includes all the locals in its size calculation. We don't
1874 // include these locals when computing the stack size of a funclet, as they
1875 // are allocated in the parent's stack frame and accessed via the frame
1876 // pointer from the funclet. We only save the callee saved registers in the
1877 // funclet, which are really the callee saved registers of the parent
1878 // function, including the funclet.
1879 int64_t NumBytes =
1880 IsFunclet ? getWinEHFuncletFrameSize(MF) : MFI.getStackSize();
1881 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
1882 assert(!HasFP && "unexpected function without stack frame but with FP");
1883 assert(!SVEStackSize &&
1884 "unexpected function without stack frame but with SVE objects");
1885 // All of the stack allocation is for locals.
1886 AFI->setLocalStackSize(NumBytes);
1887 if (!NumBytes)
1888 return;
1889 // REDZONE: If the stack size is less than 128 bytes, we don't need
1890 // to actually allocate.
1891 if (canUseRedZone(MF)) {
1892 AFI->setHasRedZone(true);
1893 ++NumRedZoneFunctions;
1894 } else {
1895 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1896 StackOffset::getFixed(-NumBytes), TII,
1897 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1898 if (EmitCFI) {
1899 // Label used to tie together the PROLOG_LABEL and the MachineMoves.
1900 MCSymbol *FrameLabel = MF.getContext().createTempSymbol();
1901 // Encode the stack size of the leaf function.
1902 unsigned CFIIndex = MF.addFrameInst(
1903 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes));
1904 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1905 .addCFIIndex(CFIIndex)
1906 .setMIFlags(MachineInstr::FrameSetup);
1907 }
1908 }
1909
1910 if (NeedsWinCFI) {
1911 HasWinCFI = true;
1912 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1913 .setMIFlag(MachineInstr::FrameSetup);
1914 }
1915
1916 return;
1917 }
1918
1919 bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg());
1920 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1921
1922 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1923 // All of the remaining stack allocations are for locals.
1924 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1925 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1926 bool HomPrologEpilog = homogeneousPrologEpilog(MF);
1927 if (CombineSPBump) {
1928 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1929 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1930 StackOffset::getFixed(-NumBytes), TII,
1931 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI,
1932 EmitAsyncCFI);
1933 NumBytes = 0;
1934 } else if (HomPrologEpilog) {
1935 // Stack has been already adjusted.
1936 NumBytes -= PrologueSaveSize;
1937 } else if (PrologueSaveSize != 0) {
1938 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
1939 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI,
1940 EmitAsyncCFI);
1941 NumBytes -= PrologueSaveSize;
1942 }
1943 assert(NumBytes >= 0 && "Negative stack allocation size!?");
1944
1945 // Move past the saves of the callee-saved registers, fixing up the offsets
1946 // and pre-inc if we decided to combine the callee-save and local stack
1947 // pointer bump above.
1948 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1949 !IsSVECalleeSave(MBBI)) {
1950 if (CombineSPBump &&
1951 // Only fix-up frame-setup load/store instructions.
1952 (!requiresSaveVG(MF) || !isVGInstruction(MBBI)))
1953 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1954 NeedsWinCFI, &HasWinCFI);
1955 ++MBBI;
1956 }
1957
1958 // For funclets the FP belongs to the containing function.
1959 if (!IsFunclet && HasFP) {
1960 // Only set up FP if we actually need to.
1961 int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset();
1962
1963 if (CombineSPBump)
1964 FPOffset += AFI->getLocalStackSize();
1965
1966 if (AFI->hasSwiftAsyncContext()) {
1967 // Before we update the live FP we have to ensure there's a valid (or
1968 // null) asynchronous context in its slot just before FP in the frame
1969 // record, so store it now.
1970 const auto &Attrs = MF.getFunction().getAttributes();
1971 bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync);
1972 if (HaveInitialContext)
1973 MBB.addLiveIn(AArch64::X22);
1974 Register Reg = HaveInitialContext ? AArch64::X22 : AArch64::XZR;
1975 BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext))
1976 .addUse(Reg)
1977 .addUse(AArch64::SP)
1978 .addImm(FPOffset - 8)
1979 .setMIFlags(MachineInstr::FrameSetup);
1980 if (NeedsWinCFI) {
1981 // WinCFI and arm64e, where StoreSwiftAsyncContext is expanded
1982 // to multiple instructions, should be mutually-exclusive.
1983 assert(Subtarget.getTargetTriple().getArchName() != "arm64e");
1984 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1985 .setMIFlags(MachineInstr::FrameSetup);
1986 HasWinCFI = true;
1987 }
1988 }
1989
1990 if (HomPrologEpilog) {
1991 auto Prolog = MBBI;
1992 --Prolog;
1993 assert(Prolog->getOpcode() == AArch64::HOM_Prolog);
1994 Prolog->addOperand(MachineOperand::CreateImm(FPOffset));
1995 } else {
1996 // Issue sub fp, sp, FPOffset or
1997 // mov fp,sp when FPOffset is zero.
1998 // Note: All stores of callee-saved registers are marked as "FrameSetup".
1999 // This code marks the instruction(s) that set the FP also.
2000 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
2001 StackOffset::getFixed(FPOffset), TII,
2002 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
2003 if (NeedsWinCFI && HasWinCFI) {
2004 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
2005 .setMIFlag(MachineInstr::FrameSetup);
2006 // After setting up the FP, the rest of the prolog doesn't need to be
2007 // included in the SEH unwind info.
2008 NeedsWinCFI = false;
2009 }
2010 }
2011 if (EmitAsyncCFI)
2012 emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject);
2013 }
2014
2015 // Now emit the moves for whatever callee saved regs we have (including FP,
2016 // LR if those are saved). Frame instructions for SVE register are emitted
2017 // later, after the instruction which actually save SVE regs.
2018 if (EmitAsyncCFI)
2019 emitCalleeSavedGPRLocations(MBB, MBBI);
2020
2021 // Alignment is required for the parent frame, not the funclet
2022 const bool NeedsRealignment =
2023 NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF);
2024 const int64_t RealignmentPadding =
2025 (NeedsRealignment && MFI.getMaxAlign() > Align(16))
2026 ? MFI.getMaxAlign().value() - 16
2027 : 0;
2028
2029 if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) {
2030 uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4;
2031 if (NeedsWinCFI) {
2032 HasWinCFI = true;
2033 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
2034 // exceed this amount. We need to move at most 2^24 - 1 into x15.
2035 // This is at most two instructions, MOVZ follwed by MOVK.
2036 // TODO: Fix to use multiple stack alloc unwind codes for stacks
2037 // exceeding 256MB in size.
2038 if (NumBytes >= (1 << 28))
2039 report_fatal_error("Stack size cannot exceed 256MB for stack "
2040 "unwinding purposes");
2041
2042 uint32_t LowNumWords = NumWords & 0xFFFF;
2043 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
2044 .addImm(LowNumWords)
2045 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
2046 .setMIFlag(MachineInstr::FrameSetup);
2047 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2048 .setMIFlag(MachineInstr::FrameSetup);
2049 if ((NumWords & 0xFFFF0000) != 0) {
2050 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
2051 .addReg(AArch64::X15)
2052 .addImm((NumWords & 0xFFFF0000) >> 16) // High half
2053 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
2054 .setMIFlag(MachineInstr::FrameSetup);
2055 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2056 .setMIFlag(MachineInstr::FrameSetup);
2057 }
2058 } else {
2059 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
2060 .addImm(NumWords)
2061 .setMIFlags(MachineInstr::FrameSetup);
2062 }
2063
2064 const char *ChkStk = Subtarget.getChkStkName();
2065 switch (MF.getTarget().getCodeModel()) {
2066 case CodeModel::Tiny:
2067 case CodeModel::Small:
2068 case CodeModel::Medium:
2069 case CodeModel::Kernel:
2070 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
2071 .addExternalSymbol(ChkStk)
2072 .addReg(AArch64::X15, RegState::Implicit)
2073 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
2074 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
2075 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
2076 .setMIFlags(MachineInstr::FrameSetup);
2077 if (NeedsWinCFI) {
2078 HasWinCFI = true;
2079 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2080 .setMIFlag(MachineInstr::FrameSetup);
2081 }
2082 break;
2083 case CodeModel::Large:
2084 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
2085 .addReg(AArch64::X16, RegState::Define)
2086 .addExternalSymbol(ChkStk)
2087 .addExternalSymbol(ChkStk)
2088 .setMIFlags(MachineInstr::FrameSetup);
2089 if (NeedsWinCFI) {
2090 HasWinCFI = true;
2091 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2092 .setMIFlag(MachineInstr::FrameSetup);
2093 }
2094
2095 BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF)))
2096 .addReg(AArch64::X16, RegState::Kill)
2097 .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
2098 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
2099 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
2100 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
2101 .setMIFlags(MachineInstr::FrameSetup);
2102 if (NeedsWinCFI) {
2103 HasWinCFI = true;
2104 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2105 .setMIFlag(MachineInstr::FrameSetup);
2106 }
2107 break;
2108 }
2109
2110 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
2111 .addReg(AArch64::SP, RegState::Kill)
2112 .addReg(AArch64::X15, RegState::Kill)
2113 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
2114 .setMIFlags(MachineInstr::FrameSetup);
2115 if (NeedsWinCFI) {
2116 HasWinCFI = true;
2117 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
2118 .addImm(NumBytes)
2119 .setMIFlag(MachineInstr::FrameSetup);
2120 }
2121 NumBytes = 0;
2122
2123 if (RealignmentPadding > 0) {
2124 if (RealignmentPadding >= 4096) {
2125 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm))
2126 .addReg(AArch64::X16, RegState::Define)
2127 .addImm(RealignmentPadding)
2128 .setMIFlags(MachineInstr::FrameSetup);
2129 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXrx64), AArch64::X15)
2130 .addReg(AArch64::SP)
2131 .addReg(AArch64::X16, RegState::Kill)
2132 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0))
2133 .setMIFlag(MachineInstr::FrameSetup);
2134 } else {
2135 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15)
2136 .addReg(AArch64::SP)
2137 .addImm(RealignmentPadding)
2138 .addImm(0)
2139 .setMIFlag(MachineInstr::FrameSetup);
2140 }
2141
2142 uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
2143 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
2144 .addReg(AArch64::X15, RegState::Kill)
2145 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
2146 AFI->setStackRealigned(true);
2147
2148 // No need for SEH instructions here; if we're realigning the stack,
2149 // we've set a frame pointer and already finished the SEH prologue.
2150 assert(!NeedsWinCFI);
2151 }
2152 }
2153
2154 StackOffset SVECalleeSavesSize = {}, SVELocalsSize = SVEStackSize;
2155 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
2156
2157 // Process the SVE callee-saves to determine what space needs to be
2158 // allocated.
2159 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2160 LLVM_DEBUG(dbgs() << "SVECalleeSavedStackSize = " << CalleeSavedSize
2161 << "\n");
2162 // Find callee save instructions in frame.
2163 CalleeSavesBegin = MBBI;
2164 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
2165 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
2166 ++MBBI;
2167 CalleeSavesEnd = MBBI;
2168
2169 SVECalleeSavesSize = StackOffset::getScalable(CalleeSavedSize);
2170 SVELocalsSize = SVEStackSize - SVECalleeSavesSize;
2171 }
2172
2173 // Allocate space for the callee saves (if any).
2174 StackOffset CFAOffset =
2175 StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes);
2176 StackOffset LocalsSize = SVELocalsSize + StackOffset::getFixed(NumBytes);
2177 allocateStackSpace(MBB, CalleeSavesBegin, 0, SVECalleeSavesSize, false,
2178 nullptr, EmitAsyncCFI && !HasFP, CFAOffset,
2179 MFI.hasVarSizedObjects() || LocalsSize);
2180 CFAOffset += SVECalleeSavesSize;
2181
2182 if (EmitAsyncCFI)
2183 emitCalleeSavedSVELocations(MBB, CalleeSavesEnd);
2184
2185 // Allocate space for the rest of the frame including SVE locals. Align the
2186 // stack as necessary.
2187 assert(!(canUseRedZone(MF) && NeedsRealignment) &&
2188 "Cannot use redzone with stack realignment");
2189 if (!canUseRedZone(MF)) {
2190 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
2191 // the correct value here, as NumBytes also includes padding bytes,
2192 // which shouldn't be counted here.
2193 allocateStackSpace(MBB, CalleeSavesEnd, RealignmentPadding,
2194 SVELocalsSize + StackOffset::getFixed(NumBytes),
2195 NeedsWinCFI, &HasWinCFI, EmitAsyncCFI && !HasFP,
2196 CFAOffset, MFI.hasVarSizedObjects());
2197 }
2198
2199 // If we need a base pointer, set it up here. It's whatever the value of the
2200 // stack pointer is at this point. Any variable size objects will be allocated
2201 // after this, so we can still use the base pointer to reference locals.
2202 //
2203 // FIXME: Clarify FrameSetup flags here.
2204 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
2205 // needed.
2206 // For funclets the BP belongs to the containing function.
2207 if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
2208 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
2209 false);
2210 if (NeedsWinCFI) {
2211 HasWinCFI = true;
2212 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2213 .setMIFlag(MachineInstr::FrameSetup);
2214 }
2215 }
2216
2217 // The very last FrameSetup instruction indicates the end of prologue. Emit a
2218 // SEH opcode indicating the prologue end.
2219 if (NeedsWinCFI && HasWinCFI) {
2220 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
2221 .setMIFlag(MachineInstr::FrameSetup);
2222 }
2223
2224 // SEH funclets are passed the frame pointer in X1. If the parent
2225 // function uses the base register, then the base register is used
2226 // directly, and is not retrieved from X1.
2227 if (IsFunclet && F.hasPersonalityFn()) {
2228 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
2229 if (isAsynchronousEHPersonality(Per)) {
2230 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
2231 .addReg(AArch64::X1)
2232 .setMIFlag(MachineInstr::FrameSetup);
2233 MBB.addLiveIn(AArch64::X1);
2234 }
2235 }
2236
2237 if (EmitCFI && !EmitAsyncCFI) {
2238 if (HasFP) {
2239 emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject);
2240 } else {
2241 StackOffset TotalSize =
2242 SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize());
2243 unsigned CFIIndex = MF.addFrameInst(createDefCFA(
2244 *RegInfo, /*FrameReg=*/AArch64::SP, /*Reg=*/AArch64::SP, TotalSize,
2245 /*LastAdjustmentWasScalable=*/false));
2246 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2247 .addCFIIndex(CFIIndex)
2248 .setMIFlags(MachineInstr::FrameSetup);
2249 }
2250 emitCalleeSavedGPRLocations(MBB, MBBI);
2251 emitCalleeSavedSVELocations(MBB, MBBI);
2252 }
2253 }
2254
isFuncletReturnInstr(const MachineInstr & MI)2255 static bool isFuncletReturnInstr(const MachineInstr &MI) {
2256 switch (MI.getOpcode()) {
2257 default:
2258 return false;
2259 case AArch64::CATCHRET:
2260 case AArch64::CLEANUPRET:
2261 return true;
2262 }
2263 }
2264
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const2265 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
2266 MachineBasicBlock &MBB) const {
2267 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
2268 MachineFrameInfo &MFI = MF.getFrameInfo();
2269 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2270 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2271 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
2272 DebugLoc DL;
2273 bool NeedsWinCFI = needsWinCFI(MF);
2274 bool EmitCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
2275 bool HasWinCFI = false;
2276 bool IsFunclet = false;
2277
2278 if (MBB.end() != MBBI) {
2279 DL = MBBI->getDebugLoc();
2280 IsFunclet = isFuncletReturnInstr(*MBBI);
2281 }
2282
2283 MachineBasicBlock::iterator EpilogStartI = MBB.end();
2284
2285 auto FinishingTouches = make_scope_exit([&]() {
2286 if (AFI->shouldSignReturnAddress(MF)) {
2287 BuildMI(MBB, MBB.getFirstTerminator(), DL,
2288 TII->get(AArch64::PAUTH_EPILOGUE))
2289 .setMIFlag(MachineInstr::FrameDestroy);
2290 if (NeedsWinCFI)
2291 HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR
2292 }
2293 if (AFI->needsShadowCallStackPrologueEpilogue(MF))
2294 emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL);
2295 if (EmitCFI)
2296 emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator());
2297 if (HasWinCFI) {
2298 BuildMI(MBB, MBB.getFirstTerminator(), DL,
2299 TII->get(AArch64::SEH_EpilogEnd))
2300 .setMIFlag(MachineInstr::FrameDestroy);
2301 if (!MF.hasWinCFI())
2302 MF.setHasWinCFI(true);
2303 }
2304 if (NeedsWinCFI) {
2305 assert(EpilogStartI != MBB.end());
2306 if (!HasWinCFI)
2307 MBB.erase(EpilogStartI);
2308 }
2309 });
2310
2311 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
2312 : MFI.getStackSize();
2313
2314 // All calls are tail calls in GHC calling conv, and functions have no
2315 // prologue/epilogue.
2316 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2317 return;
2318
2319 // How much of the stack used by incoming arguments this function is expected
2320 // to restore in this particular epilogue.
2321 int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB);
2322 bool IsWin64 = Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(),
2323 MF.getFunction().isVarArg());
2324 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
2325
2326 int64_t AfterCSRPopSize = ArgumentStackToRestore;
2327 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
2328 // We cannot rely on the local stack size set in emitPrologue if the function
2329 // has funclets, as funclets have different local stack size requirements, and
2330 // the current value set in emitPrologue may be that of the containing
2331 // function.
2332 if (MF.hasEHFunclets())
2333 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
2334 if (homogeneousPrologEpilog(MF, &MBB)) {
2335 assert(!NeedsWinCFI);
2336 auto LastPopI = MBB.getFirstTerminator();
2337 if (LastPopI != MBB.begin()) {
2338 auto HomogeneousEpilog = std::prev(LastPopI);
2339 if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog)
2340 LastPopI = HomogeneousEpilog;
2341 }
2342
2343 // Adjust local stack
2344 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2345 StackOffset::getFixed(AFI->getLocalStackSize()), TII,
2346 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2347
2348 // SP has been already adjusted while restoring callee save regs.
2349 // We've bailed-out the case with adjusting SP for arguments.
2350 assert(AfterCSRPopSize == 0);
2351 return;
2352 }
2353 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
2354 // Assume we can't combine the last pop with the sp restore.
2355
2356 bool CombineAfterCSRBump = false;
2357 if (!CombineSPBump && PrologueSaveSize != 0) {
2358 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
2359 while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION ||
2360 AArch64InstrInfo::isSEHInstruction(*Pop))
2361 Pop = std::prev(Pop);
2362 // Converting the last ldp to a post-index ldp is valid only if the last
2363 // ldp's offset is 0.
2364 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
2365 // If the offset is 0 and the AfterCSR pop is not actually trying to
2366 // allocate more stack for arguments (in space that an untimely interrupt
2367 // may clobber), convert it to a post-index ldp.
2368 if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) {
2369 convertCalleeSaveRestoreToSPPrePostIncDec(
2370 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI,
2371 MachineInstr::FrameDestroy, PrologueSaveSize);
2372 } else {
2373 // If not, make sure to emit an add after the last ldp.
2374 // We're doing this by transfering the size to be restored from the
2375 // adjustment *before* the CSR pops to the adjustment *after* the CSR
2376 // pops.
2377 AfterCSRPopSize += PrologueSaveSize;
2378 CombineAfterCSRBump = true;
2379 }
2380 }
2381
2382 // Move past the restores of the callee-saved registers.
2383 // If we plan on combining the sp bump of the local stack size and the callee
2384 // save stack size, we might need to adjust the CSR save and restore offsets.
2385 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
2386 MachineBasicBlock::iterator Begin = MBB.begin();
2387 while (LastPopI != Begin) {
2388 --LastPopI;
2389 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
2390 IsSVECalleeSave(LastPopI)) {
2391 ++LastPopI;
2392 break;
2393 } else if (CombineSPBump)
2394 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
2395 NeedsWinCFI, &HasWinCFI);
2396 }
2397
2398 if (NeedsWinCFI) {
2399 // Note that there are cases where we insert SEH opcodes in the
2400 // epilogue when we had no SEH opcodes in the prologue. For
2401 // example, when there is no stack frame but there are stack
2402 // arguments. Insert the SEH_EpilogStart and remove it later if it
2403 // we didn't emit any SEH opcodes to avoid generating WinCFI for
2404 // functions that don't need it.
2405 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
2406 .setMIFlag(MachineInstr::FrameDestroy);
2407 EpilogStartI = LastPopI;
2408 --EpilogStartI;
2409 }
2410
2411 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) {
2412 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
2413 case SwiftAsyncFramePointerMode::DeploymentBased:
2414 // Avoid the reload as it is GOT relative, and instead fall back to the
2415 // hardcoded value below. This allows a mismatch between the OS and
2416 // application without immediately terminating on the difference.
2417 [[fallthrough]];
2418 case SwiftAsyncFramePointerMode::Always:
2419 // We need to reset FP to its untagged state on return. Bit 60 is
2420 // currently used to show the presence of an extended frame.
2421
2422 // BIC x29, x29, #0x1000_0000_0000_0000
2423 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri),
2424 AArch64::FP)
2425 .addUse(AArch64::FP)
2426 .addImm(0x10fe)
2427 .setMIFlag(MachineInstr::FrameDestroy);
2428 if (NeedsWinCFI) {
2429 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2430 .setMIFlags(MachineInstr::FrameDestroy);
2431 HasWinCFI = true;
2432 }
2433 break;
2434
2435 case SwiftAsyncFramePointerMode::Never:
2436 break;
2437 }
2438 }
2439
2440 const StackOffset &SVEStackSize = getSVEStackSize(MF);
2441
2442 // If there is a single SP update, insert it before the ret and we're done.
2443 if (CombineSPBump) {
2444 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
2445
2446 // When we are about to restore the CSRs, the CFA register is SP again.
2447 if (EmitCFI && hasFP(MF)) {
2448 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2449 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2450 unsigned CFIIndex =
2451 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes));
2452 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2453 .addCFIIndex(CFIIndex)
2454 .setMIFlags(MachineInstr::FrameDestroy);
2455 }
2456
2457 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2458 StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize),
2459 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI,
2460 &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes));
2461 return;
2462 }
2463
2464 NumBytes -= PrologueSaveSize;
2465 assert(NumBytes >= 0 && "Negative stack allocation size!?");
2466
2467 // Process the SVE callee-saves to determine what space needs to be
2468 // deallocated.
2469 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
2470 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
2471 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2472 RestoreBegin = std::prev(RestoreEnd);
2473 while (RestoreBegin != MBB.begin() &&
2474 IsSVECalleeSave(std::prev(RestoreBegin)))
2475 --RestoreBegin;
2476
2477 assert(IsSVECalleeSave(RestoreBegin) &&
2478 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
2479
2480 StackOffset CalleeSavedSizeAsOffset =
2481 StackOffset::getScalable(CalleeSavedSize);
2482 DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset;
2483 DeallocateAfter = CalleeSavedSizeAsOffset;
2484 }
2485
2486 // Deallocate the SVE area.
2487 if (SVEStackSize) {
2488 // If we have stack realignment or variable sized objects on the stack,
2489 // restore the stack pointer from the frame pointer prior to SVE CSR
2490 // restoration.
2491 if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) {
2492 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2493 // Set SP to start of SVE callee-save area from which they can
2494 // be reloaded. The code below will deallocate the stack space
2495 // space by moving FP -> SP.
2496 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
2497 StackOffset::getScalable(-CalleeSavedSize), TII,
2498 MachineInstr::FrameDestroy);
2499 }
2500 } else {
2501 if (AFI->getSVECalleeSavedStackSize()) {
2502 // Deallocate the non-SVE locals first before we can deallocate (and
2503 // restore callee saves) from the SVE area.
2504 emitFrameOffset(
2505 MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2506 StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy,
2507 false, false, nullptr, EmitCFI && !hasFP(MF),
2508 SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize));
2509 NumBytes = 0;
2510 }
2511
2512 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2513 DeallocateBefore, TII, MachineInstr::FrameDestroy, false,
2514 false, nullptr, EmitCFI && !hasFP(MF),
2515 SVEStackSize +
2516 StackOffset::getFixed(NumBytes + PrologueSaveSize));
2517
2518 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
2519 DeallocateAfter, TII, MachineInstr::FrameDestroy, false,
2520 false, nullptr, EmitCFI && !hasFP(MF),
2521 DeallocateAfter +
2522 StackOffset::getFixed(NumBytes + PrologueSaveSize));
2523 }
2524 if (EmitCFI)
2525 emitCalleeSavedSVERestores(MBB, RestoreEnd);
2526 }
2527
2528 if (!hasFP(MF)) {
2529 bool RedZone = canUseRedZone(MF);
2530 // If this was a redzone leaf function, we don't need to restore the
2531 // stack pointer (but we may need to pop stack args for fastcc).
2532 if (RedZone && AfterCSRPopSize == 0)
2533 return;
2534
2535 // Pop the local variables off the stack. If there are no callee-saved
2536 // registers, it means we are actually positioned at the terminator and can
2537 // combine stack increment for the locals and the stack increment for
2538 // callee-popped arguments into (possibly) a single instruction and be done.
2539 bool NoCalleeSaveRestore = PrologueSaveSize == 0;
2540 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
2541 if (NoCalleeSaveRestore)
2542 StackRestoreBytes += AfterCSRPopSize;
2543
2544 emitFrameOffset(
2545 MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2546 StackOffset::getFixed(StackRestoreBytes), TII,
2547 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2548 StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize));
2549
2550 // If we were able to combine the local stack pop with the argument pop,
2551 // then we're done.
2552 if (NoCalleeSaveRestore || AfterCSRPopSize == 0) {
2553 return;
2554 }
2555
2556 NumBytes = 0;
2557 }
2558
2559 // Restore the original stack pointer.
2560 // FIXME: Rather than doing the math here, we should instead just use
2561 // non-post-indexed loads for the restores if we aren't actually going to
2562 // be able to save any instructions.
2563 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
2564 emitFrameOffset(
2565 MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
2566 StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()),
2567 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2568 } else if (NumBytes)
2569 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2570 StackOffset::getFixed(NumBytes), TII,
2571 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2572
2573 // When we are about to restore the CSRs, the CFA register is SP again.
2574 if (EmitCFI && hasFP(MF)) {
2575 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2576 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2577 unsigned CFIIndex = MF.addFrameInst(
2578 MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize));
2579 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2580 .addCFIIndex(CFIIndex)
2581 .setMIFlags(MachineInstr::FrameDestroy);
2582 }
2583
2584 // This must be placed after the callee-save restore code because that code
2585 // assumes the SP is at the same location as it was after the callee-save save
2586 // code in the prologue.
2587 if (AfterCSRPopSize) {
2588 assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an "
2589 "interrupt may have clobbered");
2590
2591 emitFrameOffset(
2592 MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2593 StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy,
2594 false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2595 StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0));
2596 }
2597 }
2598
enableCFIFixup(MachineFunction & MF) const2599 bool AArch64FrameLowering::enableCFIFixup(MachineFunction &MF) const {
2600 return TargetFrameLowering::enableCFIFixup(MF) &&
2601 MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF);
2602 }
2603
2604 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
2605 /// debug info. It's the same as what we use for resolving the code-gen
2606 /// references for now. FIXME: This can go wrong when references are
2607 /// SP-relative and simple call frames aren't used.
2608 StackOffset
getFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg) const2609 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
2610 Register &FrameReg) const {
2611 return resolveFrameIndexReference(
2612 MF, FI, FrameReg,
2613 /*PreferFP=*/
2614 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress) ||
2615 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemTag),
2616 /*ForSimm=*/false);
2617 }
2618
2619 StackOffset
getFrameIndexReferenceFromSP(const MachineFunction & MF,int FI) const2620 AArch64FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF,
2621 int FI) const {
2622 // This function serves to provide a comparable offset from a single reference
2623 // point (the value of SP at function entry) that can be used for analysis,
2624 // e.g. the stack-frame-layout analysis pass. It is not guaranteed to be
2625 // correct for all objects in the presence of VLA-area objects or dynamic
2626 // stack re-alignment.
2627
2628 const auto &MFI = MF.getFrameInfo();
2629
2630 int64_t ObjectOffset = MFI.getObjectOffset(FI);
2631 StackOffset SVEStackSize = getSVEStackSize(MF);
2632
2633 // For VLA-area objects, just emit an offset at the end of the stack frame.
2634 // Whilst not quite correct, these objects do live at the end of the frame and
2635 // so it is more useful for analysis for the offset to reflect this.
2636 if (MFI.isVariableSizedObjectIndex(FI)) {
2637 return StackOffset::getFixed(-((int64_t)MFI.getStackSize())) - SVEStackSize;
2638 }
2639
2640 // This is correct in the absence of any SVE stack objects.
2641 if (!SVEStackSize)
2642 return StackOffset::getFixed(ObjectOffset - getOffsetOfLocalArea());
2643
2644 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2645 if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
2646 return StackOffset::get(-((int64_t)AFI->getCalleeSavedStackSize()),
2647 ObjectOffset);
2648 }
2649
2650 bool IsFixed = MFI.isFixedObjectIndex(FI);
2651 bool IsCSR =
2652 !IsFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2653
2654 StackOffset ScalableOffset = {};
2655 if (!IsFixed && !IsCSR)
2656 ScalableOffset = -SVEStackSize;
2657
2658 return StackOffset::getFixed(ObjectOffset) + ScalableOffset;
2659 }
2660
2661 StackOffset
getNonLocalFrameIndexReference(const MachineFunction & MF,int FI) const2662 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF,
2663 int FI) const {
2664 return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI));
2665 }
2666
getFPOffset(const MachineFunction & MF,int64_t ObjectOffset)2667 static StackOffset getFPOffset(const MachineFunction &MF,
2668 int64_t ObjectOffset) {
2669 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2670 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2671 const Function &F = MF.getFunction();
2672 bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg());
2673 unsigned FixedObject =
2674 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
2675 int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
2676 int64_t FPAdjust =
2677 CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
2678 return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
2679 }
2680
getStackOffset(const MachineFunction & MF,int64_t ObjectOffset)2681 static StackOffset getStackOffset(const MachineFunction &MF,
2682 int64_t ObjectOffset) {
2683 const auto &MFI = MF.getFrameInfo();
2684 return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
2685 }
2686
2687 // TODO: This function currently does not work for scalable vectors.
getSEHFrameIndexOffset(const MachineFunction & MF,int FI) const2688 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
2689 int FI) const {
2690 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2691 MF.getSubtarget().getRegisterInfo());
2692 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
2693 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
2694 ? getFPOffset(MF, ObjectOffset).getFixed()
2695 : getStackOffset(MF, ObjectOffset).getFixed();
2696 }
2697
resolveFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg,bool PreferFP,bool ForSimm) const2698 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
2699 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
2700 bool ForSimm) const {
2701 const auto &MFI = MF.getFrameInfo();
2702 int64_t ObjectOffset = MFI.getObjectOffset(FI);
2703 bool isFixed = MFI.isFixedObjectIndex(FI);
2704 bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector;
2705 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
2706 PreferFP, ForSimm);
2707 }
2708
resolveFrameOffsetReference(const MachineFunction & MF,int64_t ObjectOffset,bool isFixed,bool isSVE,Register & FrameReg,bool PreferFP,bool ForSimm) const2709 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
2710 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
2711 Register &FrameReg, bool PreferFP, bool ForSimm) const {
2712 const auto &MFI = MF.getFrameInfo();
2713 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2714 MF.getSubtarget().getRegisterInfo());
2715 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2716 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2717
2718 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
2719 int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
2720 bool isCSR =
2721 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2722
2723 const StackOffset &SVEStackSize = getSVEStackSize(MF);
2724
2725 // Use frame pointer to reference fixed objects. Use it for locals if
2726 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
2727 // reliable as a base). Make sure useFPForScavengingIndex() does the
2728 // right thing for the emergency spill slot.
2729 bool UseFP = false;
2730 if (AFI->hasStackFrame() && !isSVE) {
2731 // We shouldn't prefer using the FP to access fixed-sized stack objects when
2732 // there are scalable (SVE) objects in between the FP and the fixed-sized
2733 // objects.
2734 PreferFP &= !SVEStackSize;
2735
2736 // Note: Keeping the following as multiple 'if' statements rather than
2737 // merging to a single expression for readability.
2738 //
2739 // Argument access should always use the FP.
2740 if (isFixed) {
2741 UseFP = hasFP(MF);
2742 } else if (isCSR && RegInfo->hasStackRealignment(MF)) {
2743 // References to the CSR area must use FP if we're re-aligning the stack
2744 // since the dynamically-sized alignment padding is between the SP/BP and
2745 // the CSR area.
2746 assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
2747 UseFP = true;
2748 } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) {
2749 // If the FPOffset is negative and we're producing a signed immediate, we
2750 // have to keep in mind that the available offset range for negative
2751 // offsets is smaller than for positive ones. If an offset is available
2752 // via the FP and the SP, use whichever is closest.
2753 bool FPOffsetFits = !ForSimm || FPOffset >= -256;
2754 PreferFP |= Offset > -FPOffset && !SVEStackSize;
2755
2756 if (MFI.hasVarSizedObjects()) {
2757 // If we have variable sized objects, we can use either FP or BP, as the
2758 // SP offset is unknown. We can use the base pointer if we have one and
2759 // FP is not preferred. If not, we're stuck with using FP.
2760 bool CanUseBP = RegInfo->hasBasePointer(MF);
2761 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
2762 UseFP = PreferFP;
2763 else if (!CanUseBP) // Can't use BP. Forced to use FP.
2764 UseFP = true;
2765 // else we can use BP and FP, but the offset from FP won't fit.
2766 // That will make us scavenge registers which we can probably avoid by
2767 // using BP. If it won't fit for BP either, we'll scavenge anyway.
2768 } else if (FPOffset >= 0) {
2769 // Use SP or FP, whichever gives us the best chance of the offset
2770 // being in range for direct access. If the FPOffset is positive,
2771 // that'll always be best, as the SP will be even further away.
2772 UseFP = true;
2773 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
2774 // Funclets access the locals contained in the parent's stack frame
2775 // via the frame pointer, so we have to use the FP in the parent
2776 // function.
2777 (void) Subtarget;
2778 assert(Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(),
2779 MF.getFunction().isVarArg()) &&
2780 "Funclets should only be present on Win64");
2781 UseFP = true;
2782 } else {
2783 // We have the choice between FP and (SP or BP).
2784 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
2785 UseFP = true;
2786 }
2787 }
2788 }
2789
2790 assert(
2791 ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) &&
2792 "In the presence of dynamic stack pointer realignment, "
2793 "non-argument/CSR objects cannot be accessed through the frame pointer");
2794
2795 if (isSVE) {
2796 StackOffset FPOffset =
2797 StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
2798 StackOffset SPOffset =
2799 SVEStackSize +
2800 StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
2801 ObjectOffset);
2802 // Always use the FP for SVE spills if available and beneficial.
2803 if (hasFP(MF) && (SPOffset.getFixed() ||
2804 FPOffset.getScalable() < SPOffset.getScalable() ||
2805 RegInfo->hasStackRealignment(MF))) {
2806 FrameReg = RegInfo->getFrameRegister(MF);
2807 return FPOffset;
2808 }
2809
2810 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
2811 : (unsigned)AArch64::SP;
2812 return SPOffset;
2813 }
2814
2815 StackOffset ScalableOffset = {};
2816 if (UseFP && !(isFixed || isCSR))
2817 ScalableOffset = -SVEStackSize;
2818 if (!UseFP && (isFixed || isCSR))
2819 ScalableOffset = SVEStackSize;
2820
2821 if (UseFP) {
2822 FrameReg = RegInfo->getFrameRegister(MF);
2823 return StackOffset::getFixed(FPOffset) + ScalableOffset;
2824 }
2825
2826 // Use the base pointer if we have one.
2827 if (RegInfo->hasBasePointer(MF))
2828 FrameReg = RegInfo->getBaseRegister();
2829 else {
2830 assert(!MFI.hasVarSizedObjects() &&
2831 "Can't use SP when we have var sized objects.");
2832 FrameReg = AArch64::SP;
2833 // If we're using the red zone for this function, the SP won't actually
2834 // be adjusted, so the offsets will be negative. They're also all
2835 // within range of the signed 9-bit immediate instructions.
2836 if (canUseRedZone(MF))
2837 Offset -= AFI->getLocalStackSize();
2838 }
2839
2840 return StackOffset::getFixed(Offset) + ScalableOffset;
2841 }
2842
getPrologueDeath(MachineFunction & MF,unsigned Reg)2843 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
2844 // Do not set a kill flag on values that are also marked as live-in. This
2845 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
2846 // callee saved registers.
2847 // Omitting the kill flags is conservatively correct even if the live-in
2848 // is not used after all.
2849 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
2850 return getKillRegState(!IsLiveIn);
2851 }
2852
produceCompactUnwindFrame(MachineFunction & MF)2853 static bool produceCompactUnwindFrame(MachineFunction &MF) {
2854 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2855 AttributeList Attrs = MF.getFunction().getAttributes();
2856 return Subtarget.isTargetMachO() &&
2857 !(Subtarget.getTargetLowering()->supportSwiftError() &&
2858 Attrs.hasAttrSomewhere(Attribute::SwiftError)) &&
2859 MF.getFunction().getCallingConv() != CallingConv::SwiftTail &&
2860 !requiresSaveVG(MF);
2861 }
2862
invalidateWindowsRegisterPairing(unsigned Reg1,unsigned Reg2,bool NeedsWinCFI,bool IsFirst,const TargetRegisterInfo * TRI)2863 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
2864 bool NeedsWinCFI, bool IsFirst,
2865 const TargetRegisterInfo *TRI) {
2866 // If we are generating register pairs for a Windows function that requires
2867 // EH support, then pair consecutive registers only. There are no unwind
2868 // opcodes for saves/restores of non-consectuve register pairs.
2869 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2870 // save_lrpair.
2871 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2872
2873 if (Reg2 == AArch64::FP)
2874 return true;
2875 if (!NeedsWinCFI)
2876 return false;
2877 if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1)
2878 return false;
2879 // If pairing a GPR with LR, the pair can be described by the save_lrpair
2880 // opcode. If this is the first register pair, it would end up with a
2881 // predecrement, but there's no save_lrpair_x opcode, so we can only do this
2882 // if LR is paired with something else than the first register.
2883 // The save_lrpair opcode requires the first register to be an odd one.
2884 if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
2885 (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
2886 return false;
2887 return true;
2888 }
2889
2890 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2891 /// WindowsCFI requires that only consecutive registers can be paired.
2892 /// LR and FP need to be allocated together when the frame needs to save
2893 /// the frame-record. This means any other register pairing with LR is invalid.
invalidateRegisterPairing(unsigned Reg1,unsigned Reg2,bool UsesWinAAPCS,bool NeedsWinCFI,bool NeedsFrameRecord,bool IsFirst,const TargetRegisterInfo * TRI)2894 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
2895 bool UsesWinAAPCS, bool NeedsWinCFI,
2896 bool NeedsFrameRecord, bool IsFirst,
2897 const TargetRegisterInfo *TRI) {
2898 if (UsesWinAAPCS)
2899 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst,
2900 TRI);
2901
2902 // If we need to store the frame record, don't pair any register
2903 // with LR other than FP.
2904 if (NeedsFrameRecord)
2905 return Reg2 == AArch64::LR;
2906
2907 return false;
2908 }
2909
2910 namespace {
2911
2912 struct RegPairInfo {
2913 unsigned Reg1 = AArch64::NoRegister;
2914 unsigned Reg2 = AArch64::NoRegister;
2915 int FrameIdx;
2916 int Offset;
2917 enum RegType { GPR, FPR64, FPR128, PPR, ZPR, VG } Type;
2918
2919 RegPairInfo() = default;
2920
isPaired__anonc2fd70990411::RegPairInfo2921 bool isPaired() const { return Reg2 != AArch64::NoRegister; }
2922
getScale__anonc2fd70990411::RegPairInfo2923 unsigned getScale() const {
2924 switch (Type) {
2925 case PPR:
2926 return 2;
2927 case GPR:
2928 case FPR64:
2929 case VG:
2930 return 8;
2931 case ZPR:
2932 case FPR128:
2933 return 16;
2934 }
2935 llvm_unreachable("Unsupported type");
2936 }
2937
isScalable__anonc2fd70990411::RegPairInfo2938 bool isScalable() const { return Type == PPR || Type == ZPR; }
2939 };
2940
2941 } // end anonymous namespace
2942
computeCalleeSaveRegisterPairs(MachineFunction & MF,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI,SmallVectorImpl<RegPairInfo> & RegPairs,bool NeedsFrameRecord)2943 static void computeCalleeSaveRegisterPairs(
2944 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI,
2945 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
2946 bool NeedsFrameRecord) {
2947
2948 if (CSI.empty())
2949 return;
2950
2951 bool IsWindows = isTargetWindows(MF);
2952 bool NeedsWinCFI = needsWinCFI(MF);
2953 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2954 MachineFrameInfo &MFI = MF.getFrameInfo();
2955 CallingConv::ID CC = MF.getFunction().getCallingConv();
2956 unsigned Count = CSI.size();
2957 (void)CC;
2958 // MachO's compact unwind format relies on all registers being stored in
2959 // pairs.
2960 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2961 CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS ||
2962 CC == CallingConv::Win64 || (Count & 1) == 0) &&
2963 "Odd number of callee-saved regs to spill!");
2964 int ByteOffset = AFI->getCalleeSavedStackSize();
2965 int StackFillDir = -1;
2966 int RegInc = 1;
2967 unsigned FirstReg = 0;
2968 if (NeedsWinCFI) {
2969 // For WinCFI, fill the stack from the bottom up.
2970 ByteOffset = 0;
2971 StackFillDir = 1;
2972 // As the CSI array is reversed to match PrologEpilogInserter, iterate
2973 // backwards, to pair up registers starting from lower numbered registers.
2974 RegInc = -1;
2975 FirstReg = Count - 1;
2976 }
2977 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
2978 bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace();
2979 Register LastReg = 0;
2980
2981 // When iterating backwards, the loop condition relies on unsigned wraparound.
2982 for (unsigned i = FirstReg; i < Count; i += RegInc) {
2983 RegPairInfo RPI;
2984 RPI.Reg1 = CSI[i].getReg();
2985
2986 if (AArch64::GPR64RegClass.contains(RPI.Reg1))
2987 RPI.Type = RegPairInfo::GPR;
2988 else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
2989 RPI.Type = RegPairInfo::FPR64;
2990 else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
2991 RPI.Type = RegPairInfo::FPR128;
2992 else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
2993 RPI.Type = RegPairInfo::ZPR;
2994 else if (AArch64::PPRRegClass.contains(RPI.Reg1))
2995 RPI.Type = RegPairInfo::PPR;
2996 else if (RPI.Reg1 == AArch64::VG)
2997 RPI.Type = RegPairInfo::VG;
2998 else
2999 llvm_unreachable("Unsupported register class.");
3000
3001 // Add the stack hazard size as we transition from GPR->FPR CSRs.
3002 if (AFI->hasStackHazardSlotIndex() &&
3003 (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) &&
3004 AArch64InstrInfo::isFpOrNEON(RPI.Reg1))
3005 ByteOffset += StackFillDir * StackHazardSize;
3006 LastReg = RPI.Reg1;
3007
3008 // Add the next reg to the pair if it is in the same register class.
3009 if (unsigned(i + RegInc) < Count && !AFI->hasStackHazardSlotIndex()) {
3010 Register NextReg = CSI[i + RegInc].getReg();
3011 bool IsFirst = i == FirstReg;
3012 switch (RPI.Type) {
3013 case RegPairInfo::GPR:
3014 if (AArch64::GPR64RegClass.contains(NextReg) &&
3015 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows,
3016 NeedsWinCFI, NeedsFrameRecord, IsFirst,
3017 TRI))
3018 RPI.Reg2 = NextReg;
3019 break;
3020 case RegPairInfo::FPR64:
3021 if (AArch64::FPR64RegClass.contains(NextReg) &&
3022 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
3023 IsFirst, TRI))
3024 RPI.Reg2 = NextReg;
3025 break;
3026 case RegPairInfo::FPR128:
3027 if (AArch64::FPR128RegClass.contains(NextReg))
3028 RPI.Reg2 = NextReg;
3029 break;
3030 case RegPairInfo::PPR:
3031 break;
3032 case RegPairInfo::ZPR:
3033 if (AFI->getPredicateRegForFillSpill() != 0)
3034 if (((RPI.Reg1 - AArch64::Z0) & 1) == 0 && (NextReg == RPI.Reg1 + 1))
3035 RPI.Reg2 = NextReg;
3036 break;
3037 case RegPairInfo::VG:
3038 break;
3039 }
3040 }
3041
3042 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
3043 // list to come in sorted by frame index so that we can issue the store
3044 // pair instructions directly. Assert if we see anything otherwise.
3045 //
3046 // The order of the registers in the list is controlled by
3047 // getCalleeSavedRegs(), so they will always be in-order, as well.
3048 assert((!RPI.isPaired() ||
3049 (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
3050 "Out of order callee saved regs!");
3051
3052 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
3053 RPI.Reg1 == AArch64::LR) &&
3054 "FrameRecord must be allocated together with LR");
3055
3056 // Windows AAPCS has FP and LR reversed.
3057 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
3058 RPI.Reg2 == AArch64::LR) &&
3059 "FrameRecord must be allocated together with LR");
3060
3061 // MachO's compact unwind format relies on all registers being stored in
3062 // adjacent register pairs.
3063 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
3064 CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS ||
3065 CC == CallingConv::Win64 ||
3066 (RPI.isPaired() &&
3067 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
3068 RPI.Reg1 + 1 == RPI.Reg2))) &&
3069 "Callee-save registers not saved as adjacent register pair!");
3070
3071 RPI.FrameIdx = CSI[i].getFrameIdx();
3072 if (NeedsWinCFI &&
3073 RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
3074 RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
3075 int Scale = RPI.getScale();
3076
3077 int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
3078 assert(OffsetPre % Scale == 0);
3079
3080 if (RPI.isScalable())
3081 ScalableByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
3082 else
3083 ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
3084
3085 // Swift's async context is directly before FP, so allocate an extra
3086 // 8 bytes for it.
3087 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
3088 ((!IsWindows && RPI.Reg2 == AArch64::FP) ||
3089 (IsWindows && RPI.Reg2 == AArch64::LR)))
3090 ByteOffset += StackFillDir * 8;
3091
3092 // Round up size of non-pair to pair size if we need to pad the
3093 // callee-save area to ensure 16-byte alignment.
3094 if (NeedGapToAlignStack && !NeedsWinCFI && !RPI.isScalable() &&
3095 RPI.Type != RegPairInfo::FPR128 && !RPI.isPaired() &&
3096 ByteOffset % 16 != 0) {
3097 ByteOffset += 8 * StackFillDir;
3098 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
3099 // A stack frame with a gap looks like this, bottom up:
3100 // d9, d8. x21, gap, x20, x19.
3101 // Set extra alignment on the x21 object to create the gap above it.
3102 MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
3103 NeedGapToAlignStack = false;
3104 }
3105
3106 int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
3107 assert(OffsetPost % Scale == 0);
3108 // If filling top down (default), we want the offset after incrementing it.
3109 // If filling bottom up (WinCFI) we need the original offset.
3110 int Offset = NeedsWinCFI ? OffsetPre : OffsetPost;
3111
3112 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
3113 // Swift context can directly precede FP.
3114 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
3115 ((!IsWindows && RPI.Reg2 == AArch64::FP) ||
3116 (IsWindows && RPI.Reg2 == AArch64::LR)))
3117 Offset += 8;
3118 RPI.Offset = Offset / Scale;
3119
3120 assert((!RPI.isPaired() ||
3121 (!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
3122 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
3123 "Offset out of bounds for LDP/STP immediate");
3124
3125 // Save the offset to frame record so that the FP register can point to the
3126 // innermost frame record (spilled FP and LR registers).
3127 if (NeedsFrameRecord &&
3128 ((!IsWindows && RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
3129 (IsWindows && RPI.Reg1 == AArch64::FP && RPI.Reg2 == AArch64::LR)))
3130 AFI->setCalleeSaveBaseToFrameRecordOffset(Offset);
3131
3132 RegPairs.push_back(RPI);
3133 if (RPI.isPaired())
3134 i += RegInc;
3135 }
3136 if (NeedsWinCFI) {
3137 // If we need an alignment gap in the stack, align the topmost stack
3138 // object. A stack frame with a gap looks like this, bottom up:
3139 // x19, d8. d9, gap.
3140 // Set extra alignment on the topmost stack object (the first element in
3141 // CSI, which goes top down), to create the gap above it.
3142 if (AFI->hasCalleeSaveStackFreeSpace())
3143 MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
3144 // We iterated bottom up over the registers; flip RegPairs back to top
3145 // down order.
3146 std::reverse(RegPairs.begin(), RegPairs.end());
3147 }
3148 }
3149
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const3150 bool AArch64FrameLowering::spillCalleeSavedRegisters(
3151 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
3152 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
3153 MachineFunction &MF = *MBB.getParent();
3154 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3155 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3156 bool NeedsWinCFI = needsWinCFI(MF);
3157 DebugLoc DL;
3158 SmallVector<RegPairInfo, 8> RegPairs;
3159
3160 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
3161
3162 MachineRegisterInfo &MRI = MF.getRegInfo();
3163 // Refresh the reserved regs in case there are any potential changes since the
3164 // last freeze.
3165 MRI.freezeReservedRegs();
3166
3167 if (homogeneousPrologEpilog(MF)) {
3168 auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog))
3169 .setMIFlag(MachineInstr::FrameSetup);
3170
3171 for (auto &RPI : RegPairs) {
3172 MIB.addReg(RPI.Reg1);
3173 MIB.addReg(RPI.Reg2);
3174
3175 // Update register live in.
3176 if (!MRI.isReserved(RPI.Reg1))
3177 MBB.addLiveIn(RPI.Reg1);
3178 if (RPI.isPaired() && !MRI.isReserved(RPI.Reg2))
3179 MBB.addLiveIn(RPI.Reg2);
3180 }
3181 return true;
3182 }
3183 bool PTrueCreated = false;
3184 for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) {
3185 unsigned Reg1 = RPI.Reg1;
3186 unsigned Reg2 = RPI.Reg2;
3187 unsigned StrOpc;
3188
3189 // Issue sequence of spills for cs regs. The first spill may be converted
3190 // to a pre-decrement store later by emitPrologue if the callee-save stack
3191 // area allocation can't be combined with the local stack area allocation.
3192 // For example:
3193 // stp x22, x21, [sp, #0] // addImm(+0)
3194 // stp x20, x19, [sp, #16] // addImm(+2)
3195 // stp fp, lr, [sp, #32] // addImm(+4)
3196 // Rationale: This sequence saves uop updates compared to a sequence of
3197 // pre-increment spills like stp xi,xj,[sp,#-16]!
3198 // Note: Similar rationale and sequence for restores in epilog.
3199 unsigned Size;
3200 Align Alignment;
3201 switch (RPI.Type) {
3202 case RegPairInfo::GPR:
3203 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
3204 Size = 8;
3205 Alignment = Align(8);
3206 break;
3207 case RegPairInfo::FPR64:
3208 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
3209 Size = 8;
3210 Alignment = Align(8);
3211 break;
3212 case RegPairInfo::FPR128:
3213 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
3214 Size = 16;
3215 Alignment = Align(16);
3216 break;
3217 case RegPairInfo::ZPR:
3218 StrOpc = RPI.isPaired() ? AArch64::ST1B_2Z_IMM : AArch64::STR_ZXI;
3219 Size = 16;
3220 Alignment = Align(16);
3221 break;
3222 case RegPairInfo::PPR:
3223 StrOpc = AArch64::STR_PXI;
3224 Size = 2;
3225 Alignment = Align(2);
3226 break;
3227 case RegPairInfo::VG:
3228 StrOpc = AArch64::STRXui;
3229 Size = 8;
3230 Alignment = Align(8);
3231 break;
3232 }
3233
3234 unsigned X0Scratch = AArch64::NoRegister;
3235 if (Reg1 == AArch64::VG) {
3236 // Find an available register to store value of VG to.
3237 Reg1 = findScratchNonCalleeSaveRegister(&MBB);
3238 assert(Reg1 != AArch64::NoRegister);
3239 SMEAttrs Attrs(MF.getFunction());
3240
3241 if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface() &&
3242 AFI->getStreamingVGIdx() == std::numeric_limits<int>::max()) {
3243 // For locally-streaming functions, we need to store both the streaming
3244 // & non-streaming VG. Spill the streaming value first.
3245 BuildMI(MBB, MI, DL, TII.get(AArch64::RDSVLI_XI), Reg1)
3246 .addImm(1)
3247 .setMIFlag(MachineInstr::FrameSetup);
3248 BuildMI(MBB, MI, DL, TII.get(AArch64::UBFMXri), Reg1)
3249 .addReg(Reg1)
3250 .addImm(3)
3251 .addImm(63)
3252 .setMIFlag(MachineInstr::FrameSetup);
3253
3254 AFI->setStreamingVGIdx(RPI.FrameIdx);
3255 } else if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) {
3256 BuildMI(MBB, MI, DL, TII.get(AArch64::CNTD_XPiI), Reg1)
3257 .addImm(31)
3258 .addImm(1)
3259 .setMIFlag(MachineInstr::FrameSetup);
3260 AFI->setVGIdx(RPI.FrameIdx);
3261 } else {
3262 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
3263 if (llvm::any_of(
3264 MBB.liveins(),
3265 [&STI](const MachineBasicBlock::RegisterMaskPair &LiveIn) {
3266 return STI.getRegisterInfo()->isSuperOrSubRegisterEq(
3267 AArch64::X0, LiveIn.PhysReg);
3268 }))
3269 X0Scratch = Reg1;
3270
3271 if (X0Scratch != AArch64::NoRegister)
3272 BuildMI(MBB, MI, DL, TII.get(AArch64::ORRXrr), Reg1)
3273 .addReg(AArch64::XZR)
3274 .addReg(AArch64::X0, RegState::Undef)
3275 .addReg(AArch64::X0, RegState::Implicit)
3276 .setMIFlag(MachineInstr::FrameSetup);
3277
3278 const uint32_t *RegMask = TRI->getCallPreservedMask(
3279 MF,
3280 CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1);
3281 BuildMI(MBB, MI, DL, TII.get(AArch64::BL))
3282 .addExternalSymbol("__arm_get_current_vg")
3283 .addRegMask(RegMask)
3284 .addReg(AArch64::X0, RegState::ImplicitDefine)
3285 .setMIFlag(MachineInstr::FrameSetup);
3286 Reg1 = AArch64::X0;
3287 AFI->setVGIdx(RPI.FrameIdx);
3288 }
3289 }
3290
3291 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
3292 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
3293 dbgs() << ") -> fi#(" << RPI.FrameIdx;
3294 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
3295 dbgs() << ")\n");
3296
3297 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
3298 "Windows unwdinding requires a consecutive (FP,LR) pair");
3299 // Windows unwind codes require consecutive registers if registers are
3300 // paired. Make the switch here, so that the code below will save (x,x+1)
3301 // and not (x+1,x).
3302 unsigned FrameIdxReg1 = RPI.FrameIdx;
3303 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
3304 if (NeedsWinCFI && RPI.isPaired()) {
3305 std::swap(Reg1, Reg2);
3306 std::swap(FrameIdxReg1, FrameIdxReg2);
3307 }
3308
3309 if (RPI.isPaired() && RPI.isScalable()) {
3310 [[maybe_unused]] const AArch64Subtarget &Subtarget =
3311 MF.getSubtarget<AArch64Subtarget>();
3312 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3313 unsigned PnReg = AFI->getPredicateRegForFillSpill();
3314 assert(((Subtarget.hasSVE2p1() || Subtarget.hasSME2()) && PnReg != 0) &&
3315 "Expects SVE2.1 or SME2 target and a predicate register");
3316 #ifdef EXPENSIVE_CHECKS
3317 auto IsPPR = [](const RegPairInfo &c) {
3318 return c.Reg1 == RegPairInfo::PPR;
3319 };
3320 auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR);
3321 auto IsZPR = [](const RegPairInfo &c) {
3322 return c.Type == RegPairInfo::ZPR;
3323 };
3324 auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR);
3325 assert(!(PPRBegin < ZPRBegin) &&
3326 "Expected callee save predicate to be handled first");
3327 #endif
3328 if (!PTrueCreated) {
3329 PTrueCreated = true;
3330 BuildMI(MBB, MI, DL, TII.get(AArch64::PTRUE_C_B), PnReg)
3331 .setMIFlags(MachineInstr::FrameSetup);
3332 }
3333 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
3334 if (!MRI.isReserved(Reg1))
3335 MBB.addLiveIn(Reg1);
3336 if (!MRI.isReserved(Reg2))
3337 MBB.addLiveIn(Reg2);
3338 MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0));
3339 MIB.addMemOperand(MF.getMachineMemOperand(
3340 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3341 MachineMemOperand::MOStore, Size, Alignment));
3342 MIB.addReg(PnReg);
3343 MIB.addReg(AArch64::SP)
3344 .addImm(RPI.Offset) // [sp, #offset*scale],
3345 // where factor*scale is implicit
3346 .setMIFlag(MachineInstr::FrameSetup);
3347 MIB.addMemOperand(MF.getMachineMemOperand(
3348 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3349 MachineMemOperand::MOStore, Size, Alignment));
3350 if (NeedsWinCFI)
3351 InsertSEH(MIB, TII, MachineInstr::FrameSetup);
3352 } else { // The code when the pair of ZReg is not present
3353 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
3354 if (!MRI.isReserved(Reg1))
3355 MBB.addLiveIn(Reg1);
3356 if (RPI.isPaired()) {
3357 if (!MRI.isReserved(Reg2))
3358 MBB.addLiveIn(Reg2);
3359 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
3360 MIB.addMemOperand(MF.getMachineMemOperand(
3361 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3362 MachineMemOperand::MOStore, Size, Alignment));
3363 }
3364 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
3365 .addReg(AArch64::SP)
3366 .addImm(RPI.Offset) // [sp, #offset*scale],
3367 // where factor*scale is implicit
3368 .setMIFlag(MachineInstr::FrameSetup);
3369 MIB.addMemOperand(MF.getMachineMemOperand(
3370 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3371 MachineMemOperand::MOStore, Size, Alignment));
3372 if (NeedsWinCFI)
3373 InsertSEH(MIB, TII, MachineInstr::FrameSetup);
3374 }
3375 // Update the StackIDs of the SVE stack slots.
3376 MachineFrameInfo &MFI = MF.getFrameInfo();
3377 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) {
3378 MFI.setStackID(FrameIdxReg1, TargetStackID::ScalableVector);
3379 if (RPI.isPaired())
3380 MFI.setStackID(FrameIdxReg2, TargetStackID::ScalableVector);
3381 }
3382
3383 if (X0Scratch != AArch64::NoRegister)
3384 BuildMI(MBB, MI, DL, TII.get(AArch64::ORRXrr), AArch64::X0)
3385 .addReg(AArch64::XZR)
3386 .addReg(X0Scratch, RegState::Undef)
3387 .addReg(X0Scratch, RegState::Implicit)
3388 .setMIFlag(MachineInstr::FrameSetup);
3389 }
3390 return true;
3391 }
3392
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MutableArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const3393 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
3394 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3395 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
3396 MachineFunction &MF = *MBB.getParent();
3397 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3398 DebugLoc DL;
3399 SmallVector<RegPairInfo, 8> RegPairs;
3400 bool NeedsWinCFI = needsWinCFI(MF);
3401
3402 if (MBBI != MBB.end())
3403 DL = MBBI->getDebugLoc();
3404
3405 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
3406 if (homogeneousPrologEpilog(MF, &MBB)) {
3407 auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog))
3408 .setMIFlag(MachineInstr::FrameDestroy);
3409 for (auto &RPI : RegPairs) {
3410 MIB.addReg(RPI.Reg1, RegState::Define);
3411 MIB.addReg(RPI.Reg2, RegState::Define);
3412 }
3413 return true;
3414 }
3415
3416 // For performance reasons restore SVE register in increasing order
3417 auto IsPPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::PPR; };
3418 auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR);
3419 auto PPREnd = std::find_if_not(PPRBegin, RegPairs.end(), IsPPR);
3420 std::reverse(PPRBegin, PPREnd);
3421 auto IsZPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::ZPR; };
3422 auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR);
3423 auto ZPREnd = std::find_if_not(ZPRBegin, RegPairs.end(), IsZPR);
3424 std::reverse(ZPRBegin, ZPREnd);
3425
3426 bool PTrueCreated = false;
3427 for (const RegPairInfo &RPI : RegPairs) {
3428 unsigned Reg1 = RPI.Reg1;
3429 unsigned Reg2 = RPI.Reg2;
3430
3431 // Issue sequence of restores for cs regs. The last restore may be converted
3432 // to a post-increment load later by emitEpilogue if the callee-save stack
3433 // area allocation can't be combined with the local stack area allocation.
3434 // For example:
3435 // ldp fp, lr, [sp, #32] // addImm(+4)
3436 // ldp x20, x19, [sp, #16] // addImm(+2)
3437 // ldp x22, x21, [sp, #0] // addImm(+0)
3438 // Note: see comment in spillCalleeSavedRegisters()
3439 unsigned LdrOpc;
3440 unsigned Size;
3441 Align Alignment;
3442 switch (RPI.Type) {
3443 case RegPairInfo::GPR:
3444 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
3445 Size = 8;
3446 Alignment = Align(8);
3447 break;
3448 case RegPairInfo::FPR64:
3449 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
3450 Size = 8;
3451 Alignment = Align(8);
3452 break;
3453 case RegPairInfo::FPR128:
3454 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
3455 Size = 16;
3456 Alignment = Align(16);
3457 break;
3458 case RegPairInfo::ZPR:
3459 LdrOpc = RPI.isPaired() ? AArch64::LD1B_2Z_IMM : AArch64::LDR_ZXI;
3460 Size = 16;
3461 Alignment = Align(16);
3462 break;
3463 case RegPairInfo::PPR:
3464 LdrOpc = AArch64::LDR_PXI;
3465 Size = 2;
3466 Alignment = Align(2);
3467 break;
3468 case RegPairInfo::VG:
3469 continue;
3470 }
3471 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
3472 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
3473 dbgs() << ") -> fi#(" << RPI.FrameIdx;
3474 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
3475 dbgs() << ")\n");
3476
3477 // Windows unwind codes require consecutive registers if registers are
3478 // paired. Make the switch here, so that the code below will save (x,x+1)
3479 // and not (x+1,x).
3480 unsigned FrameIdxReg1 = RPI.FrameIdx;
3481 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
3482 if (NeedsWinCFI && RPI.isPaired()) {
3483 std::swap(Reg1, Reg2);
3484 std::swap(FrameIdxReg1, FrameIdxReg2);
3485 }
3486
3487 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3488 if (RPI.isPaired() && RPI.isScalable()) {
3489 [[maybe_unused]] const AArch64Subtarget &Subtarget =
3490 MF.getSubtarget<AArch64Subtarget>();
3491 unsigned PnReg = AFI->getPredicateRegForFillSpill();
3492 assert(((Subtarget.hasSVE2p1() || Subtarget.hasSME2()) && PnReg != 0) &&
3493 "Expects SVE2.1 or SME2 target and a predicate register");
3494 #ifdef EXPENSIVE_CHECKS
3495 assert(!(PPRBegin < ZPRBegin) &&
3496 "Expected callee save predicate to be handled first");
3497 #endif
3498 if (!PTrueCreated) {
3499 PTrueCreated = true;
3500 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PTRUE_C_B), PnReg)
3501 .setMIFlags(MachineInstr::FrameDestroy);
3502 }
3503 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
3504 MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0),
3505 getDefRegState(true));
3506 MIB.addMemOperand(MF.getMachineMemOperand(
3507 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3508 MachineMemOperand::MOLoad, Size, Alignment));
3509 MIB.addReg(PnReg);
3510 MIB.addReg(AArch64::SP)
3511 .addImm(RPI.Offset) // [sp, #offset*scale]
3512 // where factor*scale is implicit
3513 .setMIFlag(MachineInstr::FrameDestroy);
3514 MIB.addMemOperand(MF.getMachineMemOperand(
3515 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3516 MachineMemOperand::MOLoad, Size, Alignment));
3517 if (NeedsWinCFI)
3518 InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
3519 } else {
3520 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
3521 if (RPI.isPaired()) {
3522 MIB.addReg(Reg2, getDefRegState(true));
3523 MIB.addMemOperand(MF.getMachineMemOperand(
3524 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3525 MachineMemOperand::MOLoad, Size, Alignment));
3526 }
3527 MIB.addReg(Reg1, getDefRegState(true));
3528 MIB.addReg(AArch64::SP)
3529 .addImm(RPI.Offset) // [sp, #offset*scale]
3530 // where factor*scale is implicit
3531 .setMIFlag(MachineInstr::FrameDestroy);
3532 MIB.addMemOperand(MF.getMachineMemOperand(
3533 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3534 MachineMemOperand::MOLoad, Size, Alignment));
3535 if (NeedsWinCFI)
3536 InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
3537 }
3538 }
3539 return true;
3540 }
3541
3542 // Return the FrameID for a MMO.
getMMOFrameID(MachineMemOperand * MMO,const MachineFrameInfo & MFI)3543 static std::optional<int> getMMOFrameID(MachineMemOperand *MMO,
3544 const MachineFrameInfo &MFI) {
3545 auto *PSV =
3546 dyn_cast_or_null<FixedStackPseudoSourceValue>(MMO->getPseudoValue());
3547 if (PSV)
3548 return std::optional<int>(PSV->getFrameIndex());
3549
3550 if (MMO->getValue()) {
3551 if (auto *Al = dyn_cast<AllocaInst>(getUnderlyingObject(MMO->getValue()))) {
3552 for (int FI = MFI.getObjectIndexBegin(); FI < MFI.getObjectIndexEnd();
3553 FI++)
3554 if (MFI.getObjectAllocation(FI) == Al)
3555 return FI;
3556 }
3557 }
3558
3559 return std::nullopt;
3560 }
3561
3562 // Return the FrameID for a Load/Store instruction by looking at the first MMO.
getLdStFrameID(const MachineInstr & MI,const MachineFrameInfo & MFI)3563 static std::optional<int> getLdStFrameID(const MachineInstr &MI,
3564 const MachineFrameInfo &MFI) {
3565 if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1)
3566 return std::nullopt;
3567
3568 return getMMOFrameID(*MI.memoperands_begin(), MFI);
3569 }
3570
3571 // Check if a Hazard slot is needed for the current function, and if so create
3572 // one for it. The index is stored in AArch64FunctionInfo->StackHazardSlotIndex,
3573 // which can be used to determine if any hazard padding is needed.
determineStackHazardSlot(MachineFunction & MF,BitVector & SavedRegs) const3574 void AArch64FrameLowering::determineStackHazardSlot(
3575 MachineFunction &MF, BitVector &SavedRegs) const {
3576 if (StackHazardSize == 0 || StackHazardSize % 16 != 0 ||
3577 MF.getInfo<AArch64FunctionInfo>()->hasStackHazardSlotIndex())
3578 return;
3579
3580 // Stack hazards are only needed in streaming functions.
3581 SMEAttrs Attrs(MF.getFunction());
3582 if (!StackHazardInNonStreaming && Attrs.hasNonStreamingInterfaceAndBody())
3583 return;
3584
3585 MachineFrameInfo &MFI = MF.getFrameInfo();
3586
3587 // Add a hazard slot if there are any CSR FPR registers, or are any fp-only
3588 // stack objects.
3589 bool HasFPRCSRs = any_of(SavedRegs.set_bits(), [](unsigned Reg) {
3590 return AArch64::FPR64RegClass.contains(Reg) ||
3591 AArch64::FPR128RegClass.contains(Reg) ||
3592 AArch64::ZPRRegClass.contains(Reg) ||
3593 AArch64::PPRRegClass.contains(Reg);
3594 });
3595 bool HasFPRStackObjects = false;
3596 if (!HasFPRCSRs) {
3597 std::vector<unsigned> FrameObjects(MFI.getObjectIndexEnd());
3598 for (auto &MBB : MF) {
3599 for (auto &MI : MBB) {
3600 std::optional<int> FI = getLdStFrameID(MI, MFI);
3601 if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) {
3602 if (MFI.getStackID(*FI) == TargetStackID::ScalableVector ||
3603 AArch64InstrInfo::isFpOrNEON(MI))
3604 FrameObjects[*FI] |= 2;
3605 else
3606 FrameObjects[*FI] |= 1;
3607 }
3608 }
3609 }
3610 HasFPRStackObjects =
3611 any_of(FrameObjects, [](unsigned B) { return (B & 3) == 2; });
3612 }
3613
3614 if (HasFPRCSRs || HasFPRStackObjects) {
3615 int ID = MFI.CreateStackObject(StackHazardSize, Align(16), false);
3616 LLVM_DEBUG(dbgs() << "Created Hazard slot at " << ID << " size "
3617 << StackHazardSize << "\n");
3618 MF.getInfo<AArch64FunctionInfo>()->setStackHazardSlotIndex(ID);
3619 }
3620 }
3621
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const3622 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
3623 BitVector &SavedRegs,
3624 RegScavenger *RS) const {
3625 // All calls are tail calls in GHC calling conv, and functions have no
3626 // prologue/epilogue.
3627 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
3628 return;
3629
3630 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
3631 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
3632 MF.getSubtarget().getRegisterInfo());
3633 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
3634 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3635 unsigned UnspilledCSGPR = AArch64::NoRegister;
3636 unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
3637
3638 MachineFrameInfo &MFI = MF.getFrameInfo();
3639 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
3640
3641 unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
3642 ? RegInfo->getBaseRegister()
3643 : (unsigned)AArch64::NoRegister;
3644
3645 unsigned ExtraCSSpill = 0;
3646 bool HasUnpairedGPR64 = false;
3647 // Figure out which callee-saved registers to save/restore.
3648 for (unsigned i = 0; CSRegs[i]; ++i) {
3649 const unsigned Reg = CSRegs[i];
3650
3651 // Add the base pointer register to SavedRegs if it is callee-save.
3652 if (Reg == BasePointerReg)
3653 SavedRegs.set(Reg);
3654
3655 bool RegUsed = SavedRegs.test(Reg);
3656 unsigned PairedReg = AArch64::NoRegister;
3657 const bool RegIsGPR64 = AArch64::GPR64RegClass.contains(Reg);
3658 if (RegIsGPR64 || AArch64::FPR64RegClass.contains(Reg) ||
3659 AArch64::FPR128RegClass.contains(Reg)) {
3660 // Compensate for odd numbers of GP CSRs.
3661 // For now, all the known cases of odd number of CSRs are of GPRs.
3662 if (HasUnpairedGPR64)
3663 PairedReg = CSRegs[i % 2 == 0 ? i - 1 : i + 1];
3664 else
3665 PairedReg = CSRegs[i ^ 1];
3666 }
3667
3668 // If the function requires all the GP registers to save (SavedRegs),
3669 // and there are an odd number of GP CSRs at the same time (CSRegs),
3670 // PairedReg could be in a different register class from Reg, which would
3671 // lead to a FPR (usually D8) accidentally being marked saved.
3672 if (RegIsGPR64 && !AArch64::GPR64RegClass.contains(PairedReg)) {
3673 PairedReg = AArch64::NoRegister;
3674 HasUnpairedGPR64 = true;
3675 }
3676 assert(PairedReg == AArch64::NoRegister ||
3677 AArch64::GPR64RegClass.contains(Reg, PairedReg) ||
3678 AArch64::FPR64RegClass.contains(Reg, PairedReg) ||
3679 AArch64::FPR128RegClass.contains(Reg, PairedReg));
3680
3681 if (!RegUsed) {
3682 if (AArch64::GPR64RegClass.contains(Reg) &&
3683 !RegInfo->isReservedReg(MF, Reg)) {
3684 UnspilledCSGPR = Reg;
3685 UnspilledCSGPRPaired = PairedReg;
3686 }
3687 continue;
3688 }
3689
3690 // MachO's compact unwind format relies on all registers being stored in
3691 // pairs.
3692 // FIXME: the usual format is actually better if unwinding isn't needed.
3693 if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister &&
3694 !SavedRegs.test(PairedReg)) {
3695 SavedRegs.set(PairedReg);
3696 if (AArch64::GPR64RegClass.contains(PairedReg) &&
3697 !RegInfo->isReservedReg(MF, PairedReg))
3698 ExtraCSSpill = PairedReg;
3699 }
3700 }
3701
3702 if (MF.getFunction().getCallingConv() == CallingConv::Win64 &&
3703 !Subtarget.isTargetWindows()) {
3704 // For Windows calling convention on a non-windows OS, where X18 is treated
3705 // as reserved, back up X18 when entering non-windows code (marked with the
3706 // Windows calling convention) and restore when returning regardless of
3707 // whether the individual function uses it - it might call other functions
3708 // that clobber it.
3709 SavedRegs.set(AArch64::X18);
3710 }
3711
3712 // Calculates the callee saved stack size.
3713 unsigned CSStackSize = 0;
3714 unsigned SVECSStackSize = 0;
3715 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3716 const MachineRegisterInfo &MRI = MF.getRegInfo();
3717 for (unsigned Reg : SavedRegs.set_bits()) {
3718 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
3719 if (AArch64::PPRRegClass.contains(Reg) ||
3720 AArch64::ZPRRegClass.contains(Reg))
3721 SVECSStackSize += RegSize;
3722 else
3723 CSStackSize += RegSize;
3724 }
3725
3726 // Increase the callee-saved stack size if the function has streaming mode
3727 // changes, as we will need to spill the value of the VG register.
3728 // For locally streaming functions, we spill both the streaming and
3729 // non-streaming VG value.
3730 const Function &F = MF.getFunction();
3731 SMEAttrs Attrs(F);
3732 if (requiresSaveVG(MF)) {
3733 if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface())
3734 CSStackSize += 16;
3735 else
3736 CSStackSize += 8;
3737 }
3738
3739 // Determine if a Hazard slot should be used, and increase the CSStackSize by
3740 // StackHazardSize if so.
3741 determineStackHazardSlot(MF, SavedRegs);
3742 if (AFI->hasStackHazardSlotIndex())
3743 CSStackSize += StackHazardSize;
3744
3745 // Save number of saved regs, so we can easily update CSStackSize later.
3746 unsigned NumSavedRegs = SavedRegs.count();
3747
3748 // The frame record needs to be created by saving the appropriate registers
3749 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
3750 if (hasFP(MF) ||
3751 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
3752 SavedRegs.set(AArch64::FP);
3753 SavedRegs.set(AArch64::LR);
3754 }
3755
3756 LLVM_DEBUG({
3757 dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
3758 for (unsigned Reg : SavedRegs.set_bits())
3759 dbgs() << ' ' << printReg(Reg, RegInfo);
3760 dbgs() << "\n";
3761 });
3762
3763 // If any callee-saved registers are used, the frame cannot be eliminated.
3764 int64_t SVEStackSize =
3765 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
3766 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
3767
3768 // The CSR spill slots have not been allocated yet, so estimateStackSize
3769 // won't include them.
3770 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
3771
3772 // We may address some of the stack above the canonical frame address, either
3773 // for our own arguments or during a call. Include that in calculating whether
3774 // we have complicated addressing concerns.
3775 int64_t CalleeStackUsed = 0;
3776 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) {
3777 int64_t FixedOff = MFI.getObjectOffset(I);
3778 if (FixedOff > CalleeStackUsed)
3779 CalleeStackUsed = FixedOff;
3780 }
3781
3782 // Conservatively always assume BigStack when there are SVE spills.
3783 bool BigStack = SVEStackSize || (EstimatedStackSize + CSStackSize +
3784 CalleeStackUsed) > EstimatedStackSizeLimit;
3785 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
3786 AFI->setHasStackFrame(true);
3787
3788 // Estimate if we might need to scavenge a register at some point in order
3789 // to materialize a stack offset. If so, either spill one additional
3790 // callee-saved register or reserve a special spill slot to facilitate
3791 // register scavenging. If we already spilled an extra callee-saved register
3792 // above to keep the number of spills even, we don't need to do anything else
3793 // here.
3794 if (BigStack) {
3795 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
3796 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
3797 << " to get a scratch register.\n");
3798 SavedRegs.set(UnspilledCSGPR);
3799 ExtraCSSpill = UnspilledCSGPR;
3800
3801 // MachO's compact unwind format relies on all registers being stored in
3802 // pairs, so if we need to spill one extra for BigStack, then we need to
3803 // store the pair.
3804 if (producePairRegisters(MF)) {
3805 if (UnspilledCSGPRPaired == AArch64::NoRegister) {
3806 // Failed to make a pair for compact unwind format, revert spilling.
3807 if (produceCompactUnwindFrame(MF)) {
3808 SavedRegs.reset(UnspilledCSGPR);
3809 ExtraCSSpill = AArch64::NoRegister;
3810 }
3811 } else
3812 SavedRegs.set(UnspilledCSGPRPaired);
3813 }
3814 }
3815
3816 // If we didn't find an extra callee-saved register to spill, create
3817 // an emergency spill slot.
3818 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
3819 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3820 const TargetRegisterClass &RC = AArch64::GPR64RegClass;
3821 unsigned Size = TRI->getSpillSize(RC);
3822 Align Alignment = TRI->getSpillAlign(RC);
3823 int FI = MFI.CreateStackObject(Size, Alignment, false);
3824 RS->addScavengingFrameIndex(FI);
3825 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
3826 << " as the emergency spill slot.\n");
3827 }
3828 }
3829
3830 // Adding the size of additional 64bit GPR saves.
3831 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
3832
3833 // A Swift asynchronous context extends the frame record with a pointer
3834 // directly before FP.
3835 if (hasFP(MF) && AFI->hasSwiftAsyncContext())
3836 CSStackSize += 8;
3837
3838 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
3839 LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
3840 << EstimatedStackSize + AlignedCSStackSize << " bytes.\n");
3841
3842 assert((!MFI.isCalleeSavedInfoValid() ||
3843 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
3844 "Should not invalidate callee saved info");
3845
3846 // Round up to register pair alignment to avoid additional SP adjustment
3847 // instructions.
3848 AFI->setCalleeSavedStackSize(AlignedCSStackSize);
3849 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
3850 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
3851 }
3852
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * RegInfo,std::vector<CalleeSavedInfo> & CSI,unsigned & MinCSFrameIndex,unsigned & MaxCSFrameIndex) const3853 bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
3854 MachineFunction &MF, const TargetRegisterInfo *RegInfo,
3855 std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
3856 unsigned &MaxCSFrameIndex) const {
3857 bool NeedsWinCFI = needsWinCFI(MF);
3858 // To match the canonical windows frame layout, reverse the list of
3859 // callee saved registers to get them laid out by PrologEpilogInserter
3860 // in the right order. (PrologEpilogInserter allocates stack objects top
3861 // down. Windows canonical prologs store higher numbered registers at
3862 // the top, thus have the CSI array start from the highest registers.)
3863 if (NeedsWinCFI)
3864 std::reverse(CSI.begin(), CSI.end());
3865
3866 if (CSI.empty())
3867 return true; // Early exit if no callee saved registers are modified!
3868
3869 // Now that we know which registers need to be saved and restored, allocate
3870 // stack slots for them.
3871 MachineFrameInfo &MFI = MF.getFrameInfo();
3872 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
3873
3874 bool UsesWinAAPCS = isTargetWindows(MF);
3875 if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) {
3876 int FrameIdx = MFI.CreateStackObject(8, Align(16), true);
3877 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3878 if ((unsigned)FrameIdx < MinCSFrameIndex)
3879 MinCSFrameIndex = FrameIdx;
3880 if ((unsigned)FrameIdx > MaxCSFrameIndex)
3881 MaxCSFrameIndex = FrameIdx;
3882 }
3883
3884 // Insert VG into the list of CSRs, immediately before LR if saved.
3885 if (requiresSaveVG(MF)) {
3886 std::vector<CalleeSavedInfo> VGSaves;
3887 SMEAttrs Attrs(MF.getFunction());
3888
3889 auto VGInfo = CalleeSavedInfo(AArch64::VG);
3890 VGInfo.setRestored(false);
3891 VGSaves.push_back(VGInfo);
3892
3893 // Add VG again if the function is locally-streaming, as we will spill two
3894 // values.
3895 if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface())
3896 VGSaves.push_back(VGInfo);
3897
3898 bool InsertBeforeLR = false;
3899
3900 for (unsigned I = 0; I < CSI.size(); I++)
3901 if (CSI[I].getReg() == AArch64::LR) {
3902 InsertBeforeLR = true;
3903 CSI.insert(CSI.begin() + I, VGSaves.begin(), VGSaves.end());
3904 break;
3905 }
3906
3907 if (!InsertBeforeLR)
3908 CSI.insert(CSI.end(), VGSaves.begin(), VGSaves.end());
3909 }
3910
3911 Register LastReg = 0;
3912 int HazardSlotIndex = std::numeric_limits<int>::max();
3913 for (auto &CS : CSI) {
3914 Register Reg = CS.getReg();
3915 const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
3916
3917 // Create a hazard slot as we switch between GPR and FPR CSRs.
3918 if (AFI->hasStackHazardSlotIndex() &&
3919 (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) &&
3920 AArch64InstrInfo::isFpOrNEON(Reg)) {
3921 assert(HazardSlotIndex == std::numeric_limits<int>::max() &&
3922 "Unexpected register order for hazard slot");
3923 HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true);
3924 LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex
3925 << "\n");
3926 AFI->setStackHazardCSRSlotIndex(HazardSlotIndex);
3927 if ((unsigned)HazardSlotIndex < MinCSFrameIndex)
3928 MinCSFrameIndex = HazardSlotIndex;
3929 if ((unsigned)HazardSlotIndex > MaxCSFrameIndex)
3930 MaxCSFrameIndex = HazardSlotIndex;
3931 }
3932
3933 unsigned Size = RegInfo->getSpillSize(*RC);
3934 Align Alignment(RegInfo->getSpillAlign(*RC));
3935 int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
3936 CS.setFrameIdx(FrameIdx);
3937
3938 if ((unsigned)FrameIdx < MinCSFrameIndex)
3939 MinCSFrameIndex = FrameIdx;
3940 if ((unsigned)FrameIdx > MaxCSFrameIndex)
3941 MaxCSFrameIndex = FrameIdx;
3942
3943 // Grab 8 bytes below FP for the extended asynchronous frame info.
3944 if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS &&
3945 Reg == AArch64::FP) {
3946 FrameIdx = MFI.CreateStackObject(8, Alignment, true);
3947 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3948 if ((unsigned)FrameIdx < MinCSFrameIndex)
3949 MinCSFrameIndex = FrameIdx;
3950 if ((unsigned)FrameIdx > MaxCSFrameIndex)
3951 MaxCSFrameIndex = FrameIdx;
3952 }
3953 LastReg = Reg;
3954 }
3955
3956 // Add hazard slot in the case where no FPR CSRs are present.
3957 if (AFI->hasStackHazardSlotIndex() &&
3958 HazardSlotIndex == std::numeric_limits<int>::max()) {
3959 HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true);
3960 LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex
3961 << "\n");
3962 AFI->setStackHazardCSRSlotIndex(HazardSlotIndex);
3963 if ((unsigned)HazardSlotIndex < MinCSFrameIndex)
3964 MinCSFrameIndex = HazardSlotIndex;
3965 if ((unsigned)HazardSlotIndex > MaxCSFrameIndex)
3966 MaxCSFrameIndex = HazardSlotIndex;
3967 }
3968
3969 return true;
3970 }
3971
enableStackSlotScavenging(const MachineFunction & MF) const3972 bool AArch64FrameLowering::enableStackSlotScavenging(
3973 const MachineFunction &MF) const {
3974 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3975 // If the function has streaming-mode changes, don't scavenge a
3976 // spillslot in the callee-save area, as that might require an
3977 // 'addvl' in the streaming-mode-changing call-sequence when the
3978 // function doesn't use a FP.
3979 if (AFI->hasStreamingModeChanges() && !hasFP(MF))
3980 return false;
3981 // Don't allow register salvaging with hazard slots, in case it moves objects
3982 // into the wrong place.
3983 if (AFI->hasStackHazardSlotIndex())
3984 return false;
3985 return AFI->hasCalleeSaveStackFreeSpace();
3986 }
3987
3988 /// returns true if there are any SVE callee saves.
getSVECalleeSaveSlotRange(const MachineFrameInfo & MFI,int & Min,int & Max)3989 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
3990 int &Min, int &Max) {
3991 Min = std::numeric_limits<int>::max();
3992 Max = std::numeric_limits<int>::min();
3993
3994 if (!MFI.isCalleeSavedInfoValid())
3995 return false;
3996
3997 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
3998 for (auto &CS : CSI) {
3999 if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
4000 AArch64::PPRRegClass.contains(CS.getReg())) {
4001 assert((Max == std::numeric_limits<int>::min() ||
4002 Max + 1 == CS.getFrameIdx()) &&
4003 "SVE CalleeSaves are not consecutive");
4004
4005 Min = std::min(Min, CS.getFrameIdx());
4006 Max = std::max(Max, CS.getFrameIdx());
4007 }
4008 }
4009 return Min != std::numeric_limits<int>::max();
4010 }
4011
4012 // Process all the SVE stack objects and determine offsets for each
4013 // object. If AssignOffsets is true, the offsets get assigned.
4014 // Fills in the first and last callee-saved frame indices into
4015 // Min/MaxCSFrameIndex, respectively.
4016 // Returns the size of the stack.
determineSVEStackObjectOffsets(MachineFrameInfo & MFI,int & MinCSFrameIndex,int & MaxCSFrameIndex,bool AssignOffsets)4017 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
4018 int &MinCSFrameIndex,
4019 int &MaxCSFrameIndex,
4020 bool AssignOffsets) {
4021 #ifndef NDEBUG
4022 // First process all fixed stack objects.
4023 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
4024 assert(MFI.getStackID(I) != TargetStackID::ScalableVector &&
4025 "SVE vectors should never be passed on the stack by value, only by "
4026 "reference.");
4027 #endif
4028
4029 auto Assign = [&MFI](int FI, int64_t Offset) {
4030 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
4031 MFI.setObjectOffset(FI, Offset);
4032 };
4033
4034 int64_t Offset = 0;
4035
4036 // Then process all callee saved slots.
4037 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
4038 // Assign offsets to the callee save slots.
4039 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
4040 Offset += MFI.getObjectSize(I);
4041 Offset = alignTo(Offset, MFI.getObjectAlign(I));
4042 if (AssignOffsets)
4043 Assign(I, -Offset);
4044 }
4045 }
4046
4047 // Ensure that the Callee-save area is aligned to 16bytes.
4048 Offset = alignTo(Offset, Align(16U));
4049
4050 // Create a buffer of SVE objects to allocate and sort it.
4051 SmallVector<int, 8> ObjectsToAllocate;
4052 // If we have a stack protector, and we've previously decided that we have SVE
4053 // objects on the stack and thus need it to go in the SVE stack area, then it
4054 // needs to go first.
4055 int StackProtectorFI = -1;
4056 if (MFI.hasStackProtectorIndex()) {
4057 StackProtectorFI = MFI.getStackProtectorIndex();
4058 if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector)
4059 ObjectsToAllocate.push_back(StackProtectorFI);
4060 }
4061 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
4062 unsigned StackID = MFI.getStackID(I);
4063 if (StackID != TargetStackID::ScalableVector)
4064 continue;
4065 if (I == StackProtectorFI)
4066 continue;
4067 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
4068 continue;
4069 if (MFI.isDeadObjectIndex(I))
4070 continue;
4071
4072 ObjectsToAllocate.push_back(I);
4073 }
4074
4075 // Allocate all SVE locals and spills
4076 for (unsigned FI : ObjectsToAllocate) {
4077 Align Alignment = MFI.getObjectAlign(FI);
4078 // FIXME: Given that the length of SVE vectors is not necessarily a power of
4079 // two, we'd need to align every object dynamically at runtime if the
4080 // alignment is larger than 16. This is not yet supported.
4081 if (Alignment > Align(16))
4082 report_fatal_error(
4083 "Alignment of scalable vectors > 16 bytes is not yet supported");
4084
4085 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment);
4086 if (AssignOffsets)
4087 Assign(FI, -Offset);
4088 }
4089
4090 return Offset;
4091 }
4092
estimateSVEStackObjectOffsets(MachineFrameInfo & MFI) const4093 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
4094 MachineFrameInfo &MFI) const {
4095 int MinCSFrameIndex, MaxCSFrameIndex;
4096 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
4097 }
4098
assignSVEStackObjectOffsets(MachineFrameInfo & MFI,int & MinCSFrameIndex,int & MaxCSFrameIndex) const4099 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
4100 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
4101 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
4102 true);
4103 }
4104
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const4105 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
4106 MachineFunction &MF, RegScavenger *RS) const {
4107 MachineFrameInfo &MFI = MF.getFrameInfo();
4108
4109 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
4110 "Upwards growing stack unsupported");
4111
4112 int MinCSFrameIndex, MaxCSFrameIndex;
4113 int64_t SVEStackSize =
4114 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
4115
4116 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
4117 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
4118 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
4119
4120 // If this function isn't doing Win64-style C++ EH, we don't need to do
4121 // anything.
4122 if (!MF.hasEHFunclets())
4123 return;
4124 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
4125 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
4126
4127 MachineBasicBlock &MBB = MF.front();
4128 auto MBBI = MBB.begin();
4129 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
4130 ++MBBI;
4131
4132 // Create an UnwindHelp object.
4133 // The UnwindHelp object is allocated at the start of the fixed object area
4134 int64_t FixedObject =
4135 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
4136 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
4137 /*SPOffset*/ -FixedObject,
4138 /*IsImmutable=*/false);
4139 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
4140
4141 // We need to store -2 into the UnwindHelp object at the start of the
4142 // function.
4143 DebugLoc DL;
4144 RS->enterBasicBlockEnd(MBB);
4145 RS->backward(MBBI);
4146 Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
4147 assert(DstReg && "There must be a free register after frame setup");
4148 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
4149 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
4150 .addReg(DstReg, getKillRegState(true))
4151 .addFrameIndex(UnwindHelpFI)
4152 .addImm(0);
4153 }
4154
4155 namespace {
4156 struct TagStoreInstr {
4157 MachineInstr *MI;
4158 int64_t Offset, Size;
TagStoreInstr__anonc2fd70990d11::TagStoreInstr4159 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
4160 : MI(MI), Offset(Offset), Size(Size) {}
4161 };
4162
4163 class TagStoreEdit {
4164 MachineFunction *MF;
4165 MachineBasicBlock *MBB;
4166 MachineRegisterInfo *MRI;
4167 // Tag store instructions that are being replaced.
4168 SmallVector<TagStoreInstr, 8> TagStores;
4169 // Combined memref arguments of the above instructions.
4170 SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
4171
4172 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
4173 // FrameRegOffset + Size) with the address tag of SP.
4174 Register FrameReg;
4175 StackOffset FrameRegOffset;
4176 int64_t Size;
4177 // If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the
4178 // end.
4179 std::optional<int64_t> FrameRegUpdate;
4180 // MIFlags for any FrameReg updating instructions.
4181 unsigned FrameRegUpdateFlags;
4182
4183 // Use zeroing instruction variants.
4184 bool ZeroData;
4185 DebugLoc DL;
4186
4187 void emitUnrolled(MachineBasicBlock::iterator InsertI);
4188 void emitLoop(MachineBasicBlock::iterator InsertI);
4189
4190 public:
TagStoreEdit(MachineBasicBlock * MBB,bool ZeroData)4191 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
4192 : MBB(MBB), ZeroData(ZeroData) {
4193 MF = MBB->getParent();
4194 MRI = &MF->getRegInfo();
4195 }
4196 // Add an instruction to be replaced. Instructions must be added in the
4197 // ascending order of Offset, and have to be adjacent.
addInstruction(TagStoreInstr I)4198 void addInstruction(TagStoreInstr I) {
4199 assert((TagStores.empty() ||
4200 TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
4201 "Non-adjacent tag store instructions.");
4202 TagStores.push_back(I);
4203 }
clear()4204 void clear() { TagStores.clear(); }
4205 // Emit equivalent code at the given location, and erase the current set of
4206 // instructions. May skip if the replacement is not profitable. May invalidate
4207 // the input iterator and replace it with a valid one.
4208 void emitCode(MachineBasicBlock::iterator &InsertI,
4209 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate);
4210 };
4211
emitUnrolled(MachineBasicBlock::iterator InsertI)4212 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
4213 const AArch64InstrInfo *TII =
4214 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
4215
4216 const int64_t kMinOffset = -256 * 16;
4217 const int64_t kMaxOffset = 255 * 16;
4218
4219 Register BaseReg = FrameReg;
4220 int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
4221 if (BaseRegOffsetBytes < kMinOffset ||
4222 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset ||
4223 // BaseReg can be FP, which is not necessarily aligned to 16-bytes. In
4224 // that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which
4225 // is required for the offset of ST2G.
4226 BaseRegOffsetBytes % 16 != 0) {
4227 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
4228 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
4229 StackOffset::getFixed(BaseRegOffsetBytes), TII);
4230 BaseReg = ScratchReg;
4231 BaseRegOffsetBytes = 0;
4232 }
4233
4234 MachineInstr *LastI = nullptr;
4235 while (Size) {
4236 int64_t InstrSize = (Size > 16) ? 32 : 16;
4237 unsigned Opcode =
4238 InstrSize == 16
4239 ? (ZeroData ? AArch64::STZGi : AArch64::STGi)
4240 : (ZeroData ? AArch64::STZ2Gi : AArch64::ST2Gi);
4241 assert(BaseRegOffsetBytes % 16 == 0);
4242 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
4243 .addReg(AArch64::SP)
4244 .addReg(BaseReg)
4245 .addImm(BaseRegOffsetBytes / 16)
4246 .setMemRefs(CombinedMemRefs);
4247 // A store to [BaseReg, #0] should go last for an opportunity to fold the
4248 // final SP adjustment in the epilogue.
4249 if (BaseRegOffsetBytes == 0)
4250 LastI = I;
4251 BaseRegOffsetBytes += InstrSize;
4252 Size -= InstrSize;
4253 }
4254
4255 if (LastI)
4256 MBB->splice(InsertI, MBB, LastI);
4257 }
4258
emitLoop(MachineBasicBlock::iterator InsertI)4259 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
4260 const AArch64InstrInfo *TII =
4261 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
4262
4263 Register BaseReg = FrameRegUpdate
4264 ? FrameReg
4265 : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
4266 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
4267
4268 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
4269
4270 int64_t LoopSize = Size;
4271 // If the loop size is not a multiple of 32, split off one 16-byte store at
4272 // the end to fold BaseReg update into.
4273 if (FrameRegUpdate && *FrameRegUpdate)
4274 LoopSize -= LoopSize % 32;
4275 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
4276 TII->get(ZeroData ? AArch64::STZGloop_wback
4277 : AArch64::STGloop_wback))
4278 .addDef(SizeReg)
4279 .addDef(BaseReg)
4280 .addImm(LoopSize)
4281 .addReg(BaseReg)
4282 .setMemRefs(CombinedMemRefs);
4283 if (FrameRegUpdate)
4284 LoopI->setFlags(FrameRegUpdateFlags);
4285
4286 int64_t ExtraBaseRegUpdate =
4287 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
4288 if (LoopSize < Size) {
4289 assert(FrameRegUpdate);
4290 assert(Size - LoopSize == 16);
4291 // Tag 16 more bytes at BaseReg and update BaseReg.
4292 BuildMI(*MBB, InsertI, DL,
4293 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
4294 .addDef(BaseReg)
4295 .addReg(BaseReg)
4296 .addReg(BaseReg)
4297 .addImm(1 + ExtraBaseRegUpdate / 16)
4298 .setMemRefs(CombinedMemRefs)
4299 .setMIFlags(FrameRegUpdateFlags);
4300 } else if (ExtraBaseRegUpdate) {
4301 // Update BaseReg.
4302 BuildMI(
4303 *MBB, InsertI, DL,
4304 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
4305 .addDef(BaseReg)
4306 .addReg(BaseReg)
4307 .addImm(std::abs(ExtraBaseRegUpdate))
4308 .addImm(0)
4309 .setMIFlags(FrameRegUpdateFlags);
4310 }
4311 }
4312
4313 // Check if *II is a register update that can be merged into STGloop that ends
4314 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
4315 // end of the loop.
canMergeRegUpdate(MachineBasicBlock::iterator II,unsigned Reg,int64_t Size,int64_t * TotalOffset)4316 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
4317 int64_t Size, int64_t *TotalOffset) {
4318 MachineInstr &MI = *II;
4319 if ((MI.getOpcode() == AArch64::ADDXri ||
4320 MI.getOpcode() == AArch64::SUBXri) &&
4321 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
4322 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
4323 int64_t Offset = MI.getOperand(2).getImm() << Shift;
4324 if (MI.getOpcode() == AArch64::SUBXri)
4325 Offset = -Offset;
4326 int64_t AbsPostOffset = std::abs(Offset - Size);
4327 const int64_t kMaxOffset =
4328 0xFFF; // Max encoding for unshifted ADDXri / SUBXri
4329 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
4330 *TotalOffset = Offset;
4331 return true;
4332 }
4333 }
4334 return false;
4335 }
4336
mergeMemRefs(const SmallVectorImpl<TagStoreInstr> & TSE,SmallVectorImpl<MachineMemOperand * > & MemRefs)4337 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
4338 SmallVectorImpl<MachineMemOperand *> &MemRefs) {
4339 MemRefs.clear();
4340 for (auto &TS : TSE) {
4341 MachineInstr *MI = TS.MI;
4342 // An instruction without memory operands may access anything. Be
4343 // conservative and return an empty list.
4344 if (MI->memoperands_empty()) {
4345 MemRefs.clear();
4346 return;
4347 }
4348 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
4349 }
4350 }
4351
emitCode(MachineBasicBlock::iterator & InsertI,const AArch64FrameLowering * TFI,bool TryMergeSPUpdate)4352 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
4353 const AArch64FrameLowering *TFI,
4354 bool TryMergeSPUpdate) {
4355 if (TagStores.empty())
4356 return;
4357 TagStoreInstr &FirstTagStore = TagStores[0];
4358 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
4359 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
4360 DL = TagStores[0].MI->getDebugLoc();
4361
4362 Register Reg;
4363 FrameRegOffset = TFI->resolveFrameOffsetReference(
4364 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
4365 /*PreferFP=*/false, /*ForSimm=*/true);
4366 FrameReg = Reg;
4367 FrameRegUpdate = std::nullopt;
4368
4369 mergeMemRefs(TagStores, CombinedMemRefs);
4370
4371 LLVM_DEBUG({
4372 dbgs() << "Replacing adjacent STG instructions:\n";
4373 for (const auto &Instr : TagStores) {
4374 dbgs() << " " << *Instr.MI;
4375 }
4376 });
4377
4378 // Size threshold where a loop becomes shorter than a linear sequence of
4379 // tagging instructions.
4380 const int kSetTagLoopThreshold = 176;
4381 if (Size < kSetTagLoopThreshold) {
4382 if (TagStores.size() < 2)
4383 return;
4384 emitUnrolled(InsertI);
4385 } else {
4386 MachineInstr *UpdateInstr = nullptr;
4387 int64_t TotalOffset = 0;
4388 if (TryMergeSPUpdate) {
4389 // See if we can merge base register update into the STGloop.
4390 // This is done in AArch64LoadStoreOptimizer for "normal" stores,
4391 // but STGloop is way too unusual for that, and also it only
4392 // realistically happens in function epilogue. Also, STGloop is expanded
4393 // before that pass.
4394 if (InsertI != MBB->end() &&
4395 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
4396 &TotalOffset)) {
4397 UpdateInstr = &*InsertI++;
4398 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
4399 << *UpdateInstr);
4400 }
4401 }
4402
4403 if (!UpdateInstr && TagStores.size() < 2)
4404 return;
4405
4406 if (UpdateInstr) {
4407 FrameRegUpdate = TotalOffset;
4408 FrameRegUpdateFlags = UpdateInstr->getFlags();
4409 }
4410 emitLoop(InsertI);
4411 if (UpdateInstr)
4412 UpdateInstr->eraseFromParent();
4413 }
4414
4415 for (auto &TS : TagStores)
4416 TS.MI->eraseFromParent();
4417 }
4418
isMergeableStackTaggingInstruction(MachineInstr & MI,int64_t & Offset,int64_t & Size,bool & ZeroData)4419 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
4420 int64_t &Size, bool &ZeroData) {
4421 MachineFunction &MF = *MI.getParent()->getParent();
4422 const MachineFrameInfo &MFI = MF.getFrameInfo();
4423
4424 unsigned Opcode = MI.getOpcode();
4425 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGi ||
4426 Opcode == AArch64::STZ2Gi);
4427
4428 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
4429 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
4430 return false;
4431 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
4432 return false;
4433 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
4434 Size = MI.getOperand(2).getImm();
4435 return true;
4436 }
4437
4438 if (Opcode == AArch64::STGi || Opcode == AArch64::STZGi)
4439 Size = 16;
4440 else if (Opcode == AArch64::ST2Gi || Opcode == AArch64::STZ2Gi)
4441 Size = 32;
4442 else
4443 return false;
4444
4445 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
4446 return false;
4447
4448 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
4449 16 * MI.getOperand(2).getImm();
4450 return true;
4451 }
4452
4453 // Detect a run of memory tagging instructions for adjacent stack frame slots,
4454 // and replace them with a shorter instruction sequence:
4455 // * replace STG + STG with ST2G
4456 // * replace STGloop + STGloop with STGloop
4457 // This code needs to run when stack slot offsets are already known, but before
4458 // FrameIndex operands in STG instructions are eliminated.
tryMergeAdjacentSTG(MachineBasicBlock::iterator II,const AArch64FrameLowering * TFI,RegScavenger * RS)4459 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
4460 const AArch64FrameLowering *TFI,
4461 RegScavenger *RS) {
4462 bool FirstZeroData;
4463 int64_t Size, Offset;
4464 MachineInstr &MI = *II;
4465 MachineBasicBlock *MBB = MI.getParent();
4466 MachineBasicBlock::iterator NextI = ++II;
4467 if (&MI == &MBB->instr_back())
4468 return II;
4469 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
4470 return II;
4471
4472 SmallVector<TagStoreInstr, 4> Instrs;
4473 Instrs.emplace_back(&MI, Offset, Size);
4474
4475 constexpr int kScanLimit = 10;
4476 int Count = 0;
4477 for (MachineBasicBlock::iterator E = MBB->end();
4478 NextI != E && Count < kScanLimit; ++NextI) {
4479 MachineInstr &MI = *NextI;
4480 bool ZeroData;
4481 int64_t Size, Offset;
4482 // Collect instructions that update memory tags with a FrameIndex operand
4483 // and (when applicable) constant size, and whose output registers are dead
4484 // (the latter is almost always the case in practice). Since these
4485 // instructions effectively have no inputs or outputs, we are free to skip
4486 // any non-aliasing instructions in between without tracking used registers.
4487 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
4488 if (ZeroData != FirstZeroData)
4489 break;
4490 Instrs.emplace_back(&MI, Offset, Size);
4491 continue;
4492 }
4493
4494 // Only count non-transient, non-tagging instructions toward the scan
4495 // limit.
4496 if (!MI.isTransient())
4497 ++Count;
4498
4499 // Just in case, stop before the epilogue code starts.
4500 if (MI.getFlag(MachineInstr::FrameSetup) ||
4501 MI.getFlag(MachineInstr::FrameDestroy))
4502 break;
4503
4504 // Reject anything that may alias the collected instructions.
4505 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
4506 break;
4507 }
4508
4509 // New code will be inserted after the last tagging instruction we've found.
4510 MachineBasicBlock::iterator InsertI = Instrs.back().MI;
4511
4512 // All the gathered stack tag instructions are merged and placed after
4513 // last tag store in the list. The check should be made if the nzcv
4514 // flag is live at the point where we are trying to insert. Otherwise
4515 // the nzcv flag might get clobbered if any stg loops are present.
4516
4517 // FIXME : This approach of bailing out from merge is conservative in
4518 // some ways like even if stg loops are not present after merge the
4519 // insert list, this liveness check is done (which is not needed).
4520 LivePhysRegs LiveRegs(*(MBB->getParent()->getSubtarget().getRegisterInfo()));
4521 LiveRegs.addLiveOuts(*MBB);
4522 for (auto I = MBB->rbegin();; ++I) {
4523 MachineInstr &MI = *I;
4524 if (MI == InsertI)
4525 break;
4526 LiveRegs.stepBackward(*I);
4527 }
4528 InsertI++;
4529 if (LiveRegs.contains(AArch64::NZCV))
4530 return InsertI;
4531
4532 llvm::stable_sort(Instrs,
4533 [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
4534 return Left.Offset < Right.Offset;
4535 });
4536
4537 // Make sure that we don't have any overlapping stores.
4538 int64_t CurOffset = Instrs[0].Offset;
4539 for (auto &Instr : Instrs) {
4540 if (CurOffset > Instr.Offset)
4541 return NextI;
4542 CurOffset = Instr.Offset + Instr.Size;
4543 }
4544
4545 // Find contiguous runs of tagged memory and emit shorter instruction
4546 // sequencies for them when possible.
4547 TagStoreEdit TSE(MBB, FirstZeroData);
4548 std::optional<int64_t> EndOffset;
4549 for (auto &Instr : Instrs) {
4550 if (EndOffset && *EndOffset != Instr.Offset) {
4551 // Found a gap.
4552 TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false);
4553 TSE.clear();
4554 }
4555
4556 TSE.addInstruction(Instr);
4557 EndOffset = Instr.Offset + Instr.Size;
4558 }
4559
4560 const MachineFunction *MF = MBB->getParent();
4561 // Multiple FP/SP updates in a loop cannot be described by CFI instructions.
4562 TSE.emitCode(
4563 InsertI, TFI, /*TryMergeSPUpdate = */
4564 !MF->getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(*MF));
4565
4566 return InsertI;
4567 }
4568 } // namespace
4569
emitVGSaveRestore(MachineBasicBlock::iterator II,const AArch64FrameLowering * TFI)4570 MachineBasicBlock::iterator emitVGSaveRestore(MachineBasicBlock::iterator II,
4571 const AArch64FrameLowering *TFI) {
4572 MachineInstr &MI = *II;
4573 MachineBasicBlock *MBB = MI.getParent();
4574 MachineFunction *MF = MBB->getParent();
4575
4576 if (MI.getOpcode() != AArch64::VGSavePseudo &&
4577 MI.getOpcode() != AArch64::VGRestorePseudo)
4578 return II;
4579
4580 SMEAttrs FuncAttrs(MF->getFunction());
4581 bool LocallyStreaming =
4582 FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface();
4583 const AArch64FunctionInfo *AFI = MF->getInfo<AArch64FunctionInfo>();
4584 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
4585 const AArch64InstrInfo *TII =
4586 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
4587
4588 int64_t VGFrameIdx =
4589 LocallyStreaming ? AFI->getStreamingVGIdx() : AFI->getVGIdx();
4590 assert(VGFrameIdx != std::numeric_limits<int>::max() &&
4591 "Expected FrameIdx for VG");
4592
4593 unsigned CFIIndex;
4594 if (MI.getOpcode() == AArch64::VGSavePseudo) {
4595 const MachineFrameInfo &MFI = MF->getFrameInfo();
4596 int64_t Offset =
4597 MFI.getObjectOffset(VGFrameIdx) - TFI->getOffsetOfLocalArea();
4598 CFIIndex = MF->addFrameInst(MCCFIInstruction::createOffset(
4599 nullptr, TRI->getDwarfRegNum(AArch64::VG, true), Offset));
4600 } else
4601 CFIIndex = MF->addFrameInst(MCCFIInstruction::createRestore(
4602 nullptr, TRI->getDwarfRegNum(AArch64::VG, true)));
4603
4604 MachineInstr *UnwindInst = BuildMI(*MBB, II, II->getDebugLoc(),
4605 TII->get(TargetOpcode::CFI_INSTRUCTION))
4606 .addCFIIndex(CFIIndex);
4607
4608 MI.eraseFromParent();
4609 return UnwindInst->getIterator();
4610 }
4611
processFunctionBeforeFrameIndicesReplaced(MachineFunction & MF,RegScavenger * RS=nullptr) const4612 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
4613 MachineFunction &MF, RegScavenger *RS = nullptr) const {
4614 for (auto &BB : MF)
4615 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) {
4616 if (requiresSaveVG(MF))
4617 II = emitVGSaveRestore(II, this);
4618 if (StackTaggingMergeSetTag)
4619 II = tryMergeAdjacentSTG(II, this, RS);
4620 }
4621 }
4622
4623 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
4624 /// before the update. This is easily retrieved as it is exactly the offset
4625 /// that is set in processFunctionBeforeFrameFinalized.
getFrameIndexReferencePreferSP(const MachineFunction & MF,int FI,Register & FrameReg,bool IgnoreSPUpdates) const4626 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP(
4627 const MachineFunction &MF, int FI, Register &FrameReg,
4628 bool IgnoreSPUpdates) const {
4629 const MachineFrameInfo &MFI = MF.getFrameInfo();
4630 if (IgnoreSPUpdates) {
4631 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
4632 << MFI.getObjectOffset(FI) << "\n");
4633 FrameReg = AArch64::SP;
4634 return StackOffset::getFixed(MFI.getObjectOffset(FI));
4635 }
4636
4637 // Go to common code if we cannot provide sp + offset.
4638 if (MFI.hasVarSizedObjects() ||
4639 MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() ||
4640 MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF))
4641 return getFrameIndexReference(MF, FI, FrameReg);
4642
4643 FrameReg = AArch64::SP;
4644 return getStackOffset(MF, MFI.getObjectOffset(FI));
4645 }
4646
4647 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
4648 /// the parent's frame pointer
getWinEHParentFrameOffset(const MachineFunction & MF) const4649 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
4650 const MachineFunction &MF) const {
4651 return 0;
4652 }
4653
4654 /// Funclets only need to account for space for the callee saved registers,
4655 /// as the locals are accounted for in the parent's stack frame.
getWinEHFuncletFrameSize(const MachineFunction & MF) const4656 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
4657 const MachineFunction &MF) const {
4658 // This is the size of the pushed CSRs.
4659 unsigned CSSize =
4660 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
4661 // This is the amount of stack a funclet needs to allocate.
4662 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
4663 getStackAlign());
4664 }
4665
4666 namespace {
4667 struct FrameObject {
4668 bool IsValid = false;
4669 // Index of the object in MFI.
4670 int ObjectIndex = 0;
4671 // Group ID this object belongs to.
4672 int GroupIndex = -1;
4673 // This object should be placed first (closest to SP).
4674 bool ObjectFirst = false;
4675 // This object's group (which always contains the object with
4676 // ObjectFirst==true) should be placed first.
4677 bool GroupFirst = false;
4678
4679 // Used to distinguish between FP and GPR accesses. The values are decided so
4680 // that they sort FPR < Hazard < GPR and they can be or'd together.
4681 unsigned Accesses = 0;
4682 enum { AccessFPR = 1, AccessHazard = 2, AccessGPR = 4 };
4683 };
4684
4685 class GroupBuilder {
4686 SmallVector<int, 8> CurrentMembers;
4687 int NextGroupIndex = 0;
4688 std::vector<FrameObject> &Objects;
4689
4690 public:
GroupBuilder(std::vector<FrameObject> & Objects)4691 GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
AddMember(int Index)4692 void AddMember(int Index) { CurrentMembers.push_back(Index); }
EndCurrentGroup()4693 void EndCurrentGroup() {
4694 if (CurrentMembers.size() > 1) {
4695 // Create a new group with the current member list. This might remove them
4696 // from their pre-existing groups. That's OK, dealing with overlapping
4697 // groups is too hard and unlikely to make a difference.
4698 LLVM_DEBUG(dbgs() << "group:");
4699 for (int Index : CurrentMembers) {
4700 Objects[Index].GroupIndex = NextGroupIndex;
4701 LLVM_DEBUG(dbgs() << " " << Index);
4702 }
4703 LLVM_DEBUG(dbgs() << "\n");
4704 NextGroupIndex++;
4705 }
4706 CurrentMembers.clear();
4707 }
4708 };
4709
FrameObjectCompare(const FrameObject & A,const FrameObject & B)4710 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
4711 // Objects at a lower index are closer to FP; objects at a higher index are
4712 // closer to SP.
4713 //
4714 // For consistency in our comparison, all invalid objects are placed
4715 // at the end. This also allows us to stop walking when we hit the
4716 // first invalid item after it's all sorted.
4717 //
4718 // If we want to include a stack hazard region, order FPR accesses < the
4719 // hazard object < GPRs accesses in order to create a separation between the
4720 // two. For the Accesses field 1 = FPR, 2 = Hazard Object, 4 = GPR.
4721 //
4722 // Otherwise the "first" object goes first (closest to SP), followed by the
4723 // members of the "first" group.
4724 //
4725 // The rest are sorted by the group index to keep the groups together.
4726 // Higher numbered groups are more likely to be around longer (i.e. untagged
4727 // in the function epilogue and not at some earlier point). Place them closer
4728 // to SP.
4729 //
4730 // If all else equal, sort by the object index to keep the objects in the
4731 // original order.
4732 return std::make_tuple(!A.IsValid, A.Accesses, A.ObjectFirst, A.GroupFirst,
4733 A.GroupIndex, A.ObjectIndex) <
4734 std::make_tuple(!B.IsValid, B.Accesses, B.ObjectFirst, B.GroupFirst,
4735 B.GroupIndex, B.ObjectIndex);
4736 }
4737 } // namespace
4738
orderFrameObjects(const MachineFunction & MF,SmallVectorImpl<int> & ObjectsToAllocate) const4739 void AArch64FrameLowering::orderFrameObjects(
4740 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
4741 if (!OrderFrameObjects || ObjectsToAllocate.empty())
4742 return;
4743
4744 const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
4745 const MachineFrameInfo &MFI = MF.getFrameInfo();
4746 std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
4747 for (auto &Obj : ObjectsToAllocate) {
4748 FrameObjects[Obj].IsValid = true;
4749 FrameObjects[Obj].ObjectIndex = Obj;
4750 }
4751
4752 // Identify FPR vs GPR slots for hazards, and stack slots that are tagged at
4753 // the same time.
4754 GroupBuilder GB(FrameObjects);
4755 for (auto &MBB : MF) {
4756 for (auto &MI : MBB) {
4757 if (MI.isDebugInstr())
4758 continue;
4759
4760 if (AFI.hasStackHazardSlotIndex()) {
4761 std::optional<int> FI = getLdStFrameID(MI, MFI);
4762 if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) {
4763 if (MFI.getStackID(*FI) == TargetStackID::ScalableVector ||
4764 AArch64InstrInfo::isFpOrNEON(MI))
4765 FrameObjects[*FI].Accesses |= FrameObject::AccessFPR;
4766 else
4767 FrameObjects[*FI].Accesses |= FrameObject::AccessGPR;
4768 }
4769 }
4770
4771 int OpIndex;
4772 switch (MI.getOpcode()) {
4773 case AArch64::STGloop:
4774 case AArch64::STZGloop:
4775 OpIndex = 3;
4776 break;
4777 case AArch64::STGi:
4778 case AArch64::STZGi:
4779 case AArch64::ST2Gi:
4780 case AArch64::STZ2Gi:
4781 OpIndex = 1;
4782 break;
4783 default:
4784 OpIndex = -1;
4785 }
4786
4787 int TaggedFI = -1;
4788 if (OpIndex >= 0) {
4789 const MachineOperand &MO = MI.getOperand(OpIndex);
4790 if (MO.isFI()) {
4791 int FI = MO.getIndex();
4792 if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
4793 FrameObjects[FI].IsValid)
4794 TaggedFI = FI;
4795 }
4796 }
4797
4798 // If this is a stack tagging instruction for a slot that is not part of a
4799 // group yet, either start a new group or add it to the current one.
4800 if (TaggedFI >= 0)
4801 GB.AddMember(TaggedFI);
4802 else
4803 GB.EndCurrentGroup();
4804 }
4805 // Groups should never span multiple basic blocks.
4806 GB.EndCurrentGroup();
4807 }
4808
4809 if (AFI.hasStackHazardSlotIndex()) {
4810 FrameObjects[AFI.getStackHazardSlotIndex()].Accesses =
4811 FrameObject::AccessHazard;
4812 // If a stack object is unknown or both GPR and FPR, sort it into GPR.
4813 for (auto &Obj : FrameObjects)
4814 if (!Obj.Accesses ||
4815 Obj.Accesses == (FrameObject::AccessGPR | FrameObject::AccessFPR))
4816 Obj.Accesses = FrameObject::AccessGPR;
4817 }
4818
4819 // If the function's tagged base pointer is pinned to a stack slot, we want to
4820 // put that slot first when possible. This will likely place it at SP + 0,
4821 // and save one instruction when generating the base pointer because IRG does
4822 // not allow an immediate offset.
4823 std::optional<int> TBPI = AFI.getTaggedBasePointerIndex();
4824 if (TBPI) {
4825 FrameObjects[*TBPI].ObjectFirst = true;
4826 FrameObjects[*TBPI].GroupFirst = true;
4827 int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
4828 if (FirstGroupIndex >= 0)
4829 for (FrameObject &Object : FrameObjects)
4830 if (Object.GroupIndex == FirstGroupIndex)
4831 Object.GroupFirst = true;
4832 }
4833
4834 llvm::stable_sort(FrameObjects, FrameObjectCompare);
4835
4836 int i = 0;
4837 for (auto &Obj : FrameObjects) {
4838 // All invalid items are sorted at the end, so it's safe to stop.
4839 if (!Obj.IsValid)
4840 break;
4841 ObjectsToAllocate[i++] = Obj.ObjectIndex;
4842 }
4843
4844 LLVM_DEBUG({
4845 dbgs() << "Final frame order:\n";
4846 for (auto &Obj : FrameObjects) {
4847 if (!Obj.IsValid)
4848 break;
4849 dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
4850 if (Obj.ObjectFirst)
4851 dbgs() << ", first";
4852 if (Obj.GroupFirst)
4853 dbgs() << ", group-first";
4854 dbgs() << "\n";
4855 }
4856 });
4857 }
4858
4859 /// Emit a loop to decrement SP until it is equal to TargetReg, with probes at
4860 /// least every ProbeSize bytes. Returns an iterator of the first instruction
4861 /// after the loop. The difference between SP and TargetReg must be an exact
4862 /// multiple of ProbeSize.
4863 MachineBasicBlock::iterator
inlineStackProbeLoopExactMultiple(MachineBasicBlock::iterator MBBI,int64_t ProbeSize,Register TargetReg) const4864 AArch64FrameLowering::inlineStackProbeLoopExactMultiple(
4865 MachineBasicBlock::iterator MBBI, int64_t ProbeSize,
4866 Register TargetReg) const {
4867 MachineBasicBlock &MBB = *MBBI->getParent();
4868 MachineFunction &MF = *MBB.getParent();
4869 const AArch64InstrInfo *TII =
4870 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
4871 DebugLoc DL = MBB.findDebugLoc(MBBI);
4872
4873 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
4874 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
4875 MF.insert(MBBInsertPoint, LoopMBB);
4876 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
4877 MF.insert(MBBInsertPoint, ExitMBB);
4878
4879 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not encodable
4880 // in SUB).
4881 emitFrameOffset(*LoopMBB, LoopMBB->end(), DL, AArch64::SP, AArch64::SP,
4882 StackOffset::getFixed(-ProbeSize), TII,
4883 MachineInstr::FrameSetup);
4884 // STR XZR, [SP]
4885 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::STRXui))
4886 .addReg(AArch64::XZR)
4887 .addReg(AArch64::SP)
4888 .addImm(0)
4889 .setMIFlags(MachineInstr::FrameSetup);
4890 // CMP SP, TargetReg
4891 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::SUBSXrx64),
4892 AArch64::XZR)
4893 .addReg(AArch64::SP)
4894 .addReg(TargetReg)
4895 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0))
4896 .setMIFlags(MachineInstr::FrameSetup);
4897 // B.CC Loop
4898 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::Bcc))
4899 .addImm(AArch64CC::NE)
4900 .addMBB(LoopMBB)
4901 .setMIFlags(MachineInstr::FrameSetup);
4902
4903 LoopMBB->addSuccessor(ExitMBB);
4904 LoopMBB->addSuccessor(LoopMBB);
4905 // Synthesize the exit MBB.
4906 ExitMBB->splice(ExitMBB->end(), &MBB, MBBI, MBB.end());
4907 ExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
4908 MBB.addSuccessor(LoopMBB);
4909 // Update liveins.
4910 fullyRecomputeLiveIns({ExitMBB, LoopMBB});
4911
4912 return ExitMBB->begin();
4913 }
4914
inlineStackProbeFixed(MachineBasicBlock::iterator MBBI,Register ScratchReg,int64_t FrameSize,StackOffset CFAOffset) const4915 void AArch64FrameLowering::inlineStackProbeFixed(
4916 MachineBasicBlock::iterator MBBI, Register ScratchReg, int64_t FrameSize,
4917 StackOffset CFAOffset) const {
4918 MachineBasicBlock *MBB = MBBI->getParent();
4919 MachineFunction &MF = *MBB->getParent();
4920 const AArch64InstrInfo *TII =
4921 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
4922 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
4923 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
4924 bool HasFP = hasFP(MF);
4925
4926 DebugLoc DL;
4927 int64_t ProbeSize = MF.getInfo<AArch64FunctionInfo>()->getStackProbeSize();
4928 int64_t NumBlocks = FrameSize / ProbeSize;
4929 int64_t ResidualSize = FrameSize % ProbeSize;
4930
4931 LLVM_DEBUG(dbgs() << "Stack probing: total " << FrameSize << " bytes, "
4932 << NumBlocks << " blocks of " << ProbeSize
4933 << " bytes, plus " << ResidualSize << " bytes\n");
4934
4935 // Decrement SP by NumBlock * ProbeSize bytes, with either unrolled or
4936 // ordinary loop.
4937 if (NumBlocks <= AArch64::StackProbeMaxLoopUnroll) {
4938 for (int i = 0; i < NumBlocks; ++i) {
4939 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not
4940 // encodable in a SUB).
4941 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP,
4942 StackOffset::getFixed(-ProbeSize), TII,
4943 MachineInstr::FrameSetup, false, false, nullptr,
4944 EmitAsyncCFI && !HasFP, CFAOffset);
4945 CFAOffset += StackOffset::getFixed(ProbeSize);
4946 // STR XZR, [SP]
4947 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui))
4948 .addReg(AArch64::XZR)
4949 .addReg(AArch64::SP)
4950 .addImm(0)
4951 .setMIFlags(MachineInstr::FrameSetup);
4952 }
4953 } else if (NumBlocks != 0) {
4954 // SUB ScratchReg, SP, #FrameSize (or equivalent if FrameSize is not
4955 // encodable in ADD). ScrathReg may temporarily become the CFA register.
4956 emitFrameOffset(*MBB, MBBI, DL, ScratchReg, AArch64::SP,
4957 StackOffset::getFixed(-ProbeSize * NumBlocks), TII,
4958 MachineInstr::FrameSetup, false, false, nullptr,
4959 EmitAsyncCFI && !HasFP, CFAOffset);
4960 CFAOffset += StackOffset::getFixed(ProbeSize * NumBlocks);
4961 MBBI = inlineStackProbeLoopExactMultiple(MBBI, ProbeSize, ScratchReg);
4962 MBB = MBBI->getParent();
4963 if (EmitAsyncCFI && !HasFP) {
4964 // Set the CFA register back to SP.
4965 const AArch64RegisterInfo &RegInfo =
4966 *MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
4967 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
4968 unsigned CFIIndex =
4969 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
4970 BuildMI(*MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
4971 .addCFIIndex(CFIIndex)
4972 .setMIFlags(MachineInstr::FrameSetup);
4973 }
4974 }
4975
4976 if (ResidualSize != 0) {
4977 // SUB SP, SP, #ResidualSize (or equivalent if ResidualSize is not encodable
4978 // in SUB).
4979 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP,
4980 StackOffset::getFixed(-ResidualSize), TII,
4981 MachineInstr::FrameSetup, false, false, nullptr,
4982 EmitAsyncCFI && !HasFP, CFAOffset);
4983 if (ResidualSize > AArch64::StackProbeMaxUnprobedStack) {
4984 // STR XZR, [SP]
4985 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui))
4986 .addReg(AArch64::XZR)
4987 .addReg(AArch64::SP)
4988 .addImm(0)
4989 .setMIFlags(MachineInstr::FrameSetup);
4990 }
4991 }
4992 }
4993
inlineStackProbe(MachineFunction & MF,MachineBasicBlock & MBB) const4994 void AArch64FrameLowering::inlineStackProbe(MachineFunction &MF,
4995 MachineBasicBlock &MBB) const {
4996 // Get the instructions that need to be replaced. We emit at most two of
4997 // these. Remember them in order to avoid complications coming from the need
4998 // to traverse the block while potentially creating more blocks.
4999 SmallVector<MachineInstr *, 4> ToReplace;
5000 for (MachineInstr &MI : MBB)
5001 if (MI.getOpcode() == AArch64::PROBED_STACKALLOC ||
5002 MI.getOpcode() == AArch64::PROBED_STACKALLOC_VAR)
5003 ToReplace.push_back(&MI);
5004
5005 for (MachineInstr *MI : ToReplace) {
5006 if (MI->getOpcode() == AArch64::PROBED_STACKALLOC) {
5007 Register ScratchReg = MI->getOperand(0).getReg();
5008 int64_t FrameSize = MI->getOperand(1).getImm();
5009 StackOffset CFAOffset = StackOffset::get(MI->getOperand(2).getImm(),
5010 MI->getOperand(3).getImm());
5011 inlineStackProbeFixed(MI->getIterator(), ScratchReg, FrameSize,
5012 CFAOffset);
5013 } else {
5014 assert(MI->getOpcode() == AArch64::PROBED_STACKALLOC_VAR &&
5015 "Stack probe pseudo-instruction expected");
5016 const AArch64InstrInfo *TII =
5017 MI->getMF()->getSubtarget<AArch64Subtarget>().getInstrInfo();
5018 Register TargetReg = MI->getOperand(0).getReg();
5019 (void)TII->probedStackAlloc(MI->getIterator(), TargetReg, true);
5020 }
5021 MI->eraseFromParent();
5022 }
5023 }
5024
5025 struct StackAccess {
5026 enum AccessType {
5027 NotAccessed = 0, // Stack object not accessed by load/store instructions.
5028 GPR = 1 << 0, // A general purpose register.
5029 PPR = 1 << 1, // A predicate register.
5030 FPR = 1 << 2, // A floating point/Neon/SVE register.
5031 };
5032
5033 int Idx;
5034 StackOffset Offset;
5035 int64_t Size;
5036 unsigned AccessTypes;
5037
StackAccessStackAccess5038 StackAccess() : Idx(0), Offset(), Size(0), AccessTypes(NotAccessed) {}
5039
operator <StackAccess5040 bool operator<(const StackAccess &Rhs) const {
5041 return std::make_tuple(start(), Idx) <
5042 std::make_tuple(Rhs.start(), Rhs.Idx);
5043 }
5044
isCPUStackAccess5045 bool isCPU() const {
5046 // Predicate register load and store instructions execute on the CPU.
5047 return AccessTypes & (AccessType::GPR | AccessType::PPR);
5048 }
isSMEStackAccess5049 bool isSME() const { return AccessTypes & AccessType::FPR; }
isMixedStackAccess5050 bool isMixed() const { return isCPU() && isSME(); }
5051
startStackAccess5052 int64_t start() const { return Offset.getFixed() + Offset.getScalable(); }
endStackAccess5053 int64_t end() const { return start() + Size; }
5054
getTypeStringStackAccess5055 std::string getTypeString() const {
5056 switch (AccessTypes) {
5057 case AccessType::FPR:
5058 return "FPR";
5059 case AccessType::PPR:
5060 return "PPR";
5061 case AccessType::GPR:
5062 return "GPR";
5063 case AccessType::NotAccessed:
5064 return "NA";
5065 default:
5066 return "Mixed";
5067 }
5068 }
5069
printStackAccess5070 void print(raw_ostream &OS) const {
5071 OS << getTypeString() << " stack object at [SP"
5072 << (Offset.getFixed() < 0 ? "" : "+") << Offset.getFixed();
5073 if (Offset.getScalable())
5074 OS << (Offset.getScalable() < 0 ? "" : "+") << Offset.getScalable()
5075 << " * vscale";
5076 OS << "]";
5077 }
5078 };
5079
operator <<(raw_ostream & OS,const StackAccess & SA)5080 static inline raw_ostream &operator<<(raw_ostream &OS, const StackAccess &SA) {
5081 SA.print(OS);
5082 return OS;
5083 }
5084
emitRemarks(const MachineFunction & MF,MachineOptimizationRemarkEmitter * ORE) const5085 void AArch64FrameLowering::emitRemarks(
5086 const MachineFunction &MF, MachineOptimizationRemarkEmitter *ORE) const {
5087
5088 SMEAttrs Attrs(MF.getFunction());
5089 if (Attrs.hasNonStreamingInterfaceAndBody())
5090 return;
5091
5092 const uint64_t HazardSize =
5093 (StackHazardSize) ? StackHazardSize : StackHazardRemarkSize;
5094
5095 if (HazardSize == 0)
5096 return;
5097
5098 const MachineFrameInfo &MFI = MF.getFrameInfo();
5099 // Bail if function has no stack objects.
5100 if (!MFI.hasStackObjects())
5101 return;
5102
5103 std::vector<StackAccess> StackAccesses(MFI.getNumObjects());
5104
5105 size_t NumFPLdSt = 0;
5106 size_t NumNonFPLdSt = 0;
5107
5108 // Collect stack accesses via Load/Store instructions.
5109 for (const MachineBasicBlock &MBB : MF) {
5110 for (const MachineInstr &MI : MBB) {
5111 if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1)
5112 continue;
5113 for (MachineMemOperand *MMO : MI.memoperands()) {
5114 std::optional<int> FI = getMMOFrameID(MMO, MFI);
5115 if (FI && !MFI.isDeadObjectIndex(*FI)) {
5116 int FrameIdx = *FI;
5117
5118 size_t ArrIdx = FrameIdx + MFI.getNumFixedObjects();
5119 if (StackAccesses[ArrIdx].AccessTypes == StackAccess::NotAccessed) {
5120 StackAccesses[ArrIdx].Idx = FrameIdx;
5121 StackAccesses[ArrIdx].Offset =
5122 getFrameIndexReferenceFromSP(MF, FrameIdx);
5123 StackAccesses[ArrIdx].Size = MFI.getObjectSize(FrameIdx);
5124 }
5125
5126 unsigned RegTy = StackAccess::AccessType::GPR;
5127 if (MFI.getStackID(FrameIdx) == TargetStackID::ScalableVector) {
5128 if (AArch64::PPRRegClass.contains(MI.getOperand(0).getReg()))
5129 RegTy = StackAccess::PPR;
5130 else
5131 RegTy = StackAccess::FPR;
5132 } else if (AArch64InstrInfo::isFpOrNEON(MI)) {
5133 RegTy = StackAccess::FPR;
5134 }
5135
5136 StackAccesses[ArrIdx].AccessTypes |= RegTy;
5137
5138 if (RegTy == StackAccess::FPR)
5139 ++NumFPLdSt;
5140 else
5141 ++NumNonFPLdSt;
5142 }
5143 }
5144 }
5145 }
5146
5147 if (NumFPLdSt == 0 || NumNonFPLdSt == 0)
5148 return;
5149
5150 llvm::sort(StackAccesses);
5151 StackAccesses.erase(llvm::remove_if(StackAccesses,
5152 [](const StackAccess &S) {
5153 return S.AccessTypes ==
5154 StackAccess::NotAccessed;
5155 }),
5156 StackAccesses.end());
5157
5158 SmallVector<const StackAccess *> MixedObjects;
5159 SmallVector<std::pair<const StackAccess *, const StackAccess *>> HazardPairs;
5160
5161 if (StackAccesses.front().isMixed())
5162 MixedObjects.push_back(&StackAccesses.front());
5163
5164 for (auto It = StackAccesses.begin(), End = std::prev(StackAccesses.end());
5165 It != End; ++It) {
5166 const auto &First = *It;
5167 const auto &Second = *(It + 1);
5168
5169 if (Second.isMixed())
5170 MixedObjects.push_back(&Second);
5171
5172 if ((First.isSME() && Second.isCPU()) ||
5173 (First.isCPU() && Second.isSME())) {
5174 uint64_t Distance = static_cast<uint64_t>(Second.start() - First.end());
5175 if (Distance < HazardSize)
5176 HazardPairs.emplace_back(&First, &Second);
5177 }
5178 }
5179
5180 auto EmitRemark = [&](llvm::StringRef Str) {
5181 ORE->emit([&]() {
5182 auto R = MachineOptimizationRemarkAnalysis(
5183 "sme", "StackHazard", MF.getFunction().getSubprogram(), &MF.front());
5184 return R << formatv("stack hazard in '{0}': ", MF.getName()).str() << Str;
5185 });
5186 };
5187
5188 for (const auto &P : HazardPairs)
5189 EmitRemark(formatv("{0} is too close to {1}", *P.first, *P.second).str());
5190
5191 for (const auto *Obj : MixedObjects)
5192 EmitRemark(
5193 formatv("{0} accessed by both GP and FP instructions", *Obj).str());
5194 }
5195