xref: /freebsd/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/Store.cpp (revision 52418fc2be8efa5172b90a3a9e617017173612c4)
1 //===- Store.cpp - Interface for maps from Locations to Values ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defined the types Store and StoreManager.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
31 #include "llvm/ADT/APSInt.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include <cassert>
36 #include <cstdint>
37 #include <optional>
38 
39 using namespace clang;
40 using namespace ento;
41 
StoreManager(ProgramStateManager & stateMgr)42 StoreManager::StoreManager(ProgramStateManager &stateMgr)
43     : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
44       MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
45 
enterStackFrame(Store OldStore,const CallEvent & Call,const StackFrameContext * LCtx)46 StoreRef StoreManager::enterStackFrame(Store OldStore,
47                                        const CallEvent &Call,
48                                        const StackFrameContext *LCtx) {
49   StoreRef Store = StoreRef(OldStore, *this);
50 
51   SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
52   Call.getInitialStackFrameContents(LCtx, InitialBindings);
53 
54   for (const auto &I : InitialBindings)
55     Store = Bind(Store.getStore(), I.first.castAs<Loc>(), I.second);
56 
57   return Store;
58 }
59 
MakeElementRegion(const SubRegion * Base,QualType EleTy,uint64_t index)60 const ElementRegion *StoreManager::MakeElementRegion(const SubRegion *Base,
61                                                      QualType EleTy,
62                                                      uint64_t index) {
63   NonLoc idx = svalBuilder.makeArrayIndex(index);
64   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
65 }
66 
GetElementZeroRegion(const SubRegion * R,QualType T)67 const ElementRegion *StoreManager::GetElementZeroRegion(const SubRegion *R,
68                                                         QualType T) {
69   NonLoc idx = svalBuilder.makeZeroArrayIndex();
70   assert(!T.isNull());
71   return MRMgr.getElementRegion(T, idx, R, Ctx);
72 }
73 
castRegion(const MemRegion * R,QualType CastToTy)74 std::optional<const MemRegion *> StoreManager::castRegion(const MemRegion *R,
75                                                           QualType CastToTy) {
76   ASTContext &Ctx = StateMgr.getContext();
77 
78   // Handle casts to Objective-C objects.
79   if (CastToTy->isObjCObjectPointerType())
80     return R->StripCasts();
81 
82   if (CastToTy->isBlockPointerType()) {
83     // FIXME: We may need different solutions, depending on the symbol
84     // involved.  Blocks can be casted to/from 'id', as they can be treated
85     // as Objective-C objects.  This could possibly be handled by enhancing
86     // our reasoning of downcasts of symbolic objects.
87     if (isa<CodeTextRegion, SymbolicRegion>(R))
88       return R;
89 
90     // We don't know what to make of it.  Return a NULL region, which
91     // will be interpreted as UnknownVal.
92     return std::nullopt;
93   }
94 
95   // Now assume we are casting from pointer to pointer. Other cases should
96   // already be handled.
97   QualType PointeeTy = CastToTy->getPointeeType();
98   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
99   CanonPointeeTy = CanonPointeeTy.getLocalUnqualifiedType();
100 
101   // Handle casts to void*.  We just pass the region through.
102   if (CanonPointeeTy == Ctx.VoidTy)
103     return R;
104 
105   const auto IsSameRegionType = [&Ctx](const MemRegion *R, QualType OtherTy) {
106     if (const auto *TR = dyn_cast<TypedValueRegion>(R)) {
107       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
108       if (OtherTy == ObjTy.getLocalUnqualifiedType())
109         return true;
110     }
111     return false;
112   };
113 
114   // Handle casts from compatible types.
115   if (R->isBoundable() && IsSameRegionType(R, CanonPointeeTy))
116     return R;
117 
118   // Process region cast according to the kind of the region being cast.
119   switch (R->getKind()) {
120     case MemRegion::CXXThisRegionKind:
121     case MemRegion::CodeSpaceRegionKind:
122     case MemRegion::StackLocalsSpaceRegionKind:
123     case MemRegion::StackArgumentsSpaceRegionKind:
124     case MemRegion::HeapSpaceRegionKind:
125     case MemRegion::UnknownSpaceRegionKind:
126     case MemRegion::StaticGlobalSpaceRegionKind:
127     case MemRegion::GlobalInternalSpaceRegionKind:
128     case MemRegion::GlobalSystemSpaceRegionKind:
129     case MemRegion::GlobalImmutableSpaceRegionKind: {
130       llvm_unreachable("Invalid region cast");
131     }
132 
133     case MemRegion::FunctionCodeRegionKind:
134     case MemRegion::BlockCodeRegionKind:
135     case MemRegion::BlockDataRegionKind:
136     case MemRegion::StringRegionKind:
137       // FIXME: Need to handle arbitrary downcasts.
138     case MemRegion::SymbolicRegionKind:
139     case MemRegion::AllocaRegionKind:
140     case MemRegion::CompoundLiteralRegionKind:
141     case MemRegion::FieldRegionKind:
142     case MemRegion::ObjCIvarRegionKind:
143     case MemRegion::ObjCStringRegionKind:
144     case MemRegion::NonParamVarRegionKind:
145     case MemRegion::ParamVarRegionKind:
146     case MemRegion::CXXTempObjectRegionKind:
147     case MemRegion::CXXLifetimeExtendedObjectRegionKind:
148     case MemRegion::CXXBaseObjectRegionKind:
149     case MemRegion::CXXDerivedObjectRegionKind:
150       return MakeElementRegion(cast<SubRegion>(R), PointeeTy);
151 
152     case MemRegion::ElementRegionKind: {
153       // If we are casting from an ElementRegion to another type, the
154       // algorithm is as follows:
155       //
156       // (1) Compute the "raw offset" of the ElementRegion from the
157       //     base region.  This is done by calling 'getAsRawOffset()'.
158       //
159       // (2a) If we get a 'RegionRawOffset' after calling
160       //      'getAsRawOffset()', determine if the absolute offset
161       //      can be exactly divided into chunks of the size of the
162       //      casted-pointee type.  If so, create a new ElementRegion with
163       //      the pointee-cast type as the new ElementType and the index
164       //      being the offset divded by the chunk size.  If not, create
165       //      a new ElementRegion at offset 0 off the raw offset region.
166       //
167       // (2b) If we don't a get a 'RegionRawOffset' after calling
168       //      'getAsRawOffset()', it means that we are at offset 0.
169       //
170       // FIXME: Handle symbolic raw offsets.
171 
172       const ElementRegion *elementR = cast<ElementRegion>(R);
173       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
174       const MemRegion *baseR = rawOff.getRegion();
175 
176       // If we cannot compute a raw offset, throw up our hands and return
177       // a NULL MemRegion*.
178       if (!baseR)
179         return std::nullopt;
180 
181       CharUnits off = rawOff.getOffset();
182 
183       if (off.isZero()) {
184         // Edge case: we are at 0 bytes off the beginning of baseR. We check to
185         // see if the type we are casting to is the same as the type of the base
186         // region. If so, just return the base region.
187         if (IsSameRegionType(baseR, CanonPointeeTy))
188           return baseR;
189         // Otherwise, create a new ElementRegion at offset 0.
190         return MakeElementRegion(cast<SubRegion>(baseR), PointeeTy);
191       }
192 
193       // We have a non-zero offset from the base region.  We want to determine
194       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
195       // we create an ElementRegion whose index is that value.  Otherwise, we
196       // create two ElementRegions, one that reflects a raw offset and the other
197       // that reflects the cast.
198 
199       // Compute the index for the new ElementRegion.
200       int64_t newIndex = 0;
201       const MemRegion *newSuperR = nullptr;
202 
203       // We can only compute sizeof(PointeeTy) if it is a complete type.
204       if (!PointeeTy->isIncompleteType()) {
205         // Compute the size in **bytes**.
206         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
207         if (!pointeeTySize.isZero()) {
208           // Is the offset a multiple of the size?  If so, we can layer the
209           // ElementRegion (with elementType == PointeeTy) directly on top of
210           // the base region.
211           if (off % pointeeTySize == 0) {
212             newIndex = off / pointeeTySize;
213             newSuperR = baseR;
214           }
215         }
216       }
217 
218       if (!newSuperR) {
219         // Create an intermediate ElementRegion to represent the raw byte.
220         // This will be the super region of the final ElementRegion.
221         newSuperR = MakeElementRegion(cast<SubRegion>(baseR), Ctx.CharTy,
222                                       off.getQuantity());
223       }
224 
225       return MakeElementRegion(cast<SubRegion>(newSuperR), PointeeTy, newIndex);
226     }
227   }
228 
229   llvm_unreachable("unreachable");
230 }
231 
regionMatchesCXXRecordType(SVal V,QualType Ty)232 static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
233   const MemRegion *MR = V.getAsRegion();
234   if (!MR)
235     return true;
236 
237   const auto *TVR = dyn_cast<TypedValueRegion>(MR);
238   if (!TVR)
239     return true;
240 
241   const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
242   if (!RD)
243     return true;
244 
245   const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
246   if (!Expected)
247     Expected = Ty->getAsCXXRecordDecl();
248 
249   return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
250 }
251 
evalDerivedToBase(SVal Derived,const CastExpr * Cast)252 SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
253   // Early return to avoid doing the wrong thing in the face of
254   // reinterpret_cast.
255   if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
256     return UnknownVal();
257 
258   // Walk through the cast path to create nested CXXBaseRegions.
259   SVal Result = Derived;
260   for (const CXXBaseSpecifier *Base : Cast->path()) {
261     Result = evalDerivedToBase(Result, Base->getType(), Base->isVirtual());
262   }
263   return Result;
264 }
265 
evalDerivedToBase(SVal Derived,const CXXBasePath & Path)266 SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
267   // Walk through the path to create nested CXXBaseRegions.
268   SVal Result = Derived;
269   for (const auto &I : Path)
270     Result = evalDerivedToBase(Result, I.Base->getType(),
271                                I.Base->isVirtual());
272   return Result;
273 }
274 
evalDerivedToBase(SVal Derived,QualType BaseType,bool IsVirtual)275 SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
276                                      bool IsVirtual) {
277   const MemRegion *DerivedReg = Derived.getAsRegion();
278   if (!DerivedReg)
279     return Derived;
280 
281   const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
282   if (!BaseDecl)
283     BaseDecl = BaseType->getAsCXXRecordDecl();
284   assert(BaseDecl && "not a C++ object?");
285 
286   if (const auto *AlreadyDerivedReg =
287           dyn_cast<CXXDerivedObjectRegion>(DerivedReg)) {
288     if (const auto *SR =
289             dyn_cast<SymbolicRegion>(AlreadyDerivedReg->getSuperRegion()))
290       if (SR->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl)
291         return loc::MemRegionVal(SR);
292 
293     DerivedReg = AlreadyDerivedReg->getSuperRegion();
294   }
295 
296   const MemRegion *BaseReg = MRMgr.getCXXBaseObjectRegion(
297       BaseDecl, cast<SubRegion>(DerivedReg), IsVirtual);
298 
299   return loc::MemRegionVal(BaseReg);
300 }
301 
302 /// Returns the static type of the given region, if it represents a C++ class
303 /// object.
304 ///
305 /// This handles both fully-typed regions, where the dynamic type is known, and
306 /// symbolic regions, where the dynamic type is merely bounded (and even then,
307 /// only ostensibly!), but does not take advantage of any dynamic type info.
getCXXRecordType(const MemRegion * MR)308 static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
309   if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
310     return TVR->getValueType()->getAsCXXRecordDecl();
311   if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
312     return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
313   return nullptr;
314 }
315 
evalBaseToDerived(SVal Base,QualType TargetType)316 std::optional<SVal> StoreManager::evalBaseToDerived(SVal Base,
317                                                     QualType TargetType) {
318   const MemRegion *MR = Base.getAsRegion();
319   if (!MR)
320     return UnknownVal();
321 
322   // Assume the derived class is a pointer or a reference to a CXX record.
323   TargetType = TargetType->getPointeeType();
324   assert(!TargetType.isNull());
325   const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
326   if (!TargetClass && !TargetType->isVoidType())
327     return UnknownVal();
328 
329   // Drill down the CXXBaseObject chains, which represent upcasts (casts from
330   // derived to base).
331   while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
332     // If found the derived class, the cast succeeds.
333     if (MRClass == TargetClass)
334       return loc::MemRegionVal(MR);
335 
336     // We skip over incomplete types. They must be the result of an earlier
337     // reinterpret_cast, as one can only dynamic_cast between types in the same
338     // class hierarchy.
339     if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
340       // Static upcasts are marked as DerivedToBase casts by Sema, so this will
341       // only happen when multiple or virtual inheritance is involved.
342       CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
343                          /*DetectVirtual=*/false);
344       if (MRClass->isDerivedFrom(TargetClass, Paths))
345         return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
346     }
347 
348     if (const auto *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
349       // Drill down the chain to get the derived classes.
350       MR = BaseR->getSuperRegion();
351       continue;
352     }
353 
354     // If this is a cast to void*, return the region.
355     if (TargetType->isVoidType())
356       return loc::MemRegionVal(MR);
357 
358     // Strange use of reinterpret_cast can give us paths we don't reason
359     // about well, by putting in ElementRegions where we'd expect
360     // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
361     // derived class has a zero offset from the base class), then it's safe
362     // to strip the cast; if it's invalid, -Wreinterpret-base-class should
363     // catch it. In the interest of performance, the analyzer will silently
364     // do the wrong thing in the invalid case (because offsets for subregions
365     // will be wrong).
366     const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
367     if (Uncasted == MR) {
368       // We reached the bottom of the hierarchy and did not find the derived
369       // class. We must be casting the base to derived, so the cast should
370       // fail.
371       break;
372     }
373 
374     MR = Uncasted;
375   }
376 
377   // If we're casting a symbolic base pointer to a derived class, use
378   // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
379   // unrelated type, it must be a weird reinterpret_cast and we have to
380   // be fine with ElementRegion. TODO: Should we instead make
381   // Derived{TargetClass, Element{SourceClass, SR}}?
382   if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
383     QualType T = SR->getSymbol()->getType();
384     const CXXRecordDecl *SourceClass = T->getPointeeCXXRecordDecl();
385     if (TargetClass && SourceClass && TargetClass->isDerivedFrom(SourceClass))
386       return loc::MemRegionVal(
387           MRMgr.getCXXDerivedObjectRegion(TargetClass, SR));
388     return loc::MemRegionVal(GetElementZeroRegion(SR, TargetType));
389   }
390 
391   // We failed if the region we ended up with has perfect type info.
392   if (isa<TypedValueRegion>(MR))
393     return std::nullopt;
394 
395   return UnknownVal();
396 }
397 
getLValueFieldOrIvar(const Decl * D,SVal Base)398 SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
399   if (Base.isUnknownOrUndef())
400     return Base;
401 
402   Loc BaseL = Base.castAs<Loc>();
403   const SubRegion* BaseR = nullptr;
404 
405   switch (BaseL.getKind()) {
406   case loc::MemRegionValKind:
407     BaseR = cast<SubRegion>(BaseL.castAs<loc::MemRegionVal>().getRegion());
408     break;
409 
410   case loc::GotoLabelKind:
411     // These are anormal cases. Flag an undefined value.
412     return UndefinedVal();
413 
414   case loc::ConcreteIntKind:
415     // While these seem funny, this can happen through casts.
416     // FIXME: What we should return is the field offset, not base. For example,
417     //  add the field offset to the integer value.  That way things
418     //  like this work properly:  &(((struct foo *) 0xa)->f)
419     //  However, that's not easy to fix without reducing our abilities
420     //  to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
421     //  is a null dereference even though we're dereferencing offset of f
422     //  rather than null. Coming up with an approach that computes offsets
423     //  over null pointers properly while still being able to catch null
424     //  dereferences might be worth it.
425     return Base;
426 
427   default:
428     llvm_unreachable("Unhandled Base.");
429   }
430 
431   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
432   // of FieldDecl.
433   if (const auto *ID = dyn_cast<ObjCIvarDecl>(D))
434     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
435 
436   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
437 }
438 
getLValueIvar(const ObjCIvarDecl * decl,SVal base)439 SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
440   return getLValueFieldOrIvar(decl, base);
441 }
442 
getLValueElement(QualType elementType,NonLoc Offset,SVal Base)443 SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset,
444                                     SVal Base) {
445 
446   // Special case, if index is 0, return the same type as if
447   // this was not an array dereference.
448   if (Offset.isZeroConstant()) {
449     QualType BT = Base.getType(this->Ctx);
450     if (!BT.isNull() && !elementType.isNull()) {
451       QualType PointeeTy = BT->getPointeeType();
452       if (!PointeeTy.isNull() &&
453           PointeeTy.getCanonicalType() == elementType.getCanonicalType())
454         return Base;
455     }
456   }
457 
458   // If the base is an unknown or undefined value, just return it back.
459   // FIXME: For absolute pointer addresses, we just return that value back as
460   //  well, although in reality we should return the offset added to that
461   //  value. See also the similar FIXME in getLValueFieldOrIvar().
462   if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base))
463     return Base;
464 
465   if (isa<loc::GotoLabel>(Base))
466     return UnknownVal();
467 
468   const SubRegion *BaseRegion =
469       Base.castAs<loc::MemRegionVal>().getRegionAs<SubRegion>();
470 
471   // Pointer of any type can be cast and used as array base.
472   const auto *ElemR = dyn_cast<ElementRegion>(BaseRegion);
473 
474   // Convert the offset to the appropriate size and signedness.
475   auto Off = svalBuilder.convertToArrayIndex(Offset).getAs<NonLoc>();
476   if (!Off) {
477     // Handle cases when LazyCompoundVal is used for an array index.
478     // Such case is possible if code does:
479     //   char b[4];
480     //   a[__builtin_bitcast(int, b)];
481     // Return UnknownVal, since we cannot model it.
482     return UnknownVal();
483   }
484 
485   Offset = Off.value();
486 
487   if (!ElemR) {
488     // If the base region is not an ElementRegion, create one.
489     // This can happen in the following example:
490     //
491     //   char *p = __builtin_alloc(10);
492     //   p[1] = 8;
493     //
494     //  Observe that 'p' binds to an AllocaRegion.
495     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
496                                                     BaseRegion, Ctx));
497   }
498 
499   SVal BaseIdx = ElemR->getIndex();
500 
501   if (!isa<nonloc::ConcreteInt>(BaseIdx))
502     return UnknownVal();
503 
504   const llvm::APSInt &BaseIdxI =
505       BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
506 
507   // Only allow non-integer offsets if the base region has no offset itself.
508   // FIXME: This is a somewhat arbitrary restriction. We should be using
509   // SValBuilder here to add the two offsets without checking their types.
510   if (!isa<nonloc::ConcreteInt>(Offset)) {
511     if (isa<ElementRegion>(BaseRegion->StripCasts()))
512       return UnknownVal();
513 
514     return loc::MemRegionVal(MRMgr.getElementRegion(
515         elementType, Offset, cast<SubRegion>(ElemR->getSuperRegion()), Ctx));
516   }
517 
518   const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
519   assert(BaseIdxI.isSigned());
520 
521   // Compute the new index.
522   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
523                                                                     OffI));
524 
525   // Construct the new ElementRegion.
526   const SubRegion *ArrayR = cast<SubRegion>(ElemR->getSuperRegion());
527   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
528                                                   Ctx));
529 }
530 
531 StoreManager::BindingsHandler::~BindingsHandler() = default;
532 
HandleBinding(StoreManager & SMgr,Store store,const MemRegion * R,SVal val)533 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
534                                                     Store store,
535                                                     const MemRegion* R,
536                                                     SVal val) {
537   SymbolRef SymV = val.getAsLocSymbol();
538   if (!SymV || SymV != Sym)
539     return true;
540 
541   if (Binding) {
542     First = false;
543     return false;
544   }
545   else
546     Binding = R;
547 
548   return true;
549 }
550