xref: /freebsd/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines ExprEngine's support for C expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ExprCXX.h"
15 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 #include <optional>
18 
19 using namespace clang;
20 using namespace ento;
21 using llvm::APSInt;
22 
23 /// Optionally conjure and return a symbol for offset when processing
24 /// an expression \p Expression.
25 /// If \p Other is a location, conjure a symbol for \p Symbol
26 /// (offset) if it is unknown so that memory arithmetic always
27 /// results in an ElementRegion.
28 /// \p Count The number of times the current basic block was visited.
conjureOffsetSymbolOnLocation(SVal Symbol,SVal Other,Expr * Expression,SValBuilder & svalBuilder,unsigned Count,const LocationContext * LCtx)29 static SVal conjureOffsetSymbolOnLocation(
30     SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
31     unsigned Count, const LocationContext *LCtx) {
32   QualType Ty = Expression->getType();
33   if (isa<Loc>(Other) && Ty->isIntegralOrEnumerationType() &&
34       Symbol.isUnknown()) {
35     return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
36   }
37   return Symbol;
38 }
39 
VisitBinaryOperator(const BinaryOperator * B,ExplodedNode * Pred,ExplodedNodeSet & Dst)40 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
41                                      ExplodedNode *Pred,
42                                      ExplodedNodeSet &Dst) {
43 
44   Expr *LHS = B->getLHS()->IgnoreParens();
45   Expr *RHS = B->getRHS()->IgnoreParens();
46 
47   // FIXME: Prechecks eventually go in ::Visit().
48   ExplodedNodeSet CheckedSet;
49   ExplodedNodeSet Tmp2;
50   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
51 
52   // With both the LHS and RHS evaluated, process the operation itself.
53   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
54          it != ei; ++it) {
55 
56     ProgramStateRef state = (*it)->getState();
57     const LocationContext *LCtx = (*it)->getLocationContext();
58     SVal LeftV = state->getSVal(LHS, LCtx);
59     SVal RightV = state->getSVal(RHS, LCtx);
60 
61     BinaryOperator::Opcode Op = B->getOpcode();
62 
63     if (Op == BO_Assign) {
64       // EXPERIMENTAL: "Conjured" symbols.
65       // FIXME: Handle structs.
66       if (RightV.isUnknown()) {
67         unsigned Count = currBldrCtx->blockCount();
68         RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
69                                               Count);
70       }
71       // Simulate the effects of a "store":  bind the value of the RHS
72       // to the L-Value represented by the LHS.
73       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
74       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
75                 LeftV, RightV);
76       continue;
77     }
78 
79     if (!B->isAssignmentOp()) {
80       StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
81 
82       if (B->isAdditiveOp()) {
83         // TODO: This can be removed after we enable history tracking with
84         // SymSymExpr.
85         unsigned Count = currBldrCtx->blockCount();
86         RightV = conjureOffsetSymbolOnLocation(
87             RightV, LeftV, RHS, svalBuilder, Count, LCtx);
88         LeftV = conjureOffsetSymbolOnLocation(
89             LeftV, RightV, LHS, svalBuilder, Count, LCtx);
90       }
91 
92       // Although we don't yet model pointers-to-members, we do need to make
93       // sure that the members of temporaries have a valid 'this' pointer for
94       // other checks.
95       if (B->getOpcode() == BO_PtrMemD)
96         state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
97 
98       // Process non-assignments except commas or short-circuited
99       // logical expressions (LAnd and LOr).
100       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
101       if (!Result.isUnknown()) {
102         state = state->BindExpr(B, LCtx, Result);
103       } else {
104         // If we cannot evaluate the operation escape the operands.
105         state = escapeValues(state, LeftV, PSK_EscapeOther);
106         state = escapeValues(state, RightV, PSK_EscapeOther);
107       }
108 
109       Bldr.generateNode(B, *it, state);
110       continue;
111     }
112 
113     assert (B->isCompoundAssignmentOp());
114 
115     switch (Op) {
116       default:
117         llvm_unreachable("Invalid opcode for compound assignment.");
118       case BO_MulAssign: Op = BO_Mul; break;
119       case BO_DivAssign: Op = BO_Div; break;
120       case BO_RemAssign: Op = BO_Rem; break;
121       case BO_AddAssign: Op = BO_Add; break;
122       case BO_SubAssign: Op = BO_Sub; break;
123       case BO_ShlAssign: Op = BO_Shl; break;
124       case BO_ShrAssign: Op = BO_Shr; break;
125       case BO_AndAssign: Op = BO_And; break;
126       case BO_XorAssign: Op = BO_Xor; break;
127       case BO_OrAssign:  Op = BO_Or;  break;
128     }
129 
130     // Perform a load (the LHS).  This performs the checks for
131     // null dereferences, and so on.
132     ExplodedNodeSet Tmp;
133     SVal location = LeftV;
134     evalLoad(Tmp, B, LHS, *it, state, location);
135 
136     for (ExplodedNode *N : Tmp) {
137       state = N->getState();
138       const LocationContext *LCtx = N->getLocationContext();
139       SVal V = state->getSVal(LHS, LCtx);
140 
141       // Get the computation type.
142       QualType CTy =
143         cast<CompoundAssignOperator>(B)->getComputationResultType();
144       CTy = getContext().getCanonicalType(CTy);
145 
146       QualType CLHSTy =
147         cast<CompoundAssignOperator>(B)->getComputationLHSType();
148       CLHSTy = getContext().getCanonicalType(CLHSTy);
149 
150       QualType LTy = getContext().getCanonicalType(LHS->getType());
151 
152       // Promote LHS.
153       V = svalBuilder.evalCast(V, CLHSTy, LTy);
154 
155       // Compute the result of the operation.
156       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
157                                          B->getType(), CTy);
158 
159       // EXPERIMENTAL: "Conjured" symbols.
160       // FIXME: Handle structs.
161 
162       SVal LHSVal;
163 
164       if (Result.isUnknown()) {
165         // The symbolic value is actually for the type of the left-hand side
166         // expression, not the computation type, as this is the value the
167         // LValue on the LHS will bind to.
168         LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
169                                               currBldrCtx->blockCount());
170         // However, we need to convert the symbol to the computation type.
171         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
172       } else {
173         // The left-hand side may bind to a different value then the
174         // computation type.
175         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
176       }
177 
178       // In C++, assignment and compound assignment operators return an
179       // lvalue.
180       if (B->isGLValue())
181         state = state->BindExpr(B, LCtx, location);
182       else
183         state = state->BindExpr(B, LCtx, Result);
184 
185       evalStore(Tmp2, B, LHS, N, state, location, LHSVal);
186     }
187   }
188 
189   // FIXME: postvisits eventually go in ::Visit()
190   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
191 }
192 
VisitBlockExpr(const BlockExpr * BE,ExplodedNode * Pred,ExplodedNodeSet & Dst)193 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
194                                 ExplodedNodeSet &Dst) {
195 
196   CanQualType T = getContext().getCanonicalType(BE->getType());
197 
198   const BlockDecl *BD = BE->getBlockDecl();
199   // Get the value of the block itself.
200   SVal V = svalBuilder.getBlockPointer(BD, T,
201                                        Pred->getLocationContext(),
202                                        currBldrCtx->blockCount());
203 
204   ProgramStateRef State = Pred->getState();
205 
206   // If we created a new MemRegion for the block, we should explicitly bind
207   // the captured variables.
208   if (const BlockDataRegion *BDR =
209       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
210 
211     auto ReferencedVars = BDR->referenced_vars();
212     auto CI = BD->capture_begin();
213     auto CE = BD->capture_end();
214     for (auto Var : ReferencedVars) {
215       const VarRegion *capturedR = Var.getCapturedRegion();
216       const TypedValueRegion *originalR = Var.getOriginalRegion();
217 
218       // If the capture had a copy expression, use the result of evaluating
219       // that expression, otherwise use the original value.
220       // We rely on the invariant that the block declaration's capture variables
221       // are a prefix of the BlockDataRegion's referenced vars (which may include
222       // referenced globals, etc.) to enable fast lookup of the capture for a
223       // given referenced var.
224       const Expr *copyExpr = nullptr;
225       if (CI != CE) {
226         assert(CI->getVariable() == capturedR->getDecl());
227         copyExpr = CI->getCopyExpr();
228         CI++;
229       }
230 
231       if (capturedR != originalR) {
232         SVal originalV;
233         const LocationContext *LCtx = Pred->getLocationContext();
234         if (copyExpr) {
235           originalV = State->getSVal(copyExpr, LCtx);
236         } else {
237           originalV = State->getSVal(loc::MemRegionVal(originalR));
238         }
239         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
240       }
241     }
242   }
243 
244   ExplodedNodeSet Tmp;
245   StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
246   Bldr.generateNode(BE, Pred,
247                     State->BindExpr(BE, Pred->getLocationContext(), V),
248                     nullptr, ProgramPoint::PostLValueKind);
249 
250   // FIXME: Move all post/pre visits to ::Visit().
251   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
252 }
253 
handleLValueBitCast(ProgramStateRef state,const Expr * Ex,const LocationContext * LCtx,QualType T,QualType ExTy,const CastExpr * CastE,StmtNodeBuilder & Bldr,ExplodedNode * Pred)254 ProgramStateRef ExprEngine::handleLValueBitCast(
255     ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
256     QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
257     ExplodedNode* Pred) {
258   if (T->isLValueReferenceType()) {
259     assert(!CastE->getType()->isLValueReferenceType());
260     ExTy = getContext().getLValueReferenceType(ExTy);
261   } else if (T->isRValueReferenceType()) {
262     assert(!CastE->getType()->isRValueReferenceType());
263     ExTy = getContext().getRValueReferenceType(ExTy);
264   }
265   // Delegate to SValBuilder to process.
266   SVal OrigV = state->getSVal(Ex, LCtx);
267   SVal SimplifiedOrigV = svalBuilder.simplifySVal(state, OrigV);
268   SVal V = svalBuilder.evalCast(SimplifiedOrigV, T, ExTy);
269   // Negate the result if we're treating the boolean as a signed i1
270   if (CastE->getCastKind() == CK_BooleanToSignedIntegral && V.isValid())
271     V = svalBuilder.evalMinus(V.castAs<NonLoc>());
272 
273   state = state->BindExpr(CastE, LCtx, V);
274   if (V.isUnknown() && !OrigV.isUnknown()) {
275     state = escapeValues(state, OrigV, PSK_EscapeOther);
276   }
277   Bldr.generateNode(CastE, Pred, state);
278 
279   return state;
280 }
281 
VisitCast(const CastExpr * CastE,const Expr * Ex,ExplodedNode * Pred,ExplodedNodeSet & Dst)282 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
283                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
284 
285   ExplodedNodeSet dstPreStmt;
286   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
287 
288   if (CastE->getCastKind() == CK_LValueToRValue ||
289       CastE->getCastKind() == CK_LValueToRValueBitCast) {
290     for (ExplodedNode *subExprNode : dstPreStmt) {
291       ProgramStateRef state = subExprNode->getState();
292       const LocationContext *LCtx = subExprNode->getLocationContext();
293       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
294     }
295     return;
296   }
297 
298   // All other casts.
299   QualType T = CastE->getType();
300   QualType ExTy = Ex->getType();
301 
302   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
303     T = ExCast->getTypeAsWritten();
304 
305   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
306   for (ExplodedNode *Pred : dstPreStmt) {
307     ProgramStateRef state = Pred->getState();
308     const LocationContext *LCtx = Pred->getLocationContext();
309 
310     switch (CastE->getCastKind()) {
311       case CK_LValueToRValue:
312       case CK_LValueToRValueBitCast:
313         llvm_unreachable("LValueToRValue casts handled earlier.");
314       case CK_ToVoid:
315         continue;
316         // The analyzer doesn't do anything special with these casts,
317         // since it understands retain/release semantics already.
318       case CK_ARCProduceObject:
319       case CK_ARCConsumeObject:
320       case CK_ARCReclaimReturnedObject:
321       case CK_ARCExtendBlockObject: // Fall-through.
322       case CK_CopyAndAutoreleaseBlockObject:
323         // The analyser can ignore atomic casts for now, although some future
324         // checkers may want to make certain that you're not modifying the same
325         // value through atomic and nonatomic pointers.
326       case CK_AtomicToNonAtomic:
327       case CK_NonAtomicToAtomic:
328         // True no-ops.
329       case CK_NoOp:
330       case CK_ConstructorConversion:
331       case CK_UserDefinedConversion:
332       case CK_FunctionToPointerDecay:
333       case CK_BuiltinFnToFnPtr:
334       case CK_HLSLArrayRValue: {
335         // Copy the SVal of Ex to CastE.
336         ProgramStateRef state = Pred->getState();
337         const LocationContext *LCtx = Pred->getLocationContext();
338         SVal V = state->getSVal(Ex, LCtx);
339         state = state->BindExpr(CastE, LCtx, V);
340         Bldr.generateNode(CastE, Pred, state);
341         continue;
342       }
343       case CK_MemberPointerToBoolean:
344       case CK_PointerToBoolean: {
345         SVal V = state->getSVal(Ex, LCtx);
346         auto PTMSV = V.getAs<nonloc::PointerToMember>();
347         if (PTMSV)
348           V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
349         if (V.isUndef() || PTMSV) {
350           state = state->BindExpr(CastE, LCtx, V);
351           Bldr.generateNode(CastE, Pred, state);
352           continue;
353         }
354         // Explicitly proceed with default handler for this case cascade.
355         state =
356             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
357         continue;
358       }
359       case CK_Dependent:
360       case CK_ArrayToPointerDecay:
361       case CK_BitCast:
362       case CK_AddressSpaceConversion:
363       case CK_BooleanToSignedIntegral:
364       case CK_IntegralToPointer:
365       case CK_PointerToIntegral: {
366         SVal V = state->getSVal(Ex, LCtx);
367         if (isa<nonloc::PointerToMember>(V)) {
368           state = state->BindExpr(CastE, LCtx, UnknownVal());
369           Bldr.generateNode(CastE, Pred, state);
370           continue;
371         }
372         // Explicitly proceed with default handler for this case cascade.
373         state =
374             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
375         continue;
376       }
377       case CK_IntegralToBoolean:
378       case CK_IntegralToFloating:
379       case CK_FloatingToIntegral:
380       case CK_FloatingToBoolean:
381       case CK_FloatingCast:
382       case CK_FloatingRealToComplex:
383       case CK_FloatingComplexToReal:
384       case CK_FloatingComplexToBoolean:
385       case CK_FloatingComplexCast:
386       case CK_FloatingComplexToIntegralComplex:
387       case CK_IntegralRealToComplex:
388       case CK_IntegralComplexToReal:
389       case CK_IntegralComplexToBoolean:
390       case CK_IntegralComplexCast:
391       case CK_IntegralComplexToFloatingComplex:
392       case CK_CPointerToObjCPointerCast:
393       case CK_BlockPointerToObjCPointerCast:
394       case CK_AnyPointerToBlockPointerCast:
395       case CK_ObjCObjectLValueCast:
396       case CK_ZeroToOCLOpaqueType:
397       case CK_IntToOCLSampler:
398       case CK_LValueBitCast:
399       case CK_FloatingToFixedPoint:
400       case CK_FixedPointToFloating:
401       case CK_FixedPointCast:
402       case CK_FixedPointToBoolean:
403       case CK_FixedPointToIntegral:
404       case CK_IntegralToFixedPoint: {
405         state =
406             handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
407         continue;
408       }
409       case CK_IntegralCast: {
410         // Delegate to SValBuilder to process.
411         SVal V = state->getSVal(Ex, LCtx);
412         if (AMgr.options.ShouldSupportSymbolicIntegerCasts)
413           V = svalBuilder.evalCast(V, T, ExTy);
414         else
415           V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
416         state = state->BindExpr(CastE, LCtx, V);
417         Bldr.generateNode(CastE, Pred, state);
418         continue;
419       }
420       case CK_DerivedToBase:
421       case CK_UncheckedDerivedToBase: {
422         // For DerivedToBase cast, delegate to the store manager.
423         SVal val = state->getSVal(Ex, LCtx);
424         val = getStoreManager().evalDerivedToBase(val, CastE);
425         state = state->BindExpr(CastE, LCtx, val);
426         Bldr.generateNode(CastE, Pred, state);
427         continue;
428       }
429       // Handle C++ dyn_cast.
430       case CK_Dynamic: {
431         SVal val = state->getSVal(Ex, LCtx);
432 
433         // Compute the type of the result.
434         QualType resultType = CastE->getType();
435         if (CastE->isGLValue())
436           resultType = getContext().getPointerType(resultType);
437 
438         bool Failed = true;
439 
440         // Check if the value being cast does not evaluates to 0.
441         if (!val.isZeroConstant())
442           if (std::optional<SVal> V =
443                   StateMgr.getStoreManager().evalBaseToDerived(val, T)) {
444           val = *V;
445           Failed = false;
446           }
447 
448         if (Failed) {
449           if (T->isReferenceType()) {
450             // A bad_cast exception is thrown if input value is a reference.
451             // Currently, we model this, by generating a sink.
452             Bldr.generateSink(CastE, Pred, state);
453             continue;
454           } else {
455             // If the cast fails on a pointer, bind to 0.
456             state = state->BindExpr(CastE, LCtx,
457                                     svalBuilder.makeNullWithType(resultType));
458           }
459         } else {
460           // If we don't know if the cast succeeded, conjure a new symbol.
461           if (val.isUnknown()) {
462             DefinedOrUnknownSVal NewSym =
463               svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
464                                            currBldrCtx->blockCount());
465             state = state->BindExpr(CastE, LCtx, NewSym);
466           } else
467             // Else, bind to the derived region value.
468             state = state->BindExpr(CastE, LCtx, val);
469         }
470         Bldr.generateNode(CastE, Pred, state);
471         continue;
472       }
473       case CK_BaseToDerived: {
474         SVal val = state->getSVal(Ex, LCtx);
475         QualType resultType = CastE->getType();
476         if (CastE->isGLValue())
477           resultType = getContext().getPointerType(resultType);
478 
479         if (!val.isConstant()) {
480           std::optional<SVal> V = getStoreManager().evalBaseToDerived(val, T);
481           val = V ? *V : UnknownVal();
482         }
483 
484         // Failed to cast or the result is unknown, fall back to conservative.
485         if (val.isUnknown()) {
486           val =
487             svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
488                                          currBldrCtx->blockCount());
489         }
490         state = state->BindExpr(CastE, LCtx, val);
491         Bldr.generateNode(CastE, Pred, state);
492         continue;
493       }
494       case CK_NullToPointer: {
495         SVal V = svalBuilder.makeNullWithType(CastE->getType());
496         state = state->BindExpr(CastE, LCtx, V);
497         Bldr.generateNode(CastE, Pred, state);
498         continue;
499       }
500       case CK_NullToMemberPointer: {
501         SVal V = svalBuilder.getMemberPointer(nullptr);
502         state = state->BindExpr(CastE, LCtx, V);
503         Bldr.generateNode(CastE, Pred, state);
504         continue;
505       }
506       case CK_DerivedToBaseMemberPointer:
507       case CK_BaseToDerivedMemberPointer:
508       case CK_ReinterpretMemberPointer: {
509         SVal V = state->getSVal(Ex, LCtx);
510         if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
511           SVal CastedPTMSV =
512               svalBuilder.makePointerToMember(getBasicVals().accumCXXBase(
513                   CastE->path(), *PTMSV, CastE->getCastKind()));
514           state = state->BindExpr(CastE, LCtx, CastedPTMSV);
515           Bldr.generateNode(CastE, Pred, state);
516           continue;
517         }
518         // Explicitly proceed with default handler for this case cascade.
519       }
520         [[fallthrough]];
521       // Various C++ casts that are not handled yet.
522       case CK_ToUnion:
523       case CK_MatrixCast:
524       case CK_VectorSplat:
525       case CK_HLSLVectorTruncation: {
526         QualType resultType = CastE->getType();
527         if (CastE->isGLValue())
528           resultType = getContext().getPointerType(resultType);
529         SVal result = svalBuilder.conjureSymbolVal(
530             /*symbolTag=*/nullptr, CastE, LCtx, resultType,
531             currBldrCtx->blockCount());
532         state = state->BindExpr(CastE, LCtx, result);
533         Bldr.generateNode(CastE, Pred, state);
534         continue;
535       }
536     }
537   }
538 }
539 
VisitCompoundLiteralExpr(const CompoundLiteralExpr * CL,ExplodedNode * Pred,ExplodedNodeSet & Dst)540 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
541                                           ExplodedNode *Pred,
542                                           ExplodedNodeSet &Dst) {
543   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
544 
545   ProgramStateRef State = Pred->getState();
546   const LocationContext *LCtx = Pred->getLocationContext();
547 
548   const Expr *Init = CL->getInitializer();
549   SVal V = State->getSVal(CL->getInitializer(), LCtx);
550 
551   if (isa<CXXConstructExpr, CXXStdInitializerListExpr>(Init)) {
552     // No work needed. Just pass the value up to this expression.
553   } else {
554     assert(isa<InitListExpr>(Init));
555     Loc CLLoc = State->getLValue(CL, LCtx);
556     State = State->bindLoc(CLLoc, V, LCtx);
557 
558     if (CL->isGLValue())
559       V = CLLoc;
560   }
561 
562   B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
563 }
564 
VisitDeclStmt(const DeclStmt * DS,ExplodedNode * Pred,ExplodedNodeSet & Dst)565 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
566                                ExplodedNodeSet &Dst) {
567   if (isa<TypedefNameDecl>(*DS->decl_begin())) {
568     // C99 6.7.7 "Any array size expressions associated with variable length
569     // array declarators are evaluated each time the declaration of the typedef
570     // name is reached in the order of execution."
571     // The checkers should know about typedef to be able to handle VLA size
572     // expressions.
573     ExplodedNodeSet DstPre;
574     getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this);
575     getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this);
576     return;
577   }
578 
579   // Assumption: The CFG has one DeclStmt per Decl.
580   const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
581 
582   if (!VD) {
583     //TODO:AZ: remove explicit insertion after refactoring is done.
584     Dst.insert(Pred);
585     return;
586   }
587 
588   // FIXME: all pre/post visits should eventually be handled by ::Visit().
589   ExplodedNodeSet dstPreVisit;
590   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
591 
592   ExplodedNodeSet dstEvaluated;
593   StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
594   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
595        I!=E; ++I) {
596     ExplodedNode *N = *I;
597     ProgramStateRef state = N->getState();
598     const LocationContext *LC = N->getLocationContext();
599 
600     // Decls without InitExpr are not initialized explicitly.
601     if (const Expr *InitEx = VD->getInit()) {
602 
603       // Note in the state that the initialization has occurred.
604       ExplodedNode *UpdatedN = N;
605       SVal InitVal = state->getSVal(InitEx, LC);
606 
607       assert(DS->isSingleDecl());
608       if (getObjectUnderConstruction(state, DS, LC)) {
609         state = finishObjectConstruction(state, DS, LC);
610         // We constructed the object directly in the variable.
611         // No need to bind anything.
612         B.generateNode(DS, UpdatedN, state);
613       } else {
614         // Recover some path-sensitivity if a scalar value evaluated to
615         // UnknownVal.
616         if (InitVal.isUnknown()) {
617           QualType Ty = InitEx->getType();
618           if (InitEx->isGLValue()) {
619             Ty = getContext().getPointerType(Ty);
620           }
621 
622           InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
623                                                  currBldrCtx->blockCount());
624         }
625 
626 
627         B.takeNodes(UpdatedN);
628         ExplodedNodeSet Dst2;
629         evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
630         B.addNodes(Dst2);
631       }
632     }
633     else {
634       B.generateNode(DS, N, state);
635     }
636   }
637 
638   getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
639 }
640 
VisitLogicalExpr(const BinaryOperator * B,ExplodedNode * Pred,ExplodedNodeSet & Dst)641 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
642                                   ExplodedNodeSet &Dst) {
643   // This method acts upon CFG elements for logical operators && and ||
644   // and attaches the value (true or false) to them as expressions.
645   // It doesn't produce any state splits.
646   // If we made it that far, we're past the point when we modeled the short
647   // circuit. It means that we should have precise knowledge about whether
648   // we've short-circuited. If we did, we already know the value we need to
649   // bind. If we didn't, the value of the RHS (casted to the boolean type)
650   // is the answer.
651   // Currently this method tries to figure out whether we've short-circuited
652   // by looking at the ExplodedGraph. This method is imperfect because there
653   // could inevitably have been merges that would have resulted in multiple
654   // potential path traversal histories. We bail out when we fail.
655   // Due to this ambiguity, a more reliable solution would have been to
656   // track the short circuit operation history path-sensitively until
657   // we evaluate the respective logical operator.
658   assert(B->getOpcode() == BO_LAnd ||
659          B->getOpcode() == BO_LOr);
660 
661   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
662   ProgramStateRef state = Pred->getState();
663 
664   if (B->getType()->isVectorType()) {
665     // FIXME: We do not model vector arithmetic yet. When adding support for
666     // that, note that the CFG-based reasoning below does not apply, because
667     // logical operators on vectors are not short-circuit. Currently they are
668     // modeled as short-circuit in Clang CFG but this is incorrect.
669     // Do not set the value for the expression. It'd be UnknownVal by default.
670     Bldr.generateNode(B, Pred, state);
671     return;
672   }
673 
674   ExplodedNode *N = Pred;
675   while (!N->getLocation().getAs<BlockEntrance>()) {
676     ProgramPoint P = N->getLocation();
677     assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
678     (void) P;
679     if (N->pred_size() != 1) {
680       // We failed to track back where we came from.
681       Bldr.generateNode(B, Pred, state);
682       return;
683     }
684     N = *N->pred_begin();
685   }
686 
687   if (N->pred_size() != 1) {
688     // We failed to track back where we came from.
689     Bldr.generateNode(B, Pred, state);
690     return;
691   }
692 
693   N = *N->pred_begin();
694   BlockEdge BE = N->getLocation().castAs<BlockEdge>();
695   SVal X;
696 
697   // Determine the value of the expression by introspecting how we
698   // got this location in the CFG.  This requires looking at the previous
699   // block we were in and what kind of control-flow transfer was involved.
700   const CFGBlock *SrcBlock = BE.getSrc();
701   // The only terminator (if there is one) that makes sense is a logical op.
702   CFGTerminator T = SrcBlock->getTerminator();
703   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
704     (void) Term;
705     assert(Term->isLogicalOp());
706     assert(SrcBlock->succ_size() == 2);
707     // Did we take the true or false branch?
708     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
709     X = svalBuilder.makeIntVal(constant, B->getType());
710   }
711   else {
712     // If there is no terminator, by construction the last statement
713     // in SrcBlock is the value of the enclosing expression.
714     // However, we still need to constrain that value to be 0 or 1.
715     assert(!SrcBlock->empty());
716     CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
717     const Expr *RHS = cast<Expr>(Elem.getStmt());
718     SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
719 
720     if (RHSVal.isUndef()) {
721       X = RHSVal;
722     } else {
723       // We evaluate "RHSVal != 0" expression which result in 0 if the value is
724       // known to be false, 1 if the value is known to be true and a new symbol
725       // when the assumption is unknown.
726       nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
727       X = evalBinOp(N->getState(), BO_NE,
728                     svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
729                     Zero, B->getType());
730     }
731   }
732   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
733 }
734 
VisitInitListExpr(const InitListExpr * IE,ExplodedNode * Pred,ExplodedNodeSet & Dst)735 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
736                                    ExplodedNode *Pred,
737                                    ExplodedNodeSet &Dst) {
738   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
739 
740   ProgramStateRef state = Pred->getState();
741   const LocationContext *LCtx = Pred->getLocationContext();
742   QualType T = getContext().getCanonicalType(IE->getType());
743   unsigned NumInitElements = IE->getNumInits();
744 
745   if (!IE->isGLValue() && !IE->isTransparent() &&
746       (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
747        T->isAnyComplexType())) {
748     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
749 
750     // Handle base case where the initializer has no elements.
751     // e.g: static int* myArray[] = {};
752     if (NumInitElements == 0) {
753       SVal V = svalBuilder.makeCompoundVal(T, vals);
754       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
755       return;
756     }
757 
758     for (const Stmt *S : llvm::reverse(*IE)) {
759       SVal V = state->getSVal(cast<Expr>(S), LCtx);
760       vals = getBasicVals().prependSVal(V, vals);
761     }
762 
763     B.generateNode(IE, Pred,
764                    state->BindExpr(IE, LCtx,
765                                    svalBuilder.makeCompoundVal(T, vals)));
766     return;
767   }
768 
769   // Handle scalars: int{5} and int{} and GLvalues.
770   // Note, if the InitListExpr is a GLvalue, it means that there is an address
771   // representing it, so it must have a single init element.
772   assert(NumInitElements <= 1);
773 
774   SVal V;
775   if (NumInitElements == 0)
776     V = getSValBuilder().makeZeroVal(T);
777   else
778     V = state->getSVal(IE->getInit(0), LCtx);
779 
780   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
781 }
782 
VisitGuardedExpr(const Expr * Ex,const Expr * L,const Expr * R,ExplodedNode * Pred,ExplodedNodeSet & Dst)783 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
784                                   const Expr *L,
785                                   const Expr *R,
786                                   ExplodedNode *Pred,
787                                   ExplodedNodeSet &Dst) {
788   assert(L && R);
789 
790   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
791   ProgramStateRef state = Pred->getState();
792   const LocationContext *LCtx = Pred->getLocationContext();
793   const CFGBlock *SrcBlock = nullptr;
794 
795   // Find the predecessor block.
796   ProgramStateRef SrcState = state;
797   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
798     ProgramPoint PP = N->getLocation();
799     if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
800       // If the state N has multiple predecessors P, it means that successors
801       // of P are all equivalent.
802       // In turn, that means that all nodes at P are equivalent in terms
803       // of observable behavior at N, and we can follow any of them.
804       // FIXME: a more robust solution which does not walk up the tree.
805       continue;
806     }
807     SrcBlock = PP.castAs<BlockEdge>().getSrc();
808     SrcState = N->getState();
809     break;
810   }
811 
812   assert(SrcBlock && "missing function entry");
813 
814   // Find the last expression in the predecessor block.  That is the
815   // expression that is used for the value of the ternary expression.
816   bool hasValue = false;
817   SVal V;
818 
819   for (CFGElement CE : llvm::reverse(*SrcBlock)) {
820     if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
821       const Expr *ValEx = cast<Expr>(CS->getStmt());
822       ValEx = ValEx->IgnoreParens();
823 
824       // For GNU extension '?:' operator, the left hand side will be an
825       // OpaqueValueExpr, so get the underlying expression.
826       if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
827         L = OpaqueEx->getSourceExpr();
828 
829       // If the last expression in the predecessor block matches true or false
830       // subexpression, get its the value.
831       if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
832         hasValue = true;
833         V = SrcState->getSVal(ValEx, LCtx);
834       }
835       break;
836     }
837   }
838 
839   if (!hasValue)
840     V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
841                                      currBldrCtx->blockCount());
842 
843   // Generate a new node with the binding from the appropriate path.
844   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
845 }
846 
847 void ExprEngine::
VisitOffsetOfExpr(const OffsetOfExpr * OOE,ExplodedNode * Pred,ExplodedNodeSet & Dst)848 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
849                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
850   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
851   Expr::EvalResult Result;
852   if (OOE->EvaluateAsInt(Result, getContext())) {
853     APSInt IV = Result.Val.getInt();
854     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
855     assert(OOE->getType()->castAs<BuiltinType>()->isInteger());
856     assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
857     SVal X = svalBuilder.makeIntVal(IV);
858     B.generateNode(OOE, Pred,
859                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
860                                               X));
861   }
862   // FIXME: Handle the case where __builtin_offsetof is not a constant.
863 }
864 
865 
866 void ExprEngine::
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * Ex,ExplodedNode * Pred,ExplodedNodeSet & Dst)867 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
868                               ExplodedNode *Pred,
869                               ExplodedNodeSet &Dst) {
870   // FIXME: Prechecks eventually go in ::Visit().
871   ExplodedNodeSet CheckedSet;
872   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
873 
874   ExplodedNodeSet EvalSet;
875   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
876 
877   QualType T = Ex->getTypeOfArgument();
878 
879   for (ExplodedNode *N : CheckedSet) {
880     if (Ex->getKind() == UETT_SizeOf) {
881       if (!T->isIncompleteType() && !T->isConstantSizeType()) {
882         assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
883 
884         // FIXME: Add support for VLA type arguments and VLA expressions.
885         // When that happens, we should probably refactor VLASizeChecker's code.
886         continue;
887       } else if (T->getAs<ObjCObjectType>()) {
888         // Some code tries to take the sizeof an ObjCObjectType, relying that
889         // the compiler has laid out its representation.  Just report Unknown
890         // for these.
891         continue;
892       }
893     }
894 
895     APSInt Value = Ex->EvaluateKnownConstInt(getContext());
896     CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
897 
898     ProgramStateRef state = N->getState();
899     state = state->BindExpr(
900         Ex, N->getLocationContext(),
901         svalBuilder.makeIntVal(amt.getQuantity(), Ex->getType()));
902     Bldr.generateNode(Ex, N, state);
903   }
904 
905   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
906 }
907 
handleUOExtension(ExplodedNode * N,const UnaryOperator * U,StmtNodeBuilder & Bldr)908 void ExprEngine::handleUOExtension(ExplodedNode *N, const UnaryOperator *U,
909                                    StmtNodeBuilder &Bldr) {
910   // FIXME: We can probably just have some magic in Environment::getSVal()
911   // that propagates values, instead of creating a new node here.
912   //
913   // Unary "+" is a no-op, similar to a parentheses.  We still have places
914   // where it may be a block-level expression, so we need to
915   // generate an extra node that just propagates the value of the
916   // subexpression.
917   const Expr *Ex = U->getSubExpr()->IgnoreParens();
918   ProgramStateRef state = N->getState();
919   const LocationContext *LCtx = N->getLocationContext();
920   Bldr.generateNode(U, N, state->BindExpr(U, LCtx, state->getSVal(Ex, LCtx)));
921 }
922 
VisitUnaryOperator(const UnaryOperator * U,ExplodedNode * Pred,ExplodedNodeSet & Dst)923 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
924                                     ExplodedNodeSet &Dst) {
925   // FIXME: Prechecks eventually go in ::Visit().
926   ExplodedNodeSet CheckedSet;
927   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
928 
929   ExplodedNodeSet EvalSet;
930   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
931 
932   for (ExplodedNode *N : CheckedSet) {
933     switch (U->getOpcode()) {
934     default: {
935       Bldr.takeNodes(N);
936       ExplodedNodeSet Tmp;
937       VisitIncrementDecrementOperator(U, N, Tmp);
938       Bldr.addNodes(Tmp);
939       break;
940     }
941     case UO_Real: {
942       const Expr *Ex = U->getSubExpr()->IgnoreParens();
943 
944       // FIXME: We don't have complex SValues yet.
945       if (Ex->getType()->isAnyComplexType()) {
946         // Just report "Unknown."
947         break;
948       }
949 
950       // For all other types, UO_Real is an identity operation.
951       assert (U->getType() == Ex->getType());
952       ProgramStateRef state = N->getState();
953       const LocationContext *LCtx = N->getLocationContext();
954       Bldr.generateNode(U, N,
955                         state->BindExpr(U, LCtx, state->getSVal(Ex, LCtx)));
956       break;
957     }
958 
959     case UO_Imag: {
960       const Expr *Ex = U->getSubExpr()->IgnoreParens();
961       // FIXME: We don't have complex SValues yet.
962       if (Ex->getType()->isAnyComplexType()) {
963         // Just report "Unknown."
964         break;
965       }
966       // For all other types, UO_Imag returns 0.
967       ProgramStateRef state = N->getState();
968       const LocationContext *LCtx = N->getLocationContext();
969       SVal X = svalBuilder.makeZeroVal(Ex->getType());
970       Bldr.generateNode(U, N, state->BindExpr(U, LCtx, X));
971       break;
972     }
973 
974     case UO_AddrOf: {
975       // Process pointer-to-member address operation.
976       const Expr *Ex = U->getSubExpr()->IgnoreParens();
977       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
978         const ValueDecl *VD = DRE->getDecl();
979 
980         if (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(VD)) {
981           ProgramStateRef State = N->getState();
982           const LocationContext *LCtx = N->getLocationContext();
983           SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD));
984           Bldr.generateNode(U, N, State->BindExpr(U, LCtx, SV));
985           break;
986         }
987       }
988       // Explicitly proceed with default handler for this case cascade.
989       handleUOExtension(N, U, Bldr);
990       break;
991     }
992     case UO_Plus:
993       assert(!U->isGLValue());
994       [[fallthrough]];
995     case UO_Deref:
996     case UO_Extension: {
997       handleUOExtension(N, U, Bldr);
998       break;
999     }
1000 
1001     case UO_LNot:
1002     case UO_Minus:
1003     case UO_Not: {
1004       assert (!U->isGLValue());
1005       const Expr *Ex = U->getSubExpr()->IgnoreParens();
1006       ProgramStateRef state = N->getState();
1007       const LocationContext *LCtx = N->getLocationContext();
1008 
1009       // Get the value of the subexpression.
1010       SVal V = state->getSVal(Ex, LCtx);
1011 
1012       if (V.isUnknownOrUndef()) {
1013         Bldr.generateNode(U, N, state->BindExpr(U, LCtx, V));
1014         break;
1015       }
1016 
1017       switch (U->getOpcode()) {
1018         default:
1019           llvm_unreachable("Invalid Opcode.");
1020         case UO_Not:
1021           // FIXME: Do we need to handle promotions?
1022           state = state->BindExpr(
1023               U, LCtx, svalBuilder.evalComplement(V.castAs<NonLoc>()));
1024           break;
1025         case UO_Minus:
1026           // FIXME: Do we need to handle promotions?
1027           state = state->BindExpr(U, LCtx,
1028                                   svalBuilder.evalMinus(V.castAs<NonLoc>()));
1029           break;
1030         case UO_LNot:
1031           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
1032           //
1033           //  Note: technically we do "E == 0", but this is the same in the
1034           //    transfer functions as "0 == E".
1035           SVal Result;
1036           if (std::optional<Loc> LV = V.getAs<Loc>()) {
1037           Loc X = svalBuilder.makeNullWithType(Ex->getType());
1038           Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
1039           } else if (Ex->getType()->isFloatingType()) {
1040           // FIXME: handle floating point types.
1041           Result = UnknownVal();
1042           } else {
1043           nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
1044           Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, U->getType());
1045           }
1046 
1047           state = state->BindExpr(U, LCtx, Result);
1048           break;
1049       }
1050       Bldr.generateNode(U, N, state);
1051       break;
1052     }
1053     }
1054   }
1055 
1056   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
1057 }
1058 
VisitIncrementDecrementOperator(const UnaryOperator * U,ExplodedNode * Pred,ExplodedNodeSet & Dst)1059 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
1060                                                  ExplodedNode *Pred,
1061                                                  ExplodedNodeSet &Dst) {
1062   // Handle ++ and -- (both pre- and post-increment).
1063   assert (U->isIncrementDecrementOp());
1064   const Expr *Ex = U->getSubExpr()->IgnoreParens();
1065 
1066   const LocationContext *LCtx = Pred->getLocationContext();
1067   ProgramStateRef state = Pred->getState();
1068   SVal loc = state->getSVal(Ex, LCtx);
1069 
1070   // Perform a load.
1071   ExplodedNodeSet Tmp;
1072   evalLoad(Tmp, U, Ex, Pred, state, loc);
1073 
1074   ExplodedNodeSet Dst2;
1075   StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
1076   for (ExplodedNode *N : Tmp) {
1077     state = N->getState();
1078     assert(LCtx == N->getLocationContext());
1079     SVal V2_untested = state->getSVal(Ex, LCtx);
1080 
1081     // Propagate unknown and undefined values.
1082     if (V2_untested.isUnknownOrUndef()) {
1083       state = state->BindExpr(U, LCtx, V2_untested);
1084 
1085       // Perform the store, so that the uninitialized value detection happens.
1086       Bldr.takeNodes(N);
1087       ExplodedNodeSet Dst3;
1088       evalStore(Dst3, U, Ex, N, state, loc, V2_untested);
1089       Bldr.addNodes(Dst3);
1090 
1091       continue;
1092     }
1093     DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
1094 
1095     // Handle all other values.
1096     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
1097 
1098     // If the UnaryOperator has non-location type, use its type to create the
1099     // constant value. If the UnaryOperator has location type, create the
1100     // constant with int type and pointer width.
1101     SVal RHS;
1102     SVal Result;
1103 
1104     if (U->getType()->isAnyPointerType())
1105       RHS = svalBuilder.makeArrayIndex(1);
1106     else if (U->getType()->isIntegralOrEnumerationType())
1107       RHS = svalBuilder.makeIntVal(1, U->getType());
1108     else
1109       RHS = UnknownVal();
1110 
1111     // The use of an operand of type bool with the ++ operators is deprecated
1112     // but valid until C++17. And if the operand of the ++ operator is of type
1113     // bool, it is set to true until C++17. Note that for '_Bool', it is also
1114     // set to true when it encounters ++ operator.
1115     if (U->getType()->isBooleanType() && U->isIncrementOp())
1116       Result = svalBuilder.makeTruthVal(true, U->getType());
1117     else
1118       Result = evalBinOp(state, Op, V2, RHS, U->getType());
1119 
1120     // Conjure a new symbol if necessary to recover precision.
1121     if (Result.isUnknown()){
1122       DefinedOrUnknownSVal SymVal =
1123         svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
1124                                      currBldrCtx->blockCount());
1125       Result = SymVal;
1126 
1127       // If the value is a location, ++/-- should always preserve
1128       // non-nullness.  Check if the original value was non-null, and if so
1129       // propagate that constraint.
1130       if (Loc::isLocType(U->getType())) {
1131         DefinedOrUnknownSVal Constraint =
1132         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
1133 
1134         if (!state->assume(Constraint, true)) {
1135           // It isn't feasible for the original value to be null.
1136           // Propagate this constraint.
1137           Constraint = svalBuilder.evalEQ(state, SymVal,
1138                                        svalBuilder.makeZeroVal(U->getType()));
1139 
1140           state = state->assume(Constraint, false);
1141           assert(state);
1142         }
1143       }
1144     }
1145 
1146     // Since the lvalue-to-rvalue conversion is explicit in the AST,
1147     // we bind an l-value if the operator is prefix and an lvalue (in C++).
1148     if (U->isGLValue())
1149       state = state->BindExpr(U, LCtx, loc);
1150     else
1151       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
1152 
1153     // Perform the store.
1154     Bldr.takeNodes(N);
1155     ExplodedNodeSet Dst3;
1156     evalStore(Dst3, U, Ex, N, state, loc, Result);
1157     Bldr.addNodes(Dst3);
1158   }
1159   Dst.insert(Dst2);
1160 }
1161