xref: /freebsd/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/BugReporter.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines BugReporter, a utility class for generating
10 //  PathDiagnostics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
15 #include "clang/AST/ASTTypeTraits.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/ParentMapContext.h"
24 #include "clang/AST/Stmt.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/Analysis/AnalysisDeclContext.h"
28 #include "clang/Analysis/CFG.h"
29 #include "clang/Analysis/CFGStmtMap.h"
30 #include "clang/Analysis/PathDiagnostic.h"
31 #include "clang/Analysis/ProgramPoint.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
36 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
38 #include "clang/StaticAnalyzer/Core/BugReporter/Z3CrosscheckVisitor.h"
39 #include "clang/StaticAnalyzer/Core/Checker.h"
40 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
41 #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/DenseSet.h"
52 #include "llvm/ADT/FoldingSet.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallString.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MemoryBuffer.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <iterator>
70 #include <memory>
71 #include <optional>
72 #include <queue>
73 #include <string>
74 #include <tuple>
75 #include <utility>
76 #include <vector>
77 
78 using namespace clang;
79 using namespace ento;
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "BugReporter"
83 
84 STATISTIC(MaxBugClassSize,
85           "The maximum number of bug reports in the same equivalence class");
86 STATISTIC(MaxValidBugClassSize,
87           "The maximum number of bug reports in the same equivalence class "
88           "where at least one report is valid (not suppressed)");
89 
90 STATISTIC(NumTimesReportPassesZ3, "Number of reports passed Z3");
91 STATISTIC(NumTimesReportRefuted, "Number of reports refuted by Z3");
92 STATISTIC(NumTimesReportEQClassAborted,
93           "Number of times a report equivalence class was aborted by the Z3 "
94           "oracle heuristic");
95 STATISTIC(NumTimesReportEQClassWasExhausted,
96           "Number of times all reports of an equivalence class was refuted");
97 
98 BugReporterVisitor::~BugReporterVisitor() = default;
99 
anchor()100 void BugReporterContext::anchor() {}
101 
102 //===----------------------------------------------------------------------===//
103 // PathDiagnosticBuilder and its associated routines and helper objects.
104 //===----------------------------------------------------------------------===//
105 
106 namespace {
107 
108 /// A (CallPiece, node assiciated with its CallEnter) pair.
109 using CallWithEntry =
110     std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
111 using CallWithEntryStack = SmallVector<CallWithEntry, 6>;
112 
113 /// Map from each node to the diagnostic pieces visitors emit for them.
114 using VisitorsDiagnosticsTy =
115     llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>;
116 
117 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
118 /// function call it represents.
119 using LocationContextMap =
120     llvm::DenseMap<const PathPieces *, const LocationContext *>;
121 
122 /// A helper class that contains everything needed to construct a
123 /// PathDiagnostic object. It does no much more then providing convenient
124 /// getters and some well placed asserts for extra security.
125 class PathDiagnosticConstruct {
126   /// The consumer we're constructing the bug report for.
127   const PathDiagnosticConsumer *Consumer;
128   /// Our current position in the bug path, which is owned by
129   /// PathDiagnosticBuilder.
130   const ExplodedNode *CurrentNode;
131   /// A mapping from parts of the bug path (for example, a function call, which
132   /// would span backwards from a CallExit to a CallEnter with the nodes in
133   /// between them) with the location contexts it is associated with.
134   LocationContextMap LCM;
135   const SourceManager &SM;
136 
137 public:
138   /// We keep stack of calls to functions as we're ascending the bug path.
139   /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
140   /// that instead?
141   CallWithEntryStack CallStack;
142   /// The bug report we're constructing. For ease of use, this field is kept
143   /// public, though some "shortcut" getters are provided for commonly used
144   /// methods of PathDiagnostic.
145   std::unique_ptr<PathDiagnostic> PD;
146 
147 public:
148   PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC,
149                           const ExplodedNode *ErrorNode,
150                           const PathSensitiveBugReport *R,
151                           const Decl *AnalysisEntryPoint);
152 
153   /// \returns the location context associated with the current position in the
154   /// bug path.
getCurrLocationContext() const155   const LocationContext *getCurrLocationContext() const {
156     assert(CurrentNode && "Already reached the root!");
157     return CurrentNode->getLocationContext();
158   }
159 
160   /// Same as getCurrLocationContext (they should always return the same
161   /// location context), but works after reaching the root of the bug path as
162   /// well.
getLocationContextForActivePath() const163   const LocationContext *getLocationContextForActivePath() const {
164     return LCM.find(&PD->getActivePath())->getSecond();
165   }
166 
getCurrentNode() const167   const ExplodedNode *getCurrentNode() const { return CurrentNode; }
168 
169   /// Steps the current node to its predecessor.
170   /// \returns whether we reached the root of the bug path.
ascendToPrevNode()171   bool ascendToPrevNode() {
172     CurrentNode = CurrentNode->getFirstPred();
173     return static_cast<bool>(CurrentNode);
174   }
175 
getParentMap() const176   const ParentMap &getParentMap() const {
177     return getCurrLocationContext()->getParentMap();
178   }
179 
getSourceManager() const180   const SourceManager &getSourceManager() const { return SM; }
181 
getParent(const Stmt * S) const182   const Stmt *getParent(const Stmt *S) const {
183     return getParentMap().getParent(S);
184   }
185 
updateLocCtxMap(const PathPieces * Path,const LocationContext * LC)186   void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) {
187     assert(Path && LC);
188     LCM[Path] = LC;
189   }
190 
getLocationContextFor(const PathPieces * Path) const191   const LocationContext *getLocationContextFor(const PathPieces *Path) const {
192     assert(LCM.count(Path) &&
193            "Failed to find the context associated with these pieces!");
194     return LCM.find(Path)->getSecond();
195   }
196 
isInLocCtxMap(const PathPieces * Path) const197   bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); }
198 
getActivePath()199   PathPieces &getActivePath() { return PD->getActivePath(); }
getMutablePieces()200   PathPieces &getMutablePieces() { return PD->getMutablePieces(); }
201 
shouldAddPathEdges() const202   bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); }
shouldAddControlNotes() const203   bool shouldAddControlNotes() const {
204     return Consumer->shouldAddControlNotes();
205   }
shouldGenerateDiagnostics() const206   bool shouldGenerateDiagnostics() const {
207     return Consumer->shouldGenerateDiagnostics();
208   }
supportsLogicalOpControlFlow() const209   bool supportsLogicalOpControlFlow() const {
210     return Consumer->supportsLogicalOpControlFlow();
211   }
212 };
213 
214 /// Contains every contextual information needed for constructing a
215 /// PathDiagnostic object for a given bug report. This class and its fields are
216 /// immutable, and passes a BugReportConstruct object around during the
217 /// construction.
218 class PathDiagnosticBuilder : public BugReporterContext {
219   /// A linear path from the error node to the root.
220   std::unique_ptr<const ExplodedGraph> BugPath;
221   /// The bug report we're describing. Visitors create their diagnostics with
222   /// them being the last entities being able to modify it (for example,
223   /// changing interestingness here would cause inconsistencies as to how this
224   /// file and visitors construct diagnostics), hence its const.
225   const PathSensitiveBugReport *R;
226   /// The leaf of the bug path. This isn't the same as the bug reports error
227   /// node, which refers to the *original* graph, not the bug path.
228   const ExplodedNode *const ErrorNode;
229   /// The diagnostic pieces visitors emitted, which is expected to be collected
230   /// by the time this builder is constructed.
231   std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics;
232 
233 public:
234   /// Find a non-invalidated report for a given equivalence class,  and returns
235   /// a PathDiagnosticBuilder able to construct bug reports for different
236   /// consumers. Returns std::nullopt if no valid report is found.
237   static std::optional<PathDiagnosticBuilder>
238   findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports,
239                   PathSensitiveBugReporter &Reporter);
240 
241   PathDiagnosticBuilder(
242       BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
243       PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
244       std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics);
245 
246   /// This function is responsible for generating diagnostic pieces that are
247   /// *not* provided by bug report visitors.
248   /// These diagnostics may differ depending on the consumer's settings,
249   /// and are therefore constructed separately for each consumer.
250   ///
251   /// There are two path diagnostics generation modes: with adding edges (used
252   /// for plists) and without  (used for HTML and text). When edges are added,
253   /// the path is modified to insert artificially generated edges.
254   /// Otherwise, more detailed diagnostics is emitted for block edges,
255   /// explaining the transitions in words.
256   std::unique_ptr<PathDiagnostic>
257   generate(const PathDiagnosticConsumer *PDC) const;
258 
259 private:
260   void updateStackPiecesWithMessage(PathDiagnosticPieceRef P,
261                                     const CallWithEntryStack &CallStack) const;
262   void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C,
263                                       PathDiagnosticLocation &PrevLoc) const;
264 
265   void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C,
266                                        BlockEdge BE) const;
267 
268   PathDiagnosticPieceRef
269   generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S,
270                         PathDiagnosticLocation &Start) const;
271 
272   PathDiagnosticPieceRef
273   generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst,
274                           PathDiagnosticLocation &Start) const;
275 
276   PathDiagnosticPieceRef
277   generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T,
278                           const CFGBlock *Src, const CFGBlock *DstC) const;
279 
280   PathDiagnosticLocation
281   ExecutionContinues(const PathDiagnosticConstruct &C) const;
282 
283   PathDiagnosticLocation
284   ExecutionContinues(llvm::raw_string_ostream &os,
285                      const PathDiagnosticConstruct &C) const;
286 
getBugReport() const287   const PathSensitiveBugReport *getBugReport() const { return R; }
288 };
289 
290 } // namespace
291 
292 //===----------------------------------------------------------------------===//
293 // Base implementation of stack hint generators.
294 //===----------------------------------------------------------------------===//
295 
296 StackHintGenerator::~StackHintGenerator() = default;
297 
getMessage(const ExplodedNode * N)298 std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
299   if (!N)
300     return getMessageForSymbolNotFound();
301 
302   ProgramPoint P = N->getLocation();
303   CallExitEnd CExit = P.castAs<CallExitEnd>();
304 
305   // FIXME: Use CallEvent to abstract this over all calls.
306   const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
307   const auto *CE = dyn_cast_or_null<CallExpr>(CallSite);
308   if (!CE)
309     return {};
310 
311   // Check if one of the parameters are set to the interesting symbol.
312   for (auto [Idx, ArgExpr] : llvm::enumerate(CE->arguments())) {
313     SVal SV = N->getSVal(ArgExpr);
314 
315     // Check if the variable corresponding to the symbol is passed by value.
316     SymbolRef AS = SV.getAsLocSymbol();
317     if (AS == Sym) {
318       return getMessageForArg(ArgExpr, Idx);
319     }
320 
321     // Check if the parameter is a pointer to the symbol.
322     if (std::optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
323       // Do not attempt to dereference void*.
324       if (ArgExpr->getType()->isVoidPointerType())
325         continue;
326       SVal PSV = N->getState()->getSVal(Reg->getRegion());
327       SymbolRef AS = PSV.getAsLocSymbol();
328       if (AS == Sym) {
329         return getMessageForArg(ArgExpr, Idx);
330       }
331     }
332   }
333 
334   // Check if we are returning the interesting symbol.
335   SVal SV = N->getSVal(CE);
336   SymbolRef RetSym = SV.getAsLocSymbol();
337   if (RetSym == Sym) {
338     return getMessageForReturn(CE);
339   }
340 
341   return getMessageForSymbolNotFound();
342 }
343 
getMessageForArg(const Expr * ArgE,unsigned ArgIndex)344 std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
345                                                           unsigned ArgIndex) {
346   // Printed parameters start at 1, not 0.
347   ++ArgIndex;
348 
349   return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) +
350           llvm::getOrdinalSuffix(ArgIndex) + " parameter").str();
351 }
352 
353 //===----------------------------------------------------------------------===//
354 // Diagnostic cleanup.
355 //===----------------------------------------------------------------------===//
356 
357 static PathDiagnosticEventPiece *
eventsDescribeSameCondition(PathDiagnosticEventPiece * X,PathDiagnosticEventPiece * Y)358 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
359                             PathDiagnosticEventPiece *Y) {
360   // Prefer diagnostics that come from ConditionBRVisitor over
361   // those that came from TrackConstraintBRVisitor,
362   // unless the one from ConditionBRVisitor is
363   // its generic fallback diagnostic.
364   const void *tagPreferred = ConditionBRVisitor::getTag();
365   const void *tagLesser = TrackConstraintBRVisitor::getTag();
366 
367   if (X->getLocation() != Y->getLocation())
368     return nullptr;
369 
370   if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
371     return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X;
372 
373   if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
374     return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y;
375 
376   return nullptr;
377 }
378 
379 /// An optimization pass over PathPieces that removes redundant diagnostics
380 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
381 /// BugReporterVisitors use different methods to generate diagnostics, with
382 /// one capable of emitting diagnostics in some cases but not in others.  This
383 /// can lead to redundant diagnostic pieces at the same point in a path.
removeRedundantMsgs(PathPieces & path)384 static void removeRedundantMsgs(PathPieces &path) {
385   unsigned N = path.size();
386   if (N < 2)
387     return;
388   // NOTE: this loop intentionally is not using an iterator.  Instead, we
389   // are streaming the path and modifying it in place.  This is done by
390   // grabbing the front, processing it, and if we decide to keep it append
391   // it to the end of the path.  The entire path is processed in this way.
392   for (unsigned i = 0; i < N; ++i) {
393     auto piece = std::move(path.front());
394     path.pop_front();
395 
396     switch (piece->getKind()) {
397       case PathDiagnosticPiece::Call:
398         removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path);
399         break;
400       case PathDiagnosticPiece::Macro:
401         removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces);
402         break;
403       case PathDiagnosticPiece::Event: {
404         if (i == N-1)
405           break;
406 
407         if (auto *nextEvent =
408             dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
409           auto *event = cast<PathDiagnosticEventPiece>(piece.get());
410           // Check to see if we should keep one of the two pieces.  If we
411           // come up with a preference, record which piece to keep, and consume
412           // another piece from the path.
413           if (auto *pieceToKeep =
414                   eventsDescribeSameCondition(event, nextEvent)) {
415             piece = std::move(pieceToKeep == event ? piece : path.front());
416             path.pop_front();
417             ++i;
418           }
419         }
420         break;
421       }
422       case PathDiagnosticPiece::ControlFlow:
423       case PathDiagnosticPiece::Note:
424       case PathDiagnosticPiece::PopUp:
425         break;
426     }
427     path.push_back(std::move(piece));
428   }
429 }
430 
431 /// Recursively scan through a path and prune out calls and macros pieces
432 /// that aren't needed.  Return true if afterwards the path contains
433 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
removeUnneededCalls(const PathDiagnosticConstruct & C,PathPieces & pieces,const PathSensitiveBugReport * R,bool IsInteresting=false)434 static bool removeUnneededCalls(const PathDiagnosticConstruct &C,
435                                 PathPieces &pieces,
436                                 const PathSensitiveBugReport *R,
437                                 bool IsInteresting = false) {
438   bool containsSomethingInteresting = IsInteresting;
439   const unsigned N = pieces.size();
440 
441   for (unsigned i = 0 ; i < N ; ++i) {
442     // Remove the front piece from the path.  If it is still something we
443     // want to keep once we are done, we will push it back on the end.
444     auto piece = std::move(pieces.front());
445     pieces.pop_front();
446 
447     switch (piece->getKind()) {
448       case PathDiagnosticPiece::Call: {
449         auto &call = cast<PathDiagnosticCallPiece>(*piece);
450         // Check if the location context is interesting.
451         if (!removeUnneededCalls(
452                 C, call.path, R,
453                 R->isInteresting(C.getLocationContextFor(&call.path))))
454           continue;
455 
456         containsSomethingInteresting = true;
457         break;
458       }
459       case PathDiagnosticPiece::Macro: {
460         auto &macro = cast<PathDiagnosticMacroPiece>(*piece);
461         if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting))
462           continue;
463         containsSomethingInteresting = true;
464         break;
465       }
466       case PathDiagnosticPiece::Event: {
467         auto &event = cast<PathDiagnosticEventPiece>(*piece);
468 
469         // We never throw away an event, but we do throw it away wholesale
470         // as part of a path if we throw the entire path away.
471         containsSomethingInteresting |= !event.isPrunable();
472         break;
473       }
474       case PathDiagnosticPiece::ControlFlow:
475       case PathDiagnosticPiece::Note:
476       case PathDiagnosticPiece::PopUp:
477         break;
478     }
479 
480     pieces.push_back(std::move(piece));
481   }
482 
483   return containsSomethingInteresting;
484 }
485 
486 /// Same logic as above to remove extra pieces.
removePopUpNotes(PathPieces & Path)487 static void removePopUpNotes(PathPieces &Path) {
488   for (unsigned int i = 0; i < Path.size(); ++i) {
489     auto Piece = std::move(Path.front());
490     Path.pop_front();
491     if (!isa<PathDiagnosticPopUpPiece>(*Piece))
492       Path.push_back(std::move(Piece));
493   }
494 }
495 
496 /// Returns true if the given decl has been implicitly given a body, either by
497 /// the analyzer or by the compiler proper.
hasImplicitBody(const Decl * D)498 static bool hasImplicitBody(const Decl *D) {
499   assert(D);
500   return D->isImplicit() || !D->hasBody();
501 }
502 
503 /// Recursively scan through a path and make sure that all call pieces have
504 /// valid locations.
505 static void
adjustCallLocations(PathPieces & Pieces,PathDiagnosticLocation * LastCallLocation=nullptr)506 adjustCallLocations(PathPieces &Pieces,
507                     PathDiagnosticLocation *LastCallLocation = nullptr) {
508   for (const auto &I : Pieces) {
509     auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get());
510 
511     if (!Call)
512       continue;
513 
514     if (LastCallLocation) {
515       bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
516       if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
517         Call->callEnter = *LastCallLocation;
518       if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
519         Call->callReturn = *LastCallLocation;
520     }
521 
522     // Recursively clean out the subclass.  Keep this call around if
523     // it contains any informative diagnostics.
524     PathDiagnosticLocation *ThisCallLocation;
525     if (Call->callEnterWithin.asLocation().isValid() &&
526         !hasImplicitBody(Call->getCallee()))
527       ThisCallLocation = &Call->callEnterWithin;
528     else
529       ThisCallLocation = &Call->callEnter;
530 
531     assert(ThisCallLocation && "Outermost call has an invalid location");
532     adjustCallLocations(Call->path, ThisCallLocation);
533   }
534 }
535 
536 /// Remove edges in and out of C++ default initializer expressions. These are
537 /// for fields that have in-class initializers, as opposed to being initialized
538 /// explicitly in a constructor or braced list.
removeEdgesToDefaultInitializers(PathPieces & Pieces)539 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
540   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
541     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
542       removeEdgesToDefaultInitializers(C->path);
543 
544     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
545       removeEdgesToDefaultInitializers(M->subPieces);
546 
547     if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) {
548       const Stmt *Start = CF->getStartLocation().asStmt();
549       const Stmt *End = CF->getEndLocation().asStmt();
550       if (isa_and_nonnull<CXXDefaultInitExpr>(Start)) {
551         I = Pieces.erase(I);
552         continue;
553       } else if (isa_and_nonnull<CXXDefaultInitExpr>(End)) {
554         PathPieces::iterator Next = std::next(I);
555         if (Next != E) {
556           if (auto *NextCF =
557                   dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) {
558             NextCF->setStartLocation(CF->getStartLocation());
559           }
560         }
561         I = Pieces.erase(I);
562         continue;
563       }
564     }
565 
566     I++;
567   }
568 }
569 
570 /// Remove all pieces with invalid locations as these cannot be serialized.
571 /// We might have pieces with invalid locations as a result of inlining Body
572 /// Farm generated functions.
removePiecesWithInvalidLocations(PathPieces & Pieces)573 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
574   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
575     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
576       removePiecesWithInvalidLocations(C->path);
577 
578     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
579       removePiecesWithInvalidLocations(M->subPieces);
580 
581     if (!(*I)->getLocation().isValid() ||
582         !(*I)->getLocation().asLocation().isValid()) {
583       I = Pieces.erase(I);
584       continue;
585     }
586     I++;
587   }
588 }
589 
ExecutionContinues(const PathDiagnosticConstruct & C) const590 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
591     const PathDiagnosticConstruct &C) const {
592   if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
593     return PathDiagnosticLocation(S, getSourceManager(),
594                                   C.getCurrLocationContext());
595 
596   return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(),
597                                                getSourceManager());
598 }
599 
ExecutionContinues(llvm::raw_string_ostream & os,const PathDiagnosticConstruct & C) const600 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
601     llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const {
602   // Slow, but probably doesn't matter.
603   if (os.str().empty())
604     os << ' ';
605 
606   const PathDiagnosticLocation &Loc = ExecutionContinues(C);
607 
608   if (Loc.asStmt())
609     os << "Execution continues on line "
610        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
611        << '.';
612   else {
613     os << "Execution jumps to the end of the ";
614     const Decl *D = C.getCurrLocationContext()->getDecl();
615     if (isa<ObjCMethodDecl>(D))
616       os << "method";
617     else if (isa<FunctionDecl>(D))
618       os << "function";
619     else {
620       assert(isa<BlockDecl>(D));
621       os << "anonymous block";
622     }
623     os << '.';
624   }
625 
626   return Loc;
627 }
628 
getEnclosingParent(const Stmt * S,const ParentMap & PM)629 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
630   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
631     return PM.getParentIgnoreParens(S);
632 
633   const Stmt *Parent = PM.getParentIgnoreParens(S);
634   if (!Parent)
635     return nullptr;
636 
637   switch (Parent->getStmtClass()) {
638   case Stmt::ForStmtClass:
639   case Stmt::DoStmtClass:
640   case Stmt::WhileStmtClass:
641   case Stmt::ObjCForCollectionStmtClass:
642   case Stmt::CXXForRangeStmtClass:
643     return Parent;
644   default:
645     break;
646   }
647 
648   return nullptr;
649 }
650 
651 static PathDiagnosticLocation
getEnclosingStmtLocation(const Stmt * S,const LocationContext * LC,bool allowNestedContexts=false)652 getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC,
653                          bool allowNestedContexts = false) {
654   if (!S)
655     return {};
656 
657   const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager();
658 
659   while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) {
660     switch (Parent->getStmtClass()) {
661       case Stmt::BinaryOperatorClass: {
662         const auto *B = cast<BinaryOperator>(Parent);
663         if (B->isLogicalOp())
664           return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
665         break;
666       }
667       case Stmt::CompoundStmtClass:
668       case Stmt::StmtExprClass:
669         return PathDiagnosticLocation(S, SMgr, LC);
670       case Stmt::ChooseExprClass:
671         // Similar to '?' if we are referring to condition, just have the edge
672         // point to the entire choose expression.
673         if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
674           return PathDiagnosticLocation(Parent, SMgr, LC);
675         else
676           return PathDiagnosticLocation(S, SMgr, LC);
677       case Stmt::BinaryConditionalOperatorClass:
678       case Stmt::ConditionalOperatorClass:
679         // For '?', if we are referring to condition, just have the edge point
680         // to the entire '?' expression.
681         if (allowNestedContexts ||
682             cast<AbstractConditionalOperator>(Parent)->getCond() == S)
683           return PathDiagnosticLocation(Parent, SMgr, LC);
684         else
685           return PathDiagnosticLocation(S, SMgr, LC);
686       case Stmt::CXXForRangeStmtClass:
687         if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
688           return PathDiagnosticLocation(S, SMgr, LC);
689         break;
690       case Stmt::DoStmtClass:
691           return PathDiagnosticLocation(S, SMgr, LC);
692       case Stmt::ForStmtClass:
693         if (cast<ForStmt>(Parent)->getBody() == S)
694           return PathDiagnosticLocation(S, SMgr, LC);
695         break;
696       case Stmt::IfStmtClass:
697         if (cast<IfStmt>(Parent)->getCond() != S)
698           return PathDiagnosticLocation(S, SMgr, LC);
699         break;
700       case Stmt::ObjCForCollectionStmtClass:
701         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
702           return PathDiagnosticLocation(S, SMgr, LC);
703         break;
704       case Stmt::WhileStmtClass:
705         if (cast<WhileStmt>(Parent)->getCond() != S)
706           return PathDiagnosticLocation(S, SMgr, LC);
707         break;
708       default:
709         break;
710     }
711 
712     S = Parent;
713   }
714 
715   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
716 
717   return PathDiagnosticLocation(S, SMgr, LC);
718 }
719 
720 //===----------------------------------------------------------------------===//
721 // "Minimal" path diagnostic generation algorithm.
722 //===----------------------------------------------------------------------===//
723 
724 /// If the piece contains a special message, add it to all the call pieces on
725 /// the active stack. For example, my_malloc allocated memory, so MallocChecker
726 /// will construct an event at the call to malloc(), and add a stack hint that
727 /// an allocated memory was returned. We'll use this hint to construct a message
728 /// when returning from the call to my_malloc
729 ///
730 ///   void *my_malloc() { return malloc(sizeof(int)); }
731 ///   void fishy() {
732 ///     void *ptr = my_malloc(); // returned allocated memory
733 ///   } // leak
updateStackPiecesWithMessage(PathDiagnosticPieceRef P,const CallWithEntryStack & CallStack) const734 void PathDiagnosticBuilder::updateStackPiecesWithMessage(
735     PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const {
736   if (R->hasCallStackHint(P))
737     for (const auto &I : CallStack) {
738       PathDiagnosticCallPiece *CP = I.first;
739       const ExplodedNode *N = I.second;
740       std::string stackMsg = R->getCallStackMessage(P, N);
741 
742       // The last message on the path to final bug is the most important
743       // one. Since we traverse the path backwards, do not add the message
744       // if one has been previously added.
745       if (!CP->hasCallStackMessage())
746         CP->setCallStackMessage(stackMsg);
747     }
748 }
749 
750 static void CompactMacroExpandedPieces(PathPieces &path,
751                                        const SourceManager& SM);
752 
generateDiagForSwitchOP(const PathDiagnosticConstruct & C,const CFGBlock * Dst,PathDiagnosticLocation & Start) const753 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP(
754     const PathDiagnosticConstruct &C, const CFGBlock *Dst,
755     PathDiagnosticLocation &Start) const {
756 
757   const SourceManager &SM = getSourceManager();
758   // Figure out what case arm we took.
759   std::string sbuf;
760   llvm::raw_string_ostream os(sbuf);
761   PathDiagnosticLocation End;
762 
763   if (const Stmt *S = Dst->getLabel()) {
764     End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext());
765 
766     switch (S->getStmtClass()) {
767     default:
768       os << "No cases match in the switch statement. "
769         "Control jumps to line "
770         << End.asLocation().getExpansionLineNumber();
771       break;
772     case Stmt::DefaultStmtClass:
773       os << "Control jumps to the 'default' case at line "
774         << End.asLocation().getExpansionLineNumber();
775       break;
776 
777     case Stmt::CaseStmtClass: {
778       os << "Control jumps to 'case ";
779       const auto *Case = cast<CaseStmt>(S);
780       const Expr *LHS = Case->getLHS()->IgnoreParenImpCasts();
781 
782       // Determine if it is an enum.
783       bool GetRawInt = true;
784 
785       if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) {
786         // FIXME: Maybe this should be an assertion.  Are there cases
787         // were it is not an EnumConstantDecl?
788         const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl());
789 
790         if (D) {
791           GetRawInt = false;
792           os << *D;
793         }
794       }
795 
796       if (GetRawInt)
797         os << LHS->EvaluateKnownConstInt(getASTContext());
798 
799       os << ":'  at line " << End.asLocation().getExpansionLineNumber();
800       break;
801     }
802     }
803   } else {
804     os << "'Default' branch taken. ";
805     End = ExecutionContinues(os, C);
806   }
807   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
808                                                        os.str());
809 }
810 
generateDiagForGotoOP(const PathDiagnosticConstruct & C,const Stmt * S,PathDiagnosticLocation & Start) const811 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP(
812     const PathDiagnosticConstruct &C, const Stmt *S,
813     PathDiagnosticLocation &Start) const {
814   std::string sbuf;
815   llvm::raw_string_ostream os(sbuf);
816   const PathDiagnosticLocation &End =
817       getEnclosingStmtLocation(S, C.getCurrLocationContext());
818   os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
819   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str());
820 }
821 
generateDiagForBinaryOP(const PathDiagnosticConstruct & C,const Stmt * T,const CFGBlock * Src,const CFGBlock * Dst) const822 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP(
823     const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src,
824     const CFGBlock *Dst) const {
825 
826   const SourceManager &SM = getSourceManager();
827 
828   const auto *B = cast<BinaryOperator>(T);
829   std::string sbuf;
830   llvm::raw_string_ostream os(sbuf);
831   os << "Left side of '";
832   PathDiagnosticLocation Start, End;
833 
834   if (B->getOpcode() == BO_LAnd) {
835     os << "&&"
836       << "' is ";
837 
838     if (*(Src->succ_begin() + 1) == Dst) {
839       os << "false";
840       End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
841       Start =
842         PathDiagnosticLocation::createOperatorLoc(B, SM);
843     } else {
844       os << "true";
845       Start =
846           PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
847       End = ExecutionContinues(C);
848     }
849   } else {
850     assert(B->getOpcode() == BO_LOr);
851     os << "||"
852       << "' is ";
853 
854     if (*(Src->succ_begin() + 1) == Dst) {
855       os << "false";
856       Start =
857           PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
858       End = ExecutionContinues(C);
859     } else {
860       os << "true";
861       End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
862       Start =
863         PathDiagnosticLocation::createOperatorLoc(B, SM);
864     }
865   }
866   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
867                                                          os.str());
868 }
869 
generateMinimalDiagForBlockEdge(PathDiagnosticConstruct & C,BlockEdge BE) const870 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
871     PathDiagnosticConstruct &C, BlockEdge BE) const {
872   const SourceManager &SM = getSourceManager();
873   const LocationContext *LC = C.getCurrLocationContext();
874   const CFGBlock *Src = BE.getSrc();
875   const CFGBlock *Dst = BE.getDst();
876   const Stmt *T = Src->getTerminatorStmt();
877   if (!T)
878     return;
879 
880   auto Start = PathDiagnosticLocation::createBegin(T, SM, LC);
881   switch (T->getStmtClass()) {
882   default:
883     break;
884 
885   case Stmt::GotoStmtClass:
886   case Stmt::IndirectGotoStmtClass: {
887     if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
888       C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start));
889     break;
890   }
891 
892   case Stmt::SwitchStmtClass: {
893     C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start));
894     break;
895   }
896 
897   case Stmt::BreakStmtClass:
898   case Stmt::ContinueStmtClass: {
899     std::string sbuf;
900     llvm::raw_string_ostream os(sbuf);
901     PathDiagnosticLocation End = ExecutionContinues(os, C);
902     C.getActivePath().push_front(
903         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
904     break;
905   }
906 
907   // Determine control-flow for ternary '?'.
908   case Stmt::BinaryConditionalOperatorClass:
909   case Stmt::ConditionalOperatorClass: {
910     std::string sbuf;
911     llvm::raw_string_ostream os(sbuf);
912     os << "'?' condition is ";
913 
914     if (*(Src->succ_begin() + 1) == Dst)
915       os << "false";
916     else
917       os << "true";
918 
919     PathDiagnosticLocation End = ExecutionContinues(C);
920 
921     if (const Stmt *S = End.asStmt())
922       End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
923 
924     C.getActivePath().push_front(
925         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
926     break;
927   }
928 
929   // Determine control-flow for short-circuited '&&' and '||'.
930   case Stmt::BinaryOperatorClass: {
931     if (!C.supportsLogicalOpControlFlow())
932       break;
933 
934     C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst));
935     break;
936   }
937 
938   case Stmt::DoStmtClass:
939     if (*(Src->succ_begin()) == Dst) {
940       std::string sbuf;
941       llvm::raw_string_ostream os(sbuf);
942 
943       os << "Loop condition is true. ";
944       PathDiagnosticLocation End = ExecutionContinues(os, C);
945 
946       if (const Stmt *S = End.asStmt())
947         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
948 
949       C.getActivePath().push_front(
950           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
951                                                            os.str()));
952     } else {
953       PathDiagnosticLocation End = ExecutionContinues(C);
954 
955       if (const Stmt *S = End.asStmt())
956         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
957 
958       C.getActivePath().push_front(
959           std::make_shared<PathDiagnosticControlFlowPiece>(
960               Start, End, "Loop condition is false.  Exiting loop"));
961     }
962     break;
963 
964   case Stmt::WhileStmtClass:
965   case Stmt::ForStmtClass:
966     if (*(Src->succ_begin() + 1) == Dst) {
967       std::string sbuf;
968       llvm::raw_string_ostream os(sbuf);
969 
970       os << "Loop condition is false. ";
971       PathDiagnosticLocation End = ExecutionContinues(os, C);
972       if (const Stmt *S = End.asStmt())
973         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
974 
975       C.getActivePath().push_front(
976           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
977                                                            os.str()));
978     } else {
979       PathDiagnosticLocation End = ExecutionContinues(C);
980       if (const Stmt *S = End.asStmt())
981         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
982 
983       C.getActivePath().push_front(
984           std::make_shared<PathDiagnosticControlFlowPiece>(
985               Start, End, "Loop condition is true.  Entering loop body"));
986     }
987 
988     break;
989 
990   case Stmt::IfStmtClass: {
991     PathDiagnosticLocation End = ExecutionContinues(C);
992 
993     if (const Stmt *S = End.asStmt())
994       End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
995 
996     if (*(Src->succ_begin() + 1) == Dst)
997       C.getActivePath().push_front(
998           std::make_shared<PathDiagnosticControlFlowPiece>(
999               Start, End, "Taking false branch"));
1000     else
1001       C.getActivePath().push_front(
1002           std::make_shared<PathDiagnosticControlFlowPiece>(
1003               Start, End, "Taking true branch"));
1004 
1005     break;
1006   }
1007   }
1008 }
1009 
1010 //===----------------------------------------------------------------------===//
1011 // Functions for determining if a loop was executed 0 times.
1012 //===----------------------------------------------------------------------===//
1013 
isLoop(const Stmt * Term)1014 static bool isLoop(const Stmt *Term) {
1015   switch (Term->getStmtClass()) {
1016     case Stmt::ForStmtClass:
1017     case Stmt::WhileStmtClass:
1018     case Stmt::ObjCForCollectionStmtClass:
1019     case Stmt::CXXForRangeStmtClass:
1020       return true;
1021     default:
1022       // Note that we intentionally do not include do..while here.
1023       return false;
1024   }
1025 }
1026 
isJumpToFalseBranch(const BlockEdge * BE)1027 static bool isJumpToFalseBranch(const BlockEdge *BE) {
1028   const CFGBlock *Src = BE->getSrc();
1029   assert(Src->succ_size() == 2);
1030   return (*(Src->succ_begin()+1) == BE->getDst());
1031 }
1032 
isContainedByStmt(const ParentMap & PM,const Stmt * S,const Stmt * SubS)1033 static bool isContainedByStmt(const ParentMap &PM, const Stmt *S,
1034                               const Stmt *SubS) {
1035   while (SubS) {
1036     if (SubS == S)
1037       return true;
1038     SubS = PM.getParent(SubS);
1039   }
1040   return false;
1041 }
1042 
getStmtBeforeCond(const ParentMap & PM,const Stmt * Term,const ExplodedNode * N)1043 static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term,
1044                                      const ExplodedNode *N) {
1045   while (N) {
1046     std::optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1047     if (SP) {
1048       const Stmt *S = SP->getStmt();
1049       if (!isContainedByStmt(PM, Term, S))
1050         return S;
1051     }
1052     N = N->getFirstPred();
1053   }
1054   return nullptr;
1055 }
1056 
isInLoopBody(const ParentMap & PM,const Stmt * S,const Stmt * Term)1057 static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) {
1058   const Stmt *LoopBody = nullptr;
1059   switch (Term->getStmtClass()) {
1060     case Stmt::CXXForRangeStmtClass: {
1061       const auto *FR = cast<CXXForRangeStmt>(Term);
1062       if (isContainedByStmt(PM, FR->getInc(), S))
1063         return true;
1064       if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1065         return true;
1066       LoopBody = FR->getBody();
1067       break;
1068     }
1069     case Stmt::ForStmtClass: {
1070       const auto *FS = cast<ForStmt>(Term);
1071       if (isContainedByStmt(PM, FS->getInc(), S))
1072         return true;
1073       LoopBody = FS->getBody();
1074       break;
1075     }
1076     case Stmt::ObjCForCollectionStmtClass: {
1077       const auto *FC = cast<ObjCForCollectionStmt>(Term);
1078       LoopBody = FC->getBody();
1079       break;
1080     }
1081     case Stmt::WhileStmtClass:
1082       LoopBody = cast<WhileStmt>(Term)->getBody();
1083       break;
1084     default:
1085       return false;
1086   }
1087   return isContainedByStmt(PM, LoopBody, S);
1088 }
1089 
1090 /// Adds a sanitized control-flow diagnostic edge to a path.
addEdgeToPath(PathPieces & path,PathDiagnosticLocation & PrevLoc,PathDiagnosticLocation NewLoc)1091 static void addEdgeToPath(PathPieces &path,
1092                           PathDiagnosticLocation &PrevLoc,
1093                           PathDiagnosticLocation NewLoc) {
1094   if (!NewLoc.isValid())
1095     return;
1096 
1097   SourceLocation NewLocL = NewLoc.asLocation();
1098   if (NewLocL.isInvalid())
1099     return;
1100 
1101   if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1102     PrevLoc = NewLoc;
1103     return;
1104   }
1105 
1106   // Ignore self-edges, which occur when there are multiple nodes at the same
1107   // statement.
1108   if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1109     return;
1110 
1111   path.push_front(
1112       std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc));
1113   PrevLoc = NewLoc;
1114 }
1115 
1116 /// A customized wrapper for CFGBlock::getTerminatorCondition()
1117 /// which returns the element for ObjCForCollectionStmts.
getTerminatorCondition(const CFGBlock * B)1118 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1119   const Stmt *S = B->getTerminatorCondition();
1120   if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S))
1121     return FS->getElement();
1122   return S;
1123 }
1124 
1125 constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body";
1126 constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times";
1127 constexpr llvm::StringLiteral StrLoopRangeEmpty =
1128     "Loop body skipped when range is empty";
1129 constexpr llvm::StringLiteral StrLoopCollectionEmpty =
1130     "Loop body skipped when collection is empty";
1131 
1132 static std::unique_ptr<FilesToLineNumsMap>
1133 findExecutedLines(const SourceManager &SM, const ExplodedNode *N);
1134 
generatePathDiagnosticsForNode(PathDiagnosticConstruct & C,PathDiagnosticLocation & PrevLoc) const1135 void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
1136     PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const {
1137   ProgramPoint P = C.getCurrentNode()->getLocation();
1138   const SourceManager &SM = getSourceManager();
1139 
1140   // Have we encountered an entrance to a call?  It may be
1141   // the case that we have not encountered a matching
1142   // call exit before this point.  This means that the path
1143   // terminated within the call itself.
1144   if (auto CE = P.getAs<CallEnter>()) {
1145 
1146     if (C.shouldAddPathEdges()) {
1147       // Add an edge to the start of the function.
1148       const StackFrameContext *CalleeLC = CE->getCalleeContext();
1149       const Decl *D = CalleeLC->getDecl();
1150       // Add the edge only when the callee has body. We jump to the beginning
1151       // of the *declaration*, however we expect it to be followed by the
1152       // body. This isn't the case for autosynthesized property accessors in
1153       // Objective-C. No need for a similar extra check for CallExit points
1154       // because the exit edge comes from a statement (i.e. return),
1155       // not from declaration.
1156       if (D->hasBody())
1157         addEdgeToPath(C.getActivePath(), PrevLoc,
1158                       PathDiagnosticLocation::createBegin(D, SM));
1159     }
1160 
1161     // Did we visit an entire call?
1162     bool VisitedEntireCall = C.PD->isWithinCall();
1163     C.PD->popActivePath();
1164 
1165     PathDiagnosticCallPiece *Call;
1166     if (VisitedEntireCall) {
1167       Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get());
1168     } else {
1169       // The path terminated within a nested location context, create a new
1170       // call piece to encapsulate the rest of the path pieces.
1171       const Decl *Caller = CE->getLocationContext()->getDecl();
1172       Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller);
1173       assert(C.getActivePath().size() == 1 &&
1174              C.getActivePath().front().get() == Call);
1175 
1176       // Since we just transferred the path over to the call piece, reset the
1177       // mapping of the active path to the current location context.
1178       assert(C.isInLocCtxMap(&C.getActivePath()) &&
1179              "When we ascend to a previously unvisited call, the active path's "
1180              "address shouldn't change, but rather should be compacted into "
1181              "a single CallEvent!");
1182       C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext());
1183 
1184       // Record the location context mapping for the path within the call.
1185       assert(!C.isInLocCtxMap(&Call->path) &&
1186              "When we ascend to a previously unvisited call, this must be the "
1187              "first time we encounter the caller context!");
1188       C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1189     }
1190     Call->setCallee(*CE, SM);
1191 
1192     // Update the previous location in the active path.
1193     PrevLoc = Call->getLocation();
1194 
1195     if (!C.CallStack.empty()) {
1196       assert(C.CallStack.back().first == Call);
1197       C.CallStack.pop_back();
1198     }
1199     return;
1200   }
1201 
1202   assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() &&
1203          "The current position in the bug path is out of sync with the "
1204          "location context associated with the active path!");
1205 
1206   // Have we encountered an exit from a function call?
1207   if (std::optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1208 
1209     // We are descending into a call (backwards).  Construct
1210     // a new call piece to contain the path pieces for that call.
1211     auto Call = PathDiagnosticCallPiece::construct(*CE, SM);
1212     // Record the mapping from call piece to LocationContext.
1213     assert(!C.isInLocCtxMap(&Call->path) &&
1214            "We just entered a call, this must've been the first time we "
1215            "encounter its context!");
1216     C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1217 
1218     if (C.shouldAddPathEdges()) {
1219       // Add the edge to the return site.
1220       addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn);
1221       PrevLoc.invalidate();
1222     }
1223 
1224     auto *P = Call.get();
1225     C.getActivePath().push_front(std::move(Call));
1226 
1227     // Make the contents of the call the active path for now.
1228     C.PD->pushActivePath(&P->path);
1229     C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode()));
1230     return;
1231   }
1232 
1233   if (auto PS = P.getAs<PostStmt>()) {
1234     if (!C.shouldAddPathEdges())
1235       return;
1236 
1237     // Add an edge.  If this is an ObjCForCollectionStmt do
1238     // not add an edge here as it appears in the CFG both
1239     // as a terminator and as a terminator condition.
1240     if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1241       PathDiagnosticLocation L =
1242           PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext());
1243       addEdgeToPath(C.getActivePath(), PrevLoc, L);
1244     }
1245 
1246   } else if (auto BE = P.getAs<BlockEdge>()) {
1247 
1248     if (C.shouldAddControlNotes()) {
1249       generateMinimalDiagForBlockEdge(C, *BE);
1250     }
1251 
1252     if (!C.shouldAddPathEdges()) {
1253       return;
1254     }
1255 
1256     // Are we jumping to the head of a loop?  Add a special diagnostic.
1257     if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1258       PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext());
1259       const Stmt *Body = nullptr;
1260 
1261       if (const auto *FS = dyn_cast<ForStmt>(Loop))
1262         Body = FS->getBody();
1263       else if (const auto *WS = dyn_cast<WhileStmt>(Loop))
1264         Body = WS->getBody();
1265       else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) {
1266         Body = OFS->getBody();
1267       } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) {
1268         Body = FRS->getBody();
1269       }
1270       // do-while statements are explicitly excluded here
1271 
1272       auto p = std::make_shared<PathDiagnosticEventPiece>(
1273           L, "Looping back to the head of the loop");
1274       p->setPrunable(true);
1275 
1276       addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation());
1277       // We might've added a very similar control node already
1278       if (!C.shouldAddControlNotes()) {
1279         C.getActivePath().push_front(std::move(p));
1280       }
1281 
1282       if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1283         addEdgeToPath(C.getActivePath(), PrevLoc,
1284                       PathDiagnosticLocation::createEndBrace(CS, SM));
1285       }
1286     }
1287 
1288     const CFGBlock *BSrc = BE->getSrc();
1289     const ParentMap &PM = C.getParentMap();
1290 
1291     if (const Stmt *Term = BSrc->getTerminatorStmt()) {
1292       // Are we jumping past the loop body without ever executing the
1293       // loop (because the condition was false)?
1294       if (isLoop(Term)) {
1295         const Stmt *TermCond = getTerminatorCondition(BSrc);
1296         bool IsInLoopBody = isInLoopBody(
1297             PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term);
1298 
1299         StringRef str;
1300 
1301         if (isJumpToFalseBranch(&*BE)) {
1302           if (!IsInLoopBody) {
1303             if (isa<ObjCForCollectionStmt>(Term)) {
1304               str = StrLoopCollectionEmpty;
1305             } else if (isa<CXXForRangeStmt>(Term)) {
1306               str = StrLoopRangeEmpty;
1307             } else {
1308               str = StrLoopBodyZero;
1309             }
1310           }
1311         } else {
1312           str = StrEnteringLoop;
1313         }
1314 
1315         if (!str.empty()) {
1316           PathDiagnosticLocation L(TermCond ? TermCond : Term, SM,
1317                                    C.getCurrLocationContext());
1318           auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str);
1319           PE->setPrunable(true);
1320           addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation());
1321 
1322           // We might've added a very similar control node already
1323           if (!C.shouldAddControlNotes()) {
1324             C.getActivePath().push_front(std::move(PE));
1325           }
1326         }
1327       } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Term)) {
1328         PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext());
1329         addEdgeToPath(C.getActivePath(), PrevLoc, L);
1330       }
1331     }
1332   }
1333 }
1334 
1335 static std::unique_ptr<PathDiagnostic>
generateDiagnosticForBasicReport(const BasicBugReport * R,const Decl * AnalysisEntryPoint)1336 generateDiagnosticForBasicReport(const BasicBugReport *R,
1337                                  const Decl *AnalysisEntryPoint) {
1338   const BugType &BT = R->getBugType();
1339   return std::make_unique<PathDiagnostic>(
1340       BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1341       R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1342       BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1343       AnalysisEntryPoint, std::make_unique<FilesToLineNumsMap>());
1344 }
1345 
1346 static std::unique_ptr<PathDiagnostic>
generateEmptyDiagnosticForReport(const PathSensitiveBugReport * R,const SourceManager & SM,const Decl * AnalysisEntryPoint)1347 generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R,
1348                                  const SourceManager &SM,
1349                                  const Decl *AnalysisEntryPoint) {
1350   const BugType &BT = R->getBugType();
1351   return std::make_unique<PathDiagnostic>(
1352       BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1353       R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1354       BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1355       AnalysisEntryPoint, findExecutedLines(SM, R->getErrorNode()));
1356 }
1357 
getStmtParent(const Stmt * S,const ParentMap & PM)1358 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1359   if (!S)
1360     return nullptr;
1361 
1362   while (true) {
1363     S = PM.getParentIgnoreParens(S);
1364 
1365     if (!S)
1366       break;
1367 
1368     if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(S))
1369       continue;
1370 
1371     break;
1372   }
1373 
1374   return S;
1375 }
1376 
isConditionForTerminator(const Stmt * S,const Stmt * Cond)1377 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1378   switch (S->getStmtClass()) {
1379     case Stmt::BinaryOperatorClass: {
1380       const auto *BO = cast<BinaryOperator>(S);
1381       if (!BO->isLogicalOp())
1382         return false;
1383       return BO->getLHS() == Cond || BO->getRHS() == Cond;
1384     }
1385     case Stmt::IfStmtClass:
1386       return cast<IfStmt>(S)->getCond() == Cond;
1387     case Stmt::ForStmtClass:
1388       return cast<ForStmt>(S)->getCond() == Cond;
1389     case Stmt::WhileStmtClass:
1390       return cast<WhileStmt>(S)->getCond() == Cond;
1391     case Stmt::DoStmtClass:
1392       return cast<DoStmt>(S)->getCond() == Cond;
1393     case Stmt::ChooseExprClass:
1394       return cast<ChooseExpr>(S)->getCond() == Cond;
1395     case Stmt::IndirectGotoStmtClass:
1396       return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1397     case Stmt::SwitchStmtClass:
1398       return cast<SwitchStmt>(S)->getCond() == Cond;
1399     case Stmt::BinaryConditionalOperatorClass:
1400       return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1401     case Stmt::ConditionalOperatorClass: {
1402       const auto *CO = cast<ConditionalOperator>(S);
1403       return CO->getCond() == Cond ||
1404              CO->getLHS() == Cond ||
1405              CO->getRHS() == Cond;
1406     }
1407     case Stmt::ObjCForCollectionStmtClass:
1408       return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1409     case Stmt::CXXForRangeStmtClass: {
1410       const auto *FRS = cast<CXXForRangeStmt>(S);
1411       return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1412     }
1413     default:
1414       return false;
1415   }
1416 }
1417 
isIncrementOrInitInForLoop(const Stmt * S,const Stmt * FL)1418 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1419   if (const auto *FS = dyn_cast<ForStmt>(FL))
1420     return FS->getInc() == S || FS->getInit() == S;
1421   if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL))
1422     return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1423            FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1424   return false;
1425 }
1426 
1427 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
1428 
1429 /// Adds synthetic edges from top-level statements to their subexpressions.
1430 ///
1431 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
1432 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
1433 /// we'd like to see an edge from A to B, then another one from B to B.1.
addContextEdges(PathPieces & pieces,const LocationContext * LC)1434 static void addContextEdges(PathPieces &pieces, const LocationContext *LC) {
1435   const ParentMap &PM = LC->getParentMap();
1436   PathPieces::iterator Prev = pieces.end();
1437   for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1438        Prev = I, ++I) {
1439     auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1440 
1441     if (!Piece)
1442       continue;
1443 
1444     PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1445     SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1446 
1447     PathDiagnosticLocation NextSrcContext = SrcLoc;
1448     const Stmt *InnerStmt = nullptr;
1449     while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1450       SrcContexts.push_back(NextSrcContext);
1451       InnerStmt = NextSrcContext.asStmt();
1452       NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC,
1453                                                 /*allowNested=*/true);
1454     }
1455 
1456     // Repeatedly split the edge as necessary.
1457     // This is important for nested logical expressions (||, &&, ?:) where we
1458     // want to show all the levels of context.
1459     while (true) {
1460       const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
1461 
1462       // We are looking at an edge. Is the destination within a larger
1463       // expression?
1464       PathDiagnosticLocation DstContext =
1465           getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true);
1466       if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1467         break;
1468 
1469       // If the source is in the same context, we're already good.
1470       if (llvm::is_contained(SrcContexts, DstContext))
1471         break;
1472 
1473       // Update the subexpression node to point to the context edge.
1474       Piece->setStartLocation(DstContext);
1475 
1476       // Try to extend the previous edge if it's at the same level as the source
1477       // context.
1478       if (Prev != E) {
1479         auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get());
1480 
1481         if (PrevPiece) {
1482           if (const Stmt *PrevSrc =
1483                   PrevPiece->getStartLocation().getStmtOrNull()) {
1484             const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
1485             if (PrevSrcParent ==
1486                 getStmtParent(DstContext.getStmtOrNull(), PM)) {
1487               PrevPiece->setEndLocation(DstContext);
1488               break;
1489             }
1490           }
1491         }
1492       }
1493 
1494       // Otherwise, split the current edge into a context edge and a
1495       // subexpression edge. Note that the context statement may itself have
1496       // context.
1497       auto P =
1498           std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext);
1499       Piece = P.get();
1500       I = pieces.insert(I, std::move(P));
1501     }
1502   }
1503 }
1504 
1505 /// Move edges from a branch condition to a branch target
1506 ///        when the condition is simple.
1507 ///
1508 /// This restructures some of the work of addContextEdges.  That function
1509 /// creates edges this may destroy, but they work together to create a more
1510 /// aesthetically set of edges around branches.  After the call to
1511 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1512 /// the branch to the branch condition, and (3) an edge from the branch
1513 /// condition to the branch target.  We keep (1), but may wish to remove (2)
1514 /// and move the source of (3) to the branch if the branch condition is simple.
simplifySimpleBranches(PathPieces & pieces)1515 static void simplifySimpleBranches(PathPieces &pieces) {
1516   for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
1517     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1518 
1519     if (!PieceI)
1520       continue;
1521 
1522     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1523     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1524 
1525     if (!s1Start || !s1End)
1526       continue;
1527 
1528     PathPieces::iterator NextI = I; ++NextI;
1529     if (NextI == E)
1530       break;
1531 
1532     PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
1533 
1534     while (true) {
1535       if (NextI == E)
1536         break;
1537 
1538       const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1539       if (EV) {
1540         StringRef S = EV->getString();
1541         if (S == StrEnteringLoop || S == StrLoopBodyZero ||
1542             S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
1543           ++NextI;
1544           continue;
1545         }
1546         break;
1547       }
1548 
1549       PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1550       break;
1551     }
1552 
1553     if (!PieceNextI)
1554       continue;
1555 
1556     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1557     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1558 
1559     if (!s2Start || !s2End || s1End != s2Start)
1560       continue;
1561 
1562     // We only perform this transformation for specific branch kinds.
1563     // We don't want to do this for do..while, for example.
1564     if (!isa<ForStmt, WhileStmt, IfStmt, ObjCForCollectionStmt,
1565              CXXForRangeStmt>(s1Start))
1566       continue;
1567 
1568     // Is s1End the branch condition?
1569     if (!isConditionForTerminator(s1Start, s1End))
1570       continue;
1571 
1572     // Perform the hoisting by eliminating (2) and changing the start
1573     // location of (3).
1574     PieceNextI->setStartLocation(PieceI->getStartLocation());
1575     I = pieces.erase(I);
1576   }
1577 }
1578 
1579 /// Returns the number of bytes in the given (character-based) SourceRange.
1580 ///
1581 /// If the locations in the range are not on the same line, returns
1582 /// std::nullopt.
1583 ///
1584 /// Note that this does not do a precise user-visible character or column count.
getLengthOnSingleLine(const SourceManager & SM,SourceRange Range)1585 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1586                                                    SourceRange Range) {
1587   SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
1588                              SM.getExpansionRange(Range.getEnd()).getEnd());
1589 
1590   FileID FID = SM.getFileID(ExpansionRange.getBegin());
1591   if (FID != SM.getFileID(ExpansionRange.getEnd()))
1592     return std::nullopt;
1593 
1594   std::optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID);
1595   if (!Buffer)
1596     return std::nullopt;
1597 
1598   unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
1599   unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
1600   StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
1601 
1602   // We're searching the raw bytes of the buffer here, which might include
1603   // escaped newlines and such. That's okay; we're trying to decide whether the
1604   // SourceRange is covering a large or small amount of space in the user's
1605   // editor.
1606   if (Snippet.find_first_of("\r\n") != StringRef::npos)
1607     return std::nullopt;
1608 
1609   // This isn't Unicode-aware, but it doesn't need to be.
1610   return Snippet.size();
1611 }
1612 
1613 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
getLengthOnSingleLine(const SourceManager & SM,const Stmt * S)1614 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1615                                                    const Stmt *S) {
1616   return getLengthOnSingleLine(SM, S->getSourceRange());
1617 }
1618 
1619 /// Eliminate two-edge cycles created by addContextEdges().
1620 ///
1621 /// Once all the context edges are in place, there are plenty of cases where
1622 /// there's a single edge from a top-level statement to a subexpression,
1623 /// followed by a single path note, and then a reverse edge to get back out to
1624 /// the top level. If the statement is simple enough, the subexpression edges
1625 /// just add noise and make it harder to understand what's going on.
1626 ///
1627 /// This function only removes edges in pairs, because removing only one edge
1628 /// might leave other edges dangling.
1629 ///
1630 /// This will not remove edges in more complicated situations:
1631 /// - if there is more than one "hop" leading to or from a subexpression.
1632 /// - if there is an inlined call between the edges instead of a single event.
1633 /// - if the whole statement is large enough that having subexpression arrows
1634 ///   might be helpful.
removeContextCycles(PathPieces & Path,const SourceManager & SM)1635 static void removeContextCycles(PathPieces &Path, const SourceManager &SM) {
1636   for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
1637     // Pattern match the current piece and its successor.
1638     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1639 
1640     if (!PieceI) {
1641       ++I;
1642       continue;
1643     }
1644 
1645     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1646     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1647 
1648     PathPieces::iterator NextI = I; ++NextI;
1649     if (NextI == E)
1650       break;
1651 
1652     const auto *PieceNextI =
1653         dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1654 
1655     if (!PieceNextI) {
1656       if (isa<PathDiagnosticEventPiece>(NextI->get())) {
1657         ++NextI;
1658         if (NextI == E)
1659           break;
1660         PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1661       }
1662 
1663       if (!PieceNextI) {
1664         ++I;
1665         continue;
1666       }
1667     }
1668 
1669     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1670     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1671 
1672     if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
1673       const size_t MAX_SHORT_LINE_LENGTH = 80;
1674       std::optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
1675       if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
1676         std::optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
1677         if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
1678           Path.erase(I);
1679           I = Path.erase(NextI);
1680           continue;
1681         }
1682       }
1683     }
1684 
1685     ++I;
1686   }
1687 }
1688 
1689 /// Return true if X is contained by Y.
lexicalContains(const ParentMap & PM,const Stmt * X,const Stmt * Y)1690 static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) {
1691   while (X) {
1692     if (X == Y)
1693       return true;
1694     X = PM.getParent(X);
1695   }
1696   return false;
1697 }
1698 
1699 // Remove short edges on the same line less than 3 columns in difference.
removePunyEdges(PathPieces & path,const SourceManager & SM,const ParentMap & PM)1700 static void removePunyEdges(PathPieces &path, const SourceManager &SM,
1701                             const ParentMap &PM) {
1702   bool erased = false;
1703 
1704   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1705        erased ? I : ++I) {
1706     erased = false;
1707 
1708     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1709 
1710     if (!PieceI)
1711       continue;
1712 
1713     const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
1714     const Stmt *end   = PieceI->getEndLocation().getStmtOrNull();
1715 
1716     if (!start || !end)
1717       continue;
1718 
1719     const Stmt *endParent = PM.getParent(end);
1720     if (!endParent)
1721       continue;
1722 
1723     if (isConditionForTerminator(end, endParent))
1724       continue;
1725 
1726     SourceLocation FirstLoc = start->getBeginLoc();
1727     SourceLocation SecondLoc = end->getBeginLoc();
1728 
1729     if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
1730       continue;
1731     if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
1732       std::swap(SecondLoc, FirstLoc);
1733 
1734     SourceRange EdgeRange(FirstLoc, SecondLoc);
1735     std::optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
1736 
1737     // If the statements are on different lines, continue.
1738     if (!ByteWidth)
1739       continue;
1740 
1741     const size_t MAX_PUNY_EDGE_LENGTH = 2;
1742     if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
1743       // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1744       // there might not be enough /columns/. A proper user-visible column count
1745       // is probably too expensive, though.
1746       I = path.erase(I);
1747       erased = true;
1748       continue;
1749     }
1750   }
1751 }
1752 
removeIdenticalEvents(PathPieces & path)1753 static void removeIdenticalEvents(PathPieces &path) {
1754   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
1755     const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get());
1756 
1757     if (!PieceI)
1758       continue;
1759 
1760     PathPieces::iterator NextI = I; ++NextI;
1761     if (NextI == E)
1762       return;
1763 
1764     const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1765 
1766     if (!PieceNextI)
1767       continue;
1768 
1769     // Erase the second piece if it has the same exact message text.
1770     if (PieceI->getString() == PieceNextI->getString()) {
1771       path.erase(NextI);
1772     }
1773   }
1774 }
1775 
optimizeEdges(const PathDiagnosticConstruct & C,PathPieces & path,OptimizedCallsSet & OCS)1776 static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path,
1777                           OptimizedCallsSet &OCS) {
1778   bool hasChanges = false;
1779   const LocationContext *LC = C.getLocationContextFor(&path);
1780   assert(LC);
1781   const ParentMap &PM = LC->getParentMap();
1782   const SourceManager &SM = C.getSourceManager();
1783 
1784   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1785     // Optimize subpaths.
1786     if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) {
1787       // Record the fact that a call has been optimized so we only do the
1788       // effort once.
1789       if (!OCS.count(CallI)) {
1790         while (optimizeEdges(C, CallI->path, OCS)) {
1791         }
1792         OCS.insert(CallI);
1793       }
1794       ++I;
1795       continue;
1796     }
1797 
1798     // Pattern match the current piece and its successor.
1799     auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1800 
1801     if (!PieceI) {
1802       ++I;
1803       continue;
1804     }
1805 
1806     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1807     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1808     const Stmt *level1 = getStmtParent(s1Start, PM);
1809     const Stmt *level2 = getStmtParent(s1End, PM);
1810 
1811     PathPieces::iterator NextI = I; ++NextI;
1812     if (NextI == E)
1813       break;
1814 
1815     const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1816 
1817     if (!PieceNextI) {
1818       ++I;
1819       continue;
1820     }
1821 
1822     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1823     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1824     const Stmt *level3 = getStmtParent(s2Start, PM);
1825     const Stmt *level4 = getStmtParent(s2End, PM);
1826 
1827     // Rule I.
1828     //
1829     // If we have two consecutive control edges whose end/begin locations
1830     // are at the same level (e.g. statements or top-level expressions within
1831     // a compound statement, or siblings share a single ancestor expression),
1832     // then merge them if they have no interesting intermediate event.
1833     //
1834     // For example:
1835     //
1836     // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1837     // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
1838     //
1839     // NOTE: this will be limited later in cases where we add barriers
1840     // to prevent this optimization.
1841     if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1842       PieceI->setEndLocation(PieceNextI->getEndLocation());
1843       path.erase(NextI);
1844       hasChanges = true;
1845       continue;
1846     }
1847 
1848     // Rule II.
1849     //
1850     // Eliminate edges between subexpressions and parent expressions
1851     // when the subexpression is consumed.
1852     //
1853     // NOTE: this will be limited later in cases where we add barriers
1854     // to prevent this optimization.
1855     if (s1End && s1End == s2Start && level2) {
1856       bool removeEdge = false;
1857       // Remove edges into the increment or initialization of a
1858       // loop that have no interleaving event.  This means that
1859       // they aren't interesting.
1860       if (isIncrementOrInitInForLoop(s1End, level2))
1861         removeEdge = true;
1862       // Next only consider edges that are not anchored on
1863       // the condition of a terminator.  This are intermediate edges
1864       // that we might want to trim.
1865       else if (!isConditionForTerminator(level2, s1End)) {
1866         // Trim edges on expressions that are consumed by
1867         // the parent expression.
1868         if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
1869           removeEdge = true;
1870         }
1871         // Trim edges where a lexical containment doesn't exist.
1872         // For example:
1873         //
1874         //  X -> Y -> Z
1875         //
1876         // If 'Z' lexically contains Y (it is an ancestor) and
1877         // 'X' does not lexically contain Y (it is a descendant OR
1878         // it has no lexical relationship at all) then trim.
1879         //
1880         // This can eliminate edges where we dive into a subexpression
1881         // and then pop back out, etc.
1882         else if (s1Start && s2End &&
1883                  lexicalContains(PM, s2Start, s2End) &&
1884                  !lexicalContains(PM, s1End, s1Start)) {
1885           removeEdge = true;
1886         }
1887         // Trim edges from a subexpression back to the top level if the
1888         // subexpression is on a different line.
1889         //
1890         // A.1 -> A -> B
1891         // becomes
1892         // A.1 -> B
1893         //
1894         // These edges just look ugly and don't usually add anything.
1895         else if (s1Start && s2End &&
1896                  lexicalContains(PM, s1Start, s1End)) {
1897           SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
1898                                 PieceI->getStartLocation().asLocation());
1899           if (!getLengthOnSingleLine(SM, EdgeRange))
1900             removeEdge = true;
1901         }
1902       }
1903 
1904       if (removeEdge) {
1905         PieceI->setEndLocation(PieceNextI->getEndLocation());
1906         path.erase(NextI);
1907         hasChanges = true;
1908         continue;
1909       }
1910     }
1911 
1912     // Optimize edges for ObjC fast-enumeration loops.
1913     //
1914     // (X -> collection) -> (collection -> element)
1915     //
1916     // becomes:
1917     //
1918     // (X -> element)
1919     if (s1End == s2Start) {
1920       const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3);
1921       if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
1922           s2End == FS->getElement()) {
1923         PieceI->setEndLocation(PieceNextI->getEndLocation());
1924         path.erase(NextI);
1925         hasChanges = true;
1926         continue;
1927       }
1928     }
1929 
1930     // No changes at this index?  Move to the next one.
1931     ++I;
1932   }
1933 
1934   if (!hasChanges) {
1935     // Adjust edges into subexpressions to make them more uniform
1936     // and aesthetically pleasing.
1937     addContextEdges(path, LC);
1938     // Remove "cyclical" edges that include one or more context edges.
1939     removeContextCycles(path, SM);
1940     // Hoist edges originating from branch conditions to branches
1941     // for simple branches.
1942     simplifySimpleBranches(path);
1943     // Remove any puny edges left over after primary optimization pass.
1944     removePunyEdges(path, SM, PM);
1945     // Remove identical events.
1946     removeIdenticalEvents(path);
1947   }
1948 
1949   return hasChanges;
1950 }
1951 
1952 /// Drop the very first edge in a path, which should be a function entry edge.
1953 ///
1954 /// If the first edge is not a function entry edge (say, because the first
1955 /// statement had an invalid source location), this function does nothing.
1956 // FIXME: We should just generate invalid edges anyway and have the optimizer
1957 // deal with them.
dropFunctionEntryEdge(const PathDiagnosticConstruct & C,PathPieces & Path)1958 static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C,
1959                                   PathPieces &Path) {
1960   const auto *FirstEdge =
1961       dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get());
1962   if (!FirstEdge)
1963     return;
1964 
1965   const Decl *D = C.getLocationContextFor(&Path)->getDecl();
1966   PathDiagnosticLocation EntryLoc =
1967       PathDiagnosticLocation::createBegin(D, C.getSourceManager());
1968   if (FirstEdge->getStartLocation() != EntryLoc)
1969     return;
1970 
1971   Path.pop_front();
1972 }
1973 
1974 /// Populate executes lines with lines containing at least one diagnostics.
updateExecutedLinesWithDiagnosticPieces(PathDiagnostic & PD)1975 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) {
1976 
1977   PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
1978   FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
1979 
1980   for (const auto &P : path) {
1981     FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
1982     FileID FID = Loc.getFileID();
1983     unsigned LineNo = Loc.getLineNumber();
1984     assert(FID.isValid());
1985     ExecutedLines[FID].insert(LineNo);
1986   }
1987 }
1988 
PathDiagnosticConstruct(const PathDiagnosticConsumer * PDC,const ExplodedNode * ErrorNode,const PathSensitiveBugReport * R,const Decl * AnalysisEntryPoint)1989 PathDiagnosticConstruct::PathDiagnosticConstruct(
1990     const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode,
1991     const PathSensitiveBugReport *R, const Decl *AnalysisEntryPoint)
1992     : Consumer(PDC), CurrentNode(ErrorNode),
1993       SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()),
1994       PD(generateEmptyDiagnosticForReport(R, getSourceManager(),
1995                                           AnalysisEntryPoint)) {
1996   LCM[&PD->getActivePath()] = ErrorNode->getLocationContext();
1997 }
1998 
PathDiagnosticBuilder(BugReporterContext BRC,std::unique_ptr<ExplodedGraph> BugPath,PathSensitiveBugReport * r,const ExplodedNode * ErrorNode,std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)1999 PathDiagnosticBuilder::PathDiagnosticBuilder(
2000     BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
2001     PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
2002     std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)
2003     : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r),
2004       ErrorNode(ErrorNode),
2005       VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {}
2006 
2007 std::unique_ptr<PathDiagnostic>
generate(const PathDiagnosticConsumer * PDC) const2008 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const {
2009   const Decl *EntryPoint = getBugReporter().getAnalysisEntryPoint();
2010   PathDiagnosticConstruct Construct(PDC, ErrorNode, R, EntryPoint);
2011 
2012   const SourceManager &SM = getSourceManager();
2013   const AnalyzerOptions &Opts = getAnalyzerOptions();
2014 
2015   if (!PDC->shouldGenerateDiagnostics())
2016     return generateEmptyDiagnosticForReport(R, getSourceManager(), EntryPoint);
2017 
2018   // Construct the final (warning) event for the bug report.
2019   auto EndNotes = VisitorsDiagnostics->find(ErrorNode);
2020   PathDiagnosticPieceRef LastPiece;
2021   if (EndNotes != VisitorsDiagnostics->end()) {
2022     assert(!EndNotes->second.empty());
2023     LastPiece = EndNotes->second[0];
2024   } else {
2025     LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode,
2026                                                       *getBugReport());
2027   }
2028   Construct.PD->setEndOfPath(LastPiece);
2029 
2030   PathDiagnosticLocation PrevLoc = Construct.PD->getLocation();
2031   // From the error node to the root, ascend the bug path and construct the bug
2032   // report.
2033   while (Construct.ascendToPrevNode()) {
2034     generatePathDiagnosticsForNode(Construct, PrevLoc);
2035 
2036     auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode());
2037     if (VisitorNotes == VisitorsDiagnostics->end())
2038       continue;
2039 
2040     // This is a workaround due to inability to put shared PathDiagnosticPiece
2041     // into a FoldingSet.
2042     std::set<llvm::FoldingSetNodeID> DeduplicationSet;
2043 
2044     // Add pieces from custom visitors.
2045     for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) {
2046       llvm::FoldingSetNodeID ID;
2047       Note->Profile(ID);
2048       if (!DeduplicationSet.insert(ID).second)
2049         continue;
2050 
2051       if (PDC->shouldAddPathEdges())
2052         addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation());
2053       updateStackPiecesWithMessage(Note, Construct.CallStack);
2054       Construct.getActivePath().push_front(Note);
2055     }
2056   }
2057 
2058   if (PDC->shouldAddPathEdges()) {
2059     // Add an edge to the start of the function.
2060     // We'll prune it out later, but it helps make diagnostics more uniform.
2061     const StackFrameContext *CalleeLC =
2062         Construct.getLocationContextForActivePath()->getStackFrame();
2063     const Decl *D = CalleeLC->getDecl();
2064     addEdgeToPath(Construct.getActivePath(), PrevLoc,
2065                   PathDiagnosticLocation::createBegin(D, SM));
2066   }
2067 
2068 
2069   // Finally, prune the diagnostic path of uninteresting stuff.
2070   if (!Construct.PD->path.empty()) {
2071     if (R->shouldPrunePath() && Opts.ShouldPrunePaths) {
2072       bool stillHasNotes =
2073           removeUnneededCalls(Construct, Construct.getMutablePieces(), R);
2074       assert(stillHasNotes);
2075       (void)stillHasNotes;
2076     }
2077 
2078     // Remove pop-up notes if needed.
2079     if (!Opts.ShouldAddPopUpNotes)
2080       removePopUpNotes(Construct.getMutablePieces());
2081 
2082     // Redirect all call pieces to have valid locations.
2083     adjustCallLocations(Construct.getMutablePieces());
2084     removePiecesWithInvalidLocations(Construct.getMutablePieces());
2085 
2086     if (PDC->shouldAddPathEdges()) {
2087 
2088       // Reduce the number of edges from a very conservative set
2089       // to an aesthetically pleasing subset that conveys the
2090       // necessary information.
2091       OptimizedCallsSet OCS;
2092       while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) {
2093       }
2094 
2095       // Drop the very first function-entry edge. It's not really necessary
2096       // for top-level functions.
2097       dropFunctionEntryEdge(Construct, Construct.getMutablePieces());
2098     }
2099 
2100     // Remove messages that are basically the same, and edges that may not
2101     // make sense.
2102     // We have to do this after edge optimization in the Extensive mode.
2103     removeRedundantMsgs(Construct.getMutablePieces());
2104     removeEdgesToDefaultInitializers(Construct.getMutablePieces());
2105   }
2106 
2107   if (Opts.ShouldDisplayMacroExpansions)
2108     CompactMacroExpandedPieces(Construct.getMutablePieces(), SM);
2109 
2110   return std::move(Construct.PD);
2111 }
2112 
2113 //===----------------------------------------------------------------------===//
2114 // Methods for BugType and subclasses.
2115 //===----------------------------------------------------------------------===//
2116 
anchor()2117 void BugType::anchor() {}
2118 
2119 //===----------------------------------------------------------------------===//
2120 // Methods for BugReport and subclasses.
2121 //===----------------------------------------------------------------------===//
2122 
2123 LLVM_ATTRIBUTE_USED static bool
isDependency(const CheckerRegistryData & Registry,StringRef CheckerName)2124 isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) {
2125   for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) {
2126     if (Pair.second == CheckerName)
2127       return true;
2128   }
2129   return false;
2130 }
2131 
isHidden(const CheckerRegistryData & Registry,StringRef CheckerName)2132 LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry,
2133                                          StringRef CheckerName) {
2134   for (const CheckerInfo &Checker : Registry.Checkers) {
2135     if (Checker.FullName == CheckerName)
2136       return Checker.IsHidden;
2137   }
2138   llvm_unreachable(
2139       "Checker name not found in CheckerRegistry -- did you retrieve it "
2140       "correctly from CheckerManager::getCurrentCheckerName?");
2141 }
2142 
PathSensitiveBugReport(const BugType & bt,StringRef shortDesc,StringRef desc,const ExplodedNode * errorNode,PathDiagnosticLocation LocationToUnique,const Decl * DeclToUnique)2143 PathSensitiveBugReport::PathSensitiveBugReport(
2144     const BugType &bt, StringRef shortDesc, StringRef desc,
2145     const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique,
2146     const Decl *DeclToUnique)
2147     : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode),
2148       ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()),
2149       UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) {
2150   assert(!isDependency(ErrorNode->getState()
2151                            ->getAnalysisManager()
2152                            .getCheckerManager()
2153                            ->getCheckerRegistryData(),
2154                        bt.getCheckerName()) &&
2155          "Some checkers depend on this one! We don't allow dependency "
2156          "checkers to emit warnings, because checkers should depend on "
2157          "*modeling*, not *diagnostics*.");
2158 
2159   assert((bt.getCheckerName().starts_with("debug") ||
2160           !isHidden(ErrorNode->getState()
2161                         ->getAnalysisManager()
2162                         .getCheckerManager()
2163                         ->getCheckerRegistryData(),
2164                     bt.getCheckerName())) &&
2165          "Hidden checkers musn't emit diagnostics as they are by definition "
2166          "non-user facing!");
2167 }
2168 
addVisitor(std::unique_ptr<BugReporterVisitor> visitor)2169 void PathSensitiveBugReport::addVisitor(
2170     std::unique_ptr<BugReporterVisitor> visitor) {
2171   if (!visitor)
2172     return;
2173 
2174   llvm::FoldingSetNodeID ID;
2175   visitor->Profile(ID);
2176 
2177   void *InsertPos = nullptr;
2178   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2179     return;
2180   }
2181 
2182   Callbacks.push_back(std::move(visitor));
2183 }
2184 
clearVisitors()2185 void PathSensitiveBugReport::clearVisitors() {
2186   Callbacks.clear();
2187 }
2188 
getDeclWithIssue() const2189 const Decl *PathSensitiveBugReport::getDeclWithIssue() const {
2190   const ExplodedNode *N = getErrorNode();
2191   if (!N)
2192     return nullptr;
2193 
2194   const LocationContext *LC = N->getLocationContext();
2195   return LC->getStackFrame()->getDecl();
2196 }
2197 
Profile(llvm::FoldingSetNodeID & hash) const2198 void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2199   hash.AddInteger(static_cast<int>(getKind()));
2200   hash.AddPointer(&BT);
2201   hash.AddString(getShortDescription());
2202   assert(Location.isValid());
2203   Location.Profile(hash);
2204 
2205   for (SourceRange range : Ranges) {
2206     if (!range.isValid())
2207       continue;
2208     hash.Add(range.getBegin());
2209     hash.Add(range.getEnd());
2210   }
2211 }
2212 
Profile(llvm::FoldingSetNodeID & hash) const2213 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const {
2214   hash.AddInteger(static_cast<int>(getKind()));
2215   hash.AddPointer(&BT);
2216   hash.AddString(getShortDescription());
2217   PathDiagnosticLocation UL = getUniqueingLocation();
2218   if (UL.isValid()) {
2219     UL.Profile(hash);
2220   } else {
2221     // TODO: The statement may be null if the report was emitted before any
2222     // statements were executed. In particular, some checkers by design
2223     // occasionally emit their reports in empty functions (that have no
2224     // statements in their body). Do we profile correctly in this case?
2225     hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics());
2226   }
2227 
2228   for (SourceRange range : Ranges) {
2229     if (!range.isValid())
2230       continue;
2231     hash.Add(range.getBegin());
2232     hash.Add(range.getEnd());
2233   }
2234 }
2235 
2236 template <class T>
insertToInterestingnessMap(llvm::DenseMap<T,bugreporter::TrackingKind> & InterestingnessMap,T Val,bugreporter::TrackingKind TKind)2237 static void insertToInterestingnessMap(
2238     llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val,
2239     bugreporter::TrackingKind TKind) {
2240   auto Result = InterestingnessMap.insert({Val, TKind});
2241 
2242   if (Result.second)
2243     return;
2244 
2245   // Even if this symbol/region was already marked as interesting as a
2246   // condition, if we later mark it as interesting again but with
2247   // thorough tracking, overwrite it. Entities marked with thorough
2248   // interestiness are the most important (or most interesting, if you will),
2249   // and we wouldn't like to downplay their importance.
2250 
2251   switch (TKind) {
2252     case bugreporter::TrackingKind::Thorough:
2253       Result.first->getSecond() = bugreporter::TrackingKind::Thorough;
2254       return;
2255     case bugreporter::TrackingKind::Condition:
2256       return;
2257     }
2258 
2259     llvm_unreachable(
2260         "BugReport::markInteresting currently can only handle 2 different "
2261         "tracking kinds! Please define what tracking kind should this entitiy"
2262         "have, if it was already marked as interesting with a different kind!");
2263 }
2264 
markInteresting(SymbolRef sym,bugreporter::TrackingKind TKind)2265 void PathSensitiveBugReport::markInteresting(SymbolRef sym,
2266                                              bugreporter::TrackingKind TKind) {
2267   if (!sym)
2268     return;
2269 
2270   insertToInterestingnessMap(InterestingSymbols, sym, TKind);
2271 
2272   // FIXME: No tests exist for this code and it is questionable:
2273   // How to handle multiple metadata for the same region?
2274   if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2275     markInteresting(meta->getRegion(), TKind);
2276 }
2277 
markNotInteresting(SymbolRef sym)2278 void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) {
2279   if (!sym)
2280     return;
2281   InterestingSymbols.erase(sym);
2282 
2283   // The metadata part of markInteresting is not reversed here.
2284   // Just making the same region not interesting is incorrect
2285   // in specific cases.
2286   if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2287     markNotInteresting(meta->getRegion());
2288 }
2289 
markInteresting(const MemRegion * R,bugreporter::TrackingKind TKind)2290 void PathSensitiveBugReport::markInteresting(const MemRegion *R,
2291                                              bugreporter::TrackingKind TKind) {
2292   if (!R)
2293     return;
2294 
2295   R = R->getBaseRegion();
2296   insertToInterestingnessMap(InterestingRegions, R, TKind);
2297 
2298   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2299     markInteresting(SR->getSymbol(), TKind);
2300 }
2301 
markNotInteresting(const MemRegion * R)2302 void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) {
2303   if (!R)
2304     return;
2305 
2306   R = R->getBaseRegion();
2307   InterestingRegions.erase(R);
2308 
2309   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2310     markNotInteresting(SR->getSymbol());
2311 }
2312 
markInteresting(SVal V,bugreporter::TrackingKind TKind)2313 void PathSensitiveBugReport::markInteresting(SVal V,
2314                                              bugreporter::TrackingKind TKind) {
2315   markInteresting(V.getAsRegion(), TKind);
2316   markInteresting(V.getAsSymbol(), TKind);
2317 }
2318 
markInteresting(const LocationContext * LC)2319 void PathSensitiveBugReport::markInteresting(const LocationContext *LC) {
2320   if (!LC)
2321     return;
2322   InterestingLocationContexts.insert(LC);
2323 }
2324 
2325 std::optional<bugreporter::TrackingKind>
getInterestingnessKind(SVal V) const2326 PathSensitiveBugReport::getInterestingnessKind(SVal V) const {
2327   auto RKind = getInterestingnessKind(V.getAsRegion());
2328   auto SKind = getInterestingnessKind(V.getAsSymbol());
2329   if (!RKind)
2330     return SKind;
2331   if (!SKind)
2332     return RKind;
2333 
2334   // If either is marked with throrough tracking, return that, we wouldn't like
2335   // to downplay a note's importance by 'only' mentioning it as a condition.
2336   switch(*RKind) {
2337     case bugreporter::TrackingKind::Thorough:
2338       return RKind;
2339     case bugreporter::TrackingKind::Condition:
2340       return SKind;
2341   }
2342 
2343   llvm_unreachable(
2344       "BugReport::getInterestingnessKind currently can only handle 2 different "
2345       "tracking kinds! Please define what tracking kind should we return here "
2346       "when the kind of getAsRegion() and getAsSymbol() is different!");
2347   return std::nullopt;
2348 }
2349 
2350 std::optional<bugreporter::TrackingKind>
getInterestingnessKind(SymbolRef sym) const2351 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const {
2352   if (!sym)
2353     return std::nullopt;
2354   // We don't currently consider metadata symbols to be interesting
2355   // even if we know their region is interesting. Is that correct behavior?
2356   auto It = InterestingSymbols.find(sym);
2357   if (It == InterestingSymbols.end())
2358     return std::nullopt;
2359   return It->getSecond();
2360 }
2361 
2362 std::optional<bugreporter::TrackingKind>
getInterestingnessKind(const MemRegion * R) const2363 PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const {
2364   if (!R)
2365     return std::nullopt;
2366 
2367   R = R->getBaseRegion();
2368   auto It = InterestingRegions.find(R);
2369   if (It != InterestingRegions.end())
2370     return It->getSecond();
2371 
2372   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2373     return getInterestingnessKind(SR->getSymbol());
2374   return std::nullopt;
2375 }
2376 
isInteresting(SVal V) const2377 bool PathSensitiveBugReport::isInteresting(SVal V) const {
2378   return getInterestingnessKind(V).has_value();
2379 }
2380 
isInteresting(SymbolRef sym) const2381 bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const {
2382   return getInterestingnessKind(sym).has_value();
2383 }
2384 
isInteresting(const MemRegion * R) const2385 bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const {
2386   return getInterestingnessKind(R).has_value();
2387 }
2388 
isInteresting(const LocationContext * LC) const2389 bool PathSensitiveBugReport::isInteresting(const LocationContext *LC)  const {
2390   if (!LC)
2391     return false;
2392   return InterestingLocationContexts.count(LC);
2393 }
2394 
getStmt() const2395 const Stmt *PathSensitiveBugReport::getStmt() const {
2396   if (!ErrorNode)
2397     return nullptr;
2398 
2399   ProgramPoint ProgP = ErrorNode->getLocation();
2400   const Stmt *S = nullptr;
2401 
2402   if (std::optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2403     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2404     if (BE->getBlock() == &Exit)
2405       S = ErrorNode->getPreviousStmtForDiagnostics();
2406   }
2407   if (!S)
2408     S = ErrorNode->getStmtForDiagnostics();
2409 
2410   return S;
2411 }
2412 
2413 ArrayRef<SourceRange>
getRanges() const2414 PathSensitiveBugReport::getRanges() const {
2415   // If no custom ranges, add the range of the statement corresponding to
2416   // the error node.
2417   if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt()))
2418       return ErrorNodeRange;
2419 
2420   return Ranges;
2421 }
2422 
2423 PathDiagnosticLocation
getLocation() const2424 PathSensitiveBugReport::getLocation() const {
2425   assert(ErrorNode && "Cannot create a location with a null node.");
2426   const Stmt *S = ErrorNode->getStmtForDiagnostics();
2427     ProgramPoint P = ErrorNode->getLocation();
2428   const LocationContext *LC = P.getLocationContext();
2429   SourceManager &SM =
2430       ErrorNode->getState()->getStateManager().getContext().getSourceManager();
2431 
2432   if (!S) {
2433     // If this is an implicit call, return the implicit call point location.
2434       if (std::optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>())
2435       return PathDiagnosticLocation(PIE->getLocation(), SM);
2436     if (auto FE = P.getAs<FunctionExitPoint>()) {
2437       if (const ReturnStmt *RS = FE->getStmt())
2438         return PathDiagnosticLocation::createBegin(RS, SM, LC);
2439     }
2440     S = ErrorNode->getNextStmtForDiagnostics();
2441   }
2442 
2443   if (S) {
2444     // Attributed statements usually have corrupted begin locations,
2445     // it's OK to ignore attributes for our purposes and deal with
2446     // the actual annotated statement.
2447     if (const auto *AS = dyn_cast<AttributedStmt>(S))
2448       S = AS->getSubStmt();
2449 
2450     // For member expressions, return the location of the '.' or '->'.
2451     if (const auto *ME = dyn_cast<MemberExpr>(S))
2452       return PathDiagnosticLocation::createMemberLoc(ME, SM);
2453 
2454     // For binary operators, return the location of the operator.
2455     if (const auto *B = dyn_cast<BinaryOperator>(S))
2456       return PathDiagnosticLocation::createOperatorLoc(B, SM);
2457 
2458     if (P.getAs<PostStmtPurgeDeadSymbols>())
2459       return PathDiagnosticLocation::createEnd(S, SM, LC);
2460 
2461     if (S->getBeginLoc().isValid())
2462       return PathDiagnosticLocation(S, SM, LC);
2463 
2464     return PathDiagnosticLocation(
2465         PathDiagnosticLocation::getValidSourceLocation(S, LC), SM);
2466   }
2467 
2468   return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(),
2469                                                SM);
2470 }
2471 
2472 //===----------------------------------------------------------------------===//
2473 // Methods for BugReporter and subclasses.
2474 //===----------------------------------------------------------------------===//
2475 
getGraph() const2476 const ExplodedGraph &PathSensitiveBugReporter::getGraph() const {
2477   return Eng.getGraph();
2478 }
2479 
getStateManager() const2480 ProgramStateManager &PathSensitiveBugReporter::getStateManager() const {
2481   return Eng.getStateManager();
2482 }
2483 
BugReporter(BugReporterData & D)2484 BugReporter::BugReporter(BugReporterData &D)
2485     : D(D), UserSuppressions(D.getASTContext()) {}
2486 
~BugReporter()2487 BugReporter::~BugReporter() {
2488   // Make sure reports are flushed.
2489   assert(StrBugTypes.empty() &&
2490          "Destroying BugReporter before diagnostics are emitted!");
2491 
2492   // Free the bug reports we are tracking.
2493   for (const auto I : EQClassesVector)
2494     delete I;
2495 }
2496 
FlushReports()2497 void BugReporter::FlushReports() {
2498   // We need to flush reports in deterministic order to ensure the order
2499   // of the reports is consistent between runs.
2500   for (const auto EQ : EQClassesVector)
2501     FlushReport(*EQ);
2502 
2503   // BugReporter owns and deletes only BugTypes created implicitly through
2504   // EmitBasicReport.
2505   // FIXME: There are leaks from checkers that assume that the BugTypes they
2506   // create will be destroyed by the BugReporter.
2507   StrBugTypes.clear();
2508 }
2509 
2510 //===----------------------------------------------------------------------===//
2511 // PathDiagnostics generation.
2512 //===----------------------------------------------------------------------===//
2513 
2514 namespace {
2515 
2516 /// A wrapper around an ExplodedGraph that contains a single path from the root
2517 /// to the error node.
2518 class BugPathInfo {
2519 public:
2520   std::unique_ptr<ExplodedGraph> BugPath;
2521   PathSensitiveBugReport *Report;
2522   const ExplodedNode *ErrorNode;
2523 };
2524 
2525 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
2526 /// conveniently retrieve bug paths from a single error node to the root.
2527 class BugPathGetter {
2528   std::unique_ptr<ExplodedGraph> TrimmedGraph;
2529 
2530   using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
2531 
2532   /// Assign each node with its distance from the root.
2533   PriorityMapTy PriorityMap;
2534 
2535   /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
2536   /// we need to pair it to the error node of the constructed trimmed graph.
2537   using ReportNewNodePair =
2538       std::pair<PathSensitiveBugReport *, const ExplodedNode *>;
2539   SmallVector<ReportNewNodePair, 32> ReportNodes;
2540 
2541   BugPathInfo CurrentBugPath;
2542 
2543   /// A helper class for sorting ExplodedNodes by priority.
2544   template <bool Descending>
2545   class PriorityCompare {
2546     const PriorityMapTy &PriorityMap;
2547 
2548   public:
PriorityCompare(const PriorityMapTy & M)2549     PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2550 
operator ()(const ExplodedNode * LHS,const ExplodedNode * RHS) const2551     bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2552       PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2553       PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2554       PriorityMapTy::const_iterator E = PriorityMap.end();
2555 
2556       if (LI == E)
2557         return Descending;
2558       if (RI == E)
2559         return !Descending;
2560 
2561       return Descending ? LI->second > RI->second
2562                         : LI->second < RI->second;
2563     }
2564 
operator ()(const ReportNewNodePair & LHS,const ReportNewNodePair & RHS) const2565     bool operator()(const ReportNewNodePair &LHS,
2566                     const ReportNewNodePair &RHS) const {
2567       return (*this)(LHS.second, RHS.second);
2568     }
2569   };
2570 
2571 public:
2572   BugPathGetter(const ExplodedGraph *OriginalGraph,
2573                 ArrayRef<PathSensitiveBugReport *> &bugReports);
2574 
2575   BugPathInfo *getNextBugPath();
2576 };
2577 
2578 } // namespace
2579 
BugPathGetter(const ExplodedGraph * OriginalGraph,ArrayRef<PathSensitiveBugReport * > & bugReports)2580 BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph,
2581                              ArrayRef<PathSensitiveBugReport *> &bugReports) {
2582   SmallVector<const ExplodedNode *, 32> Nodes;
2583   for (const auto I : bugReports) {
2584     assert(I->isValid() &&
2585            "We only allow BugReporterVisitors and BugReporter itself to "
2586            "invalidate reports!");
2587     Nodes.emplace_back(I->getErrorNode());
2588   }
2589 
2590   // The trimmed graph is created in the body of the constructor to ensure
2591   // that the DenseMaps have been initialized already.
2592   InterExplodedGraphMap ForwardMap;
2593   TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap);
2594 
2595   // Find the (first) error node in the trimmed graph.  We just need to consult
2596   // the node map which maps from nodes in the original graph to nodes
2597   // in the new graph.
2598   llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2599 
2600   for (PathSensitiveBugReport *Report : bugReports) {
2601     const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode());
2602     assert(NewNode &&
2603            "Failed to construct a trimmed graph that contains this error "
2604            "node!");
2605     ReportNodes.emplace_back(Report, NewNode);
2606     RemainingNodes.insert(NewNode);
2607   }
2608 
2609   assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2610 
2611   // Perform a forward BFS to find all the shortest paths.
2612   std::queue<const ExplodedNode *> WS;
2613 
2614   assert(TrimmedGraph->num_roots() == 1);
2615   WS.push(*TrimmedGraph->roots_begin());
2616   unsigned Priority = 0;
2617 
2618   while (!WS.empty()) {
2619     const ExplodedNode *Node = WS.front();
2620     WS.pop();
2621 
2622     PriorityMapTy::iterator PriorityEntry;
2623     bool IsNew;
2624     std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority});
2625     ++Priority;
2626 
2627     if (!IsNew) {
2628       assert(PriorityEntry->second <= Priority);
2629       continue;
2630     }
2631 
2632     if (RemainingNodes.erase(Node))
2633       if (RemainingNodes.empty())
2634         break;
2635 
2636     for (const ExplodedNode *Succ : Node->succs())
2637       WS.push(Succ);
2638   }
2639 
2640   // Sort the error paths from longest to shortest.
2641   llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap));
2642 }
2643 
getNextBugPath()2644 BugPathInfo *BugPathGetter::getNextBugPath() {
2645   if (ReportNodes.empty())
2646     return nullptr;
2647 
2648   const ExplodedNode *OrigN;
2649   std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val();
2650   assert(PriorityMap.contains(OrigN) && "error node not accessible from root");
2651 
2652   // Create a new graph with a single path. This is the graph that will be
2653   // returned to the caller.
2654   auto GNew = std::make_unique<ExplodedGraph>();
2655 
2656   // Now walk from the error node up the BFS path, always taking the
2657   // predeccessor with the lowest number.
2658   ExplodedNode *Succ = nullptr;
2659   while (true) {
2660     // Create the equivalent node in the new graph with the same state
2661     // and location.
2662     ExplodedNode *NewN = GNew->createUncachedNode(
2663         OrigN->getLocation(), OrigN->getState(),
2664         OrigN->getID(), OrigN->isSink());
2665 
2666     // Link up the new node with the previous node.
2667     if (Succ)
2668       Succ->addPredecessor(NewN, *GNew);
2669     else
2670       CurrentBugPath.ErrorNode = NewN;
2671 
2672     Succ = NewN;
2673 
2674     // Are we at the final node?
2675     if (OrigN->pred_empty()) {
2676       GNew->addRoot(NewN);
2677       break;
2678     }
2679 
2680     // Find the next predeccessor node.  We choose the node that is marked
2681     // with the lowest BFS number.
2682     OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2683                               PriorityCompare<false>(PriorityMap));
2684   }
2685 
2686   CurrentBugPath.BugPath = std::move(GNew);
2687 
2688   return &CurrentBugPath;
2689 }
2690 
2691 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
2692 /// object and collapses PathDiagosticPieces that are expanded by macros.
CompactMacroExpandedPieces(PathPieces & path,const SourceManager & SM)2693 static void CompactMacroExpandedPieces(PathPieces &path,
2694                                        const SourceManager& SM) {
2695   using MacroStackTy = std::vector<
2696       std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
2697 
2698   using PiecesTy = std::vector<PathDiagnosticPieceRef>;
2699 
2700   MacroStackTy MacroStack;
2701   PiecesTy Pieces;
2702 
2703   for (PathPieces::const_iterator I = path.begin(), E = path.end();
2704        I != E; ++I) {
2705     const auto &piece = *I;
2706 
2707     // Recursively compact calls.
2708     if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) {
2709       CompactMacroExpandedPieces(call->path, SM);
2710     }
2711 
2712     // Get the location of the PathDiagnosticPiece.
2713     const FullSourceLoc Loc = piece->getLocation().asLocation();
2714 
2715     // Determine the instantiation location, which is the location we group
2716     // related PathDiagnosticPieces.
2717     SourceLocation InstantiationLoc = Loc.isMacroID() ?
2718                                       SM.getExpansionLoc(Loc) :
2719                                       SourceLocation();
2720 
2721     if (Loc.isFileID()) {
2722       MacroStack.clear();
2723       Pieces.push_back(piece);
2724       continue;
2725     }
2726 
2727     assert(Loc.isMacroID());
2728 
2729     // Is the PathDiagnosticPiece within the same macro group?
2730     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2731       MacroStack.back().first->subPieces.push_back(piece);
2732       continue;
2733     }
2734 
2735     // We aren't in the same group.  Are we descending into a new macro
2736     // or are part of an old one?
2737     std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
2738 
2739     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2740                                           SM.getExpansionLoc(Loc) :
2741                                           SourceLocation();
2742 
2743     // Walk the entire macro stack.
2744     while (!MacroStack.empty()) {
2745       if (InstantiationLoc == MacroStack.back().second) {
2746         MacroGroup = MacroStack.back().first;
2747         break;
2748       }
2749 
2750       if (ParentInstantiationLoc == MacroStack.back().second) {
2751         MacroGroup = MacroStack.back().first;
2752         break;
2753       }
2754 
2755       MacroStack.pop_back();
2756     }
2757 
2758     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2759       // Create a new macro group and add it to the stack.
2760       auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
2761           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2762 
2763       if (MacroGroup)
2764         MacroGroup->subPieces.push_back(NewGroup);
2765       else {
2766         assert(InstantiationLoc.isFileID());
2767         Pieces.push_back(NewGroup);
2768       }
2769 
2770       MacroGroup = NewGroup;
2771       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2772     }
2773 
2774     // Finally, add the PathDiagnosticPiece to the group.
2775     MacroGroup->subPieces.push_back(piece);
2776   }
2777 
2778   // Now take the pieces and construct a new PathDiagnostic.
2779   path.clear();
2780 
2781   path.insert(path.end(), Pieces.begin(), Pieces.end());
2782 }
2783 
2784 /// Generate notes from all visitors.
2785 /// Notes associated with @c ErrorNode are generated using
2786 /// @c getEndPath, and the rest are generated with @c VisitNode.
2787 static std::unique_ptr<VisitorsDiagnosticsTy>
generateVisitorsDiagnostics(PathSensitiveBugReport * R,const ExplodedNode * ErrorNode,BugReporterContext & BRC)2788 generateVisitorsDiagnostics(PathSensitiveBugReport *R,
2789                             const ExplodedNode *ErrorNode,
2790                             BugReporterContext &BRC) {
2791   std::unique_ptr<VisitorsDiagnosticsTy> Notes =
2792       std::make_unique<VisitorsDiagnosticsTy>();
2793   PathSensitiveBugReport::VisitorList visitors;
2794 
2795   // Run visitors on all nodes starting from the node *before* the last one.
2796   // The last node is reserved for notes generated with @c getEndPath.
2797   const ExplodedNode *NextNode = ErrorNode->getFirstPred();
2798   while (NextNode) {
2799 
2800     // At each iteration, move all visitors from report to visitor list. This is
2801     // important, because the Profile() functions of the visitors make sure that
2802     // a visitor isn't added multiple times for the same node, but it's fine
2803     // to add the a visitor with Profile() for different nodes (e.g. tracking
2804     // a region at different points of the symbolic execution).
2805     for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors())
2806       visitors.push_back(std::move(Visitor));
2807 
2808     R->clearVisitors();
2809 
2810     const ExplodedNode *Pred = NextNode->getFirstPred();
2811     if (!Pred) {
2812       PathDiagnosticPieceRef LastPiece;
2813       for (auto &V : visitors) {
2814         V->finalizeVisitor(BRC, ErrorNode, *R);
2815 
2816         if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) {
2817           assert(!LastPiece &&
2818                  "There can only be one final piece in a diagnostic.");
2819           assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event &&
2820                  "The final piece must contain a message!");
2821           LastPiece = std::move(Piece);
2822           (*Notes)[ErrorNode].push_back(LastPiece);
2823         }
2824       }
2825       break;
2826     }
2827 
2828     for (auto &V : visitors) {
2829       auto P = V->VisitNode(NextNode, BRC, *R);
2830       if (P)
2831         (*Notes)[NextNode].push_back(std::move(P));
2832     }
2833 
2834     if (!R->isValid())
2835       break;
2836 
2837     NextNode = Pred;
2838   }
2839 
2840   return Notes;
2841 }
2842 
findValidReport(ArrayRef<PathSensitiveBugReport * > & bugReports,PathSensitiveBugReporter & Reporter)2843 std::optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport(
2844     ArrayRef<PathSensitiveBugReport *> &bugReports,
2845     PathSensitiveBugReporter &Reporter) {
2846   Z3CrosscheckOracle Z3Oracle(Reporter.getAnalyzerOptions());
2847 
2848   BugPathGetter BugGraph(&Reporter.getGraph(), bugReports);
2849 
2850   while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) {
2851     // Find the BugReport with the original location.
2852     PathSensitiveBugReport *R = BugPath->Report;
2853     assert(R && "No original report found for sliced graph.");
2854     assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2855     const ExplodedNode *ErrorNode = BugPath->ErrorNode;
2856 
2857     // Register refutation visitors first, if they mark the bug invalid no
2858     // further analysis is required
2859     R->addVisitor<LikelyFalsePositiveSuppressionBRVisitor>();
2860 
2861     // Register additional node visitors.
2862     R->addVisitor<NilReceiverBRVisitor>();
2863     R->addVisitor<ConditionBRVisitor>();
2864     R->addVisitor<TagVisitor>();
2865 
2866     BugReporterContext BRC(Reporter);
2867 
2868     // Run all visitors on a given graph, once.
2869     std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
2870         generateVisitorsDiagnostics(R, ErrorNode, BRC);
2871 
2872     if (R->isValid()) {
2873       if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) {
2874         // If crosscheck is enabled, remove all visitors, add the refutation
2875         // visitor and check again
2876         R->clearVisitors();
2877         Z3CrosscheckVisitor::Z3Result CrosscheckResult;
2878         R->addVisitor<Z3CrosscheckVisitor>(CrosscheckResult,
2879                                            Reporter.getAnalyzerOptions());
2880 
2881         // We don't overwrite the notes inserted by other visitors because the
2882         // refutation manager does not add any new note to the path
2883         generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC);
2884         switch (Z3Oracle.interpretQueryResult(CrosscheckResult)) {
2885         case Z3CrosscheckOracle::RejectReport:
2886           ++NumTimesReportRefuted;
2887           R->markInvalid("Infeasible constraints", /*Data=*/nullptr);
2888           continue;
2889         case Z3CrosscheckOracle::RejectEQClass:
2890           ++NumTimesReportEQClassAborted;
2891           return {};
2892         case Z3CrosscheckOracle::AcceptReport:
2893           ++NumTimesReportPassesZ3;
2894           break;
2895         }
2896       }
2897 
2898       assert(R->isValid());
2899       return PathDiagnosticBuilder(std::move(BRC), std::move(BugPath->BugPath),
2900                                    BugPath->Report, BugPath->ErrorNode,
2901                                    std::move(visitorNotes));
2902     }
2903   }
2904 
2905   ++NumTimesReportEQClassWasExhausted;
2906   return {};
2907 }
2908 
2909 std::unique_ptr<DiagnosticForConsumerMapTy>
generatePathDiagnostics(ArrayRef<PathDiagnosticConsumer * > consumers,ArrayRef<PathSensitiveBugReport * > & bugReports)2910 PathSensitiveBugReporter::generatePathDiagnostics(
2911     ArrayRef<PathDiagnosticConsumer *> consumers,
2912     ArrayRef<PathSensitiveBugReport *> &bugReports) {
2913   assert(!bugReports.empty());
2914 
2915   auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
2916 
2917   std::optional<PathDiagnosticBuilder> PDB =
2918       PathDiagnosticBuilder::findValidReport(bugReports, *this);
2919 
2920   if (PDB) {
2921     for (PathDiagnosticConsumer *PC : consumers) {
2922       if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) {
2923         (*Out)[PC] = std::move(PD);
2924       }
2925     }
2926   }
2927 
2928   return Out;
2929 }
2930 
emitReport(std::unique_ptr<BugReport> R)2931 void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
2932   bool ValidSourceLoc = R->getLocation().isValid();
2933   assert(ValidSourceLoc);
2934   // If we mess up in a release build, we'd still prefer to just drop the bug
2935   // instead of trying to go on.
2936   if (!ValidSourceLoc)
2937     return;
2938 
2939   // If the user asked to suppress this report, we should skip it.
2940   if (UserSuppressions.isSuppressed(*R))
2941     return;
2942 
2943   // Compute the bug report's hash to determine its equivalence class.
2944   llvm::FoldingSetNodeID ID;
2945   R->Profile(ID);
2946 
2947   // Lookup the equivance class.  If there isn't one, create it.
2948   void *InsertPos;
2949   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2950 
2951   if (!EQ) {
2952     EQ = new BugReportEquivClass(std::move(R));
2953     EQClasses.InsertNode(EQ, InsertPos);
2954     EQClassesVector.push_back(EQ);
2955   } else
2956     EQ->AddReport(std::move(R));
2957 }
2958 
emitReport(std::unique_ptr<BugReport> R)2959 void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) {
2960   if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get()))
2961     if (const ExplodedNode *E = PR->getErrorNode()) {
2962       // An error node must either be a sink or have a tag, otherwise
2963       // it could get reclaimed before the path diagnostic is created.
2964       assert((E->isSink() || E->getLocation().getTag()) &&
2965              "Error node must either be a sink or have a tag");
2966 
2967       const AnalysisDeclContext *DeclCtx =
2968           E->getLocationContext()->getAnalysisDeclContext();
2969       // The source of autosynthesized body can be handcrafted AST or a model
2970       // file. The locations from handcrafted ASTs have no valid source
2971       // locations and have to be discarded. Locations from model files should
2972       // be preserved for processing and reporting.
2973       if (DeclCtx->isBodyAutosynthesized() &&
2974           !DeclCtx->isBodyAutosynthesizedFromModelFile())
2975         return;
2976     }
2977 
2978   BugReporter::emitReport(std::move(R));
2979 }
2980 
2981 //===----------------------------------------------------------------------===//
2982 // Emitting reports in equivalence classes.
2983 //===----------------------------------------------------------------------===//
2984 
2985 namespace {
2986 
2987 struct FRIEC_WLItem {
2988   const ExplodedNode *N;
2989   ExplodedNode::const_succ_iterator I, E;
2990 
FRIEC_WLItem__anon2f4a13600311::FRIEC_WLItem2991   FRIEC_WLItem(const ExplodedNode *n)
2992       : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2993 };
2994 
2995 } // namespace
2996 
findReportInEquivalenceClass(BugReportEquivClass & EQ,SmallVectorImpl<BugReport * > & bugReports)2997 BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass(
2998     BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) {
2999   // If we don't need to suppress any of the nodes because they are
3000   // post-dominated by a sink, simply add all the nodes in the equivalence class
3001   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
3002   assert(EQ.getReports().size() > 0);
3003   const BugType& BT = EQ.getReports()[0]->getBugType();
3004   if (!BT.isSuppressOnSink()) {
3005     BugReport *R = EQ.getReports()[0].get();
3006     for (auto &J : EQ.getReports()) {
3007       if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) {
3008         R = PR;
3009         bugReports.push_back(PR);
3010       }
3011     }
3012     return R;
3013   }
3014 
3015   // For bug reports that should be suppressed when all paths are post-dominated
3016   // by a sink node, iterate through the reports in the equivalence class
3017   // until we find one that isn't post-dominated (if one exists).  We use a
3018   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
3019   // this as a recursive function, but we don't want to risk blowing out the
3020   // stack for very long paths.
3021   BugReport *exampleReport = nullptr;
3022 
3023   for (const auto &I: EQ.getReports()) {
3024     auto *R = dyn_cast<PathSensitiveBugReport>(I.get());
3025     if (!R)
3026       continue;
3027 
3028     const ExplodedNode *errorNode = R->getErrorNode();
3029     if (errorNode->isSink()) {
3030       llvm_unreachable(
3031            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
3032     }
3033     // No successors?  By definition this nodes isn't post-dominated by a sink.
3034     if (errorNode->succ_empty()) {
3035       bugReports.push_back(R);
3036       if (!exampleReport)
3037         exampleReport = R;
3038       continue;
3039     }
3040 
3041     // See if we are in a no-return CFG block. If so, treat this similarly
3042     // to being post-dominated by a sink. This works better when the analysis
3043     // is incomplete and we have never reached the no-return function call(s)
3044     // that we'd inevitably bump into on this path.
3045     if (const CFGBlock *ErrorB = errorNode->getCFGBlock())
3046       if (ErrorB->isInevitablySinking())
3047         continue;
3048 
3049     // At this point we know that 'N' is not a sink and it has at least one
3050     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
3051     using WLItem = FRIEC_WLItem;
3052     using DFSWorkList = SmallVector<WLItem, 10>;
3053 
3054     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3055 
3056     DFSWorkList WL;
3057     WL.push_back(errorNode);
3058     Visited[errorNode] = 1;
3059 
3060     while (!WL.empty()) {
3061       WLItem &WI = WL.back();
3062       assert(!WI.N->succ_empty());
3063 
3064       for (; WI.I != WI.E; ++WI.I) {
3065         const ExplodedNode *Succ = *WI.I;
3066         // End-of-path node?
3067         if (Succ->succ_empty()) {
3068           // If we found an end-of-path node that is not a sink.
3069           if (!Succ->isSink()) {
3070             bugReports.push_back(R);
3071             if (!exampleReport)
3072               exampleReport = R;
3073             WL.clear();
3074             break;
3075           }
3076           // Found a sink?  Continue on to the next successor.
3077           continue;
3078         }
3079         // Mark the successor as visited.  If it hasn't been explored,
3080         // enqueue it to the DFS worklist.
3081         unsigned &mark = Visited[Succ];
3082         if (!mark) {
3083           mark = 1;
3084           WL.push_back(Succ);
3085           break;
3086         }
3087       }
3088 
3089       // The worklist may have been cleared at this point.  First
3090       // check if it is empty before checking the last item.
3091       if (!WL.empty() && &WL.back() == &WI)
3092         WL.pop_back();
3093     }
3094   }
3095 
3096   // ExampleReport will be NULL if all the nodes in the equivalence class
3097   // were post-dominated by sinks.
3098   return exampleReport;
3099 }
3100 
FlushReport(BugReportEquivClass & EQ)3101 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3102   SmallVector<BugReport*, 10> bugReports;
3103   BugReport *report = findReportInEquivalenceClass(EQ, bugReports);
3104   if (!report)
3105     return;
3106 
3107   // See whether we need to silence the checker/package.
3108   for (const std::string &CheckerOrPackage :
3109        getAnalyzerOptions().SilencedCheckersAndPackages) {
3110     if (report->getBugType().getCheckerName().starts_with(CheckerOrPackage))
3111       return;
3112   }
3113 
3114   ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers();
3115   std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
3116       generateDiagnosticForConsumerMap(report, Consumers, bugReports);
3117 
3118   for (auto &P : *Diagnostics) {
3119     PathDiagnosticConsumer *Consumer = P.first;
3120     std::unique_ptr<PathDiagnostic> &PD = P.second;
3121 
3122     // If the path is empty, generate a single step path with the location
3123     // of the issue.
3124     if (PD->path.empty()) {
3125       PathDiagnosticLocation L = report->getLocation();
3126       auto piece = std::make_unique<PathDiagnosticEventPiece>(
3127         L, report->getDescription());
3128       for (SourceRange Range : report->getRanges())
3129         piece->addRange(Range);
3130       PD->setEndOfPath(std::move(piece));
3131     }
3132 
3133     PathPieces &Pieces = PD->getMutablePieces();
3134     if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) {
3135       // For path diagnostic consumers that don't support extra notes,
3136       // we may optionally convert those to path notes.
3137       for (const auto &I : llvm::reverse(report->getNotes())) {
3138         PathDiagnosticNotePiece *Piece = I.get();
3139         auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
3140           Piece->getLocation(), Piece->getString());
3141         for (const auto &R: Piece->getRanges())
3142           ConvertedPiece->addRange(R);
3143 
3144         Pieces.push_front(std::move(ConvertedPiece));
3145       }
3146     } else {
3147       for (const auto &I : llvm::reverse(report->getNotes()))
3148         Pieces.push_front(I);
3149     }
3150 
3151     for (const auto &I : report->getFixits())
3152       Pieces.back()->addFixit(I);
3153 
3154     updateExecutedLinesWithDiagnosticPieces(*PD);
3155 
3156     // If we are debugging, let's have the entry point as the first note.
3157     if (getAnalyzerOptions().AnalyzerDisplayProgress ||
3158         getAnalyzerOptions().AnalyzerNoteAnalysisEntryPoints) {
3159       const Decl *EntryPoint = getAnalysisEntryPoint();
3160       Pieces.push_front(std::make_shared<PathDiagnosticEventPiece>(
3161           PathDiagnosticLocation{EntryPoint->getLocation(), getSourceManager()},
3162           "[debug] analyzing from " +
3163               AnalysisDeclContext::getFunctionName(EntryPoint)));
3164     }
3165     Consumer->HandlePathDiagnostic(std::move(PD));
3166   }
3167 }
3168 
3169 /// Insert all lines participating in the function signature \p Signature
3170 /// into \p ExecutedLines.
populateExecutedLinesWithFunctionSignature(const Decl * Signature,const SourceManager & SM,FilesToLineNumsMap & ExecutedLines)3171 static void populateExecutedLinesWithFunctionSignature(
3172     const Decl *Signature, const SourceManager &SM,
3173     FilesToLineNumsMap &ExecutedLines) {
3174   SourceRange SignatureSourceRange;
3175   const Stmt* Body = Signature->getBody();
3176   if (const auto FD = dyn_cast<FunctionDecl>(Signature)) {
3177     SignatureSourceRange = FD->getSourceRange();
3178   } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) {
3179     SignatureSourceRange = OD->getSourceRange();
3180   } else {
3181     return;
3182   }
3183   SourceLocation Start = SignatureSourceRange.getBegin();
3184   SourceLocation End = Body ? Body->getSourceRange().getBegin()
3185     : SignatureSourceRange.getEnd();
3186   if (!Start.isValid() || !End.isValid())
3187     return;
3188   unsigned StartLine = SM.getExpansionLineNumber(Start);
3189   unsigned EndLine = SM.getExpansionLineNumber(End);
3190 
3191   FileID FID = SM.getFileID(SM.getExpansionLoc(Start));
3192   for (unsigned Line = StartLine; Line <= EndLine; Line++)
3193     ExecutedLines[FID].insert(Line);
3194 }
3195 
populateExecutedLinesWithStmt(const Stmt * S,const SourceManager & SM,FilesToLineNumsMap & ExecutedLines)3196 static void populateExecutedLinesWithStmt(
3197     const Stmt *S, const SourceManager &SM,
3198     FilesToLineNumsMap &ExecutedLines) {
3199   SourceLocation Loc = S->getSourceRange().getBegin();
3200   if (!Loc.isValid())
3201     return;
3202   SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3203   FileID FID = SM.getFileID(ExpansionLoc);
3204   unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc);
3205   ExecutedLines[FID].insert(LineNo);
3206 }
3207 
3208 /// \return all executed lines including function signatures on the path
3209 /// starting from \p N.
3210 static std::unique_ptr<FilesToLineNumsMap>
findExecutedLines(const SourceManager & SM,const ExplodedNode * N)3211 findExecutedLines(const SourceManager &SM, const ExplodedNode *N) {
3212   auto ExecutedLines = std::make_unique<FilesToLineNumsMap>();
3213 
3214   while (N) {
3215     if (N->getFirstPred() == nullptr) {
3216       // First node: show signature of the entrance point.
3217       const Decl *D = N->getLocationContext()->getDecl();
3218       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3219     } else if (auto CE = N->getLocationAs<CallEnter>()) {
3220       // Inlined function: show signature.
3221       const Decl* D = CE->getCalleeContext()->getDecl();
3222       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3223     } else if (const Stmt *S = N->getStmtForDiagnostics()) {
3224       populateExecutedLinesWithStmt(S, SM, *ExecutedLines);
3225 
3226       // Show extra context for some parent kinds.
3227       const Stmt *P = N->getParentMap().getParent(S);
3228 
3229       // The path exploration can die before the node with the associated
3230       // return statement is generated, but we do want to show the whole
3231       // return.
3232       if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) {
3233         populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
3234         P = N->getParentMap().getParent(RS);
3235       }
3236 
3237       if (isa_and_nonnull<SwitchCase, LabelStmt>(P))
3238         populateExecutedLinesWithStmt(P, SM, *ExecutedLines);
3239     }
3240 
3241     N = N->getFirstPred();
3242   }
3243   return ExecutedLines;
3244 }
3245 
3246 std::unique_ptr<DiagnosticForConsumerMapTy>
generateDiagnosticForConsumerMap(BugReport * exampleReport,ArrayRef<PathDiagnosticConsumer * > consumers,ArrayRef<BugReport * > bugReports)3247 BugReporter::generateDiagnosticForConsumerMap(
3248     BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3249     ArrayRef<BugReport *> bugReports) {
3250   auto *basicReport = cast<BasicBugReport>(exampleReport);
3251   auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
3252   for (auto *Consumer : consumers)
3253     (*Out)[Consumer] =
3254         generateDiagnosticForBasicReport(basicReport, AnalysisEntryPoint);
3255   return Out;
3256 }
3257 
3258 static PathDiagnosticCallPiece *
getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece * CP,const SourceManager & SMgr)3259 getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
3260                                 const SourceManager &SMgr) {
3261   SourceLocation CallLoc = CP->callEnter.asLocation();
3262 
3263   // If the call is within a macro, don't do anything (for now).
3264   if (CallLoc.isMacroID())
3265     return nullptr;
3266 
3267   assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
3268          "The call piece should not be in a header file.");
3269 
3270   // Check if CP represents a path through a function outside of the main file.
3271   if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr))
3272     return CP;
3273 
3274   const PathPieces &Path = CP->path;
3275   if (Path.empty())
3276     return nullptr;
3277 
3278   // Check if the last piece in the callee path is a call to a function outside
3279   // of the main file.
3280   if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get()))
3281     return getFirstStackedCallToHeaderFile(CPInner, SMgr);
3282 
3283   // Otherwise, the last piece is in the main file.
3284   return nullptr;
3285 }
3286 
resetDiagnosticLocationToMainFile(PathDiagnostic & PD)3287 static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) {
3288   if (PD.path.empty())
3289     return;
3290 
3291   PathDiagnosticPiece *LastP = PD.path.back().get();
3292   assert(LastP);
3293   const SourceManager &SMgr = LastP->getLocation().getManager();
3294 
3295   // We only need to check if the report ends inside headers, if the last piece
3296   // is a call piece.
3297   if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
3298     CP = getFirstStackedCallToHeaderFile(CP, SMgr);
3299     if (CP) {
3300       // Mark the piece.
3301        CP->setAsLastInMainSourceFile();
3302 
3303       // Update the path diagnostic message.
3304       const auto *ND = dyn_cast<NamedDecl>(CP->getCallee());
3305       if (ND) {
3306         SmallString<200> buf;
3307         llvm::raw_svector_ostream os(buf);
3308         os << " (within a call to '" << ND->getDeclName() << "')";
3309         PD.appendToDesc(os.str());
3310       }
3311 
3312       // Reset the report containing declaration and location.
3313       PD.setDeclWithIssue(CP->getCaller());
3314       PD.setLocation(CP->getLocation());
3315 
3316       return;
3317     }
3318   }
3319 }
3320 
3321 
3322 
3323 std::unique_ptr<DiagnosticForConsumerMapTy>
generateDiagnosticForConsumerMap(BugReport * exampleReport,ArrayRef<PathDiagnosticConsumer * > consumers,ArrayRef<BugReport * > bugReports)3324 PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
3325     BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3326     ArrayRef<BugReport *> bugReports) {
3327   std::vector<BasicBugReport *> BasicBugReports;
3328   std::vector<PathSensitiveBugReport *> PathSensitiveBugReports;
3329   if (isa<BasicBugReport>(exampleReport))
3330     return BugReporter::generateDiagnosticForConsumerMap(exampleReport,
3331                                                          consumers, bugReports);
3332 
3333   // Generate the full path sensitive diagnostic, using the generation scheme
3334   // specified by the PathDiagnosticConsumer. Note that we have to generate
3335   // path diagnostics even for consumers which do not support paths, because
3336   // the BugReporterVisitors may mark this bug as a false positive.
3337   assert(!bugReports.empty());
3338   MaxBugClassSize.updateMax(bugReports.size());
3339 
3340   // Avoid copying the whole array because there may be a lot of reports.
3341   ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports(
3342       reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()),
3343       reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end()));
3344   std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics(
3345       consumers, convertedArrayOfReports);
3346 
3347   if (Out->empty())
3348     return Out;
3349 
3350   MaxValidBugClassSize.updateMax(bugReports.size());
3351 
3352   // Examine the report and see if the last piece is in a header. Reset the
3353   // report location to the last piece in the main source file.
3354   const AnalyzerOptions &Opts = getAnalyzerOptions();
3355   for (auto const &P : *Out)
3356     if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll)
3357       resetDiagnosticLocationToMainFile(*P.second);
3358 
3359   return Out;
3360 }
3361 
EmitBasicReport(const Decl * DeclWithIssue,const CheckerBase * Checker,StringRef Name,StringRef Category,StringRef Str,PathDiagnosticLocation Loc,ArrayRef<SourceRange> Ranges,ArrayRef<FixItHint> Fixits)3362 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3363                                   const CheckerBase *Checker, StringRef Name,
3364                                   StringRef Category, StringRef Str,
3365                                   PathDiagnosticLocation Loc,
3366                                   ArrayRef<SourceRange> Ranges,
3367                                   ArrayRef<FixItHint> Fixits) {
3368   EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str,
3369                   Loc, Ranges, Fixits);
3370 }
3371 
EmitBasicReport(const Decl * DeclWithIssue,CheckerNameRef CheckName,StringRef name,StringRef category,StringRef str,PathDiagnosticLocation Loc,ArrayRef<SourceRange> Ranges,ArrayRef<FixItHint> Fixits)3372 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3373                                   CheckerNameRef CheckName,
3374                                   StringRef name, StringRef category,
3375                                   StringRef str, PathDiagnosticLocation Loc,
3376                                   ArrayRef<SourceRange> Ranges,
3377                                   ArrayRef<FixItHint> Fixits) {
3378   // 'BT' is owned by BugReporter.
3379   BugType *BT = getBugTypeForName(CheckName, name, category);
3380   auto R = std::make_unique<BasicBugReport>(*BT, str, Loc);
3381   R->setDeclWithIssue(DeclWithIssue);
3382   for (const auto &SR : Ranges)
3383     R->addRange(SR);
3384   for (const auto &FH : Fixits)
3385     R->addFixItHint(FH);
3386   emitReport(std::move(R));
3387 }
3388 
getBugTypeForName(CheckerNameRef CheckName,StringRef name,StringRef category)3389 BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName,
3390                                         StringRef name, StringRef category) {
3391   SmallString<136> fullDesc;
3392   llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3393                                       << ":" << category;
3394   std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc];
3395   if (!BT)
3396     BT = std::make_unique<BugType>(CheckName, name, category);
3397   return BT.get();
3398 }
3399