xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/SmallVector.h (revision 62987288060ff68c817b7056815aa9fb8ba8ecd7)
1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the SmallVector class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_SMALLVECTOR_H
15 #define LLVM_ADT_SMALLVECTOR_H
16 
17 #include "llvm/Support/Compiler.h"
18 #include "llvm/Support/type_traits.h"
19 #include <algorithm>
20 #include <cassert>
21 #include <cstddef>
22 #include <cstdint>
23 #include <cstdlib>
24 #include <cstring>
25 #include <functional>
26 #include <initializer_list>
27 #include <iterator>
28 #include <limits>
29 #include <memory>
30 #include <new>
31 #include <type_traits>
32 #include <utility>
33 
34 namespace llvm {
35 
36 template <typename T> class ArrayRef;
37 
38 template <typename IteratorT> class iterator_range;
39 
40 template <class Iterator>
41 using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible<
42     typename std::iterator_traits<Iterator>::iterator_category,
43     std::input_iterator_tag>::value>;
44 
45 /// This is all the stuff common to all SmallVectors.
46 ///
47 /// The template parameter specifies the type which should be used to hold the
48 /// Size and Capacity of the SmallVector, so it can be adjusted.
49 /// Using 32 bit size is desirable to shrink the size of the SmallVector.
50 /// Using 64 bit size is desirable for cases like SmallVector<char>, where a
51 /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
52 /// buffering bitcode output - which can exceed 4GB.
53 template <class Size_T> class SmallVectorBase {
54 protected:
55   void *BeginX;
56   Size_T Size = 0, Capacity;
57 
58   /// The maximum value of the Size_T used.
SizeTypeMax()59   static constexpr size_t SizeTypeMax() {
60     return std::numeric_limits<Size_T>::max();
61   }
62 
63   SmallVectorBase() = delete;
SmallVectorBase(void * FirstEl,size_t TotalCapacity)64   SmallVectorBase(void *FirstEl, size_t TotalCapacity)
65       : BeginX(FirstEl), Capacity(static_cast<Size_T>(TotalCapacity)) {}
66 
67   /// This is a helper for \a grow() that's out of line to reduce code
68   /// duplication.  This function will report a fatal error if it can't grow at
69   /// least to \p MinSize.
70   void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize,
71                       size_t &NewCapacity);
72 
73   /// This is an implementation of the grow() method which only works
74   /// on POD-like data types and is out of line to reduce code duplication.
75   /// This function will report a fatal error if it cannot increase capacity.
76   void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
77 
78   /// If vector was first created with capacity 0, getFirstEl() points to the
79   /// memory right after, an area unallocated. If a subsequent allocation,
80   /// that grows the vector, happens to return the same pointer as getFirstEl(),
81   /// get a new allocation, otherwise isSmall() will falsely return that no
82   /// allocation was done (true) and the memory will not be freed in the
83   /// destructor. If a VSize is given (vector size), also copy that many
84   /// elements to the new allocation - used if realloca fails to increase
85   /// space, and happens to allocate precisely at BeginX.
86   /// This is unlikely to be called often, but resolves a memory leak when the
87   /// situation does occur.
88   void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity,
89                           size_t VSize = 0);
90 
91 public:
size()92   size_t size() const { return Size; }
capacity()93   size_t capacity() const { return Capacity; }
94 
empty()95   [[nodiscard]] bool empty() const { return !Size; }
96 
97 protected:
98   /// Set the array size to \p N, which the current array must have enough
99   /// capacity for.
100   ///
101   /// This does not construct or destroy any elements in the vector.
set_size(size_t N)102   void set_size(size_t N) {
103     assert(N <= capacity()); // implies no overflow in assignment
104     Size = static_cast<Size_T>(N);
105   }
106 
107   /// Set the array data pointer to \p Begin and capacity to \p N.
108   ///
109   /// This does not construct or destroy any elements in the vector.
110   //  This does not clean up any existing allocation.
set_allocation_range(void * Begin,size_t N)111   void set_allocation_range(void *Begin, size_t N) {
112     assert(N <= SizeTypeMax());
113     BeginX = Begin;
114     Capacity = static_cast<Size_T>(N);
115   }
116 };
117 
118 template <class T>
119 using SmallVectorSizeType =
120     std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
121                        uint32_t>;
122 
123 /// Figure out the offset of the first element.
124 template <class T, typename = void> struct SmallVectorAlignmentAndSize {
125   alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
126       SmallVectorBase<SmallVectorSizeType<T>>)];
127   alignas(T) char FirstEl[sizeof(T)];
128 };
129 
130 /// This is the part of SmallVectorTemplateBase which does not depend on whether
131 /// the type T is a POD. The extra dummy template argument is used by ArrayRef
132 /// to avoid unnecessarily requiring T to be complete.
133 template <typename T, typename = void>
134 class SmallVectorTemplateCommon
135     : public SmallVectorBase<SmallVectorSizeType<T>> {
136   using Base = SmallVectorBase<SmallVectorSizeType<T>>;
137 
138 protected:
139   /// Find the address of the first element.  For this pointer math to be valid
140   /// with small-size of 0 for T with lots of alignment, it's important that
141   /// SmallVectorStorage is properly-aligned even for small-size of 0.
getFirstEl()142   void *getFirstEl() const {
143     return const_cast<void *>(reinterpret_cast<const void *>(
144         reinterpret_cast<const char *>(this) +
145         offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
146   }
147   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
148 
SmallVectorTemplateCommon(size_t Size)149   SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
150 
grow_pod(size_t MinSize,size_t TSize)151   void grow_pod(size_t MinSize, size_t TSize) {
152     Base::grow_pod(getFirstEl(), MinSize, TSize);
153   }
154 
155   /// Return true if this is a smallvector which has not had dynamic
156   /// memory allocated for it.
isSmall()157   bool isSmall() const { return this->BeginX == getFirstEl(); }
158 
159   /// Put this vector in a state of being small.
resetToSmall()160   void resetToSmall() {
161     this->BeginX = getFirstEl();
162     this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
163   }
164 
165   /// Return true if V is an internal reference to the given range.
isReferenceToRange(const void * V,const void * First,const void * Last)166   bool isReferenceToRange(const void *V, const void *First, const void *Last) const {
167     // Use std::less to avoid UB.
168     std::less<> LessThan;
169     return !LessThan(V, First) && LessThan(V, Last);
170   }
171 
172   /// Return true if V is an internal reference to this vector.
isReferenceToStorage(const void * V)173   bool isReferenceToStorage(const void *V) const {
174     return isReferenceToRange(V, this->begin(), this->end());
175   }
176 
177   /// Return true if First and Last form a valid (possibly empty) range in this
178   /// vector's storage.
isRangeInStorage(const void * First,const void * Last)179   bool isRangeInStorage(const void *First, const void *Last) const {
180     // Use std::less to avoid UB.
181     std::less<> LessThan;
182     return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
183            !LessThan(this->end(), Last);
184   }
185 
186   /// Return true unless Elt will be invalidated by resizing the vector to
187   /// NewSize.
isSafeToReferenceAfterResize(const void * Elt,size_t NewSize)188   bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
189     // Past the end.
190     if (LLVM_LIKELY(!isReferenceToStorage(Elt)))
191       return true;
192 
193     // Return false if Elt will be destroyed by shrinking.
194     if (NewSize <= this->size())
195       return Elt < this->begin() + NewSize;
196 
197     // Return false if we need to grow.
198     return NewSize <= this->capacity();
199   }
200 
201   /// Check whether Elt will be invalidated by resizing the vector to NewSize.
assertSafeToReferenceAfterResize(const void * Elt,size_t NewSize)202   void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
203     assert(isSafeToReferenceAfterResize(Elt, NewSize) &&
204            "Attempting to reference an element of the vector in an operation "
205            "that invalidates it");
206   }
207 
208   /// Check whether Elt will be invalidated by increasing the size of the
209   /// vector by N.
210   void assertSafeToAdd(const void *Elt, size_t N = 1) {
211     this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
212   }
213 
214   /// Check whether any part of the range will be invalidated by clearing.
assertSafeToReferenceAfterClear(const T * From,const T * To)215   void assertSafeToReferenceAfterClear(const T *From, const T *To) {
216     if (From == To)
217       return;
218     this->assertSafeToReferenceAfterResize(From, 0);
219     this->assertSafeToReferenceAfterResize(To - 1, 0);
220   }
221   template <
222       class ItTy,
223       std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
224                        bool> = false>
assertSafeToReferenceAfterClear(ItTy,ItTy)225   void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
226 
227   /// Check whether any part of the range will be invalidated by growing.
assertSafeToAddRange(const T * From,const T * To)228   void assertSafeToAddRange(const T *From, const T *To) {
229     if (From == To)
230       return;
231     this->assertSafeToAdd(From, To - From);
232     this->assertSafeToAdd(To - 1, To - From);
233   }
234   template <
235       class ItTy,
236       std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
237                        bool> = false>
assertSafeToAddRange(ItTy,ItTy)238   void assertSafeToAddRange(ItTy, ItTy) {}
239 
240   /// Reserve enough space to add one element, and return the updated element
241   /// pointer in case it was a reference to the storage.
242   template <class U>
reserveForParamAndGetAddressImpl(U * This,const T & Elt,size_t N)243   static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt,
244                                                    size_t N) {
245     size_t NewSize = This->size() + N;
246     if (LLVM_LIKELY(NewSize <= This->capacity()))
247       return &Elt;
248 
249     bool ReferencesStorage = false;
250     int64_t Index = -1;
251     if (!U::TakesParamByValue) {
252       if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) {
253         ReferencesStorage = true;
254         Index = &Elt - This->begin();
255       }
256     }
257     This->grow(NewSize);
258     return ReferencesStorage ? This->begin() + Index : &Elt;
259   }
260 
261 public:
262   using size_type = size_t;
263   using difference_type = ptrdiff_t;
264   using value_type = T;
265   using iterator = T *;
266   using const_iterator = const T *;
267 
268   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
269   using reverse_iterator = std::reverse_iterator<iterator>;
270 
271   using reference = T &;
272   using const_reference = const T &;
273   using pointer = T *;
274   using const_pointer = const T *;
275 
276   using Base::capacity;
277   using Base::empty;
278   using Base::size;
279 
280   // forward iterator creation methods.
begin()281   iterator begin() { return (iterator)this->BeginX; }
begin()282   const_iterator begin() const { return (const_iterator)this->BeginX; }
end()283   iterator end() { return begin() + size(); }
end()284   const_iterator end() const { return begin() + size(); }
285 
286   // reverse iterator creation methods.
rbegin()287   reverse_iterator rbegin()            { return reverse_iterator(end()); }
rbegin()288   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
rend()289   reverse_iterator rend()              { return reverse_iterator(begin()); }
rend()290   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
291 
size_in_bytes()292   size_type size_in_bytes() const { return size() * sizeof(T); }
max_size()293   size_type max_size() const {
294     return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
295   }
296 
capacity_in_bytes()297   size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
298 
299   /// Return a pointer to the vector's buffer, even if empty().
data()300   pointer data() { return pointer(begin()); }
301   /// Return a pointer to the vector's buffer, even if empty().
data()302   const_pointer data() const { return const_pointer(begin()); }
303 
304   reference operator[](size_type idx) {
305     assert(idx < size());
306     return begin()[idx];
307   }
308   const_reference operator[](size_type idx) const {
309     assert(idx < size());
310     return begin()[idx];
311   }
312 
front()313   reference front() {
314     assert(!empty());
315     return begin()[0];
316   }
front()317   const_reference front() const {
318     assert(!empty());
319     return begin()[0];
320   }
321 
back()322   reference back() {
323     assert(!empty());
324     return end()[-1];
325   }
back()326   const_reference back() const {
327     assert(!empty());
328     return end()[-1];
329   }
330 };
331 
332 /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
333 /// method implementations that are designed to work with non-trivial T's.
334 ///
335 /// We approximate is_trivially_copyable with trivial move/copy construction and
336 /// trivial destruction. While the standard doesn't specify that you're allowed
337 /// copy these types with memcpy, there is no way for the type to observe this.
338 /// This catches the important case of std::pair<POD, POD>, which is not
339 /// trivially assignable.
340 template <typename T, bool = (std::is_trivially_copy_constructible<T>::value) &&
341                              (std::is_trivially_move_constructible<T>::value) &&
342                              std::is_trivially_destructible<T>::value>
343 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
344   friend class SmallVectorTemplateCommon<T>;
345 
346 protected:
347   static constexpr bool TakesParamByValue = false;
348   using ValueParamT = const T &;
349 
SmallVectorTemplateBase(size_t Size)350   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
351 
destroy_range(T * S,T * E)352   static void destroy_range(T *S, T *E) {
353     while (S != E) {
354       --E;
355       E->~T();
356     }
357   }
358 
359   /// Move the range [I, E) into the uninitialized memory starting with "Dest",
360   /// constructing elements as needed.
361   template<typename It1, typename It2>
uninitialized_move(It1 I,It1 E,It2 Dest)362   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
363     std::uninitialized_move(I, E, Dest);
364   }
365 
366   /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
367   /// constructing elements as needed.
368   template<typename It1, typename It2>
uninitialized_copy(It1 I,It1 E,It2 Dest)369   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
370     std::uninitialized_copy(I, E, Dest);
371   }
372 
373   /// Grow the allocated memory (without initializing new elements), doubling
374   /// the size of the allocated memory. Guarantees space for at least one more
375   /// element, or MinSize more elements if specified.
376   void grow(size_t MinSize = 0);
377 
378   /// Create a new allocation big enough for \p MinSize and pass back its size
379   /// in \p NewCapacity. This is the first section of \a grow().
380   T *mallocForGrow(size_t MinSize, size_t &NewCapacity);
381 
382   /// Move existing elements over to the new allocation \p NewElts, the middle
383   /// section of \a grow().
384   void moveElementsForGrow(T *NewElts);
385 
386   /// Transfer ownership of the allocation, finishing up \a grow().
387   void takeAllocationForGrow(T *NewElts, size_t NewCapacity);
388 
389   /// Reserve enough space to add one element, and return the updated element
390   /// pointer in case it was a reference to the storage.
391   const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
392     return this->reserveForParamAndGetAddressImpl(this, Elt, N);
393   }
394 
395   /// Reserve enough space to add one element, and return the updated element
396   /// pointer in case it was a reference to the storage.
397   T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
398     return const_cast<T *>(
399         this->reserveForParamAndGetAddressImpl(this, Elt, N));
400   }
401 
forward_value_param(T && V)402   static T &&forward_value_param(T &&V) { return std::move(V); }
forward_value_param(const T & V)403   static const T &forward_value_param(const T &V) { return V; }
404 
growAndAssign(size_t NumElts,const T & Elt)405   void growAndAssign(size_t NumElts, const T &Elt) {
406     // Grow manually in case Elt is an internal reference.
407     size_t NewCapacity;
408     T *NewElts = mallocForGrow(NumElts, NewCapacity);
409     std::uninitialized_fill_n(NewElts, NumElts, Elt);
410     this->destroy_range(this->begin(), this->end());
411     takeAllocationForGrow(NewElts, NewCapacity);
412     this->set_size(NumElts);
413   }
414 
growAndEmplaceBack(ArgTypes &&...Args)415   template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
416     // Grow manually in case one of Args is an internal reference.
417     size_t NewCapacity;
418     T *NewElts = mallocForGrow(0, NewCapacity);
419     ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
420     moveElementsForGrow(NewElts);
421     takeAllocationForGrow(NewElts, NewCapacity);
422     this->set_size(this->size() + 1);
423     return this->back();
424   }
425 
426 public:
push_back(const T & Elt)427   void push_back(const T &Elt) {
428     const T *EltPtr = reserveForParamAndGetAddress(Elt);
429     ::new ((void *)this->end()) T(*EltPtr);
430     this->set_size(this->size() + 1);
431   }
432 
push_back(T && Elt)433   void push_back(T &&Elt) {
434     T *EltPtr = reserveForParamAndGetAddress(Elt);
435     ::new ((void *)this->end()) T(::std::move(*EltPtr));
436     this->set_size(this->size() + 1);
437   }
438 
pop_back()439   void pop_back() {
440     this->set_size(this->size() - 1);
441     this->end()->~T();
442   }
443 };
444 
445 // Define this out-of-line to dissuade the C++ compiler from inlining it.
446 template <typename T, bool TriviallyCopyable>
grow(size_t MinSize)447 void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
448   size_t NewCapacity;
449   T *NewElts = mallocForGrow(MinSize, NewCapacity);
450   moveElementsForGrow(NewElts);
451   takeAllocationForGrow(NewElts, NewCapacity);
452 }
453 
454 template <typename T, bool TriviallyCopyable>
mallocForGrow(size_t MinSize,size_t & NewCapacity)455 T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow(
456     size_t MinSize, size_t &NewCapacity) {
457   return static_cast<T *>(
458       SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
459           this->getFirstEl(), MinSize, sizeof(T), NewCapacity));
460 }
461 
462 // Define this out-of-line to dissuade the C++ compiler from inlining it.
463 template <typename T, bool TriviallyCopyable>
moveElementsForGrow(T * NewElts)464 void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
465     T *NewElts) {
466   // Move the elements over.
467   this->uninitialized_move(this->begin(), this->end(), NewElts);
468 
469   // Destroy the original elements.
470   destroy_range(this->begin(), this->end());
471 }
472 
473 // Define this out-of-line to dissuade the C++ compiler from inlining it.
474 template <typename T, bool TriviallyCopyable>
takeAllocationForGrow(T * NewElts,size_t NewCapacity)475 void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
476     T *NewElts, size_t NewCapacity) {
477   // If this wasn't grown from the inline copy, deallocate the old space.
478   if (!this->isSmall())
479     free(this->begin());
480 
481   this->set_allocation_range(NewElts, NewCapacity);
482 }
483 
484 /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
485 /// method implementations that are designed to work with trivially copyable
486 /// T's. This allows using memcpy in place of copy/move construction and
487 /// skipping destruction.
488 template <typename T>
489 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
490   friend class SmallVectorTemplateCommon<T>;
491 
492 protected:
493   /// True if it's cheap enough to take parameters by value. Doing so avoids
494   /// overhead related to mitigations for reference invalidation.
495   static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
496 
497   /// Either const T& or T, depending on whether it's cheap enough to take
498   /// parameters by value.
499   using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>;
500 
SmallVectorTemplateBase(size_t Size)501   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
502 
503   // No need to do a destroy loop for POD's.
destroy_range(T *,T *)504   static void destroy_range(T *, T *) {}
505 
506   /// Move the range [I, E) onto the uninitialized memory
507   /// starting with "Dest", constructing elements into it as needed.
508   template<typename It1, typename It2>
uninitialized_move(It1 I,It1 E,It2 Dest)509   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
510     // Just do a copy.
511     uninitialized_copy(I, E, Dest);
512   }
513 
514   /// Copy the range [I, E) onto the uninitialized memory
515   /// starting with "Dest", constructing elements into it as needed.
516   template<typename It1, typename It2>
uninitialized_copy(It1 I,It1 E,It2 Dest)517   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
518     // Arbitrary iterator types; just use the basic implementation.
519     std::uninitialized_copy(I, E, Dest);
520   }
521 
522   /// Copy the range [I, E) onto the uninitialized memory
523   /// starting with "Dest", constructing elements into it as needed.
524   template <typename T1, typename T2>
525   static void uninitialized_copy(
526       T1 *I, T1 *E, T2 *Dest,
527       std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * =
528           nullptr) {
529     // Use memcpy for PODs iterated by pointers (which includes SmallVector
530     // iterators): std::uninitialized_copy optimizes to memmove, but we can
531     // use memcpy here. Note that I and E are iterators and thus might be
532     // invalid for memcpy if they are equal.
533     if (I != E)
534       memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
535   }
536 
537   /// Double the size of the allocated memory, guaranteeing space for at
538   /// least one more element or MinSize if specified.
539   void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
540 
541   /// Reserve enough space to add one element, and return the updated element
542   /// pointer in case it was a reference to the storage.
543   const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
544     return this->reserveForParamAndGetAddressImpl(this, Elt, N);
545   }
546 
547   /// Reserve enough space to add one element, and return the updated element
548   /// pointer in case it was a reference to the storage.
549   T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
550     return const_cast<T *>(
551         this->reserveForParamAndGetAddressImpl(this, Elt, N));
552   }
553 
554   /// Copy \p V or return a reference, depending on \a ValueParamT.
forward_value_param(ValueParamT V)555   static ValueParamT forward_value_param(ValueParamT V) { return V; }
556 
growAndAssign(size_t NumElts,T Elt)557   void growAndAssign(size_t NumElts, T Elt) {
558     // Elt has been copied in case it's an internal reference, side-stepping
559     // reference invalidation problems without losing the realloc optimization.
560     this->set_size(0);
561     this->grow(NumElts);
562     std::uninitialized_fill_n(this->begin(), NumElts, Elt);
563     this->set_size(NumElts);
564   }
565 
growAndEmplaceBack(ArgTypes &&...Args)566   template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
567     // Use push_back with a copy in case Args has an internal reference,
568     // side-stepping reference invalidation problems without losing the realloc
569     // optimization.
570     push_back(T(std::forward<ArgTypes>(Args)...));
571     return this->back();
572   }
573 
574 public:
push_back(ValueParamT Elt)575   void push_back(ValueParamT Elt) {
576     const T *EltPtr = reserveForParamAndGetAddress(Elt);
577     memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
578     this->set_size(this->size() + 1);
579   }
580 
pop_back()581   void pop_back() { this->set_size(this->size() - 1); }
582 };
583 
584 /// This class consists of common code factored out of the SmallVector class to
585 /// reduce code duplication based on the SmallVector 'N' template parameter.
586 template <typename T>
587 class SmallVectorImpl : public SmallVectorTemplateBase<T> {
588   using SuperClass = SmallVectorTemplateBase<T>;
589 
590 public:
591   using iterator = typename SuperClass::iterator;
592   using const_iterator = typename SuperClass::const_iterator;
593   using reference = typename SuperClass::reference;
594   using size_type = typename SuperClass::size_type;
595 
596 protected:
597   using SmallVectorTemplateBase<T>::TakesParamByValue;
598   using ValueParamT = typename SuperClass::ValueParamT;
599 
600   // Default ctor - Initialize to empty.
SmallVectorImpl(unsigned N)601   explicit SmallVectorImpl(unsigned N)
602       : SmallVectorTemplateBase<T>(N) {}
603 
assignRemote(SmallVectorImpl && RHS)604   void assignRemote(SmallVectorImpl &&RHS) {
605     this->destroy_range(this->begin(), this->end());
606     if (!this->isSmall())
607       free(this->begin());
608     this->BeginX = RHS.BeginX;
609     this->Size = RHS.Size;
610     this->Capacity = RHS.Capacity;
611     RHS.resetToSmall();
612   }
613 
~SmallVectorImpl()614   ~SmallVectorImpl() {
615     // Subclass has already destructed this vector's elements.
616     // If this wasn't grown from the inline copy, deallocate the old space.
617     if (!this->isSmall())
618       free(this->begin());
619   }
620 
621 public:
622   SmallVectorImpl(const SmallVectorImpl &) = delete;
623 
clear()624   void clear() {
625     this->destroy_range(this->begin(), this->end());
626     this->Size = 0;
627   }
628 
629 private:
630   // Make set_size() private to avoid misuse in subclasses.
631   using SuperClass::set_size;
632 
resizeImpl(size_type N)633   template <bool ForOverwrite> void resizeImpl(size_type N) {
634     if (N == this->size())
635       return;
636 
637     if (N < this->size()) {
638       this->truncate(N);
639       return;
640     }
641 
642     this->reserve(N);
643     for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
644       if (ForOverwrite)
645         new (&*I) T;
646       else
647         new (&*I) T();
648     this->set_size(N);
649   }
650 
651 public:
resize(size_type N)652   void resize(size_type N) { resizeImpl<false>(N); }
653 
654   /// Like resize, but \ref T is POD, the new values won't be initialized.
resize_for_overwrite(size_type N)655   void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
656 
657   /// Like resize, but requires that \p N is less than \a size().
truncate(size_type N)658   void truncate(size_type N) {
659     assert(this->size() >= N && "Cannot increase size with truncate");
660     this->destroy_range(this->begin() + N, this->end());
661     this->set_size(N);
662   }
663 
resize(size_type N,ValueParamT NV)664   void resize(size_type N, ValueParamT NV) {
665     if (N == this->size())
666       return;
667 
668     if (N < this->size()) {
669       this->truncate(N);
670       return;
671     }
672 
673     // N > this->size(). Defer to append.
674     this->append(N - this->size(), NV);
675   }
676 
reserve(size_type N)677   void reserve(size_type N) {
678     if (this->capacity() < N)
679       this->grow(N);
680   }
681 
pop_back_n(size_type NumItems)682   void pop_back_n(size_type NumItems) {
683     assert(this->size() >= NumItems);
684     truncate(this->size() - NumItems);
685   }
686 
pop_back_val()687   [[nodiscard]] T pop_back_val() {
688     T Result = ::std::move(this->back());
689     this->pop_back();
690     return Result;
691   }
692 
693   void swap(SmallVectorImpl &RHS);
694 
695   /// Add the specified range to the end of the SmallVector.
696   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
append(ItTy in_start,ItTy in_end)697   void append(ItTy in_start, ItTy in_end) {
698     this->assertSafeToAddRange(in_start, in_end);
699     size_type NumInputs = std::distance(in_start, in_end);
700     this->reserve(this->size() + NumInputs);
701     this->uninitialized_copy(in_start, in_end, this->end());
702     this->set_size(this->size() + NumInputs);
703   }
704 
705   /// Append \p NumInputs copies of \p Elt to the end.
append(size_type NumInputs,ValueParamT Elt)706   void append(size_type NumInputs, ValueParamT Elt) {
707     const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
708     std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
709     this->set_size(this->size() + NumInputs);
710   }
711 
append(std::initializer_list<T> IL)712   void append(std::initializer_list<T> IL) {
713     append(IL.begin(), IL.end());
714   }
715 
append(const SmallVectorImpl & RHS)716   void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }
717 
assign(size_type NumElts,ValueParamT Elt)718   void assign(size_type NumElts, ValueParamT Elt) {
719     // Note that Elt could be an internal reference.
720     if (NumElts > this->capacity()) {
721       this->growAndAssign(NumElts, Elt);
722       return;
723     }
724 
725     // Assign over existing elements.
726     std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
727     if (NumElts > this->size())
728       std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
729     else if (NumElts < this->size())
730       this->destroy_range(this->begin() + NumElts, this->end());
731     this->set_size(NumElts);
732   }
733 
734   // FIXME: Consider assigning over existing elements, rather than clearing &
735   // re-initializing them - for all assign(...) variants.
736 
737   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
assign(ItTy in_start,ItTy in_end)738   void assign(ItTy in_start, ItTy in_end) {
739     this->assertSafeToReferenceAfterClear(in_start, in_end);
740     clear();
741     append(in_start, in_end);
742   }
743 
assign(std::initializer_list<T> IL)744   void assign(std::initializer_list<T> IL) {
745     clear();
746     append(IL);
747   }
748 
assign(const SmallVectorImpl & RHS)749   void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }
750 
erase(const_iterator CI)751   iterator erase(const_iterator CI) {
752     // Just cast away constness because this is a non-const member function.
753     iterator I = const_cast<iterator>(CI);
754 
755     assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.");
756 
757     iterator N = I;
758     // Shift all elts down one.
759     std::move(I+1, this->end(), I);
760     // Drop the last elt.
761     this->pop_back();
762     return(N);
763   }
764 
erase(const_iterator CS,const_iterator CE)765   iterator erase(const_iterator CS, const_iterator CE) {
766     // Just cast away constness because this is a non-const member function.
767     iterator S = const_cast<iterator>(CS);
768     iterator E = const_cast<iterator>(CE);
769 
770     assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.");
771 
772     iterator N = S;
773     // Shift all elts down.
774     iterator I = std::move(E, this->end(), S);
775     // Drop the last elts.
776     this->destroy_range(I, this->end());
777     this->set_size(I - this->begin());
778     return(N);
779   }
780 
781 private:
insert_one_impl(iterator I,ArgType && Elt)782   template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) {
783     // Callers ensure that ArgType is derived from T.
784     static_assert(
785         std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
786                      T>::value,
787         "ArgType must be derived from T!");
788 
789     if (I == this->end()) {  // Important special case for empty vector.
790       this->push_back(::std::forward<ArgType>(Elt));
791       return this->end()-1;
792     }
793 
794     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
795 
796     // Grow if necessary.
797     size_t Index = I - this->begin();
798     std::remove_reference_t<ArgType> *EltPtr =
799         this->reserveForParamAndGetAddress(Elt);
800     I = this->begin() + Index;
801 
802     ::new ((void*) this->end()) T(::std::move(this->back()));
803     // Push everything else over.
804     std::move_backward(I, this->end()-1, this->end());
805     this->set_size(this->size() + 1);
806 
807     // If we just moved the element we're inserting, be sure to update
808     // the reference (never happens if TakesParamByValue).
809     static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
810                   "ArgType must be 'T' when taking by value!");
811     if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
812       ++EltPtr;
813 
814     *I = ::std::forward<ArgType>(*EltPtr);
815     return I;
816   }
817 
818 public:
insert(iterator I,T && Elt)819   iterator insert(iterator I, T &&Elt) {
820     return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
821   }
822 
insert(iterator I,const T & Elt)823   iterator insert(iterator I, const T &Elt) {
824     return insert_one_impl(I, this->forward_value_param(Elt));
825   }
826 
insert(iterator I,size_type NumToInsert,ValueParamT Elt)827   iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
828     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
829     size_t InsertElt = I - this->begin();
830 
831     if (I == this->end()) {  // Important special case for empty vector.
832       append(NumToInsert, Elt);
833       return this->begin()+InsertElt;
834     }
835 
836     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
837 
838     // Ensure there is enough space, and get the (maybe updated) address of
839     // Elt.
840     const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
841 
842     // Uninvalidate the iterator.
843     I = this->begin()+InsertElt;
844 
845     // If there are more elements between the insertion point and the end of the
846     // range than there are being inserted, we can use a simple approach to
847     // insertion.  Since we already reserved space, we know that this won't
848     // reallocate the vector.
849     if (size_t(this->end()-I) >= NumToInsert) {
850       T *OldEnd = this->end();
851       append(std::move_iterator<iterator>(this->end() - NumToInsert),
852              std::move_iterator<iterator>(this->end()));
853 
854       // Copy the existing elements that get replaced.
855       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
856 
857       // If we just moved the element we're inserting, be sure to update
858       // the reference (never happens if TakesParamByValue).
859       if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
860         EltPtr += NumToInsert;
861 
862       std::fill_n(I, NumToInsert, *EltPtr);
863       return I;
864     }
865 
866     // Otherwise, we're inserting more elements than exist already, and we're
867     // not inserting at the end.
868 
869     // Move over the elements that we're about to overwrite.
870     T *OldEnd = this->end();
871     this->set_size(this->size() + NumToInsert);
872     size_t NumOverwritten = OldEnd-I;
873     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
874 
875     // If we just moved the element we're inserting, be sure to update
876     // the reference (never happens if TakesParamByValue).
877     if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
878       EltPtr += NumToInsert;
879 
880     // Replace the overwritten part.
881     std::fill_n(I, NumOverwritten, *EltPtr);
882 
883     // Insert the non-overwritten middle part.
884     std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
885     return I;
886   }
887 
888   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
insert(iterator I,ItTy From,ItTy To)889   iterator insert(iterator I, ItTy From, ItTy To) {
890     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
891     size_t InsertElt = I - this->begin();
892 
893     if (I == this->end()) {  // Important special case for empty vector.
894       append(From, To);
895       return this->begin()+InsertElt;
896     }
897 
898     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
899 
900     // Check that the reserve that follows doesn't invalidate the iterators.
901     this->assertSafeToAddRange(From, To);
902 
903     size_t NumToInsert = std::distance(From, To);
904 
905     // Ensure there is enough space.
906     reserve(this->size() + NumToInsert);
907 
908     // Uninvalidate the iterator.
909     I = this->begin()+InsertElt;
910 
911     // If there are more elements between the insertion point and the end of the
912     // range than there are being inserted, we can use a simple approach to
913     // insertion.  Since we already reserved space, we know that this won't
914     // reallocate the vector.
915     if (size_t(this->end()-I) >= NumToInsert) {
916       T *OldEnd = this->end();
917       append(std::move_iterator<iterator>(this->end() - NumToInsert),
918              std::move_iterator<iterator>(this->end()));
919 
920       // Copy the existing elements that get replaced.
921       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
922 
923       std::copy(From, To, I);
924       return I;
925     }
926 
927     // Otherwise, we're inserting more elements than exist already, and we're
928     // not inserting at the end.
929 
930     // Move over the elements that we're about to overwrite.
931     T *OldEnd = this->end();
932     this->set_size(this->size() + NumToInsert);
933     size_t NumOverwritten = OldEnd-I;
934     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
935 
936     // Replace the overwritten part.
937     for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
938       *J = *From;
939       ++J; ++From;
940     }
941 
942     // Insert the non-overwritten middle part.
943     this->uninitialized_copy(From, To, OldEnd);
944     return I;
945   }
946 
insert(iterator I,std::initializer_list<T> IL)947   void insert(iterator I, std::initializer_list<T> IL) {
948     insert(I, IL.begin(), IL.end());
949   }
950 
emplace_back(ArgTypes &&...Args)951   template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
952     if (LLVM_UNLIKELY(this->size() >= this->capacity()))
953       return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
954 
955     ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
956     this->set_size(this->size() + 1);
957     return this->back();
958   }
959 
960   SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
961 
962   SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
963 
964   bool operator==(const SmallVectorImpl &RHS) const {
965     if (this->size() != RHS.size()) return false;
966     return std::equal(this->begin(), this->end(), RHS.begin());
967   }
968   bool operator!=(const SmallVectorImpl &RHS) const {
969     return !(*this == RHS);
970   }
971 
972   bool operator<(const SmallVectorImpl &RHS) const {
973     return std::lexicographical_compare(this->begin(), this->end(),
974                                         RHS.begin(), RHS.end());
975   }
976   bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; }
977   bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); }
978   bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); }
979 };
980 
981 template <typename T>
swap(SmallVectorImpl<T> & RHS)982 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
983   if (this == &RHS) return;
984 
985   // We can only avoid copying elements if neither vector is small.
986   if (!this->isSmall() && !RHS.isSmall()) {
987     std::swap(this->BeginX, RHS.BeginX);
988     std::swap(this->Size, RHS.Size);
989     std::swap(this->Capacity, RHS.Capacity);
990     return;
991   }
992   this->reserve(RHS.size());
993   RHS.reserve(this->size());
994 
995   // Swap the shared elements.
996   size_t NumShared = this->size();
997   if (NumShared > RHS.size()) NumShared = RHS.size();
998   for (size_type i = 0; i != NumShared; ++i)
999     std::swap((*this)[i], RHS[i]);
1000 
1001   // Copy over the extra elts.
1002   if (this->size() > RHS.size()) {
1003     size_t EltDiff = this->size() - RHS.size();
1004     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
1005     RHS.set_size(RHS.size() + EltDiff);
1006     this->destroy_range(this->begin()+NumShared, this->end());
1007     this->set_size(NumShared);
1008   } else if (RHS.size() > this->size()) {
1009     size_t EltDiff = RHS.size() - this->size();
1010     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
1011     this->set_size(this->size() + EltDiff);
1012     this->destroy_range(RHS.begin()+NumShared, RHS.end());
1013     RHS.set_size(NumShared);
1014   }
1015 }
1016 
1017 template <typename T>
1018 SmallVectorImpl<T> &SmallVectorImpl<T>::
1019   operator=(const SmallVectorImpl<T> &RHS) {
1020   // Avoid self-assignment.
1021   if (this == &RHS) return *this;
1022 
1023   // If we already have sufficient space, assign the common elements, then
1024   // destroy any excess.
1025   size_t RHSSize = RHS.size();
1026   size_t CurSize = this->size();
1027   if (CurSize >= RHSSize) {
1028     // Assign common elements.
1029     iterator NewEnd;
1030     if (RHSSize)
1031       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
1032     else
1033       NewEnd = this->begin();
1034 
1035     // Destroy excess elements.
1036     this->destroy_range(NewEnd, this->end());
1037 
1038     // Trim.
1039     this->set_size(RHSSize);
1040     return *this;
1041   }
1042 
1043   // If we have to grow to have enough elements, destroy the current elements.
1044   // This allows us to avoid copying them during the grow.
1045   // FIXME: don't do this if they're efficiently moveable.
1046   if (this->capacity() < RHSSize) {
1047     // Destroy current elements.
1048     this->clear();
1049     CurSize = 0;
1050     this->grow(RHSSize);
1051   } else if (CurSize) {
1052     // Otherwise, use assignment for the already-constructed elements.
1053     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
1054   }
1055 
1056   // Copy construct the new elements in place.
1057   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
1058                            this->begin()+CurSize);
1059 
1060   // Set end.
1061   this->set_size(RHSSize);
1062   return *this;
1063 }
1064 
1065 template <typename T>
1066 SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
1067   // Avoid self-assignment.
1068   if (this == &RHS) return *this;
1069 
1070   // If the RHS isn't small, clear this vector and then steal its buffer.
1071   if (!RHS.isSmall()) {
1072     this->assignRemote(std::move(RHS));
1073     return *this;
1074   }
1075 
1076   // If we already have sufficient space, assign the common elements, then
1077   // destroy any excess.
1078   size_t RHSSize = RHS.size();
1079   size_t CurSize = this->size();
1080   if (CurSize >= RHSSize) {
1081     // Assign common elements.
1082     iterator NewEnd = this->begin();
1083     if (RHSSize)
1084       NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
1085 
1086     // Destroy excess elements and trim the bounds.
1087     this->destroy_range(NewEnd, this->end());
1088     this->set_size(RHSSize);
1089 
1090     // Clear the RHS.
1091     RHS.clear();
1092 
1093     return *this;
1094   }
1095 
1096   // If we have to grow to have enough elements, destroy the current elements.
1097   // This allows us to avoid copying them during the grow.
1098   // FIXME: this may not actually make any sense if we can efficiently move
1099   // elements.
1100   if (this->capacity() < RHSSize) {
1101     // Destroy current elements.
1102     this->clear();
1103     CurSize = 0;
1104     this->grow(RHSSize);
1105   } else if (CurSize) {
1106     // Otherwise, use assignment for the already-constructed elements.
1107     std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
1108   }
1109 
1110   // Move-construct the new elements in place.
1111   this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
1112                            this->begin()+CurSize);
1113 
1114   // Set end.
1115   this->set_size(RHSSize);
1116 
1117   RHS.clear();
1118   return *this;
1119 }
1120 
1121 /// Storage for the SmallVector elements.  This is specialized for the N=0 case
1122 /// to avoid allocating unnecessary storage.
1123 template <typename T, unsigned N>
1124 struct SmallVectorStorage {
1125   alignas(T) char InlineElts[N * sizeof(T)];
1126 };
1127 
1128 /// We need the storage to be properly aligned even for small-size of 0 so that
1129 /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
1130 /// well-defined.
1131 template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};
1132 
1133 /// Forward declaration of SmallVector so that
1134 /// calculateSmallVectorDefaultInlinedElements can reference
1135 /// `sizeof(SmallVector<T, 0>)`.
1136 template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector;
1137 
1138 /// Helper class for calculating the default number of inline elements for
1139 /// `SmallVector<T>`.
1140 ///
1141 /// This should be migrated to a constexpr function when our minimum
1142 /// compiler support is enough for multi-statement constexpr functions.
1143 template <typename T> struct CalculateSmallVectorDefaultInlinedElements {
1144   // Parameter controlling the default number of inlined elements
1145   // for `SmallVector<T>`.
1146   //
1147   // The default number of inlined elements ensures that
1148   // 1. There is at least one inlined element.
1149   // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
1150   // it contradicts 1.
1151   static constexpr size_t kPreferredSmallVectorSizeof = 64;
1152 
1153   // static_assert that sizeof(T) is not "too big".
1154   //
1155   // Because our policy guarantees at least one inlined element, it is possible
1156   // for an arbitrarily large inlined element to allocate an arbitrarily large
1157   // amount of inline storage. We generally consider it an antipattern for a
1158   // SmallVector to allocate an excessive amount of inline storage, so we want
1159   // to call attention to these cases and make sure that users are making an
1160   // intentional decision if they request a lot of inline storage.
1161   //
1162   // We want this assertion to trigger in pathological cases, but otherwise
1163   // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
1164   // larger than kPreferredSmallVectorSizeof (otherwise,
1165   // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
1166   // pattern seems useful in practice).
1167   //
1168   // One wrinkle is that this assertion is in theory non-portable, since
1169   // sizeof(T) is in general platform-dependent. However, we don't expect this
1170   // to be much of an issue, because most LLVM development happens on 64-bit
1171   // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
1172   // 32-bit hosts, dodging the issue. The reverse situation, where development
1173   // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
1174   // 64-bit host, is expected to be very rare.
1175   static_assert(
1176       sizeof(T) <= 256,
1177       "You are trying to use a default number of inlined elements for "
1178       "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
1179       "explicit number of inlined elements with `SmallVector<T, N>` to make "
1180       "sure you really want that much inline storage.");
1181 
1182   // Discount the size of the header itself when calculating the maximum inline
1183   // bytes.
1184   static constexpr size_t PreferredInlineBytes =
1185       kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
1186   static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
1187   static constexpr size_t value =
1188       NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
1189 };
1190 
1191 /// This is a 'vector' (really, a variable-sized array), optimized
1192 /// for the case when the array is small.  It contains some number of elements
1193 /// in-place, which allows it to avoid heap allocation when the actual number of
1194 /// elements is below that threshold.  This allows normal "small" cases to be
1195 /// fast without losing generality for large inputs.
1196 ///
1197 /// \note
1198 /// In the absence of a well-motivated choice for the number of inlined
1199 /// elements \p N, it is recommended to use \c SmallVector<T> (that is,
1200 /// omitting the \p N). This will choose a default number of inlined elements
1201 /// reasonable for allocation on the stack (for example, trying to keep \c
1202 /// sizeof(SmallVector<T>) around 64 bytes).
1203 ///
1204 /// \warning This does not attempt to be exception safe.
1205 ///
1206 /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
1207 template <typename T,
1208           unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
1209 class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>,
1210                                    SmallVectorStorage<T, N> {
1211 public:
1212   SmallVector() : SmallVectorImpl<T>(N) {}
1213 
1214   ~SmallVector() {
1215     // Destroy the constructed elements in the vector.
1216     this->destroy_range(this->begin(), this->end());
1217   }
1218 
1219   explicit SmallVector(size_t Size)
1220     : SmallVectorImpl<T>(N) {
1221     this->resize(Size);
1222   }
1223 
1224   SmallVector(size_t Size, const T &Value)
1225     : SmallVectorImpl<T>(N) {
1226     this->assign(Size, Value);
1227   }
1228 
1229   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
1230   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
1231     this->append(S, E);
1232   }
1233 
1234   template <typename RangeTy>
1235   explicit SmallVector(const iterator_range<RangeTy> &R)
1236       : SmallVectorImpl<T>(N) {
1237     this->append(R.begin(), R.end());
1238   }
1239 
1240   SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
1241     this->append(IL);
1242   }
1243 
1244   template <typename U,
1245             typename = std::enable_if_t<std::is_convertible<U, T>::value>>
1246   explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) {
1247     this->append(A.begin(), A.end());
1248   }
1249 
1250   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
1251     if (!RHS.empty())
1252       SmallVectorImpl<T>::operator=(RHS);
1253   }
1254 
1255   SmallVector &operator=(const SmallVector &RHS) {
1256     SmallVectorImpl<T>::operator=(RHS);
1257     return *this;
1258   }
1259 
1260   SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
1261     if (!RHS.empty())
1262       SmallVectorImpl<T>::operator=(::std::move(RHS));
1263   }
1264 
1265   SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
1266     if (!RHS.empty())
1267       SmallVectorImpl<T>::operator=(::std::move(RHS));
1268   }
1269 
1270   SmallVector &operator=(SmallVector &&RHS) {
1271     if (N) {
1272       SmallVectorImpl<T>::operator=(::std::move(RHS));
1273       return *this;
1274     }
1275     // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the
1276     // case.
1277     if (this == &RHS)
1278       return *this;
1279     if (RHS.empty()) {
1280       this->destroy_range(this->begin(), this->end());
1281       this->Size = 0;
1282     } else {
1283       this->assignRemote(std::move(RHS));
1284     }
1285     return *this;
1286   }
1287 
1288   SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
1289     SmallVectorImpl<T>::operator=(::std::move(RHS));
1290     return *this;
1291   }
1292 
1293   SmallVector &operator=(std::initializer_list<T> IL) {
1294     this->assign(IL);
1295     return *this;
1296   }
1297 };
1298 
1299 template <typename T, unsigned N>
1300 inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
1301   return X.capacity_in_bytes();
1302 }
1303 
1304 template <typename RangeType>
1305 using ValueTypeFromRangeType =
1306     std::remove_const_t<std::remove_reference_t<decltype(*std::begin(
1307         std::declval<RangeType &>()))>>;
1308 
1309 /// Given a range of type R, iterate the entire range and return a
1310 /// SmallVector with elements of the vector.  This is useful, for example,
1311 /// when you want to iterate a range and then sort the results.
1312 template <unsigned Size, typename R>
1313 SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) {
1314   return {std::begin(Range), std::end(Range)};
1315 }
1316 template <typename R>
1317 SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) {
1318   return {std::begin(Range), std::end(Range)};
1319 }
1320 
1321 template <typename Out, unsigned Size, typename R>
1322 SmallVector<Out, Size> to_vector_of(R &&Range) {
1323   return {std::begin(Range), std::end(Range)};
1324 }
1325 
1326 template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) {
1327   return {std::begin(Range), std::end(Range)};
1328 }
1329 
1330 // Explicit instantiations
1331 extern template class llvm::SmallVectorBase<uint32_t>;
1332 #if SIZE_MAX > UINT32_MAX
1333 extern template class llvm::SmallVectorBase<uint64_t>;
1334 #endif
1335 
1336 } // end namespace llvm
1337 
1338 namespace std {
1339 
1340   /// Implement std::swap in terms of SmallVector swap.
1341   template<typename T>
1342   inline void
1343   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
1344     LHS.swap(RHS);
1345   }
1346 
1347   /// Implement std::swap in terms of SmallVector swap.
1348   template<typename T, unsigned N>
1349   inline void
1350   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
1351     LHS.swap(RHS);
1352   }
1353 
1354 } // end namespace std
1355 
1356 #endif // LLVM_ADT_SMALLVECTOR_H
1357