1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the SmallVector class.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ADT_SMALLVECTOR_H
15 #define LLVM_ADT_SMALLVECTOR_H
16
17 #include "llvm/Support/Compiler.h"
18 #include "llvm/Support/type_traits.h"
19 #include <algorithm>
20 #include <cassert>
21 #include <cstddef>
22 #include <cstdint>
23 #include <cstdlib>
24 #include <cstring>
25 #include <functional>
26 #include <initializer_list>
27 #include <iterator>
28 #include <limits>
29 #include <memory>
30 #include <new>
31 #include <type_traits>
32 #include <utility>
33
34 namespace llvm {
35
36 template <typename T> class ArrayRef;
37
38 template <typename IteratorT> class iterator_range;
39
40 template <class Iterator>
41 using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible<
42 typename std::iterator_traits<Iterator>::iterator_category,
43 std::input_iterator_tag>::value>;
44
45 /// This is all the stuff common to all SmallVectors.
46 ///
47 /// The template parameter specifies the type which should be used to hold the
48 /// Size and Capacity of the SmallVector, so it can be adjusted.
49 /// Using 32 bit size is desirable to shrink the size of the SmallVector.
50 /// Using 64 bit size is desirable for cases like SmallVector<char>, where a
51 /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
52 /// buffering bitcode output - which can exceed 4GB.
53 template <class Size_T> class SmallVectorBase {
54 protected:
55 void *BeginX;
56 Size_T Size = 0, Capacity;
57
58 /// The maximum value of the Size_T used.
SizeTypeMax()59 static constexpr size_t SizeTypeMax() {
60 return std::numeric_limits<Size_T>::max();
61 }
62
63 SmallVectorBase() = delete;
SmallVectorBase(void * FirstEl,size_t TotalCapacity)64 SmallVectorBase(void *FirstEl, size_t TotalCapacity)
65 : BeginX(FirstEl), Capacity(static_cast<Size_T>(TotalCapacity)) {}
66
67 /// This is a helper for \a grow() that's out of line to reduce code
68 /// duplication. This function will report a fatal error if it can't grow at
69 /// least to \p MinSize.
70 void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize,
71 size_t &NewCapacity);
72
73 /// This is an implementation of the grow() method which only works
74 /// on POD-like data types and is out of line to reduce code duplication.
75 /// This function will report a fatal error if it cannot increase capacity.
76 void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
77
78 /// If vector was first created with capacity 0, getFirstEl() points to the
79 /// memory right after, an area unallocated. If a subsequent allocation,
80 /// that grows the vector, happens to return the same pointer as getFirstEl(),
81 /// get a new allocation, otherwise isSmall() will falsely return that no
82 /// allocation was done (true) and the memory will not be freed in the
83 /// destructor. If a VSize is given (vector size), also copy that many
84 /// elements to the new allocation - used if realloca fails to increase
85 /// space, and happens to allocate precisely at BeginX.
86 /// This is unlikely to be called often, but resolves a memory leak when the
87 /// situation does occur.
88 void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity,
89 size_t VSize = 0);
90
91 public:
size()92 size_t size() const { return Size; }
capacity()93 size_t capacity() const { return Capacity; }
94
empty()95 [[nodiscard]] bool empty() const { return !Size; }
96
97 protected:
98 /// Set the array size to \p N, which the current array must have enough
99 /// capacity for.
100 ///
101 /// This does not construct or destroy any elements in the vector.
set_size(size_t N)102 void set_size(size_t N) {
103 assert(N <= capacity()); // implies no overflow in assignment
104 Size = static_cast<Size_T>(N);
105 }
106
107 /// Set the array data pointer to \p Begin and capacity to \p N.
108 ///
109 /// This does not construct or destroy any elements in the vector.
110 // This does not clean up any existing allocation.
set_allocation_range(void * Begin,size_t N)111 void set_allocation_range(void *Begin, size_t N) {
112 assert(N <= SizeTypeMax());
113 BeginX = Begin;
114 Capacity = static_cast<Size_T>(N);
115 }
116 };
117
118 template <class T>
119 using SmallVectorSizeType =
120 std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
121 uint32_t>;
122
123 /// Figure out the offset of the first element.
124 template <class T, typename = void> struct SmallVectorAlignmentAndSize {
125 alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
126 SmallVectorBase<SmallVectorSizeType<T>>)];
127 alignas(T) char FirstEl[sizeof(T)];
128 };
129
130 /// This is the part of SmallVectorTemplateBase which does not depend on whether
131 /// the type T is a POD. The extra dummy template argument is used by ArrayRef
132 /// to avoid unnecessarily requiring T to be complete.
133 template <typename T, typename = void>
134 class SmallVectorTemplateCommon
135 : public SmallVectorBase<SmallVectorSizeType<T>> {
136 using Base = SmallVectorBase<SmallVectorSizeType<T>>;
137
138 protected:
139 /// Find the address of the first element. For this pointer math to be valid
140 /// with small-size of 0 for T with lots of alignment, it's important that
141 /// SmallVectorStorage is properly-aligned even for small-size of 0.
getFirstEl()142 void *getFirstEl() const {
143 return const_cast<void *>(reinterpret_cast<const void *>(
144 reinterpret_cast<const char *>(this) +
145 offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
146 }
147 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
148
SmallVectorTemplateCommon(size_t Size)149 SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
150
grow_pod(size_t MinSize,size_t TSize)151 void grow_pod(size_t MinSize, size_t TSize) {
152 Base::grow_pod(getFirstEl(), MinSize, TSize);
153 }
154
155 /// Return true if this is a smallvector which has not had dynamic
156 /// memory allocated for it.
isSmall()157 bool isSmall() const { return this->BeginX == getFirstEl(); }
158
159 /// Put this vector in a state of being small.
resetToSmall()160 void resetToSmall() {
161 this->BeginX = getFirstEl();
162 this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
163 }
164
165 /// Return true if V is an internal reference to the given range.
isReferenceToRange(const void * V,const void * First,const void * Last)166 bool isReferenceToRange(const void *V, const void *First, const void *Last) const {
167 // Use std::less to avoid UB.
168 std::less<> LessThan;
169 return !LessThan(V, First) && LessThan(V, Last);
170 }
171
172 /// Return true if V is an internal reference to this vector.
isReferenceToStorage(const void * V)173 bool isReferenceToStorage(const void *V) const {
174 return isReferenceToRange(V, this->begin(), this->end());
175 }
176
177 /// Return true if First and Last form a valid (possibly empty) range in this
178 /// vector's storage.
isRangeInStorage(const void * First,const void * Last)179 bool isRangeInStorage(const void *First, const void *Last) const {
180 // Use std::less to avoid UB.
181 std::less<> LessThan;
182 return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
183 !LessThan(this->end(), Last);
184 }
185
186 /// Return true unless Elt will be invalidated by resizing the vector to
187 /// NewSize.
isSafeToReferenceAfterResize(const void * Elt,size_t NewSize)188 bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
189 // Past the end.
190 if (LLVM_LIKELY(!isReferenceToStorage(Elt)))
191 return true;
192
193 // Return false if Elt will be destroyed by shrinking.
194 if (NewSize <= this->size())
195 return Elt < this->begin() + NewSize;
196
197 // Return false if we need to grow.
198 return NewSize <= this->capacity();
199 }
200
201 /// Check whether Elt will be invalidated by resizing the vector to NewSize.
assertSafeToReferenceAfterResize(const void * Elt,size_t NewSize)202 void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
203 assert(isSafeToReferenceAfterResize(Elt, NewSize) &&
204 "Attempting to reference an element of the vector in an operation "
205 "that invalidates it");
206 }
207
208 /// Check whether Elt will be invalidated by increasing the size of the
209 /// vector by N.
210 void assertSafeToAdd(const void *Elt, size_t N = 1) {
211 this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
212 }
213
214 /// Check whether any part of the range will be invalidated by clearing.
assertSafeToReferenceAfterClear(const T * From,const T * To)215 void assertSafeToReferenceAfterClear(const T *From, const T *To) {
216 if (From == To)
217 return;
218 this->assertSafeToReferenceAfterResize(From, 0);
219 this->assertSafeToReferenceAfterResize(To - 1, 0);
220 }
221 template <
222 class ItTy,
223 std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
224 bool> = false>
assertSafeToReferenceAfterClear(ItTy,ItTy)225 void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
226
227 /// Check whether any part of the range will be invalidated by growing.
assertSafeToAddRange(const T * From,const T * To)228 void assertSafeToAddRange(const T *From, const T *To) {
229 if (From == To)
230 return;
231 this->assertSafeToAdd(From, To - From);
232 this->assertSafeToAdd(To - 1, To - From);
233 }
234 template <
235 class ItTy,
236 std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
237 bool> = false>
assertSafeToAddRange(ItTy,ItTy)238 void assertSafeToAddRange(ItTy, ItTy) {}
239
240 /// Reserve enough space to add one element, and return the updated element
241 /// pointer in case it was a reference to the storage.
242 template <class U>
reserveForParamAndGetAddressImpl(U * This,const T & Elt,size_t N)243 static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt,
244 size_t N) {
245 size_t NewSize = This->size() + N;
246 if (LLVM_LIKELY(NewSize <= This->capacity()))
247 return &Elt;
248
249 bool ReferencesStorage = false;
250 int64_t Index = -1;
251 if (!U::TakesParamByValue) {
252 if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) {
253 ReferencesStorage = true;
254 Index = &Elt - This->begin();
255 }
256 }
257 This->grow(NewSize);
258 return ReferencesStorage ? This->begin() + Index : &Elt;
259 }
260
261 public:
262 using size_type = size_t;
263 using difference_type = ptrdiff_t;
264 using value_type = T;
265 using iterator = T *;
266 using const_iterator = const T *;
267
268 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
269 using reverse_iterator = std::reverse_iterator<iterator>;
270
271 using reference = T &;
272 using const_reference = const T &;
273 using pointer = T *;
274 using const_pointer = const T *;
275
276 using Base::capacity;
277 using Base::empty;
278 using Base::size;
279
280 // forward iterator creation methods.
begin()281 iterator begin() { return (iterator)this->BeginX; }
begin()282 const_iterator begin() const { return (const_iterator)this->BeginX; }
end()283 iterator end() { return begin() + size(); }
end()284 const_iterator end() const { return begin() + size(); }
285
286 // reverse iterator creation methods.
rbegin()287 reverse_iterator rbegin() { return reverse_iterator(end()); }
rbegin()288 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
rend()289 reverse_iterator rend() { return reverse_iterator(begin()); }
rend()290 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
291
size_in_bytes()292 size_type size_in_bytes() const { return size() * sizeof(T); }
max_size()293 size_type max_size() const {
294 return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
295 }
296
capacity_in_bytes()297 size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
298
299 /// Return a pointer to the vector's buffer, even if empty().
data()300 pointer data() { return pointer(begin()); }
301 /// Return a pointer to the vector's buffer, even if empty().
data()302 const_pointer data() const { return const_pointer(begin()); }
303
304 reference operator[](size_type idx) {
305 assert(idx < size());
306 return begin()[idx];
307 }
308 const_reference operator[](size_type idx) const {
309 assert(idx < size());
310 return begin()[idx];
311 }
312
front()313 reference front() {
314 assert(!empty());
315 return begin()[0];
316 }
front()317 const_reference front() const {
318 assert(!empty());
319 return begin()[0];
320 }
321
back()322 reference back() {
323 assert(!empty());
324 return end()[-1];
325 }
back()326 const_reference back() const {
327 assert(!empty());
328 return end()[-1];
329 }
330 };
331
332 /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
333 /// method implementations that are designed to work with non-trivial T's.
334 ///
335 /// We approximate is_trivially_copyable with trivial move/copy construction and
336 /// trivial destruction. While the standard doesn't specify that you're allowed
337 /// copy these types with memcpy, there is no way for the type to observe this.
338 /// This catches the important case of std::pair<POD, POD>, which is not
339 /// trivially assignable.
340 template <typename T, bool = (std::is_trivially_copy_constructible<T>::value) &&
341 (std::is_trivially_move_constructible<T>::value) &&
342 std::is_trivially_destructible<T>::value>
343 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
344 friend class SmallVectorTemplateCommon<T>;
345
346 protected:
347 static constexpr bool TakesParamByValue = false;
348 using ValueParamT = const T &;
349
SmallVectorTemplateBase(size_t Size)350 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
351
destroy_range(T * S,T * E)352 static void destroy_range(T *S, T *E) {
353 while (S != E) {
354 --E;
355 E->~T();
356 }
357 }
358
359 /// Move the range [I, E) into the uninitialized memory starting with "Dest",
360 /// constructing elements as needed.
361 template<typename It1, typename It2>
uninitialized_move(It1 I,It1 E,It2 Dest)362 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
363 std::uninitialized_move(I, E, Dest);
364 }
365
366 /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
367 /// constructing elements as needed.
368 template<typename It1, typename It2>
uninitialized_copy(It1 I,It1 E,It2 Dest)369 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
370 std::uninitialized_copy(I, E, Dest);
371 }
372
373 /// Grow the allocated memory (without initializing new elements), doubling
374 /// the size of the allocated memory. Guarantees space for at least one more
375 /// element, or MinSize more elements if specified.
376 void grow(size_t MinSize = 0);
377
378 /// Create a new allocation big enough for \p MinSize and pass back its size
379 /// in \p NewCapacity. This is the first section of \a grow().
380 T *mallocForGrow(size_t MinSize, size_t &NewCapacity);
381
382 /// Move existing elements over to the new allocation \p NewElts, the middle
383 /// section of \a grow().
384 void moveElementsForGrow(T *NewElts);
385
386 /// Transfer ownership of the allocation, finishing up \a grow().
387 void takeAllocationForGrow(T *NewElts, size_t NewCapacity);
388
389 /// Reserve enough space to add one element, and return the updated element
390 /// pointer in case it was a reference to the storage.
391 const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
392 return this->reserveForParamAndGetAddressImpl(this, Elt, N);
393 }
394
395 /// Reserve enough space to add one element, and return the updated element
396 /// pointer in case it was a reference to the storage.
397 T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
398 return const_cast<T *>(
399 this->reserveForParamAndGetAddressImpl(this, Elt, N));
400 }
401
forward_value_param(T && V)402 static T &&forward_value_param(T &&V) { return std::move(V); }
forward_value_param(const T & V)403 static const T &forward_value_param(const T &V) { return V; }
404
growAndAssign(size_t NumElts,const T & Elt)405 void growAndAssign(size_t NumElts, const T &Elt) {
406 // Grow manually in case Elt is an internal reference.
407 size_t NewCapacity;
408 T *NewElts = mallocForGrow(NumElts, NewCapacity);
409 std::uninitialized_fill_n(NewElts, NumElts, Elt);
410 this->destroy_range(this->begin(), this->end());
411 takeAllocationForGrow(NewElts, NewCapacity);
412 this->set_size(NumElts);
413 }
414
growAndEmplaceBack(ArgTypes &&...Args)415 template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
416 // Grow manually in case one of Args is an internal reference.
417 size_t NewCapacity;
418 T *NewElts = mallocForGrow(0, NewCapacity);
419 ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
420 moveElementsForGrow(NewElts);
421 takeAllocationForGrow(NewElts, NewCapacity);
422 this->set_size(this->size() + 1);
423 return this->back();
424 }
425
426 public:
push_back(const T & Elt)427 void push_back(const T &Elt) {
428 const T *EltPtr = reserveForParamAndGetAddress(Elt);
429 ::new ((void *)this->end()) T(*EltPtr);
430 this->set_size(this->size() + 1);
431 }
432
push_back(T && Elt)433 void push_back(T &&Elt) {
434 T *EltPtr = reserveForParamAndGetAddress(Elt);
435 ::new ((void *)this->end()) T(::std::move(*EltPtr));
436 this->set_size(this->size() + 1);
437 }
438
pop_back()439 void pop_back() {
440 this->set_size(this->size() - 1);
441 this->end()->~T();
442 }
443 };
444
445 // Define this out-of-line to dissuade the C++ compiler from inlining it.
446 template <typename T, bool TriviallyCopyable>
grow(size_t MinSize)447 void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
448 size_t NewCapacity;
449 T *NewElts = mallocForGrow(MinSize, NewCapacity);
450 moveElementsForGrow(NewElts);
451 takeAllocationForGrow(NewElts, NewCapacity);
452 }
453
454 template <typename T, bool TriviallyCopyable>
mallocForGrow(size_t MinSize,size_t & NewCapacity)455 T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow(
456 size_t MinSize, size_t &NewCapacity) {
457 return static_cast<T *>(
458 SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
459 this->getFirstEl(), MinSize, sizeof(T), NewCapacity));
460 }
461
462 // Define this out-of-line to dissuade the C++ compiler from inlining it.
463 template <typename T, bool TriviallyCopyable>
moveElementsForGrow(T * NewElts)464 void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
465 T *NewElts) {
466 // Move the elements over.
467 this->uninitialized_move(this->begin(), this->end(), NewElts);
468
469 // Destroy the original elements.
470 destroy_range(this->begin(), this->end());
471 }
472
473 // Define this out-of-line to dissuade the C++ compiler from inlining it.
474 template <typename T, bool TriviallyCopyable>
takeAllocationForGrow(T * NewElts,size_t NewCapacity)475 void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
476 T *NewElts, size_t NewCapacity) {
477 // If this wasn't grown from the inline copy, deallocate the old space.
478 if (!this->isSmall())
479 free(this->begin());
480
481 this->set_allocation_range(NewElts, NewCapacity);
482 }
483
484 /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
485 /// method implementations that are designed to work with trivially copyable
486 /// T's. This allows using memcpy in place of copy/move construction and
487 /// skipping destruction.
488 template <typename T>
489 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
490 friend class SmallVectorTemplateCommon<T>;
491
492 protected:
493 /// True if it's cheap enough to take parameters by value. Doing so avoids
494 /// overhead related to mitigations for reference invalidation.
495 static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
496
497 /// Either const T& or T, depending on whether it's cheap enough to take
498 /// parameters by value.
499 using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>;
500
SmallVectorTemplateBase(size_t Size)501 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
502
503 // No need to do a destroy loop for POD's.
destroy_range(T *,T *)504 static void destroy_range(T *, T *) {}
505
506 /// Move the range [I, E) onto the uninitialized memory
507 /// starting with "Dest", constructing elements into it as needed.
508 template<typename It1, typename It2>
uninitialized_move(It1 I,It1 E,It2 Dest)509 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
510 // Just do a copy.
511 uninitialized_copy(I, E, Dest);
512 }
513
514 /// Copy the range [I, E) onto the uninitialized memory
515 /// starting with "Dest", constructing elements into it as needed.
516 template<typename It1, typename It2>
uninitialized_copy(It1 I,It1 E,It2 Dest)517 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
518 // Arbitrary iterator types; just use the basic implementation.
519 std::uninitialized_copy(I, E, Dest);
520 }
521
522 /// Copy the range [I, E) onto the uninitialized memory
523 /// starting with "Dest", constructing elements into it as needed.
524 template <typename T1, typename T2>
525 static void uninitialized_copy(
526 T1 *I, T1 *E, T2 *Dest,
527 std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * =
528 nullptr) {
529 // Use memcpy for PODs iterated by pointers (which includes SmallVector
530 // iterators): std::uninitialized_copy optimizes to memmove, but we can
531 // use memcpy here. Note that I and E are iterators and thus might be
532 // invalid for memcpy if they are equal.
533 if (I != E)
534 memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
535 }
536
537 /// Double the size of the allocated memory, guaranteeing space for at
538 /// least one more element or MinSize if specified.
539 void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
540
541 /// Reserve enough space to add one element, and return the updated element
542 /// pointer in case it was a reference to the storage.
543 const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
544 return this->reserveForParamAndGetAddressImpl(this, Elt, N);
545 }
546
547 /// Reserve enough space to add one element, and return the updated element
548 /// pointer in case it was a reference to the storage.
549 T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
550 return const_cast<T *>(
551 this->reserveForParamAndGetAddressImpl(this, Elt, N));
552 }
553
554 /// Copy \p V or return a reference, depending on \a ValueParamT.
forward_value_param(ValueParamT V)555 static ValueParamT forward_value_param(ValueParamT V) { return V; }
556
growAndAssign(size_t NumElts,T Elt)557 void growAndAssign(size_t NumElts, T Elt) {
558 // Elt has been copied in case it's an internal reference, side-stepping
559 // reference invalidation problems without losing the realloc optimization.
560 this->set_size(0);
561 this->grow(NumElts);
562 std::uninitialized_fill_n(this->begin(), NumElts, Elt);
563 this->set_size(NumElts);
564 }
565
growAndEmplaceBack(ArgTypes &&...Args)566 template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
567 // Use push_back with a copy in case Args has an internal reference,
568 // side-stepping reference invalidation problems without losing the realloc
569 // optimization.
570 push_back(T(std::forward<ArgTypes>(Args)...));
571 return this->back();
572 }
573
574 public:
push_back(ValueParamT Elt)575 void push_back(ValueParamT Elt) {
576 const T *EltPtr = reserveForParamAndGetAddress(Elt);
577 memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
578 this->set_size(this->size() + 1);
579 }
580
pop_back()581 void pop_back() { this->set_size(this->size() - 1); }
582 };
583
584 /// This class consists of common code factored out of the SmallVector class to
585 /// reduce code duplication based on the SmallVector 'N' template parameter.
586 template <typename T>
587 class SmallVectorImpl : public SmallVectorTemplateBase<T> {
588 using SuperClass = SmallVectorTemplateBase<T>;
589
590 public:
591 using iterator = typename SuperClass::iterator;
592 using const_iterator = typename SuperClass::const_iterator;
593 using reference = typename SuperClass::reference;
594 using size_type = typename SuperClass::size_type;
595
596 protected:
597 using SmallVectorTemplateBase<T>::TakesParamByValue;
598 using ValueParamT = typename SuperClass::ValueParamT;
599
600 // Default ctor - Initialize to empty.
SmallVectorImpl(unsigned N)601 explicit SmallVectorImpl(unsigned N)
602 : SmallVectorTemplateBase<T>(N) {}
603
assignRemote(SmallVectorImpl && RHS)604 void assignRemote(SmallVectorImpl &&RHS) {
605 this->destroy_range(this->begin(), this->end());
606 if (!this->isSmall())
607 free(this->begin());
608 this->BeginX = RHS.BeginX;
609 this->Size = RHS.Size;
610 this->Capacity = RHS.Capacity;
611 RHS.resetToSmall();
612 }
613
~SmallVectorImpl()614 ~SmallVectorImpl() {
615 // Subclass has already destructed this vector's elements.
616 // If this wasn't grown from the inline copy, deallocate the old space.
617 if (!this->isSmall())
618 free(this->begin());
619 }
620
621 public:
622 SmallVectorImpl(const SmallVectorImpl &) = delete;
623
clear()624 void clear() {
625 this->destroy_range(this->begin(), this->end());
626 this->Size = 0;
627 }
628
629 private:
630 // Make set_size() private to avoid misuse in subclasses.
631 using SuperClass::set_size;
632
resizeImpl(size_type N)633 template <bool ForOverwrite> void resizeImpl(size_type N) {
634 if (N == this->size())
635 return;
636
637 if (N < this->size()) {
638 this->truncate(N);
639 return;
640 }
641
642 this->reserve(N);
643 for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
644 if (ForOverwrite)
645 new (&*I) T;
646 else
647 new (&*I) T();
648 this->set_size(N);
649 }
650
651 public:
resize(size_type N)652 void resize(size_type N) { resizeImpl<false>(N); }
653
654 /// Like resize, but \ref T is POD, the new values won't be initialized.
resize_for_overwrite(size_type N)655 void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
656
657 /// Like resize, but requires that \p N is less than \a size().
truncate(size_type N)658 void truncate(size_type N) {
659 assert(this->size() >= N && "Cannot increase size with truncate");
660 this->destroy_range(this->begin() + N, this->end());
661 this->set_size(N);
662 }
663
resize(size_type N,ValueParamT NV)664 void resize(size_type N, ValueParamT NV) {
665 if (N == this->size())
666 return;
667
668 if (N < this->size()) {
669 this->truncate(N);
670 return;
671 }
672
673 // N > this->size(). Defer to append.
674 this->append(N - this->size(), NV);
675 }
676
reserve(size_type N)677 void reserve(size_type N) {
678 if (this->capacity() < N)
679 this->grow(N);
680 }
681
pop_back_n(size_type NumItems)682 void pop_back_n(size_type NumItems) {
683 assert(this->size() >= NumItems);
684 truncate(this->size() - NumItems);
685 }
686
pop_back_val()687 [[nodiscard]] T pop_back_val() {
688 T Result = ::std::move(this->back());
689 this->pop_back();
690 return Result;
691 }
692
693 void swap(SmallVectorImpl &RHS);
694
695 /// Add the specified range to the end of the SmallVector.
696 template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
append(ItTy in_start,ItTy in_end)697 void append(ItTy in_start, ItTy in_end) {
698 this->assertSafeToAddRange(in_start, in_end);
699 size_type NumInputs = std::distance(in_start, in_end);
700 this->reserve(this->size() + NumInputs);
701 this->uninitialized_copy(in_start, in_end, this->end());
702 this->set_size(this->size() + NumInputs);
703 }
704
705 /// Append \p NumInputs copies of \p Elt to the end.
append(size_type NumInputs,ValueParamT Elt)706 void append(size_type NumInputs, ValueParamT Elt) {
707 const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
708 std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
709 this->set_size(this->size() + NumInputs);
710 }
711
append(std::initializer_list<T> IL)712 void append(std::initializer_list<T> IL) {
713 append(IL.begin(), IL.end());
714 }
715
append(const SmallVectorImpl & RHS)716 void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }
717
assign(size_type NumElts,ValueParamT Elt)718 void assign(size_type NumElts, ValueParamT Elt) {
719 // Note that Elt could be an internal reference.
720 if (NumElts > this->capacity()) {
721 this->growAndAssign(NumElts, Elt);
722 return;
723 }
724
725 // Assign over existing elements.
726 std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
727 if (NumElts > this->size())
728 std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
729 else if (NumElts < this->size())
730 this->destroy_range(this->begin() + NumElts, this->end());
731 this->set_size(NumElts);
732 }
733
734 // FIXME: Consider assigning over existing elements, rather than clearing &
735 // re-initializing them - for all assign(...) variants.
736
737 template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
assign(ItTy in_start,ItTy in_end)738 void assign(ItTy in_start, ItTy in_end) {
739 this->assertSafeToReferenceAfterClear(in_start, in_end);
740 clear();
741 append(in_start, in_end);
742 }
743
assign(std::initializer_list<T> IL)744 void assign(std::initializer_list<T> IL) {
745 clear();
746 append(IL);
747 }
748
assign(const SmallVectorImpl & RHS)749 void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }
750
erase(const_iterator CI)751 iterator erase(const_iterator CI) {
752 // Just cast away constness because this is a non-const member function.
753 iterator I = const_cast<iterator>(CI);
754
755 assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.");
756
757 iterator N = I;
758 // Shift all elts down one.
759 std::move(I+1, this->end(), I);
760 // Drop the last elt.
761 this->pop_back();
762 return(N);
763 }
764
erase(const_iterator CS,const_iterator CE)765 iterator erase(const_iterator CS, const_iterator CE) {
766 // Just cast away constness because this is a non-const member function.
767 iterator S = const_cast<iterator>(CS);
768 iterator E = const_cast<iterator>(CE);
769
770 assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.");
771
772 iterator N = S;
773 // Shift all elts down.
774 iterator I = std::move(E, this->end(), S);
775 // Drop the last elts.
776 this->destroy_range(I, this->end());
777 this->set_size(I - this->begin());
778 return(N);
779 }
780
781 private:
insert_one_impl(iterator I,ArgType && Elt)782 template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) {
783 // Callers ensure that ArgType is derived from T.
784 static_assert(
785 std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
786 T>::value,
787 "ArgType must be derived from T!");
788
789 if (I == this->end()) { // Important special case for empty vector.
790 this->push_back(::std::forward<ArgType>(Elt));
791 return this->end()-1;
792 }
793
794 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
795
796 // Grow if necessary.
797 size_t Index = I - this->begin();
798 std::remove_reference_t<ArgType> *EltPtr =
799 this->reserveForParamAndGetAddress(Elt);
800 I = this->begin() + Index;
801
802 ::new ((void*) this->end()) T(::std::move(this->back()));
803 // Push everything else over.
804 std::move_backward(I, this->end()-1, this->end());
805 this->set_size(this->size() + 1);
806
807 // If we just moved the element we're inserting, be sure to update
808 // the reference (never happens if TakesParamByValue).
809 static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
810 "ArgType must be 'T' when taking by value!");
811 if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
812 ++EltPtr;
813
814 *I = ::std::forward<ArgType>(*EltPtr);
815 return I;
816 }
817
818 public:
insert(iterator I,T && Elt)819 iterator insert(iterator I, T &&Elt) {
820 return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
821 }
822
insert(iterator I,const T & Elt)823 iterator insert(iterator I, const T &Elt) {
824 return insert_one_impl(I, this->forward_value_param(Elt));
825 }
826
insert(iterator I,size_type NumToInsert,ValueParamT Elt)827 iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
828 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
829 size_t InsertElt = I - this->begin();
830
831 if (I == this->end()) { // Important special case for empty vector.
832 append(NumToInsert, Elt);
833 return this->begin()+InsertElt;
834 }
835
836 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
837
838 // Ensure there is enough space, and get the (maybe updated) address of
839 // Elt.
840 const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
841
842 // Uninvalidate the iterator.
843 I = this->begin()+InsertElt;
844
845 // If there are more elements between the insertion point and the end of the
846 // range than there are being inserted, we can use a simple approach to
847 // insertion. Since we already reserved space, we know that this won't
848 // reallocate the vector.
849 if (size_t(this->end()-I) >= NumToInsert) {
850 T *OldEnd = this->end();
851 append(std::move_iterator<iterator>(this->end() - NumToInsert),
852 std::move_iterator<iterator>(this->end()));
853
854 // Copy the existing elements that get replaced.
855 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
856
857 // If we just moved the element we're inserting, be sure to update
858 // the reference (never happens if TakesParamByValue).
859 if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
860 EltPtr += NumToInsert;
861
862 std::fill_n(I, NumToInsert, *EltPtr);
863 return I;
864 }
865
866 // Otherwise, we're inserting more elements than exist already, and we're
867 // not inserting at the end.
868
869 // Move over the elements that we're about to overwrite.
870 T *OldEnd = this->end();
871 this->set_size(this->size() + NumToInsert);
872 size_t NumOverwritten = OldEnd-I;
873 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
874
875 // If we just moved the element we're inserting, be sure to update
876 // the reference (never happens if TakesParamByValue).
877 if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
878 EltPtr += NumToInsert;
879
880 // Replace the overwritten part.
881 std::fill_n(I, NumOverwritten, *EltPtr);
882
883 // Insert the non-overwritten middle part.
884 std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
885 return I;
886 }
887
888 template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
insert(iterator I,ItTy From,ItTy To)889 iterator insert(iterator I, ItTy From, ItTy To) {
890 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
891 size_t InsertElt = I - this->begin();
892
893 if (I == this->end()) { // Important special case for empty vector.
894 append(From, To);
895 return this->begin()+InsertElt;
896 }
897
898 assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
899
900 // Check that the reserve that follows doesn't invalidate the iterators.
901 this->assertSafeToAddRange(From, To);
902
903 size_t NumToInsert = std::distance(From, To);
904
905 // Ensure there is enough space.
906 reserve(this->size() + NumToInsert);
907
908 // Uninvalidate the iterator.
909 I = this->begin()+InsertElt;
910
911 // If there are more elements between the insertion point and the end of the
912 // range than there are being inserted, we can use a simple approach to
913 // insertion. Since we already reserved space, we know that this won't
914 // reallocate the vector.
915 if (size_t(this->end()-I) >= NumToInsert) {
916 T *OldEnd = this->end();
917 append(std::move_iterator<iterator>(this->end() - NumToInsert),
918 std::move_iterator<iterator>(this->end()));
919
920 // Copy the existing elements that get replaced.
921 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
922
923 std::copy(From, To, I);
924 return I;
925 }
926
927 // Otherwise, we're inserting more elements than exist already, and we're
928 // not inserting at the end.
929
930 // Move over the elements that we're about to overwrite.
931 T *OldEnd = this->end();
932 this->set_size(this->size() + NumToInsert);
933 size_t NumOverwritten = OldEnd-I;
934 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
935
936 // Replace the overwritten part.
937 for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
938 *J = *From;
939 ++J; ++From;
940 }
941
942 // Insert the non-overwritten middle part.
943 this->uninitialized_copy(From, To, OldEnd);
944 return I;
945 }
946
insert(iterator I,std::initializer_list<T> IL)947 void insert(iterator I, std::initializer_list<T> IL) {
948 insert(I, IL.begin(), IL.end());
949 }
950
emplace_back(ArgTypes &&...Args)951 template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
952 if (LLVM_UNLIKELY(this->size() >= this->capacity()))
953 return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
954
955 ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
956 this->set_size(this->size() + 1);
957 return this->back();
958 }
959
960 SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
961
962 SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
963
964 bool operator==(const SmallVectorImpl &RHS) const {
965 if (this->size() != RHS.size()) return false;
966 return std::equal(this->begin(), this->end(), RHS.begin());
967 }
968 bool operator!=(const SmallVectorImpl &RHS) const {
969 return !(*this == RHS);
970 }
971
972 bool operator<(const SmallVectorImpl &RHS) const {
973 return std::lexicographical_compare(this->begin(), this->end(),
974 RHS.begin(), RHS.end());
975 }
976 bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; }
977 bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); }
978 bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); }
979 };
980
981 template <typename T>
swap(SmallVectorImpl<T> & RHS)982 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
983 if (this == &RHS) return;
984
985 // We can only avoid copying elements if neither vector is small.
986 if (!this->isSmall() && !RHS.isSmall()) {
987 std::swap(this->BeginX, RHS.BeginX);
988 std::swap(this->Size, RHS.Size);
989 std::swap(this->Capacity, RHS.Capacity);
990 return;
991 }
992 this->reserve(RHS.size());
993 RHS.reserve(this->size());
994
995 // Swap the shared elements.
996 size_t NumShared = this->size();
997 if (NumShared > RHS.size()) NumShared = RHS.size();
998 for (size_type i = 0; i != NumShared; ++i)
999 std::swap((*this)[i], RHS[i]);
1000
1001 // Copy over the extra elts.
1002 if (this->size() > RHS.size()) {
1003 size_t EltDiff = this->size() - RHS.size();
1004 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
1005 RHS.set_size(RHS.size() + EltDiff);
1006 this->destroy_range(this->begin()+NumShared, this->end());
1007 this->set_size(NumShared);
1008 } else if (RHS.size() > this->size()) {
1009 size_t EltDiff = RHS.size() - this->size();
1010 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
1011 this->set_size(this->size() + EltDiff);
1012 this->destroy_range(RHS.begin()+NumShared, RHS.end());
1013 RHS.set_size(NumShared);
1014 }
1015 }
1016
1017 template <typename T>
1018 SmallVectorImpl<T> &SmallVectorImpl<T>::
1019 operator=(const SmallVectorImpl<T> &RHS) {
1020 // Avoid self-assignment.
1021 if (this == &RHS) return *this;
1022
1023 // If we already have sufficient space, assign the common elements, then
1024 // destroy any excess.
1025 size_t RHSSize = RHS.size();
1026 size_t CurSize = this->size();
1027 if (CurSize >= RHSSize) {
1028 // Assign common elements.
1029 iterator NewEnd;
1030 if (RHSSize)
1031 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
1032 else
1033 NewEnd = this->begin();
1034
1035 // Destroy excess elements.
1036 this->destroy_range(NewEnd, this->end());
1037
1038 // Trim.
1039 this->set_size(RHSSize);
1040 return *this;
1041 }
1042
1043 // If we have to grow to have enough elements, destroy the current elements.
1044 // This allows us to avoid copying them during the grow.
1045 // FIXME: don't do this if they're efficiently moveable.
1046 if (this->capacity() < RHSSize) {
1047 // Destroy current elements.
1048 this->clear();
1049 CurSize = 0;
1050 this->grow(RHSSize);
1051 } else if (CurSize) {
1052 // Otherwise, use assignment for the already-constructed elements.
1053 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
1054 }
1055
1056 // Copy construct the new elements in place.
1057 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
1058 this->begin()+CurSize);
1059
1060 // Set end.
1061 this->set_size(RHSSize);
1062 return *this;
1063 }
1064
1065 template <typename T>
1066 SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
1067 // Avoid self-assignment.
1068 if (this == &RHS) return *this;
1069
1070 // If the RHS isn't small, clear this vector and then steal its buffer.
1071 if (!RHS.isSmall()) {
1072 this->assignRemote(std::move(RHS));
1073 return *this;
1074 }
1075
1076 // If we already have sufficient space, assign the common elements, then
1077 // destroy any excess.
1078 size_t RHSSize = RHS.size();
1079 size_t CurSize = this->size();
1080 if (CurSize >= RHSSize) {
1081 // Assign common elements.
1082 iterator NewEnd = this->begin();
1083 if (RHSSize)
1084 NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
1085
1086 // Destroy excess elements and trim the bounds.
1087 this->destroy_range(NewEnd, this->end());
1088 this->set_size(RHSSize);
1089
1090 // Clear the RHS.
1091 RHS.clear();
1092
1093 return *this;
1094 }
1095
1096 // If we have to grow to have enough elements, destroy the current elements.
1097 // This allows us to avoid copying them during the grow.
1098 // FIXME: this may not actually make any sense if we can efficiently move
1099 // elements.
1100 if (this->capacity() < RHSSize) {
1101 // Destroy current elements.
1102 this->clear();
1103 CurSize = 0;
1104 this->grow(RHSSize);
1105 } else if (CurSize) {
1106 // Otherwise, use assignment for the already-constructed elements.
1107 std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
1108 }
1109
1110 // Move-construct the new elements in place.
1111 this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
1112 this->begin()+CurSize);
1113
1114 // Set end.
1115 this->set_size(RHSSize);
1116
1117 RHS.clear();
1118 return *this;
1119 }
1120
1121 /// Storage for the SmallVector elements. This is specialized for the N=0 case
1122 /// to avoid allocating unnecessary storage.
1123 template <typename T, unsigned N>
1124 struct SmallVectorStorage {
1125 alignas(T) char InlineElts[N * sizeof(T)];
1126 };
1127
1128 /// We need the storage to be properly aligned even for small-size of 0 so that
1129 /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
1130 /// well-defined.
1131 template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};
1132
1133 /// Forward declaration of SmallVector so that
1134 /// calculateSmallVectorDefaultInlinedElements can reference
1135 /// `sizeof(SmallVector<T, 0>)`.
1136 template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector;
1137
1138 /// Helper class for calculating the default number of inline elements for
1139 /// `SmallVector<T>`.
1140 ///
1141 /// This should be migrated to a constexpr function when our minimum
1142 /// compiler support is enough for multi-statement constexpr functions.
1143 template <typename T> struct CalculateSmallVectorDefaultInlinedElements {
1144 // Parameter controlling the default number of inlined elements
1145 // for `SmallVector<T>`.
1146 //
1147 // The default number of inlined elements ensures that
1148 // 1. There is at least one inlined element.
1149 // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
1150 // it contradicts 1.
1151 static constexpr size_t kPreferredSmallVectorSizeof = 64;
1152
1153 // static_assert that sizeof(T) is not "too big".
1154 //
1155 // Because our policy guarantees at least one inlined element, it is possible
1156 // for an arbitrarily large inlined element to allocate an arbitrarily large
1157 // amount of inline storage. We generally consider it an antipattern for a
1158 // SmallVector to allocate an excessive amount of inline storage, so we want
1159 // to call attention to these cases and make sure that users are making an
1160 // intentional decision if they request a lot of inline storage.
1161 //
1162 // We want this assertion to trigger in pathological cases, but otherwise
1163 // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
1164 // larger than kPreferredSmallVectorSizeof (otherwise,
1165 // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
1166 // pattern seems useful in practice).
1167 //
1168 // One wrinkle is that this assertion is in theory non-portable, since
1169 // sizeof(T) is in general platform-dependent. However, we don't expect this
1170 // to be much of an issue, because most LLVM development happens on 64-bit
1171 // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
1172 // 32-bit hosts, dodging the issue. The reverse situation, where development
1173 // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
1174 // 64-bit host, is expected to be very rare.
1175 static_assert(
1176 sizeof(T) <= 256,
1177 "You are trying to use a default number of inlined elements for "
1178 "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
1179 "explicit number of inlined elements with `SmallVector<T, N>` to make "
1180 "sure you really want that much inline storage.");
1181
1182 // Discount the size of the header itself when calculating the maximum inline
1183 // bytes.
1184 static constexpr size_t PreferredInlineBytes =
1185 kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
1186 static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
1187 static constexpr size_t value =
1188 NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
1189 };
1190
1191 /// This is a 'vector' (really, a variable-sized array), optimized
1192 /// for the case when the array is small. It contains some number of elements
1193 /// in-place, which allows it to avoid heap allocation when the actual number of
1194 /// elements is below that threshold. This allows normal "small" cases to be
1195 /// fast without losing generality for large inputs.
1196 ///
1197 /// \note
1198 /// In the absence of a well-motivated choice for the number of inlined
1199 /// elements \p N, it is recommended to use \c SmallVector<T> (that is,
1200 /// omitting the \p N). This will choose a default number of inlined elements
1201 /// reasonable for allocation on the stack (for example, trying to keep \c
1202 /// sizeof(SmallVector<T>) around 64 bytes).
1203 ///
1204 /// \warning This does not attempt to be exception safe.
1205 ///
1206 /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
1207 template <typename T,
1208 unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
1209 class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>,
1210 SmallVectorStorage<T, N> {
1211 public:
1212 SmallVector() : SmallVectorImpl<T>(N) {}
1213
1214 ~SmallVector() {
1215 // Destroy the constructed elements in the vector.
1216 this->destroy_range(this->begin(), this->end());
1217 }
1218
1219 explicit SmallVector(size_t Size)
1220 : SmallVectorImpl<T>(N) {
1221 this->resize(Size);
1222 }
1223
1224 SmallVector(size_t Size, const T &Value)
1225 : SmallVectorImpl<T>(N) {
1226 this->assign(Size, Value);
1227 }
1228
1229 template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
1230 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
1231 this->append(S, E);
1232 }
1233
1234 template <typename RangeTy>
1235 explicit SmallVector(const iterator_range<RangeTy> &R)
1236 : SmallVectorImpl<T>(N) {
1237 this->append(R.begin(), R.end());
1238 }
1239
1240 SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
1241 this->append(IL);
1242 }
1243
1244 template <typename U,
1245 typename = std::enable_if_t<std::is_convertible<U, T>::value>>
1246 explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) {
1247 this->append(A.begin(), A.end());
1248 }
1249
1250 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
1251 if (!RHS.empty())
1252 SmallVectorImpl<T>::operator=(RHS);
1253 }
1254
1255 SmallVector &operator=(const SmallVector &RHS) {
1256 SmallVectorImpl<T>::operator=(RHS);
1257 return *this;
1258 }
1259
1260 SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
1261 if (!RHS.empty())
1262 SmallVectorImpl<T>::operator=(::std::move(RHS));
1263 }
1264
1265 SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
1266 if (!RHS.empty())
1267 SmallVectorImpl<T>::operator=(::std::move(RHS));
1268 }
1269
1270 SmallVector &operator=(SmallVector &&RHS) {
1271 if (N) {
1272 SmallVectorImpl<T>::operator=(::std::move(RHS));
1273 return *this;
1274 }
1275 // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the
1276 // case.
1277 if (this == &RHS)
1278 return *this;
1279 if (RHS.empty()) {
1280 this->destroy_range(this->begin(), this->end());
1281 this->Size = 0;
1282 } else {
1283 this->assignRemote(std::move(RHS));
1284 }
1285 return *this;
1286 }
1287
1288 SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
1289 SmallVectorImpl<T>::operator=(::std::move(RHS));
1290 return *this;
1291 }
1292
1293 SmallVector &operator=(std::initializer_list<T> IL) {
1294 this->assign(IL);
1295 return *this;
1296 }
1297 };
1298
1299 template <typename T, unsigned N>
1300 inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
1301 return X.capacity_in_bytes();
1302 }
1303
1304 template <typename RangeType>
1305 using ValueTypeFromRangeType =
1306 std::remove_const_t<std::remove_reference_t<decltype(*std::begin(
1307 std::declval<RangeType &>()))>>;
1308
1309 /// Given a range of type R, iterate the entire range and return a
1310 /// SmallVector with elements of the vector. This is useful, for example,
1311 /// when you want to iterate a range and then sort the results.
1312 template <unsigned Size, typename R>
1313 SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) {
1314 return {std::begin(Range), std::end(Range)};
1315 }
1316 template <typename R>
1317 SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) {
1318 return {std::begin(Range), std::end(Range)};
1319 }
1320
1321 template <typename Out, unsigned Size, typename R>
1322 SmallVector<Out, Size> to_vector_of(R &&Range) {
1323 return {std::begin(Range), std::end(Range)};
1324 }
1325
1326 template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) {
1327 return {std::begin(Range), std::end(Range)};
1328 }
1329
1330 // Explicit instantiations
1331 extern template class llvm::SmallVectorBase<uint32_t>;
1332 #if SIZE_MAX > UINT32_MAX
1333 extern template class llvm::SmallVectorBase<uint64_t>;
1334 #endif
1335
1336 } // end namespace llvm
1337
1338 namespace std {
1339
1340 /// Implement std::swap in terms of SmallVector swap.
1341 template<typename T>
1342 inline void
1343 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
1344 LHS.swap(RHS);
1345 }
1346
1347 /// Implement std::swap in terms of SmallVector swap.
1348 template<typename T, unsigned N>
1349 inline void
1350 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
1351 LHS.swap(RHS);
1352 }
1353
1354 } // end namespace std
1355
1356 #endif // LLVM_ADT_SMALLVECTOR_H
1357