1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ exception specification testing.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/AST/ASTMutationListener.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/StmtObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/Diagnostic.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include <optional>
25
26 namespace clang {
27
GetUnderlyingFunction(QualType T)28 static const FunctionProtoType *GetUnderlyingFunction(QualType T)
29 {
30 if (const PointerType *PtrTy = T->getAs<PointerType>())
31 T = PtrTy->getPointeeType();
32 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
33 T = RefTy->getPointeeType();
34 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
35 T = MPTy->getPointeeType();
36 return T->getAs<FunctionProtoType>();
37 }
38
39 /// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a
40 /// member swap function then tries to call std::swap unqualified from the
41 /// exception specification of that function. This function detects whether
42 /// we're in such a case and turns off delay-parsing of exception
43 /// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have
44 /// resolved it as side-effect of commit ddb63209a8d (2015-06-05).
isLibstdcxxEagerExceptionSpecHack(const Declarator & D)45 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
46 auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
47
48 // All the problem cases are member functions named "swap" within class
49 // templates declared directly within namespace std or std::__debug or
50 // std::__profile.
51 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
52 !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
53 return false;
54
55 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
56 if (!ND)
57 return false;
58
59 bool IsInStd = ND->isStdNamespace();
60 if (!IsInStd) {
61 // This isn't a direct member of namespace std, but it might still be
62 // libstdc++'s std::__debug::array or std::__profile::array.
63 IdentifierInfo *II = ND->getIdentifier();
64 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
65 !ND->isInStdNamespace())
66 return false;
67 }
68
69 // Only apply this hack within a system header.
70 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
71 return false;
72
73 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
74 .Case("array", true)
75 .Case("pair", IsInStd)
76 .Case("priority_queue", IsInStd)
77 .Case("stack", IsInStd)
78 .Case("queue", IsInStd)
79 .Default(false);
80 }
81
ActOnNoexceptSpec(Expr * NoexceptExpr,ExceptionSpecificationType & EST)82 ExprResult Sema::ActOnNoexceptSpec(Expr *NoexceptExpr,
83 ExceptionSpecificationType &EST) {
84
85 if (NoexceptExpr->isTypeDependent() ||
86 NoexceptExpr->containsUnexpandedParameterPack()) {
87 EST = EST_DependentNoexcept;
88 return NoexceptExpr;
89 }
90
91 llvm::APSInt Result;
92 ExprResult Converted = CheckConvertedConstantExpression(
93 NoexceptExpr, Context.BoolTy, Result, CCEK_Noexcept);
94
95 if (Converted.isInvalid()) {
96 EST = EST_NoexceptFalse;
97 // Fill in an expression of 'false' as a fixup.
98 auto *BoolExpr = new (Context)
99 CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc());
100 llvm::APSInt Value{1};
101 Value = 0;
102 return ConstantExpr::Create(Context, BoolExpr, APValue{Value});
103 }
104
105 if (Converted.get()->isValueDependent()) {
106 EST = EST_DependentNoexcept;
107 return Converted;
108 }
109
110 if (!Converted.isInvalid())
111 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
112 return Converted;
113 }
114
CheckSpecifiedExceptionType(QualType & T,SourceRange Range)115 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
116 // C++11 [except.spec]p2:
117 // A type cv T, "array of T", or "function returning T" denoted
118 // in an exception-specification is adjusted to type T, "pointer to T", or
119 // "pointer to function returning T", respectively.
120 //
121 // We also apply this rule in C++98.
122 if (T->isArrayType())
123 T = Context.getArrayDecayedType(T);
124 else if (T->isFunctionType())
125 T = Context.getPointerType(T);
126
127 int Kind = 0;
128 QualType PointeeT = T;
129 if (const PointerType *PT = T->getAs<PointerType>()) {
130 PointeeT = PT->getPointeeType();
131 Kind = 1;
132
133 // cv void* is explicitly permitted, despite being a pointer to an
134 // incomplete type.
135 if (PointeeT->isVoidType())
136 return false;
137 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
138 PointeeT = RT->getPointeeType();
139 Kind = 2;
140
141 if (RT->isRValueReferenceType()) {
142 // C++11 [except.spec]p2:
143 // A type denoted in an exception-specification shall not denote [...]
144 // an rvalue reference type.
145 Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
146 << T << Range;
147 return true;
148 }
149 }
150
151 // C++11 [except.spec]p2:
152 // A type denoted in an exception-specification shall not denote an
153 // incomplete type other than a class currently being defined [...].
154 // A type denoted in an exception-specification shall not denote a
155 // pointer or reference to an incomplete type, other than (cv) void* or a
156 // pointer or reference to a class currently being defined.
157 // In Microsoft mode, downgrade this to a warning.
158 unsigned DiagID = diag::err_incomplete_in_exception_spec;
159 bool ReturnValueOnError = true;
160 if (getLangOpts().MSVCCompat) {
161 DiagID = diag::ext_incomplete_in_exception_spec;
162 ReturnValueOnError = false;
163 }
164 if (!(PointeeT->isRecordType() &&
165 PointeeT->castAs<RecordType>()->isBeingDefined()) &&
166 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
167 return ReturnValueOnError;
168
169 // WebAssembly reference types can't be used in exception specifications.
170 if (PointeeT.isWebAssemblyReferenceType()) {
171 Diag(Range.getBegin(), diag::err_wasm_reftype_exception_spec);
172 return true;
173 }
174
175 // The MSVC compatibility mode doesn't extend to sizeless types,
176 // so diagnose them separately.
177 if (PointeeT->isSizelessType() && Kind != 1) {
178 Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec)
179 << (Kind == 2 ? 1 : 0) << PointeeT << Range;
180 return true;
181 }
182
183 return false;
184 }
185
CheckDistantExceptionSpec(QualType T)186 bool Sema::CheckDistantExceptionSpec(QualType T) {
187 // C++17 removes this rule in favor of putting exception specifications into
188 // the type system.
189 if (getLangOpts().CPlusPlus17)
190 return false;
191
192 if (const PointerType *PT = T->getAs<PointerType>())
193 T = PT->getPointeeType();
194 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
195 T = PT->getPointeeType();
196 else
197 return false;
198
199 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
200 if (!FnT)
201 return false;
202
203 return FnT->hasExceptionSpec();
204 }
205
206 const FunctionProtoType *
ResolveExceptionSpec(SourceLocation Loc,const FunctionProtoType * FPT)207 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
208 if (FPT->getExceptionSpecType() == EST_Unparsed) {
209 Diag(Loc, diag::err_exception_spec_not_parsed);
210 return nullptr;
211 }
212
213 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
214 return FPT;
215
216 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
217 const FunctionProtoType *SourceFPT =
218 SourceDecl->getType()->castAs<FunctionProtoType>();
219
220 // If the exception specification has already been resolved, just return it.
221 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
222 return SourceFPT;
223
224 // Compute or instantiate the exception specification now.
225 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
226 EvaluateImplicitExceptionSpec(Loc, SourceDecl);
227 else
228 InstantiateExceptionSpec(Loc, SourceDecl);
229
230 const FunctionProtoType *Proto =
231 SourceDecl->getType()->castAs<FunctionProtoType>();
232 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
233 Diag(Loc, diag::err_exception_spec_not_parsed);
234 Proto = nullptr;
235 }
236 return Proto;
237 }
238
239 void
UpdateExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI)240 Sema::UpdateExceptionSpec(FunctionDecl *FD,
241 const FunctionProtoType::ExceptionSpecInfo &ESI) {
242 // If we've fully resolved the exception specification, notify listeners.
243 if (!isUnresolvedExceptionSpec(ESI.Type))
244 if (auto *Listener = getASTMutationListener())
245 Listener->ResolvedExceptionSpec(FD);
246
247 for (FunctionDecl *Redecl : FD->redecls())
248 Context.adjustExceptionSpec(Redecl, ESI);
249 }
250
exceptionSpecNotKnownYet(const FunctionDecl * FD)251 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
252 ExceptionSpecificationType EST =
253 FD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
254 if (EST == EST_Unparsed)
255 return true;
256 else if (EST != EST_Unevaluated)
257 return false;
258 const DeclContext *DC = FD->getLexicalDeclContext();
259 return DC->isRecord() && cast<RecordDecl>(DC)->isBeingDefined();
260 }
261
262 static bool CheckEquivalentExceptionSpecImpl(
263 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
264 const FunctionProtoType *Old, SourceLocation OldLoc,
265 const FunctionProtoType *New, SourceLocation NewLoc,
266 bool *MissingExceptionSpecification = nullptr,
267 bool *MissingEmptyExceptionSpecification = nullptr,
268 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);
269
270 /// Determine whether a function has an implicitly-generated exception
271 /// specification.
hasImplicitExceptionSpec(FunctionDecl * Decl)272 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
273 if (!isa<CXXDestructorDecl>(Decl) &&
274 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
275 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
276 return false;
277
278 // For a function that the user didn't declare:
279 // - if this is a destructor, its exception specification is implicit.
280 // - if this is 'operator delete' or 'operator delete[]', the exception
281 // specification is as-if an explicit exception specification was given
282 // (per [basic.stc.dynamic]p2).
283 if (!Decl->getTypeSourceInfo())
284 return isa<CXXDestructorDecl>(Decl);
285
286 auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
287 return !Ty->hasExceptionSpec();
288 }
289
CheckEquivalentExceptionSpec(FunctionDecl * Old,FunctionDecl * New)290 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
291 // Just completely ignore this under -fno-exceptions prior to C++17.
292 // In C++17 onwards, the exception specification is part of the type and
293 // we will diagnose mismatches anyway, so it's better to check for them here.
294 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
295 return false;
296
297 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
298 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
299 bool MissingExceptionSpecification = false;
300 bool MissingEmptyExceptionSpecification = false;
301
302 unsigned DiagID = diag::err_mismatched_exception_spec;
303 bool ReturnValueOnError = true;
304 if (getLangOpts().MSVCCompat) {
305 DiagID = diag::ext_mismatched_exception_spec;
306 ReturnValueOnError = false;
307 }
308
309 // If we're befriending a member function of a class that's currently being
310 // defined, we might not be able to work out its exception specification yet.
311 // If not, defer the check until later.
312 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
313 DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
314 return false;
315 }
316
317 // Check the types as written: they must match before any exception
318 // specification adjustment is applied.
319 if (!CheckEquivalentExceptionSpecImpl(
320 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
321 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
322 New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
323 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
324 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
325 // C++11 [except.spec]p4 [DR1492]:
326 // If a declaration of a function has an implicit
327 // exception-specification, other declarations of the function shall
328 // not specify an exception-specification.
329 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
330 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
331 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
332 << hasImplicitExceptionSpec(Old);
333 if (Old->getLocation().isValid())
334 Diag(Old->getLocation(), diag::note_previous_declaration);
335 }
336 return false;
337 }
338
339 // The failure was something other than an missing exception
340 // specification; return an error, except in MS mode where this is a warning.
341 if (!MissingExceptionSpecification)
342 return ReturnValueOnError;
343
344 const auto *NewProto = New->getType()->castAs<FunctionProtoType>();
345
346 // The new function declaration is only missing an empty exception
347 // specification "throw()". If the throw() specification came from a
348 // function in a system header that has C linkage, just add an empty
349 // exception specification to the "new" declaration. Note that C library
350 // implementations are permitted to add these nothrow exception
351 // specifications.
352 //
353 // Likewise if the old function is a builtin.
354 if (MissingEmptyExceptionSpecification &&
355 (Old->getLocation().isInvalid() ||
356 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
357 Old->getBuiltinID()) &&
358 Old->isExternC()) {
359 New->setType(Context.getFunctionType(
360 NewProto->getReturnType(), NewProto->getParamTypes(),
361 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
362 return false;
363 }
364
365 const auto *OldProto = Old->getType()->castAs<FunctionProtoType>();
366
367 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
368 if (ESI.Type == EST_Dynamic) {
369 // FIXME: What if the exceptions are described in terms of the old
370 // prototype's parameters?
371 ESI.Exceptions = OldProto->exceptions();
372 }
373
374 if (ESI.Type == EST_NoexceptFalse)
375 ESI.Type = EST_None;
376 if (ESI.Type == EST_NoexceptTrue)
377 ESI.Type = EST_BasicNoexcept;
378
379 // For dependent noexcept, we can't just take the expression from the old
380 // prototype. It likely contains references to the old prototype's parameters.
381 if (ESI.Type == EST_DependentNoexcept) {
382 New->setInvalidDecl();
383 } else {
384 // Update the type of the function with the appropriate exception
385 // specification.
386 New->setType(Context.getFunctionType(
387 NewProto->getReturnType(), NewProto->getParamTypes(),
388 NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
389 }
390
391 if (getLangOpts().MSVCCompat && isDynamicExceptionSpec(ESI.Type)) {
392 DiagID = diag::ext_missing_exception_specification;
393 ReturnValueOnError = false;
394 } else if (New->isReplaceableGlobalAllocationFunction() &&
395 ESI.Type != EST_DependentNoexcept) {
396 // Allow missing exception specifications in redeclarations as an extension,
397 // when declaring a replaceable global allocation function.
398 DiagID = diag::ext_missing_exception_specification;
399 ReturnValueOnError = false;
400 } else if (ESI.Type == EST_NoThrow) {
401 // Don't emit any warning for missing 'nothrow' in MSVC.
402 if (getLangOpts().MSVCCompat) {
403 return false;
404 }
405 // Allow missing attribute 'nothrow' in redeclarations, since this is a very
406 // common omission.
407 DiagID = diag::ext_missing_exception_specification;
408 ReturnValueOnError = false;
409 } else {
410 DiagID = diag::err_missing_exception_specification;
411 ReturnValueOnError = true;
412 }
413
414 // Warn about the lack of exception specification.
415 SmallString<128> ExceptionSpecString;
416 llvm::raw_svector_ostream OS(ExceptionSpecString);
417 switch (OldProto->getExceptionSpecType()) {
418 case EST_DynamicNone:
419 OS << "throw()";
420 break;
421
422 case EST_Dynamic: {
423 OS << "throw(";
424 bool OnFirstException = true;
425 for (const auto &E : OldProto->exceptions()) {
426 if (OnFirstException)
427 OnFirstException = false;
428 else
429 OS << ", ";
430
431 OS << E.getAsString(getPrintingPolicy());
432 }
433 OS << ")";
434 break;
435 }
436
437 case EST_BasicNoexcept:
438 OS << "noexcept";
439 break;
440
441 case EST_DependentNoexcept:
442 case EST_NoexceptFalse:
443 case EST_NoexceptTrue:
444 OS << "noexcept(";
445 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
446 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
447 OS << ")";
448 break;
449 case EST_NoThrow:
450 OS <<"__attribute__((nothrow))";
451 break;
452 case EST_None:
453 case EST_MSAny:
454 case EST_Unevaluated:
455 case EST_Uninstantiated:
456 case EST_Unparsed:
457 llvm_unreachable("This spec type is compatible with none.");
458 }
459
460 SourceLocation FixItLoc;
461 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
462 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
463 // FIXME: Preserve enough information so that we can produce a correct fixit
464 // location when there is a trailing return type.
465 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
466 if (!FTLoc.getTypePtr()->hasTrailingReturn())
467 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
468 }
469
470 if (FixItLoc.isInvalid())
471 Diag(New->getLocation(), DiagID)
472 << New << OS.str();
473 else {
474 Diag(New->getLocation(), DiagID)
475 << New << OS.str()
476 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
477 }
478
479 if (Old->getLocation().isValid())
480 Diag(Old->getLocation(), diag::note_previous_declaration);
481
482 return ReturnValueOnError;
483 }
484
CheckEquivalentExceptionSpec(const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc)485 bool Sema::CheckEquivalentExceptionSpec(
486 const FunctionProtoType *Old, SourceLocation OldLoc,
487 const FunctionProtoType *New, SourceLocation NewLoc) {
488 if (!getLangOpts().CXXExceptions)
489 return false;
490
491 unsigned DiagID = diag::err_mismatched_exception_spec;
492 if (getLangOpts().MSVCCompat)
493 DiagID = diag::ext_mismatched_exception_spec;
494 bool Result = CheckEquivalentExceptionSpecImpl(
495 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
496 Old, OldLoc, New, NewLoc);
497
498 // In Microsoft mode, mismatching exception specifications just cause a warning.
499 if (getLangOpts().MSVCCompat)
500 return false;
501 return Result;
502 }
503
504 /// CheckEquivalentExceptionSpec - Check if the two types have compatible
505 /// exception specifications. See C++ [except.spec]p3.
506 ///
507 /// \return \c false if the exception specifications match, \c true if there is
508 /// a problem. If \c true is returned, either a diagnostic has already been
509 /// produced or \c *MissingExceptionSpecification is set to \c true.
CheckEquivalentExceptionSpecImpl(Sema & S,const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc,bool * MissingExceptionSpecification,bool * MissingEmptyExceptionSpecification,bool AllowNoexceptAllMatchWithNoSpec,bool IsOperatorNew)510 static bool CheckEquivalentExceptionSpecImpl(
511 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
512 const FunctionProtoType *Old, SourceLocation OldLoc,
513 const FunctionProtoType *New, SourceLocation NewLoc,
514 bool *MissingExceptionSpecification,
515 bool *MissingEmptyExceptionSpecification,
516 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
517 if (MissingExceptionSpecification)
518 *MissingExceptionSpecification = false;
519
520 if (MissingEmptyExceptionSpecification)
521 *MissingEmptyExceptionSpecification = false;
522
523 Old = S.ResolveExceptionSpec(NewLoc, Old);
524 if (!Old)
525 return false;
526 New = S.ResolveExceptionSpec(NewLoc, New);
527 if (!New)
528 return false;
529
530 // C++0x [except.spec]p3: Two exception-specifications are compatible if:
531 // - both are non-throwing, regardless of their form,
532 // - both have the form noexcept(constant-expression) and the constant-
533 // expressions are equivalent,
534 // - both are dynamic-exception-specifications that have the same set of
535 // adjusted types.
536 //
537 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
538 // of the form throw(), noexcept, or noexcept(constant-expression) where the
539 // constant-expression yields true.
540 //
541 // C++0x [except.spec]p4: If any declaration of a function has an exception-
542 // specifier that is not a noexcept-specification allowing all exceptions,
543 // all declarations [...] of that function shall have a compatible
544 // exception-specification.
545 //
546 // That last point basically means that noexcept(false) matches no spec.
547 // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
548
549 ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
550 ExceptionSpecificationType NewEST = New->getExceptionSpecType();
551
552 assert(!isUnresolvedExceptionSpec(OldEST) &&
553 !isUnresolvedExceptionSpec(NewEST) &&
554 "Shouldn't see unknown exception specifications here");
555
556 CanThrowResult OldCanThrow = Old->canThrow();
557 CanThrowResult NewCanThrow = New->canThrow();
558
559 // Any non-throwing specifications are compatible.
560 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
561 return false;
562
563 // Any throws-anything specifications are usually compatible.
564 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
565 NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
566 // The exception is that the absence of an exception specification only
567 // matches noexcept(false) for functions, as described above.
568 if (!AllowNoexceptAllMatchWithNoSpec &&
569 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
570 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
571 // This is the disallowed case.
572 } else {
573 return false;
574 }
575 }
576
577 // C++14 [except.spec]p3:
578 // Two exception-specifications are compatible if [...] both have the form
579 // noexcept(constant-expression) and the constant-expressions are equivalent
580 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
581 llvm::FoldingSetNodeID OldFSN, NewFSN;
582 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
583 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
584 if (OldFSN == NewFSN)
585 return false;
586 }
587
588 // Dynamic exception specifications with the same set of adjusted types
589 // are compatible.
590 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
591 bool Success = true;
592 // Both have a dynamic exception spec. Collect the first set, then compare
593 // to the second.
594 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
595 for (const auto &I : Old->exceptions())
596 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());
597
598 for (const auto &I : New->exceptions()) {
599 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
600 if (OldTypes.count(TypePtr))
601 NewTypes.insert(TypePtr);
602 else {
603 Success = false;
604 break;
605 }
606 }
607
608 if (Success && OldTypes.size() == NewTypes.size())
609 return false;
610 }
611
612 // As a special compatibility feature, under C++0x we accept no spec and
613 // throw(std::bad_alloc) as equivalent for operator new and operator new[].
614 // This is because the implicit declaration changed, but old code would break.
615 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
616 const FunctionProtoType *WithExceptions = nullptr;
617 if (OldEST == EST_None && NewEST == EST_Dynamic)
618 WithExceptions = New;
619 else if (OldEST == EST_Dynamic && NewEST == EST_None)
620 WithExceptions = Old;
621 if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
622 // One has no spec, the other throw(something). If that something is
623 // std::bad_alloc, all conditions are met.
624 QualType Exception = *WithExceptions->exception_begin();
625 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
626 IdentifierInfo* Name = ExRecord->getIdentifier();
627 if (Name && Name->getName() == "bad_alloc") {
628 // It's called bad_alloc, but is it in std?
629 if (ExRecord->isInStdNamespace()) {
630 return false;
631 }
632 }
633 }
634 }
635 }
636
637 // If the caller wants to handle the case that the new function is
638 // incompatible due to a missing exception specification, let it.
639 if (MissingExceptionSpecification && OldEST != EST_None &&
640 NewEST == EST_None) {
641 // The old type has an exception specification of some sort, but
642 // the new type does not.
643 *MissingExceptionSpecification = true;
644
645 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
646 // The old type has a throw() or noexcept(true) exception specification
647 // and the new type has no exception specification, and the caller asked
648 // to handle this itself.
649 *MissingEmptyExceptionSpecification = true;
650 }
651
652 return true;
653 }
654
655 S.Diag(NewLoc, DiagID);
656 if (NoteID.getDiagID() != 0 && OldLoc.isValid())
657 S.Diag(OldLoc, NoteID);
658 return true;
659 }
660
CheckEquivalentExceptionSpec(const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc)661 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
662 const PartialDiagnostic &NoteID,
663 const FunctionProtoType *Old,
664 SourceLocation OldLoc,
665 const FunctionProtoType *New,
666 SourceLocation NewLoc) {
667 if (!getLangOpts().CXXExceptions)
668 return false;
669 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
670 New, NewLoc);
671 }
672
handlerCanCatch(QualType HandlerType,QualType ExceptionType)673 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
674 // [except.handle]p3:
675 // A handler is a match for an exception object of type E if:
676
677 // HandlerType must be ExceptionType or derived from it, or pointer or
678 // reference to such types.
679 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
680 if (RefTy)
681 HandlerType = RefTy->getPointeeType();
682
683 // -- the handler is of type cv T or cv T& and E and T are the same type
684 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
685 return true;
686
687 // FIXME: ObjC pointer types?
688 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
689 if (RefTy && (!HandlerType.isConstQualified() ||
690 HandlerType.isVolatileQualified()))
691 return false;
692
693 // -- the handler is of type cv T or const T& where T is a pointer or
694 // pointer to member type and E is std::nullptr_t
695 if (ExceptionType->isNullPtrType())
696 return true;
697
698 // -- the handler is of type cv T or const T& where T is a pointer or
699 // pointer to member type and E is a pointer or pointer to member type
700 // that can be converted to T by one or more of
701 // -- a qualification conversion
702 // -- a function pointer conversion
703 bool LifetimeConv;
704 QualType Result;
705 // FIXME: Should we treat the exception as catchable if a lifetime
706 // conversion is required?
707 if (IsQualificationConversion(ExceptionType, HandlerType, false,
708 LifetimeConv) ||
709 IsFunctionConversion(ExceptionType, HandlerType, Result))
710 return true;
711
712 // -- a standard pointer conversion [...]
713 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
714 return false;
715
716 // Handle the "qualification conversion" portion.
717 Qualifiers EQuals, HQuals;
718 ExceptionType = Context.getUnqualifiedArrayType(
719 ExceptionType->getPointeeType(), EQuals);
720 HandlerType = Context.getUnqualifiedArrayType(
721 HandlerType->getPointeeType(), HQuals);
722 if (!HQuals.compatiblyIncludes(EQuals))
723 return false;
724
725 if (HandlerType->isVoidType() && ExceptionType->isObjectType())
726 return true;
727
728 // The only remaining case is a derived-to-base conversion.
729 }
730
731 // -- the handler is of type cg T or cv T& and T is an unambiguous public
732 // base class of E
733 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
734 return false;
735 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
736 /*DetectVirtual=*/false);
737 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
738 Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
739 return false;
740
741 // Do this check from a context without privileges.
742 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
743 Paths.front(),
744 /*Diagnostic*/ 0,
745 /*ForceCheck*/ true,
746 /*ForceUnprivileged*/ true)) {
747 case AR_accessible: return true;
748 case AR_inaccessible: return false;
749 case AR_dependent:
750 llvm_unreachable("access check dependent for unprivileged context");
751 case AR_delayed:
752 llvm_unreachable("access check delayed in non-declaration");
753 }
754 llvm_unreachable("unexpected access check result");
755 }
756
CheckExceptionSpecSubset(const PartialDiagnostic & DiagID,const PartialDiagnostic & NestedDiagID,const PartialDiagnostic & NoteID,const PartialDiagnostic & NoThrowDiagID,const FunctionProtoType * Superset,bool SkipSupersetFirstParameter,SourceLocation SuperLoc,const FunctionProtoType * Subset,bool SkipSubsetFirstParameter,SourceLocation SubLoc)757 bool Sema::CheckExceptionSpecSubset(
758 const PartialDiagnostic &DiagID, const PartialDiagnostic &NestedDiagID,
759 const PartialDiagnostic &NoteID, const PartialDiagnostic &NoThrowDiagID,
760 const FunctionProtoType *Superset, bool SkipSupersetFirstParameter,
761 SourceLocation SuperLoc, const FunctionProtoType *Subset,
762 bool SkipSubsetFirstParameter, SourceLocation SubLoc) {
763
764 // Just auto-succeed under -fno-exceptions.
765 if (!getLangOpts().CXXExceptions)
766 return false;
767
768 // FIXME: As usual, we could be more specific in our error messages, but
769 // that better waits until we've got types with source locations.
770
771 if (!SubLoc.isValid())
772 SubLoc = SuperLoc;
773
774 // Resolve the exception specifications, if needed.
775 Superset = ResolveExceptionSpec(SuperLoc, Superset);
776 if (!Superset)
777 return false;
778 Subset = ResolveExceptionSpec(SubLoc, Subset);
779 if (!Subset)
780 return false;
781
782 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
783 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
784 assert(!isUnresolvedExceptionSpec(SuperEST) &&
785 !isUnresolvedExceptionSpec(SubEST) &&
786 "Shouldn't see unknown exception specifications here");
787
788 // If there are dependent noexcept specs, assume everything is fine. Unlike
789 // with the equivalency check, this is safe in this case, because we don't
790 // want to merge declarations. Checks after instantiation will catch any
791 // omissions we make here.
792 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
793 return false;
794
795 CanThrowResult SuperCanThrow = Superset->canThrow();
796 CanThrowResult SubCanThrow = Subset->canThrow();
797
798 // If the superset contains everything or the subset contains nothing, we're
799 // done.
800 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
801 SubCanThrow == CT_Cannot)
802 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset,
803 SkipSupersetFirstParameter, SuperLoc, Subset,
804 SkipSubsetFirstParameter, SubLoc);
805
806 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in
807 // some cases.
808 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can &&
809 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) {
810 Diag(SubLoc, NoThrowDiagID);
811 if (NoteID.getDiagID() != 0)
812 Diag(SuperLoc, NoteID);
813 return true;
814 }
815
816 // If the subset contains everything or the superset contains nothing, we've
817 // failed.
818 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
819 SuperCanThrow == CT_Cannot) {
820 Diag(SubLoc, DiagID);
821 if (NoteID.getDiagID() != 0)
822 Diag(SuperLoc, NoteID);
823 return true;
824 }
825
826 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
827 "Exception spec subset: non-dynamic case slipped through.");
828
829 // Neither contains everything or nothing. Do a proper comparison.
830 for (QualType SubI : Subset->exceptions()) {
831 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
832 SubI = RefTy->getPointeeType();
833
834 // Make sure it's in the superset.
835 bool Contained = false;
836 for (QualType SuperI : Superset->exceptions()) {
837 // [except.spec]p5:
838 // the target entity shall allow at least the exceptions allowed by the
839 // source
840 //
841 // We interpret this as meaning that a handler for some target type would
842 // catch an exception of each source type.
843 if (handlerCanCatch(SuperI, SubI)) {
844 Contained = true;
845 break;
846 }
847 }
848 if (!Contained) {
849 Diag(SubLoc, DiagID);
850 if (NoteID.getDiagID() != 0)
851 Diag(SuperLoc, NoteID);
852 return true;
853 }
854 }
855 // We've run half the gauntlet.
856 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset,
857 SkipSupersetFirstParameter, SuperLoc, Subset,
858 SkipSupersetFirstParameter, SubLoc);
859 }
860
861 static bool
CheckSpecForTypesEquivalent(Sema & S,const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,QualType Target,SourceLocation TargetLoc,QualType Source,SourceLocation SourceLoc)862 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
863 const PartialDiagnostic &NoteID, QualType Target,
864 SourceLocation TargetLoc, QualType Source,
865 SourceLocation SourceLoc) {
866 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
867 if (!TFunc)
868 return false;
869 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
870 if (!SFunc)
871 return false;
872
873 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
874 SFunc, SourceLoc);
875 }
876
CheckParamExceptionSpec(const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Target,bool SkipTargetFirstParameter,SourceLocation TargetLoc,const FunctionProtoType * Source,bool SkipSourceFirstParameter,SourceLocation SourceLoc)877 bool Sema::CheckParamExceptionSpec(
878 const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
879 const FunctionProtoType *Target, bool SkipTargetFirstParameter,
880 SourceLocation TargetLoc, const FunctionProtoType *Source,
881 bool SkipSourceFirstParameter, SourceLocation SourceLoc) {
882 auto RetDiag = DiagID;
883 RetDiag << 0;
884 if (CheckSpecForTypesEquivalent(
885 *this, RetDiag, PDiag(),
886 Target->getReturnType(), TargetLoc, Source->getReturnType(),
887 SourceLoc))
888 return true;
889
890 // We shouldn't even be testing this unless the arguments are otherwise
891 // compatible.
892 assert((Target->getNumParams() - (unsigned)SkipTargetFirstParameter) ==
893 (Source->getNumParams() - (unsigned)SkipSourceFirstParameter) &&
894 "Functions have different argument counts.");
895 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
896 auto ParamDiag = DiagID;
897 ParamDiag << 1;
898 if (CheckSpecForTypesEquivalent(
899 *this, ParamDiag, PDiag(),
900 Target->getParamType(i + (SkipTargetFirstParameter ? 1 : 0)),
901 TargetLoc, Source->getParamType(SkipSourceFirstParameter ? 1 : 0),
902 SourceLoc))
903 return true;
904 }
905 return false;
906 }
907
CheckExceptionSpecCompatibility(Expr * From,QualType ToType)908 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
909 // First we check for applicability.
910 // Target type must be a function, function pointer or function reference.
911 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
912 if (!ToFunc || ToFunc->hasDependentExceptionSpec())
913 return false;
914
915 // SourceType must be a function or function pointer.
916 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
917 if (!FromFunc || FromFunc->hasDependentExceptionSpec())
918 return false;
919
920 unsigned DiagID = diag::err_incompatible_exception_specs;
921 unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
922 // This is not an error in C++17 onwards, unless the noexceptness doesn't
923 // match, but in that case we have a full-on type mismatch, not just a
924 // type sugar mismatch.
925 if (getLangOpts().CPlusPlus17) {
926 DiagID = diag::warn_incompatible_exception_specs;
927 NestedDiagID = diag::warn_deep_exception_specs_differ;
928 }
929
930 // Now we've got the correct types on both sides, check their compatibility.
931 // This means that the source of the conversion can only throw a subset of
932 // the exceptions of the target, and any exception specs on arguments or
933 // return types must be equivalent.
934 //
935 // FIXME: If there is a nested dependent exception specification, we should
936 // not be checking it here. This is fine:
937 // template<typename T> void f() {
938 // void (*p)(void (*) throw(T));
939 // void (*q)(void (*) throw(int)) = p;
940 // }
941 // ... because it might be instantiated with T=int.
942 return CheckExceptionSpecSubset(PDiag(DiagID), PDiag(NestedDiagID), PDiag(),
943 PDiag(), ToFunc, 0,
944 From->getSourceRange().getBegin(), FromFunc,
945 0, SourceLocation()) &&
946 !getLangOpts().CPlusPlus17;
947 }
948
CheckOverridingFunctionExceptionSpec(const CXXMethodDecl * New,const CXXMethodDecl * Old)949 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
950 const CXXMethodDecl *Old) {
951 // If the new exception specification hasn't been parsed yet, skip the check.
952 // We'll get called again once it's been parsed.
953 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
954 EST_Unparsed)
955 return false;
956
957 // Don't check uninstantiated template destructors at all. We can only
958 // synthesize correct specs after the template is instantiated.
959 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
960 return false;
961
962 // If the old exception specification hasn't been parsed yet, or the new
963 // exception specification can't be computed yet, remember that we need to
964 // perform this check when we get to the end of the outermost
965 // lexically-surrounding class.
966 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
967 DelayedOverridingExceptionSpecChecks.push_back({New, Old});
968 return false;
969 }
970
971 unsigned DiagID = diag::err_override_exception_spec;
972 if (getLangOpts().MSVCCompat)
973 DiagID = diag::ext_override_exception_spec;
974 return CheckExceptionSpecSubset(
975 PDiag(DiagID), PDiag(diag::err_deep_exception_specs_differ),
976 PDiag(diag::note_overridden_virtual_function),
977 PDiag(diag::ext_override_exception_spec),
978 Old->getType()->castAs<FunctionProtoType>(),
979 Old->hasCXXExplicitFunctionObjectParameter(), Old->getLocation(),
980 New->getType()->castAs<FunctionProtoType>(),
981 New->hasCXXExplicitFunctionObjectParameter(), New->getLocation());
982 }
983
canSubStmtsThrow(Sema & Self,const Stmt * S)984 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) {
985 CanThrowResult R = CT_Cannot;
986 for (const Stmt *SubStmt : S->children()) {
987 if (!SubStmt)
988 continue;
989 R = mergeCanThrow(R, Self.canThrow(SubStmt));
990 if (R == CT_Can)
991 break;
992 }
993 return R;
994 }
995
canCalleeThrow(Sema & S,const Expr * E,const Decl * D,SourceLocation Loc)996 CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
997 SourceLocation Loc) {
998 // As an extension, we assume that __attribute__((nothrow)) functions don't
999 // throw.
1000 if (isa_and_nonnull<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1001 return CT_Cannot;
1002
1003 QualType T;
1004
1005 // In C++1z, just look at the function type of the callee.
1006 if (S.getLangOpts().CPlusPlus17 && isa_and_nonnull<CallExpr>(E)) {
1007 E = cast<CallExpr>(E)->getCallee();
1008 T = E->getType();
1009 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1010 // Sadly we don't preserve the actual type as part of the "bound member"
1011 // placeholder, so we need to reconstruct it.
1012 E = E->IgnoreParenImpCasts();
1013
1014 // Could be a call to a pointer-to-member or a plain member access.
1015 if (auto *Op = dyn_cast<BinaryOperator>(E)) {
1016 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI);
1017 T = Op->getRHS()->getType()
1018 ->castAs<MemberPointerType>()->getPointeeType();
1019 } else {
1020 T = cast<MemberExpr>(E)->getMemberDecl()->getType();
1021 }
1022 }
1023 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
1024 T = VD->getType();
1025 else
1026 // If we have no clue what we're calling, assume the worst.
1027 return CT_Can;
1028
1029 const FunctionProtoType *FT;
1030 if ((FT = T->getAs<FunctionProtoType>())) {
1031 } else if (const PointerType *PT = T->getAs<PointerType>())
1032 FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1033 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1034 FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1035 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1036 FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1037 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1038 FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1039
1040 if (!FT)
1041 return CT_Can;
1042
1043 if (Loc.isValid() || (Loc.isInvalid() && E))
1044 FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT);
1045 if (!FT)
1046 return CT_Can;
1047
1048 return FT->canThrow();
1049 }
1050
canVarDeclThrow(Sema & Self,const VarDecl * VD)1051 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) {
1052 CanThrowResult CT = CT_Cannot;
1053
1054 // Initialization might throw.
1055 if (!VD->isUsableInConstantExpressions(Self.Context))
1056 if (const Expr *Init = VD->getInit())
1057 CT = mergeCanThrow(CT, Self.canThrow(Init));
1058
1059 // Destructor might throw.
1060 if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) {
1061 if (auto *RD =
1062 VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
1063 if (auto *Dtor = RD->getDestructor()) {
1064 CT = mergeCanThrow(
1065 CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation()));
1066 }
1067 }
1068 }
1069
1070 // If this is a decomposition declaration, bindings might throw.
1071 if (auto *DD = dyn_cast<DecompositionDecl>(VD))
1072 for (auto *B : DD->bindings())
1073 if (auto *HD = B->getHoldingVar())
1074 CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD));
1075
1076 return CT;
1077 }
1078
canDynamicCastThrow(const CXXDynamicCastExpr * DC)1079 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1080 if (DC->isTypeDependent())
1081 return CT_Dependent;
1082
1083 if (!DC->getTypeAsWritten()->isReferenceType())
1084 return CT_Cannot;
1085
1086 if (DC->getSubExpr()->isTypeDependent())
1087 return CT_Dependent;
1088
1089 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
1090 }
1091
canTypeidThrow(Sema & S,const CXXTypeidExpr * DC)1092 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
1093 // A typeid of a type is a constant and does not throw.
1094 if (DC->isTypeOperand())
1095 return CT_Cannot;
1096
1097 if (DC->isValueDependent())
1098 return CT_Dependent;
1099
1100 // If this operand is not evaluated it cannot possibly throw.
1101 if (!DC->isPotentiallyEvaluated())
1102 return CT_Cannot;
1103
1104 // Can throw std::bad_typeid if a nullptr is dereferenced.
1105 if (DC->hasNullCheck())
1106 return CT_Can;
1107
1108 return S.canThrow(DC->getExprOperand());
1109 }
1110
canThrow(const Stmt * S)1111 CanThrowResult Sema::canThrow(const Stmt *S) {
1112 // C++ [expr.unary.noexcept]p3:
1113 // [Can throw] if in a potentially-evaluated context the expression would
1114 // contain:
1115 switch (S->getStmtClass()) {
1116 case Expr::ConstantExprClass:
1117 return canThrow(cast<ConstantExpr>(S)->getSubExpr());
1118
1119 case Expr::CXXThrowExprClass:
1120 // - a potentially evaluated throw-expression
1121 return CT_Can;
1122
1123 case Expr::CXXDynamicCastExprClass: {
1124 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1125 // where T is a reference type, that requires a run-time check
1126 auto *CE = cast<CXXDynamicCastExpr>(S);
1127 // FIXME: Properly determine whether a variably-modified type can throw.
1128 if (CE->getType()->isVariablyModifiedType())
1129 return CT_Can;
1130 CanThrowResult CT = canDynamicCastThrow(CE);
1131 if (CT == CT_Can)
1132 return CT;
1133 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1134 }
1135
1136 case Expr::CXXTypeidExprClass:
1137 // - a potentially evaluated typeid expression applied to a (possibly
1138 // parenthesized) built-in unary * operator applied to a pointer to a
1139 // polymorphic class type
1140 return canTypeidThrow(*this, cast<CXXTypeidExpr>(S));
1141
1142 // - a potentially evaluated call to a function, member function, function
1143 // pointer, or member function pointer that does not have a non-throwing
1144 // exception-specification
1145 case Expr::CallExprClass:
1146 case Expr::CXXMemberCallExprClass:
1147 case Expr::CXXOperatorCallExprClass:
1148 case Expr::UserDefinedLiteralClass: {
1149 const CallExpr *CE = cast<CallExpr>(S);
1150 CanThrowResult CT;
1151 if (CE->isTypeDependent())
1152 CT = CT_Dependent;
1153 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
1154 CT = CT_Cannot;
1155 else
1156 CT = canCalleeThrow(*this, CE, CE->getCalleeDecl());
1157 if (CT == CT_Can)
1158 return CT;
1159 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1160 }
1161
1162 case Expr::CXXConstructExprClass:
1163 case Expr::CXXTemporaryObjectExprClass: {
1164 auto *CE = cast<CXXConstructExpr>(S);
1165 // FIXME: Properly determine whether a variably-modified type can throw.
1166 if (CE->getType()->isVariablyModifiedType())
1167 return CT_Can;
1168 CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor());
1169 if (CT == CT_Can)
1170 return CT;
1171 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1172 }
1173
1174 case Expr::CXXInheritedCtorInitExprClass: {
1175 auto *ICIE = cast<CXXInheritedCtorInitExpr>(S);
1176 return canCalleeThrow(*this, ICIE, ICIE->getConstructor());
1177 }
1178
1179 case Expr::LambdaExprClass: {
1180 const LambdaExpr *Lambda = cast<LambdaExpr>(S);
1181 CanThrowResult CT = CT_Cannot;
1182 for (LambdaExpr::const_capture_init_iterator
1183 Cap = Lambda->capture_init_begin(),
1184 CapEnd = Lambda->capture_init_end();
1185 Cap != CapEnd; ++Cap)
1186 CT = mergeCanThrow(CT, canThrow(*Cap));
1187 return CT;
1188 }
1189
1190 case Expr::CXXNewExprClass: {
1191 auto *NE = cast<CXXNewExpr>(S);
1192 CanThrowResult CT;
1193 if (NE->isTypeDependent())
1194 CT = CT_Dependent;
1195 else
1196 CT = canCalleeThrow(*this, NE, NE->getOperatorNew());
1197 if (CT == CT_Can)
1198 return CT;
1199 return mergeCanThrow(CT, canSubStmtsThrow(*this, NE));
1200 }
1201
1202 case Expr::CXXDeleteExprClass: {
1203 auto *DE = cast<CXXDeleteExpr>(S);
1204 CanThrowResult CT;
1205 QualType DTy = DE->getDestroyedType();
1206 if (DTy.isNull() || DTy->isDependentType()) {
1207 CT = CT_Dependent;
1208 } else {
1209 CT = canCalleeThrow(*this, DE, DE->getOperatorDelete());
1210 if (const RecordType *RT = DTy->getAs<RecordType>()) {
1211 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1212 const CXXDestructorDecl *DD = RD->getDestructor();
1213 if (DD)
1214 CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD));
1215 }
1216 if (CT == CT_Can)
1217 return CT;
1218 }
1219 return mergeCanThrow(CT, canSubStmtsThrow(*this, DE));
1220 }
1221
1222 case Expr::CXXBindTemporaryExprClass: {
1223 auto *BTE = cast<CXXBindTemporaryExpr>(S);
1224 // The bound temporary has to be destroyed again, which might throw.
1225 CanThrowResult CT =
1226 canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor());
1227 if (CT == CT_Can)
1228 return CT;
1229 return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE));
1230 }
1231
1232 case Expr::PseudoObjectExprClass: {
1233 auto *POE = cast<PseudoObjectExpr>(S);
1234 CanThrowResult CT = CT_Cannot;
1235 for (const Expr *E : POE->semantics()) {
1236 CT = mergeCanThrow(CT, canThrow(E));
1237 if (CT == CT_Can)
1238 break;
1239 }
1240 return CT;
1241 }
1242
1243 // ObjC message sends are like function calls, but never have exception
1244 // specs.
1245 case Expr::ObjCMessageExprClass:
1246 case Expr::ObjCPropertyRefExprClass:
1247 case Expr::ObjCSubscriptRefExprClass:
1248 return CT_Can;
1249
1250 // All the ObjC literals that are implemented as calls are
1251 // potentially throwing unless we decide to close off that
1252 // possibility.
1253 case Expr::ObjCArrayLiteralClass:
1254 case Expr::ObjCDictionaryLiteralClass:
1255 case Expr::ObjCBoxedExprClass:
1256 return CT_Can;
1257
1258 // Many other things have subexpressions, so we have to test those.
1259 // Some are simple:
1260 case Expr::CoawaitExprClass:
1261 case Expr::ConditionalOperatorClass:
1262 case Expr::CoyieldExprClass:
1263 case Expr::CXXRewrittenBinaryOperatorClass:
1264 case Expr::CXXStdInitializerListExprClass:
1265 case Expr::DesignatedInitExprClass:
1266 case Expr::DesignatedInitUpdateExprClass:
1267 case Expr::ExprWithCleanupsClass:
1268 case Expr::ExtVectorElementExprClass:
1269 case Expr::InitListExprClass:
1270 case Expr::ArrayInitLoopExprClass:
1271 case Expr::MemberExprClass:
1272 case Expr::ObjCIsaExprClass:
1273 case Expr::ObjCIvarRefExprClass:
1274 case Expr::ParenExprClass:
1275 case Expr::ParenListExprClass:
1276 case Expr::ShuffleVectorExprClass:
1277 case Expr::StmtExprClass:
1278 case Expr::ConvertVectorExprClass:
1279 case Expr::VAArgExprClass:
1280 case Expr::CXXParenListInitExprClass:
1281 return canSubStmtsThrow(*this, S);
1282
1283 case Expr::CompoundLiteralExprClass:
1284 case Expr::CXXConstCastExprClass:
1285 case Expr::CXXAddrspaceCastExprClass:
1286 case Expr::CXXReinterpretCastExprClass:
1287 case Expr::BuiltinBitCastExprClass:
1288 // FIXME: Properly determine whether a variably-modified type can throw.
1289 if (cast<Expr>(S)->getType()->isVariablyModifiedType())
1290 return CT_Can;
1291 return canSubStmtsThrow(*this, S);
1292
1293 // Some might be dependent for other reasons.
1294 case Expr::ArraySubscriptExprClass:
1295 case Expr::MatrixSubscriptExprClass:
1296 case Expr::ArraySectionExprClass:
1297 case Expr::OMPArrayShapingExprClass:
1298 case Expr::OMPIteratorExprClass:
1299 case Expr::BinaryOperatorClass:
1300 case Expr::DependentCoawaitExprClass:
1301 case Expr::CompoundAssignOperatorClass:
1302 case Expr::CStyleCastExprClass:
1303 case Expr::CXXStaticCastExprClass:
1304 case Expr::CXXFunctionalCastExprClass:
1305 case Expr::ImplicitCastExprClass:
1306 case Expr::MaterializeTemporaryExprClass:
1307 case Expr::UnaryOperatorClass: {
1308 // FIXME: Properly determine whether a variably-modified type can throw.
1309 if (auto *CE = dyn_cast<CastExpr>(S))
1310 if (CE->getType()->isVariablyModifiedType())
1311 return CT_Can;
1312 CanThrowResult CT =
1313 cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot;
1314 return mergeCanThrow(CT, canSubStmtsThrow(*this, S));
1315 }
1316
1317 case Expr::CXXDefaultArgExprClass:
1318 return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr());
1319
1320 case Expr::CXXDefaultInitExprClass:
1321 return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr());
1322
1323 case Expr::ChooseExprClass: {
1324 auto *CE = cast<ChooseExpr>(S);
1325 if (CE->isTypeDependent() || CE->isValueDependent())
1326 return CT_Dependent;
1327 return canThrow(CE->getChosenSubExpr());
1328 }
1329
1330 case Expr::GenericSelectionExprClass:
1331 if (cast<GenericSelectionExpr>(S)->isResultDependent())
1332 return CT_Dependent;
1333 return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr());
1334
1335 // Some expressions are always dependent.
1336 case Expr::CXXDependentScopeMemberExprClass:
1337 case Expr::CXXUnresolvedConstructExprClass:
1338 case Expr::DependentScopeDeclRefExprClass:
1339 case Expr::CXXFoldExprClass:
1340 case Expr::RecoveryExprClass:
1341 return CT_Dependent;
1342
1343 case Expr::AsTypeExprClass:
1344 case Expr::BinaryConditionalOperatorClass:
1345 case Expr::BlockExprClass:
1346 case Expr::CUDAKernelCallExprClass:
1347 case Expr::DeclRefExprClass:
1348 case Expr::ObjCBridgedCastExprClass:
1349 case Expr::ObjCIndirectCopyRestoreExprClass:
1350 case Expr::ObjCProtocolExprClass:
1351 case Expr::ObjCSelectorExprClass:
1352 case Expr::ObjCAvailabilityCheckExprClass:
1353 case Expr::OffsetOfExprClass:
1354 case Expr::PackExpansionExprClass:
1355 case Expr::SubstNonTypeTemplateParmExprClass:
1356 case Expr::SubstNonTypeTemplateParmPackExprClass:
1357 case Expr::FunctionParmPackExprClass:
1358 case Expr::UnaryExprOrTypeTraitExprClass:
1359 case Expr::UnresolvedLookupExprClass:
1360 case Expr::UnresolvedMemberExprClass:
1361 case Expr::TypoExprClass:
1362 // FIXME: Many of the above can throw.
1363 return CT_Cannot;
1364
1365 case Expr::AddrLabelExprClass:
1366 case Expr::ArrayTypeTraitExprClass:
1367 case Expr::AtomicExprClass:
1368 case Expr::TypeTraitExprClass:
1369 case Expr::CXXBoolLiteralExprClass:
1370 case Expr::CXXNoexceptExprClass:
1371 case Expr::CXXNullPtrLiteralExprClass:
1372 case Expr::CXXPseudoDestructorExprClass:
1373 case Expr::CXXScalarValueInitExprClass:
1374 case Expr::CXXThisExprClass:
1375 case Expr::CXXUuidofExprClass:
1376 case Expr::CharacterLiteralClass:
1377 case Expr::ExpressionTraitExprClass:
1378 case Expr::FloatingLiteralClass:
1379 case Expr::GNUNullExprClass:
1380 case Expr::ImaginaryLiteralClass:
1381 case Expr::ImplicitValueInitExprClass:
1382 case Expr::IntegerLiteralClass:
1383 case Expr::FixedPointLiteralClass:
1384 case Expr::ArrayInitIndexExprClass:
1385 case Expr::NoInitExprClass:
1386 case Expr::ObjCEncodeExprClass:
1387 case Expr::ObjCStringLiteralClass:
1388 case Expr::ObjCBoolLiteralExprClass:
1389 case Expr::OpaqueValueExprClass:
1390 case Expr::PredefinedExprClass:
1391 case Expr::SizeOfPackExprClass:
1392 case Expr::PackIndexingExprClass:
1393 case Expr::StringLiteralClass:
1394 case Expr::SourceLocExprClass:
1395 case Expr::EmbedExprClass:
1396 case Expr::ConceptSpecializationExprClass:
1397 case Expr::RequiresExprClass:
1398 // These expressions can never throw.
1399 return CT_Cannot;
1400
1401 case Expr::MSPropertyRefExprClass:
1402 case Expr::MSPropertySubscriptExprClass:
1403 llvm_unreachable("Invalid class for expression");
1404
1405 // Most statements can throw if any substatement can throw.
1406 case Stmt::OpenACCComputeConstructClass:
1407 case Stmt::OpenACCLoopConstructClass:
1408 case Stmt::AttributedStmtClass:
1409 case Stmt::BreakStmtClass:
1410 case Stmt::CapturedStmtClass:
1411 case Stmt::CaseStmtClass:
1412 case Stmt::CompoundStmtClass:
1413 case Stmt::ContinueStmtClass:
1414 case Stmt::CoreturnStmtClass:
1415 case Stmt::CoroutineBodyStmtClass:
1416 case Stmt::CXXCatchStmtClass:
1417 case Stmt::CXXForRangeStmtClass:
1418 case Stmt::DefaultStmtClass:
1419 case Stmt::DoStmtClass:
1420 case Stmt::ForStmtClass:
1421 case Stmt::GCCAsmStmtClass:
1422 case Stmt::GotoStmtClass:
1423 case Stmt::IndirectGotoStmtClass:
1424 case Stmt::LabelStmtClass:
1425 case Stmt::MSAsmStmtClass:
1426 case Stmt::MSDependentExistsStmtClass:
1427 case Stmt::NullStmtClass:
1428 case Stmt::ObjCAtCatchStmtClass:
1429 case Stmt::ObjCAtFinallyStmtClass:
1430 case Stmt::ObjCAtSynchronizedStmtClass:
1431 case Stmt::ObjCAutoreleasePoolStmtClass:
1432 case Stmt::ObjCForCollectionStmtClass:
1433 case Stmt::OMPAtomicDirectiveClass:
1434 case Stmt::OMPBarrierDirectiveClass:
1435 case Stmt::OMPCancelDirectiveClass:
1436 case Stmt::OMPCancellationPointDirectiveClass:
1437 case Stmt::OMPCriticalDirectiveClass:
1438 case Stmt::OMPDistributeDirectiveClass:
1439 case Stmt::OMPDistributeParallelForDirectiveClass:
1440 case Stmt::OMPDistributeParallelForSimdDirectiveClass:
1441 case Stmt::OMPDistributeSimdDirectiveClass:
1442 case Stmt::OMPFlushDirectiveClass:
1443 case Stmt::OMPDepobjDirectiveClass:
1444 case Stmt::OMPScanDirectiveClass:
1445 case Stmt::OMPForDirectiveClass:
1446 case Stmt::OMPForSimdDirectiveClass:
1447 case Stmt::OMPMasterDirectiveClass:
1448 case Stmt::OMPMasterTaskLoopDirectiveClass:
1449 case Stmt::OMPMaskedTaskLoopDirectiveClass:
1450 case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
1451 case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
1452 case Stmt::OMPOrderedDirectiveClass:
1453 case Stmt::OMPCanonicalLoopClass:
1454 case Stmt::OMPParallelDirectiveClass:
1455 case Stmt::OMPParallelForDirectiveClass:
1456 case Stmt::OMPParallelForSimdDirectiveClass:
1457 case Stmt::OMPParallelMasterDirectiveClass:
1458 case Stmt::OMPParallelMaskedDirectiveClass:
1459 case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
1460 case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
1461 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
1462 case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
1463 case Stmt::OMPParallelSectionsDirectiveClass:
1464 case Stmt::OMPSectionDirectiveClass:
1465 case Stmt::OMPSectionsDirectiveClass:
1466 case Stmt::OMPSimdDirectiveClass:
1467 case Stmt::OMPTileDirectiveClass:
1468 case Stmt::OMPUnrollDirectiveClass:
1469 case Stmt::OMPReverseDirectiveClass:
1470 case Stmt::OMPInterchangeDirectiveClass:
1471 case Stmt::OMPSingleDirectiveClass:
1472 case Stmt::OMPTargetDataDirectiveClass:
1473 case Stmt::OMPTargetDirectiveClass:
1474 case Stmt::OMPTargetEnterDataDirectiveClass:
1475 case Stmt::OMPTargetExitDataDirectiveClass:
1476 case Stmt::OMPTargetParallelDirectiveClass:
1477 case Stmt::OMPTargetParallelForDirectiveClass:
1478 case Stmt::OMPTargetParallelForSimdDirectiveClass:
1479 case Stmt::OMPTargetSimdDirectiveClass:
1480 case Stmt::OMPTargetTeamsDirectiveClass:
1481 case Stmt::OMPTargetTeamsDistributeDirectiveClass:
1482 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
1483 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
1484 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
1485 case Stmt::OMPTargetUpdateDirectiveClass:
1486 case Stmt::OMPScopeDirectiveClass:
1487 case Stmt::OMPTaskDirectiveClass:
1488 case Stmt::OMPTaskgroupDirectiveClass:
1489 case Stmt::OMPTaskLoopDirectiveClass:
1490 case Stmt::OMPTaskLoopSimdDirectiveClass:
1491 case Stmt::OMPTaskwaitDirectiveClass:
1492 case Stmt::OMPTaskyieldDirectiveClass:
1493 case Stmt::OMPErrorDirectiveClass:
1494 case Stmt::OMPTeamsDirectiveClass:
1495 case Stmt::OMPTeamsDistributeDirectiveClass:
1496 case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
1497 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
1498 case Stmt::OMPTeamsDistributeSimdDirectiveClass:
1499 case Stmt::OMPInteropDirectiveClass:
1500 case Stmt::OMPDispatchDirectiveClass:
1501 case Stmt::OMPMaskedDirectiveClass:
1502 case Stmt::OMPMetaDirectiveClass:
1503 case Stmt::OMPGenericLoopDirectiveClass:
1504 case Stmt::OMPTeamsGenericLoopDirectiveClass:
1505 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
1506 case Stmt::OMPParallelGenericLoopDirectiveClass:
1507 case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
1508 case Stmt::ReturnStmtClass:
1509 case Stmt::SEHExceptStmtClass:
1510 case Stmt::SEHFinallyStmtClass:
1511 case Stmt::SEHLeaveStmtClass:
1512 case Stmt::SEHTryStmtClass:
1513 case Stmt::SwitchStmtClass:
1514 case Stmt::WhileStmtClass:
1515 return canSubStmtsThrow(*this, S);
1516
1517 case Stmt::DeclStmtClass: {
1518 CanThrowResult CT = CT_Cannot;
1519 for (const Decl *D : cast<DeclStmt>(S)->decls()) {
1520 if (auto *VD = dyn_cast<VarDecl>(D))
1521 CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD));
1522
1523 // FIXME: Properly determine whether a variably-modified type can throw.
1524 if (auto *TND = dyn_cast<TypedefNameDecl>(D))
1525 if (TND->getUnderlyingType()->isVariablyModifiedType())
1526 return CT_Can;
1527 if (auto *VD = dyn_cast<ValueDecl>(D))
1528 if (VD->getType()->isVariablyModifiedType())
1529 return CT_Can;
1530 }
1531 return CT;
1532 }
1533
1534 case Stmt::IfStmtClass: {
1535 auto *IS = cast<IfStmt>(S);
1536 CanThrowResult CT = CT_Cannot;
1537 if (const Stmt *Init = IS->getInit())
1538 CT = mergeCanThrow(CT, canThrow(Init));
1539 if (const Stmt *CondDS = IS->getConditionVariableDeclStmt())
1540 CT = mergeCanThrow(CT, canThrow(CondDS));
1541 CT = mergeCanThrow(CT, canThrow(IS->getCond()));
1542
1543 // For 'if constexpr', consider only the non-discarded case.
1544 // FIXME: We should add a DiscardedStmt marker to the AST.
1545 if (std::optional<const Stmt *> Case = IS->getNondiscardedCase(Context))
1546 return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT;
1547
1548 CanThrowResult Then = canThrow(IS->getThen());
1549 CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot;
1550 if (Then == Else)
1551 return mergeCanThrow(CT, Then);
1552
1553 // For a dependent 'if constexpr', the result is dependent if it depends on
1554 // the value of the condition.
1555 return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent
1556 : mergeCanThrow(Then, Else));
1557 }
1558
1559 case Stmt::CXXTryStmtClass: {
1560 auto *TS = cast<CXXTryStmt>(S);
1561 // try /*...*/ catch (...) { H } can throw only if H can throw.
1562 // Any other try-catch can throw if any substatement can throw.
1563 const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1);
1564 if (!FinalHandler->getExceptionDecl())
1565 return canThrow(FinalHandler->getHandlerBlock());
1566 return canSubStmtsThrow(*this, S);
1567 }
1568
1569 case Stmt::ObjCAtThrowStmtClass:
1570 return CT_Can;
1571
1572 case Stmt::ObjCAtTryStmtClass: {
1573 auto *TS = cast<ObjCAtTryStmt>(S);
1574
1575 // @catch(...) need not be last in Objective-C. Walk backwards until we
1576 // see one or hit the @try.
1577 CanThrowResult CT = CT_Cannot;
1578 if (const Stmt *Finally = TS->getFinallyStmt())
1579 CT = mergeCanThrow(CT, canThrow(Finally));
1580 for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) {
1581 const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1);
1582 CT = mergeCanThrow(CT, canThrow(Catch));
1583 // If we reach a @catch(...), no earlier exceptions can escape.
1584 if (Catch->hasEllipsis())
1585 return CT;
1586 }
1587
1588 // Didn't find an @catch(...). Exceptions from the @try body can escape.
1589 return mergeCanThrow(CT, canThrow(TS->getTryBody()));
1590 }
1591
1592 case Stmt::SYCLUniqueStableNameExprClass:
1593 return CT_Cannot;
1594 case Stmt::NoStmtClass:
1595 llvm_unreachable("Invalid class for statement");
1596 }
1597 llvm_unreachable("Bogus StmtClass");
1598 }
1599
1600 } // end namespace clang
1601