xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15 
16 #include "llvm/ADT/IntEqClasses.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/CodeGen/RegisterPressure.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/ScheduleDFS.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/MC/LaneBitmask.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <iterator>
57 #include <utility>
58 #include <vector>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "machine-scheduler"
63 
64 static cl::opt<bool>
65     EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
66                     cl::desc("Enable use of AA during MI DAG construction"));
67 
68 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
69     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
70 
71 // Note: the two options below might be used in tuning compile time vs
72 // output quality. Setting HugeRegion so large that it will never be
73 // reached means best-effort, but may be slow.
74 
75 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
76 // together hold this many SUs, a reduction of maps will be done.
77 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
78     cl::init(1000), cl::desc("The limit to use while constructing the DAG "
79                              "prior to scheduling, at which point a trade-off "
80                              "is made to avoid excessive compile time."));
81 
82 static cl::opt<unsigned> ReductionSize(
83     "dag-maps-reduction-size", cl::Hidden,
84     cl::desc("A huge scheduling region will have maps reduced by this many "
85              "nodes at a time. Defaults to HugeRegion / 2."));
86 
87 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
88 static cl::opt<bool> SchedPrintCycles(
89     "sched-print-cycles", cl::Hidden, cl::init(false),
90     cl::desc("Report top/bottom cycles when dumping SUnit instances"));
91 #endif
92 
getReductionSize()93 static unsigned getReductionSize() {
94   // Always reduce a huge region with half of the elements, except
95   // when user sets this number explicitly.
96   if (ReductionSize.getNumOccurrences() == 0)
97     return HugeRegion / 2;
98   return ReductionSize;
99 }
100 
dumpSUList(const ScheduleDAGInstrs::SUList & L)101 static void dumpSUList(const ScheduleDAGInstrs::SUList &L) {
102 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
103   dbgs() << "{ ";
104   for (const SUnit *SU : L) {
105     dbgs() << "SU(" << SU->NodeNum << ")";
106     if (SU != L.back())
107       dbgs() << ", ";
108   }
109   dbgs() << "}\n";
110 #endif
111 }
112 
ScheduleDAGInstrs(MachineFunction & mf,const MachineLoopInfo * mli,bool RemoveKillFlags)113 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
114                                      const MachineLoopInfo *mli,
115                                      bool RemoveKillFlags)
116     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
117       RemoveKillFlags(RemoveKillFlags),
118       UnknownValue(UndefValue::get(
119                              Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
120   DbgValues.clear();
121 
122   const TargetSubtargetInfo &ST = mf.getSubtarget();
123   SchedModel.init(&ST);
124 }
125 
126 /// If this machine instr has memory reference information and it can be
127 /// tracked to a normal reference to a known object, return the Value
128 /// for that object. This function returns false the memory location is
129 /// unknown or may alias anything.
getUnderlyingObjectsForInstr(const MachineInstr * MI,const MachineFrameInfo & MFI,UnderlyingObjectsVector & Objects,const DataLayout & DL)130 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
131                                          const MachineFrameInfo &MFI,
132                                          UnderlyingObjectsVector &Objects,
133                                          const DataLayout &DL) {
134   auto AllMMOsOkay = [&]() {
135     for (const MachineMemOperand *MMO : MI->memoperands()) {
136       // TODO: Figure out whether isAtomic is really necessary (see D57601).
137       if (MMO->isVolatile() || MMO->isAtomic())
138         return false;
139 
140       if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
141         // Function that contain tail calls don't have unique PseudoSourceValue
142         // objects. Two PseudoSourceValues might refer to the same or
143         // overlapping locations. The client code calling this function assumes
144         // this is not the case. So return a conservative answer of no known
145         // object.
146         if (MFI.hasTailCall())
147           return false;
148 
149         // For now, ignore PseudoSourceValues which may alias LLVM IR values
150         // because the code that uses this function has no way to cope with
151         // such aliases.
152         if (PSV->isAliased(&MFI))
153           return false;
154 
155         bool MayAlias = PSV->mayAlias(&MFI);
156         Objects.emplace_back(PSV, MayAlias);
157       } else if (const Value *V = MMO->getValue()) {
158         SmallVector<Value *, 4> Objs;
159         if (!getUnderlyingObjectsForCodeGen(V, Objs))
160           return false;
161 
162         for (Value *V : Objs) {
163           assert(isIdentifiedObject(V));
164           Objects.emplace_back(V, true);
165         }
166       } else
167         return false;
168     }
169     return true;
170   };
171 
172   if (!AllMMOsOkay()) {
173     Objects.clear();
174     return false;
175   }
176 
177   return true;
178 }
179 
startBlock(MachineBasicBlock * bb)180 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
181   BB = bb;
182 }
183 
finishBlock()184 void ScheduleDAGInstrs::finishBlock() {
185   // Subclasses should no longer refer to the old block.
186   BB = nullptr;
187 }
188 
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)189 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
190                                     MachineBasicBlock::iterator begin,
191                                     MachineBasicBlock::iterator end,
192                                     unsigned regioninstrs) {
193   assert(bb == BB && "startBlock should set BB");
194   RegionBegin = begin;
195   RegionEnd = end;
196   NumRegionInstrs = regioninstrs;
197 }
198 
exitRegion()199 void ScheduleDAGInstrs::exitRegion() {
200   // Nothing to do.
201 }
202 
addSchedBarrierDeps()203 void ScheduleDAGInstrs::addSchedBarrierDeps() {
204   MachineInstr *ExitMI =
205       RegionEnd != BB->end()
206           ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin)
207           : nullptr;
208   ExitSU.setInstr(ExitMI);
209   // Add dependencies on the defs and uses of the instruction.
210   if (ExitMI) {
211     for (const MachineOperand &MO : ExitMI->all_uses()) {
212       Register Reg = MO.getReg();
213       if (Reg.isPhysical()) {
214         for (MCRegUnit Unit : TRI->regunits(Reg))
215           Uses.insert(PhysRegSUOper(&ExitSU, -1, Unit));
216       } else if (Reg.isVirtual() && MO.readsReg()) {
217         addVRegUseDeps(&ExitSU, MO.getOperandNo());
218       }
219     }
220   }
221   if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
222     // For others, e.g. fallthrough, conditional branch, assume the exit
223     // uses all the registers that are livein to the successor blocks.
224     for (const MachineBasicBlock *Succ : BB->successors()) {
225       for (const auto &LI : Succ->liveins()) {
226         for (MCRegUnitMaskIterator U(LI.PhysReg, TRI); U.isValid(); ++U) {
227           auto [Unit, Mask] = *U;
228           if ((Mask & LI.LaneMask).any() && !Uses.contains(Unit))
229             Uses.insert(PhysRegSUOper(&ExitSU, -1, Unit));
230         }
231       }
232     }
233   }
234 }
235 
236 /// MO is an operand of SU's instruction that defines a physical register. Adds
237 /// data dependencies from SU to any uses of the physical register.
addPhysRegDataDeps(SUnit * SU,unsigned OperIdx)238 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
239   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
240   assert(MO.isDef() && "expect physreg def");
241   Register Reg = MO.getReg();
242 
243   // Ask the target if address-backscheduling is desirable, and if so how much.
244   const TargetSubtargetInfo &ST = MF.getSubtarget();
245 
246   // Only use any non-zero latency for real defs/uses, in contrast to
247   // "fake" operands added by regalloc.
248   const MCInstrDesc &DefMIDesc = SU->getInstr()->getDesc();
249   bool ImplicitPseudoDef = (OperIdx >= DefMIDesc.getNumOperands() &&
250                             !DefMIDesc.hasImplicitDefOfPhysReg(Reg));
251   for (MCRegUnit Unit : TRI->regunits(Reg)) {
252     for (RegUnit2SUnitsMap::iterator I = Uses.find(Unit); I != Uses.end();
253          ++I) {
254       SUnit *UseSU = I->SU;
255       if (UseSU == SU)
256         continue;
257 
258       // Adjust the dependence latency using operand def/use information,
259       // then allow the target to perform its own adjustments.
260       MachineInstr *UseInstr = nullptr;
261       int UseOpIdx = I->OpIdx;
262       bool ImplicitPseudoUse = false;
263       SDep Dep;
264       if (UseOpIdx < 0) {
265         Dep = SDep(SU, SDep::Artificial);
266       } else {
267         // Set the hasPhysRegDefs only for physreg defs that have a use within
268         // the scheduling region.
269         SU->hasPhysRegDefs = true;
270 
271         UseInstr = UseSU->getInstr();
272         Register UseReg = UseInstr->getOperand(UseOpIdx).getReg();
273         const MCInstrDesc &UseMIDesc = UseInstr->getDesc();
274         ImplicitPseudoUse = UseOpIdx >= ((int)UseMIDesc.getNumOperands()) &&
275                             !UseMIDesc.hasImplicitUseOfPhysReg(UseReg);
276 
277         Dep = SDep(SU, SDep::Data, UseReg);
278       }
279       if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
280         Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
281                                                         UseInstr, UseOpIdx));
282       } else {
283         Dep.setLatency(0);
284       }
285       ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOpIdx, Dep, &SchedModel);
286       UseSU->addPred(Dep);
287     }
288   }
289 }
290 
291 /// Adds register dependencies (data, anti, and output) from this SUnit
292 /// to following instructions in the same scheduling region that depend the
293 /// physical register referenced at OperIdx.
addPhysRegDeps(SUnit * SU,unsigned OperIdx)294 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
295   MachineInstr *MI = SU->getInstr();
296   MachineOperand &MO = MI->getOperand(OperIdx);
297   Register Reg = MO.getReg();
298   // We do not need to track any dependencies for constant registers.
299   if (MRI.isConstantPhysReg(Reg))
300     return;
301 
302   const TargetSubtargetInfo &ST = MF.getSubtarget();
303 
304   // Optionally add output and anti dependencies. For anti
305   // dependencies we use a latency of 0 because for a multi-issue
306   // target we want to allow the defining instruction to issue
307   // in the same cycle as the using instruction.
308   // TODO: Using a latency of 1 here for output dependencies assumes
309   //       there's no cost for reusing registers.
310   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
311   for (MCRegUnit Unit : TRI->regunits(Reg)) {
312     for (RegUnit2SUnitsMap::iterator I = Defs.find(Unit); I != Defs.end();
313          ++I) {
314       SUnit *DefSU = I->SU;
315       if (DefSU == &ExitSU)
316         continue;
317       MachineInstr *DefInstr = DefSU->getInstr();
318       MachineOperand &DefMO = DefInstr->getOperand(I->OpIdx);
319       if (DefSU != SU &&
320           (Kind != SDep::Output || !MO.isDead() || !DefMO.isDead())) {
321         SDep Dep(SU, Kind, DefMO.getReg());
322         if (Kind != SDep::Anti) {
323           Dep.setLatency(
324               SchedModel.computeOutputLatency(MI, OperIdx, DefInstr));
325         }
326         ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep,
327                                  &SchedModel);
328         DefSU->addPred(Dep);
329       }
330     }
331   }
332 
333   if (MO.isUse()) {
334     SU->hasPhysRegUses = true;
335     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
336     // retrieve the existing SUnits list for this register's uses.
337     // Push this SUnit on the use list.
338     for (MCRegUnit Unit : TRI->regunits(Reg))
339       Uses.insert(PhysRegSUOper(SU, OperIdx, Unit));
340     if (RemoveKillFlags)
341       MO.setIsKill(false);
342   } else {
343     addPhysRegDataDeps(SU, OperIdx);
344 
345     // Clear previous uses and defs of this register and its subregisters.
346     for (MCRegUnit Unit : TRI->regunits(Reg)) {
347       Uses.eraseAll(Unit);
348       if (!MO.isDead())
349         Defs.eraseAll(Unit);
350     }
351 
352     if (MO.isDead() && SU->isCall) {
353       // Calls will not be reordered because of chain dependencies (see
354       // below). Since call operands are dead, calls may continue to be added
355       // to the DefList making dependence checking quadratic in the size of
356       // the block. Instead, we leave only one call at the back of the
357       // DefList.
358       for (MCRegUnit Unit : TRI->regunits(Reg)) {
359         RegUnit2SUnitsMap::RangePair P = Defs.equal_range(Unit);
360         RegUnit2SUnitsMap::iterator B = P.first;
361         RegUnit2SUnitsMap::iterator I = P.second;
362         for (bool isBegin = I == B; !isBegin; /* empty */) {
363           isBegin = (--I) == B;
364           if (!I->SU->isCall)
365             break;
366           I = Defs.erase(I);
367         }
368       }
369     }
370 
371     // Defs are pushed in the order they are visited and never reordered.
372     for (MCRegUnit Unit : TRI->regunits(Reg))
373       Defs.insert(PhysRegSUOper(SU, OperIdx, Unit));
374   }
375 }
376 
getLaneMaskForMO(const MachineOperand & MO) const377 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
378 {
379   Register Reg = MO.getReg();
380   // No point in tracking lanemasks if we don't have interesting subregisters.
381   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
382   if (!RC.HasDisjunctSubRegs)
383     return LaneBitmask::getAll();
384 
385   unsigned SubReg = MO.getSubReg();
386   if (SubReg == 0)
387     return RC.getLaneMask();
388   return TRI->getSubRegIndexLaneMask(SubReg);
389 }
390 
deadDefHasNoUse(const MachineOperand & MO)391 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
392   auto RegUse = CurrentVRegUses.find(MO.getReg());
393   if (RegUse == CurrentVRegUses.end())
394     return true;
395   return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
396 }
397 
398 /// Adds register output and data dependencies from this SUnit to instructions
399 /// that occur later in the same scheduling region if they read from or write to
400 /// the virtual register defined at OperIdx.
401 ///
402 /// TODO: Hoist loop induction variable increments. This has to be
403 /// reevaluated. Generally, IV scheduling should be done before coalescing.
addVRegDefDeps(SUnit * SU,unsigned OperIdx)404 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
405   MachineInstr *MI = SU->getInstr();
406   MachineOperand &MO = MI->getOperand(OperIdx);
407   Register Reg = MO.getReg();
408 
409   LaneBitmask DefLaneMask;
410   LaneBitmask KillLaneMask;
411   if (TrackLaneMasks) {
412     bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
413     DefLaneMask = getLaneMaskForMO(MO);
414     // If we have a <read-undef> flag, none of the lane values comes from an
415     // earlier instruction.
416     KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
417 
418     if (MO.getSubReg() != 0 && MO.isUndef()) {
419       // There may be other subregister defs on the same instruction of the same
420       // register in later operands. The lanes of other defs will now be live
421       // after this instruction, so these should not be treated as killed by the
422       // instruction even though they appear to be killed in this one operand.
423       for (const MachineOperand &OtherMO :
424            llvm::drop_begin(MI->operands(), OperIdx + 1))
425         if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
426           KillLaneMask &= ~getLaneMaskForMO(OtherMO);
427     }
428 
429     // Clear undef flag, we'll re-add it later once we know which subregister
430     // Def is first.
431     MO.setIsUndef(false);
432   } else {
433     DefLaneMask = LaneBitmask::getAll();
434     KillLaneMask = LaneBitmask::getAll();
435   }
436 
437   if (MO.isDead()) {
438     assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
439   } else {
440     // Add data dependence to all uses we found so far.
441     const TargetSubtargetInfo &ST = MF.getSubtarget();
442     for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
443          E = CurrentVRegUses.end(); I != E; /*empty*/) {
444       LaneBitmask LaneMask = I->LaneMask;
445       // Ignore uses of other lanes.
446       if ((LaneMask & KillLaneMask).none()) {
447         ++I;
448         continue;
449       }
450 
451       if ((LaneMask & DefLaneMask).any()) {
452         SUnit *UseSU = I->SU;
453         MachineInstr *Use = UseSU->getInstr();
454         SDep Dep(SU, SDep::Data, Reg);
455         Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
456                                                         I->OperandIndex));
457         ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep,
458                                  &SchedModel);
459         UseSU->addPred(Dep);
460       }
461 
462       LaneMask &= ~KillLaneMask;
463       // If we found a Def for all lanes of this use, remove it from the list.
464       if (LaneMask.any()) {
465         I->LaneMask = LaneMask;
466         ++I;
467       } else
468         I = CurrentVRegUses.erase(I);
469     }
470   }
471 
472   // Shortcut: Singly defined vregs do not have output/anti dependencies.
473   if (MRI.hasOneDef(Reg))
474     return;
475 
476   // Add output dependence to the next nearest defs of this vreg.
477   //
478   // Unless this definition is dead, the output dependence should be
479   // transitively redundant with antidependencies from this definition's
480   // uses. We're conservative for now until we have a way to guarantee the uses
481   // are not eliminated sometime during scheduling. The output dependence edge
482   // is also useful if output latency exceeds def-use latency.
483   LaneBitmask LaneMask = DefLaneMask;
484   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
485                                      CurrentVRegDefs.end())) {
486     // Ignore defs for other lanes.
487     if ((V2SU.LaneMask & LaneMask).none())
488       continue;
489     // Add an output dependence.
490     SUnit *DefSU = V2SU.SU;
491     // Ignore additional defs of the same lanes in one instruction. This can
492     // happen because lanemasks are shared for targets with too many
493     // subregisters. We also use some representration tricks/hacks where we
494     // add super-register defs/uses, to imply that although we only access parts
495     // of the reg we care about the full one.
496     if (DefSU == SU)
497       continue;
498     SDep Dep(SU, SDep::Output, Reg);
499     Dep.setLatency(
500       SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
501     DefSU->addPred(Dep);
502 
503     // Update current definition. This can get tricky if the def was about a
504     // bigger lanemask before. We then have to shrink it and create a new
505     // VReg2SUnit for the non-overlapping part.
506     LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
507     LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
508     V2SU.SU = SU;
509     V2SU.LaneMask = OverlapMask;
510     if (NonOverlapMask.any())
511       CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
512   }
513   // If there was no CurrentVRegDefs entry for some lanes yet, create one.
514   if (LaneMask.any())
515     CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
516 }
517 
518 /// Adds a register data dependency if the instruction that defines the
519 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
520 /// antidependency from this SUnit to instructions that occur later in the same
521 /// scheduling region if they write the virtual register.
522 ///
523 /// TODO: Handle ExitSU "uses" properly.
addVRegUseDeps(SUnit * SU,unsigned OperIdx)524 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
525   const MachineInstr *MI = SU->getInstr();
526   assert(!MI->isDebugOrPseudoInstr());
527 
528   const MachineOperand &MO = MI->getOperand(OperIdx);
529   Register Reg = MO.getReg();
530 
531   // Remember the use. Data dependencies will be added when we find the def.
532   LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
533                                         : LaneBitmask::getAll();
534   CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
535 
536   // Add antidependences to the following defs of the vreg.
537   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
538                                      CurrentVRegDefs.end())) {
539     // Ignore defs for unrelated lanes.
540     LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
541     if ((PrevDefLaneMask & LaneMask).none())
542       continue;
543     if (V2SU.SU == SU)
544       continue;
545 
546     V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
547   }
548 }
549 
550 /// Returns true if MI is an instruction we are unable to reason about
551 /// (like a call or something with unmodeled side effects).
isGlobalMemoryObject(MachineInstr * MI)552 static inline bool isGlobalMemoryObject(MachineInstr *MI) {
553   return MI->isCall() || MI->hasUnmodeledSideEffects() ||
554          (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad());
555 }
556 
addChainDependency(SUnit * SUa,SUnit * SUb,unsigned Latency)557 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
558                                             unsigned Latency) {
559   if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
560     SDep Dep(SUa, SDep::MayAliasMem);
561     Dep.setLatency(Latency);
562     SUb->addPred(Dep);
563   }
564 }
565 
566 /// Creates an SUnit for each real instruction, numbered in top-down
567 /// topological order. The instruction order A < B, implies that no edge exists
568 /// from B to A.
569 ///
570 /// Map each real instruction to its SUnit.
571 ///
572 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
573 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
574 /// instead of pointers.
575 ///
576 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
577 /// the original instruction list.
initSUnits()578 void ScheduleDAGInstrs::initSUnits() {
579   // We'll be allocating one SUnit for each real instruction in the region,
580   // which is contained within a basic block.
581   SUnits.reserve(NumRegionInstrs);
582 
583   for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
584     if (MI.isDebugOrPseudoInstr())
585       continue;
586 
587     SUnit *SU = newSUnit(&MI);
588     MISUnitMap[&MI] = SU;
589 
590     SU->isCall = MI.isCall();
591     SU->isCommutable = MI.isCommutable();
592 
593     // Assign the Latency field of SU using target-provided information.
594     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
595 
596     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
597     //
598     // Reserved resources block an instruction from issuing and stall the
599     // entire pipeline. These are identified by BufferSize=0.
600     //
601     // Unbuffered resources prevent execution of subsequent instructions that
602     // require the same resources. This is used for in-order execution pipelines
603     // within an out-of-order core. These are identified by BufferSize=1.
604     if (SchedModel.hasInstrSchedModel()) {
605       const MCSchedClassDesc *SC = getSchedClass(SU);
606       for (const MCWriteProcResEntry &PRE :
607            make_range(SchedModel.getWriteProcResBegin(SC),
608                       SchedModel.getWriteProcResEnd(SC))) {
609         switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
610         case 0:
611           SU->hasReservedResource = true;
612           break;
613         case 1:
614           SU->isUnbuffered = true;
615           break;
616         default:
617           break;
618         }
619       }
620     }
621   }
622 }
623 
624 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
625   /// Current total number of SUs in map.
626   unsigned NumNodes = 0;
627 
628   /// 1 for loads, 0 for stores. (see comment in SUList)
629   unsigned TrueMemOrderLatency;
630 
631 public:
Value2SUsMap(unsigned lat=0)632   Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
633 
634   /// To keep NumNodes up to date, insert() is used instead of
635   /// this operator w/ push_back().
operator [](const SUList & Key)636   ValueType &operator[](const SUList &Key) {
637     llvm_unreachable("Don't use. Use insert() instead."); };
638 
639   /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
640   /// reduce().
insert(SUnit * SU,ValueType V)641   void inline insert(SUnit *SU, ValueType V) {
642     MapVector::operator[](V).push_back(SU);
643     NumNodes++;
644   }
645 
646   /// Clears the list of SUs mapped to V.
clearList(ValueType V)647   void inline clearList(ValueType V) {
648     iterator Itr = find(V);
649     if (Itr != end()) {
650       assert(NumNodes >= Itr->second.size());
651       NumNodes -= Itr->second.size();
652 
653       Itr->second.clear();
654     }
655   }
656 
657   /// Clears map from all contents.
clear()658   void clear() {
659     MapVector<ValueType, SUList>::clear();
660     NumNodes = 0;
661   }
662 
size() const663   unsigned inline size() const { return NumNodes; }
664 
665   /// Counts the number of SUs in this map after a reduction.
reComputeSize()666   void reComputeSize() {
667     NumNodes = 0;
668     for (auto &I : *this)
669       NumNodes += I.second.size();
670   }
671 
getTrueMemOrderLatency() const672   unsigned inline getTrueMemOrderLatency() const {
673     return TrueMemOrderLatency;
674   }
675 
676   void dump();
677 };
678 
addChainDependencies(SUnit * SU,Value2SUsMap & Val2SUsMap)679 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
680                                              Value2SUsMap &Val2SUsMap) {
681   for (auto &I : Val2SUsMap)
682     addChainDependencies(SU, I.second,
683                          Val2SUsMap.getTrueMemOrderLatency());
684 }
685 
addChainDependencies(SUnit * SU,Value2SUsMap & Val2SUsMap,ValueType V)686 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
687                                              Value2SUsMap &Val2SUsMap,
688                                              ValueType V) {
689   Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
690   if (Itr != Val2SUsMap.end())
691     addChainDependencies(SU, Itr->second,
692                          Val2SUsMap.getTrueMemOrderLatency());
693 }
694 
addBarrierChain(Value2SUsMap & map)695 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
696   assert(BarrierChain != nullptr);
697 
698   for (auto &[V, SUs] : map) {
699     (void)V;
700     for (auto *SU : SUs)
701       SU->addPredBarrier(BarrierChain);
702   }
703   map.clear();
704 }
705 
insertBarrierChain(Value2SUsMap & map)706 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
707   assert(BarrierChain != nullptr);
708 
709   // Go through all lists of SUs.
710   for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
711     Value2SUsMap::iterator CurrItr = I++;
712     SUList &sus = CurrItr->second;
713     SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
714     for (; SUItr != SUEE; ++SUItr) {
715       // Stop on BarrierChain or any instruction above it.
716       if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
717         break;
718 
719       (*SUItr)->addPredBarrier(BarrierChain);
720     }
721 
722     // Remove also the BarrierChain from list if present.
723     if (SUItr != SUEE && *SUItr == BarrierChain)
724       SUItr++;
725 
726     // Remove all SUs that are now successors of BarrierChain.
727     if (SUItr != sus.begin())
728       sus.erase(sus.begin(), SUItr);
729   }
730 
731   // Remove all entries with empty su lists.
732   map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
733       return (mapEntry.second.empty()); });
734 
735   // Recompute the size of the map (NumNodes).
736   map.reComputeSize();
737 }
738 
buildSchedGraph(AAResults * AA,RegPressureTracker * RPTracker,PressureDiffs * PDiffs,LiveIntervals * LIS,bool TrackLaneMasks)739 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA,
740                                         RegPressureTracker *RPTracker,
741                                         PressureDiffs *PDiffs,
742                                         LiveIntervals *LIS,
743                                         bool TrackLaneMasks) {
744   const TargetSubtargetInfo &ST = MF.getSubtarget();
745   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
746                                                        : ST.useAA();
747   AAForDep = UseAA ? AA : nullptr;
748 
749   BarrierChain = nullptr;
750 
751   this->TrackLaneMasks = TrackLaneMasks;
752   MISUnitMap.clear();
753   ScheduleDAG::clearDAG();
754 
755   // Create an SUnit for each real instruction.
756   initSUnits();
757 
758   if (PDiffs)
759     PDiffs->init(SUnits.size());
760 
761   // We build scheduling units by walking a block's instruction list
762   // from bottom to top.
763 
764   // Each MIs' memory operand(s) is analyzed to a list of underlying
765   // objects. The SU is then inserted in the SUList(s) mapped from the
766   // Value(s). Each Value thus gets mapped to lists of SUs depending
767   // on it, stores and loads kept separately. Two SUs are trivially
768   // non-aliasing if they both depend on only identified Values and do
769   // not share any common Value.
770   Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
771 
772   // Certain memory accesses are known to not alias any SU in Stores
773   // or Loads, and have therefore their own 'NonAlias'
774   // domain. E.g. spill / reload instructions never alias LLVM I/R
775   // Values. It would be nice to assume that this type of memory
776   // accesses always have a proper memory operand modelling, and are
777   // therefore never unanalyzable, but this is conservatively not
778   // done.
779   Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
780 
781   // Track all instructions that may raise floating-point exceptions.
782   // These do not depend on one other (or normal loads or stores), but
783   // must not be rescheduled across global barriers.  Note that we don't
784   // really need a "map" here since we don't track those MIs by value;
785   // using the same Value2SUsMap data type here is simply a matter of
786   // convenience.
787   Value2SUsMap FPExceptions;
788 
789   // Remove any stale debug info; sometimes BuildSchedGraph is called again
790   // without emitting the info from the previous call.
791   DbgValues.clear();
792   FirstDbgValue = nullptr;
793 
794   assert(Defs.empty() && Uses.empty() &&
795          "Only BuildGraph should update Defs/Uses");
796   Defs.setUniverse(TRI->getNumRegs());
797   Uses.setUniverse(TRI->getNumRegs());
798 
799   assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
800   assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
801   unsigned NumVirtRegs = MRI.getNumVirtRegs();
802   CurrentVRegDefs.setUniverse(NumVirtRegs);
803   CurrentVRegUses.setUniverse(NumVirtRegs);
804 
805   // Model data dependencies between instructions being scheduled and the
806   // ExitSU.
807   addSchedBarrierDeps();
808 
809   // Walk the list of instructions, from bottom moving up.
810   MachineInstr *DbgMI = nullptr;
811   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
812        MII != MIE; --MII) {
813     MachineInstr &MI = *std::prev(MII);
814     if (DbgMI) {
815       DbgValues.emplace_back(DbgMI, &MI);
816       DbgMI = nullptr;
817     }
818 
819     if (MI.isDebugValue() || MI.isDebugPHI()) {
820       DbgMI = &MI;
821       continue;
822     }
823 
824     if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe())
825       continue;
826 
827     SUnit *SU = MISUnitMap[&MI];
828     assert(SU && "No SUnit mapped to this MI");
829 
830     if (RPTracker) {
831       RegisterOperands RegOpers;
832       RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
833       if (TrackLaneMasks) {
834         SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
835         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
836       }
837       if (PDiffs != nullptr)
838         PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
839 
840       if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
841         RPTracker->recedeSkipDebugValues();
842       assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
843       RPTracker->recede(RegOpers);
844     }
845 
846     assert(
847         (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
848         "Cannot schedule terminators or labels!");
849 
850     // Add register-based dependencies (data, anti, and output).
851     // For some instructions (calls, returns, inline-asm, etc.) there can
852     // be explicit uses and implicit defs, in which case the use will appear
853     // on the operand list before the def. Do two passes over the operand
854     // list to make sure that defs are processed before any uses.
855     bool HasVRegDef = false;
856     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
857       const MachineOperand &MO = MI.getOperand(j);
858       if (!MO.isReg() || !MO.isDef())
859         continue;
860       Register Reg = MO.getReg();
861       if (Reg.isPhysical()) {
862         addPhysRegDeps(SU, j);
863       } else if (Reg.isVirtual()) {
864         HasVRegDef = true;
865         addVRegDefDeps(SU, j);
866       }
867     }
868     // Now process all uses.
869     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
870       const MachineOperand &MO = MI.getOperand(j);
871       // Only look at use operands.
872       // We do not need to check for MO.readsReg() here because subsequent
873       // subregister defs will get output dependence edges and need no
874       // additional use dependencies.
875       if (!MO.isReg() || !MO.isUse())
876         continue;
877       Register Reg = MO.getReg();
878       if (Reg.isPhysical()) {
879         addPhysRegDeps(SU, j);
880       } else if (Reg.isVirtual() && MO.readsReg()) {
881         addVRegUseDeps(SU, j);
882       }
883     }
884 
885     // If we haven't seen any uses in this scheduling region, create a
886     // dependence edge to ExitSU to model the live-out latency. This is required
887     // for vreg defs with no in-region use, and prefetches with no vreg def.
888     //
889     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
890     // check currently relies on being called before adding chain deps.
891     if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
892       SDep Dep(SU, SDep::Artificial);
893       Dep.setLatency(SU->Latency - 1);
894       ExitSU.addPred(Dep);
895     }
896 
897     // Add memory dependencies (Note: isStoreToStackSlot and
898     // isLoadFromStackSLot are not usable after stack slots are lowered to
899     // actual addresses).
900 
901     // This is a barrier event that acts as a pivotal node in the DAG.
902     if (isGlobalMemoryObject(&MI)) {
903 
904       // Become the barrier chain.
905       if (BarrierChain)
906         BarrierChain->addPredBarrier(SU);
907       BarrierChain = SU;
908 
909       LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
910                         << BarrierChain->NodeNum << ").\n";);
911 
912       // Add dependencies against everything below it and clear maps.
913       addBarrierChain(Stores);
914       addBarrierChain(Loads);
915       addBarrierChain(NonAliasStores);
916       addBarrierChain(NonAliasLoads);
917       addBarrierChain(FPExceptions);
918 
919       continue;
920     }
921 
922     // Instructions that may raise FP exceptions may not be moved
923     // across any global barriers.
924     if (MI.mayRaiseFPException()) {
925       if (BarrierChain)
926         BarrierChain->addPredBarrier(SU);
927 
928       FPExceptions.insert(SU, UnknownValue);
929 
930       if (FPExceptions.size() >= HugeRegion) {
931         LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
932         Value2SUsMap empty;
933         reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
934       }
935     }
936 
937     // If it's not a store or a variant load, we're done.
938     if (!MI.mayStore() &&
939         !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad()))
940       continue;
941 
942     // Always add dependecy edge to BarrierChain if present.
943     if (BarrierChain)
944       BarrierChain->addPredBarrier(SU);
945 
946     // Find the underlying objects for MI. The Objs vector is either
947     // empty, or filled with the Values of memory locations which this
948     // SU depends on.
949     UnderlyingObjectsVector Objs;
950     bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
951                                                   MF.getDataLayout());
952 
953     if (MI.mayStore()) {
954       if (!ObjsFound) {
955         // An unknown store depends on all stores and loads.
956         addChainDependencies(SU, Stores);
957         addChainDependencies(SU, NonAliasStores);
958         addChainDependencies(SU, Loads);
959         addChainDependencies(SU, NonAliasLoads);
960 
961         // Map this store to 'UnknownValue'.
962         Stores.insert(SU, UnknownValue);
963       } else {
964         // Add precise dependencies against all previously seen memory
965         // accesses mapped to the same Value(s).
966         for (const UnderlyingObject &UnderlObj : Objs) {
967           ValueType V = UnderlObj.getValue();
968           bool ThisMayAlias = UnderlObj.mayAlias();
969 
970           // Add dependencies to previous stores and loads mapped to V.
971           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
972           addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
973         }
974         // Update the store map after all chains have been added to avoid adding
975         // self-loop edge if multiple underlying objects are present.
976         for (const UnderlyingObject &UnderlObj : Objs) {
977           ValueType V = UnderlObj.getValue();
978           bool ThisMayAlias = UnderlObj.mayAlias();
979 
980           // Map this store to V.
981           (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
982         }
983         // The store may have dependencies to unanalyzable loads and
984         // stores.
985         addChainDependencies(SU, Loads, UnknownValue);
986         addChainDependencies(SU, Stores, UnknownValue);
987       }
988     } else { // SU is a load.
989       if (!ObjsFound) {
990         // An unknown load depends on all stores.
991         addChainDependencies(SU, Stores);
992         addChainDependencies(SU, NonAliasStores);
993 
994         Loads.insert(SU, UnknownValue);
995       } else {
996         for (const UnderlyingObject &UnderlObj : Objs) {
997           ValueType V = UnderlObj.getValue();
998           bool ThisMayAlias = UnderlObj.mayAlias();
999 
1000           // Add precise dependencies against all previously seen stores
1001           // mapping to the same Value(s).
1002           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
1003 
1004           // Map this load to V.
1005           (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
1006         }
1007         // The load may have dependencies to unanalyzable stores.
1008         addChainDependencies(SU, Stores, UnknownValue);
1009       }
1010     }
1011 
1012     // Reduce maps if they grow huge.
1013     if (Stores.size() + Loads.size() >= HugeRegion) {
1014       LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
1015       reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
1016     }
1017     if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
1018       LLVM_DEBUG(
1019           dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
1020       reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
1021     }
1022   }
1023 
1024   if (DbgMI)
1025     FirstDbgValue = DbgMI;
1026 
1027   Defs.clear();
1028   Uses.clear();
1029   CurrentVRegDefs.clear();
1030   CurrentVRegUses.clear();
1031 
1032   Topo.MarkDirty();
1033 }
1034 
operator <<(raw_ostream & OS,const PseudoSourceValue * PSV)1035 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1036   PSV->printCustom(OS);
1037   return OS;
1038 }
1039 
dump()1040 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1041   for (const auto &[ValType, SUs] : *this) {
1042     if (isa<const Value *>(ValType)) {
1043       const Value *V = cast<const Value *>(ValType);
1044       if (isa<UndefValue>(V))
1045         dbgs() << "Unknown";
1046       else
1047         V->printAsOperand(dbgs());
1048     } else if (isa<const PseudoSourceValue *>(ValType))
1049       dbgs() << cast<const PseudoSourceValue *>(ValType);
1050     else
1051       llvm_unreachable("Unknown Value type.");
1052 
1053     dbgs() << " : ";
1054     dumpSUList(SUs);
1055   }
1056 }
1057 
reduceHugeMemNodeMaps(Value2SUsMap & stores,Value2SUsMap & loads,unsigned N)1058 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1059                                               Value2SUsMap &loads, unsigned N) {
1060   LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
1061              dbgs() << "Loading SUnits:\n"; loads.dump());
1062 
1063   // Insert all SU's NodeNums into a vector and sort it.
1064   std::vector<unsigned> NodeNums;
1065   NodeNums.reserve(stores.size() + loads.size());
1066   for (const auto &[V, SUs] : stores) {
1067     (void)V;
1068     for (const auto *SU : SUs)
1069       NodeNums.push_back(SU->NodeNum);
1070   }
1071   for (const auto &[V, SUs] : loads) {
1072     (void)V;
1073     for (const auto *SU : SUs)
1074       NodeNums.push_back(SU->NodeNum);
1075   }
1076   llvm::sort(NodeNums);
1077 
1078   // The N last elements in NodeNums will be removed, and the SU with
1079   // the lowest NodeNum of them will become the new BarrierChain to
1080   // let the not yet seen SUs have a dependency to the removed SUs.
1081   assert(N <= NodeNums.size());
1082   SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1083   if (BarrierChain) {
1084     // The aliasing and non-aliasing maps reduce independently of each
1085     // other, but share a common BarrierChain. Check if the
1086     // newBarrierChain is above the former one. If it is not, it may
1087     // introduce a loop to use newBarrierChain, so keep the old one.
1088     if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1089       BarrierChain->addPredBarrier(newBarrierChain);
1090       BarrierChain = newBarrierChain;
1091       LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1092                         << BarrierChain->NodeNum << ").\n";);
1093     }
1094     else
1095       LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1096                         << BarrierChain->NodeNum << ").\n";);
1097   }
1098   else
1099     BarrierChain = newBarrierChain;
1100 
1101   insertBarrierChain(stores);
1102   insertBarrierChain(loads);
1103 
1104   LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
1105              dbgs() << "Loading SUnits:\n"; loads.dump());
1106 }
1107 
toggleKills(const MachineRegisterInfo & MRI,LiveRegUnits & LiveRegs,MachineInstr & MI,bool addToLiveRegs)1108 static void toggleKills(const MachineRegisterInfo &MRI, LiveRegUnits &LiveRegs,
1109                         MachineInstr &MI, bool addToLiveRegs) {
1110   for (MachineOperand &MO : MI.operands()) {
1111     if (!MO.isReg() || !MO.readsReg())
1112       continue;
1113     Register Reg = MO.getReg();
1114     if (!Reg)
1115       continue;
1116 
1117     // Things that are available after the instruction are killed by it.
1118     bool IsKill = LiveRegs.available(Reg);
1119 
1120     // Exception: Do not kill reserved registers
1121     MO.setIsKill(IsKill && !MRI.isReserved(Reg));
1122     if (addToLiveRegs)
1123       LiveRegs.addReg(Reg);
1124   }
1125 }
1126 
fixupKills(MachineBasicBlock & MBB)1127 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1128   LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1129 
1130   LiveRegs.init(*TRI);
1131   LiveRegs.addLiveOuts(MBB);
1132 
1133   // Examine block from end to start...
1134   for (MachineInstr &MI : llvm::reverse(MBB)) {
1135     if (MI.isDebugOrPseudoInstr())
1136       continue;
1137 
1138     // Update liveness.  Registers that are defed but not used in this
1139     // instruction are now dead. Mark register and all subregs as they
1140     // are completely defined.
1141     for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1142       const MachineOperand &MO = *O;
1143       if (MO.isReg()) {
1144         if (!MO.isDef())
1145           continue;
1146         Register Reg = MO.getReg();
1147         if (!Reg)
1148           continue;
1149         LiveRegs.removeReg(Reg);
1150       } else if (MO.isRegMask()) {
1151         LiveRegs.removeRegsNotPreserved(MO.getRegMask());
1152       }
1153     }
1154 
1155     // If there is a bundle header fix it up first.
1156     if (!MI.isBundled()) {
1157       toggleKills(MRI, LiveRegs, MI, true);
1158     } else {
1159       MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
1160       if (MI.isBundle())
1161         toggleKills(MRI, LiveRegs, MI, false);
1162 
1163       // Some targets make the (questionable) assumtion that the instructions
1164       // inside the bundle are ordered and consequently only the last use of
1165       // a register inside the bundle can kill it.
1166       MachineBasicBlock::instr_iterator I = std::next(Bundle);
1167       while (I->isBundledWithSucc())
1168         ++I;
1169       do {
1170         if (!I->isDebugOrPseudoInstr())
1171           toggleKills(MRI, LiveRegs, *I, true);
1172         --I;
1173       } while (I != Bundle);
1174     }
1175   }
1176 }
1177 
dumpNode(const SUnit & SU) const1178 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
1179 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1180   dumpNodeName(SU);
1181   if (SchedPrintCycles)
1182     dbgs() << " [TopReadyCycle = " << SU.TopReadyCycle
1183            << ", BottomReadyCycle = " << SU.BotReadyCycle << "]";
1184   dbgs() << ": ";
1185   SU.getInstr()->dump();
1186 #endif
1187 }
1188 
dump() const1189 void ScheduleDAGInstrs::dump() const {
1190 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1191   if (EntrySU.getInstr() != nullptr)
1192     dumpNodeAll(EntrySU);
1193   for (const SUnit &SU : SUnits)
1194     dumpNodeAll(SU);
1195   if (ExitSU.getInstr() != nullptr)
1196     dumpNodeAll(ExitSU);
1197 #endif
1198 }
1199 
getGraphNodeLabel(const SUnit * SU) const1200 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1201   std::string s;
1202   raw_string_ostream oss(s);
1203   if (SU == &EntrySU)
1204     oss << "<entry>";
1205   else if (SU == &ExitSU)
1206     oss << "<exit>";
1207   else
1208     SU->getInstr()->print(oss, /*IsStandalone=*/true);
1209   return s;
1210 }
1211 
1212 /// Return the basic block label. It is not necessarilly unique because a block
1213 /// contains multiple scheduling regions. But it is fine for visualization.
getDAGName() const1214 std::string ScheduleDAGInstrs::getDAGName() const {
1215   return "dag." + BB->getFullName();
1216 }
1217 
canAddEdge(SUnit * SuccSU,SUnit * PredSU)1218 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
1219   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
1220 }
1221 
addEdge(SUnit * SuccSU,const SDep & PredDep)1222 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
1223   if (SuccSU != &ExitSU) {
1224     // Do not use WillCreateCycle, it assumes SD scheduling.
1225     // If Pred is reachable from Succ, then the edge creates a cycle.
1226     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
1227       return false;
1228     Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
1229   }
1230   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
1231   // Return true regardless of whether a new edge needed to be inserted.
1232   return true;
1233 }
1234 
1235 //===----------------------------------------------------------------------===//
1236 // SchedDFSResult Implementation
1237 //===----------------------------------------------------------------------===//
1238 
1239 namespace llvm {
1240 
1241 /// Internal state used to compute SchedDFSResult.
1242 class SchedDFSImpl {
1243   SchedDFSResult &R;
1244 
1245   /// Join DAG nodes into equivalence classes by their subtree.
1246   IntEqClasses SubtreeClasses;
1247   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1248   std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1249 
1250   struct RootData {
1251     unsigned NodeID;
1252     unsigned ParentNodeID;  ///< Parent node (member of the parent subtree).
1253     unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1254                                 /// children.
1255 
RootDatallvm::SchedDFSImpl::RootData1256     RootData(unsigned id): NodeID(id),
1257                            ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1258 
getSparseSetIndexllvm::SchedDFSImpl::RootData1259     unsigned getSparseSetIndex() const { return NodeID; }
1260   };
1261 
1262   SparseSet<RootData> RootSet;
1263 
1264 public:
SchedDFSImpl(SchedDFSResult & r)1265   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1266     RootSet.setUniverse(R.DFSNodeData.size());
1267   }
1268 
1269   /// Returns true if this node been visited by the DFS traversal.
1270   ///
1271   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1272   /// ID. Later, SubtreeID is updated but remains valid.
isVisited(const SUnit * SU) const1273   bool isVisited(const SUnit *SU) const {
1274     return R.DFSNodeData[SU->NodeNum].SubtreeID
1275       != SchedDFSResult::InvalidSubtreeID;
1276   }
1277 
1278   /// Initializes this node's instruction count. We don't need to flag the node
1279   /// visited until visitPostorder because the DAG cannot have cycles.
visitPreorder(const SUnit * SU)1280   void visitPreorder(const SUnit *SU) {
1281     R.DFSNodeData[SU->NodeNum].InstrCount =
1282       SU->getInstr()->isTransient() ? 0 : 1;
1283   }
1284 
1285   /// Called once for each node after all predecessors are visited. Revisit this
1286   /// node's predecessors and potentially join them now that we know the ILP of
1287   /// the other predecessors.
visitPostorderNode(const SUnit * SU)1288   void visitPostorderNode(const SUnit *SU) {
1289     // Mark this node as the root of a subtree. It may be joined with its
1290     // successors later.
1291     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1292     RootData RData(SU->NodeNum);
1293     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1294 
1295     // If any predecessors are still in their own subtree, they either cannot be
1296     // joined or are large enough to remain separate. If this parent node's
1297     // total instruction count is not greater than a child subtree by at least
1298     // the subtree limit, then try to join it now since splitting subtrees is
1299     // only useful if multiple high-pressure paths are possible.
1300     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1301     for (const SDep &PredDep : SU->Preds) {
1302       if (PredDep.getKind() != SDep::Data)
1303         continue;
1304       unsigned PredNum = PredDep.getSUnit()->NodeNum;
1305       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1306         joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1307 
1308       // Either link or merge the TreeData entry from the child to the parent.
1309       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1310         // If the predecessor's parent is invalid, this is a tree edge and the
1311         // current node is the parent.
1312         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1313           RootSet[PredNum].ParentNodeID = SU->NodeNum;
1314       }
1315       else if (RootSet.count(PredNum)) {
1316         // The predecessor is not a root, but is still in the root set. This
1317         // must be the new parent that it was just joined to. Note that
1318         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1319         // set to the original parent.
1320         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1321         RootSet.erase(PredNum);
1322       }
1323     }
1324     RootSet[SU->NodeNum] = RData;
1325   }
1326 
1327   /// Called once for each tree edge after calling visitPostOrderNode on
1328   /// the predecessor. Increment the parent node's instruction count and
1329   /// preemptively join this subtree to its parent's if it is small enough.
visitPostorderEdge(const SDep & PredDep,const SUnit * Succ)1330   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1331     R.DFSNodeData[Succ->NodeNum].InstrCount
1332       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1333     joinPredSubtree(PredDep, Succ);
1334   }
1335 
1336   /// Adds a connection for cross edges.
visitCrossEdge(const SDep & PredDep,const SUnit * Succ)1337   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1338     ConnectionPairs.emplace_back(PredDep.getSUnit(), Succ);
1339   }
1340 
1341   /// Sets each node's subtree ID to the representative ID and record
1342   /// connections between trees.
finalize()1343   void finalize() {
1344     SubtreeClasses.compress();
1345     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1346     assert(SubtreeClasses.getNumClasses() == RootSet.size()
1347            && "number of roots should match trees");
1348     for (const RootData &Root : RootSet) {
1349       unsigned TreeID = SubtreeClasses[Root.NodeID];
1350       if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1351         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1352       R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1353       // Note that SubInstrCount may be greater than InstrCount if we joined
1354       // subtrees across a cross edge. InstrCount will be attributed to the
1355       // original parent, while SubInstrCount will be attributed to the joined
1356       // parent.
1357     }
1358     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1359     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1360     LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1361     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1362       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1363       LLVM_DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1364                         << R.DFSNodeData[Idx].SubtreeID << '\n');
1365     }
1366     for (const auto &[Pred, Succ] : ConnectionPairs) {
1367       unsigned PredTree = SubtreeClasses[Pred->NodeNum];
1368       unsigned SuccTree = SubtreeClasses[Succ->NodeNum];
1369       if (PredTree == SuccTree)
1370         continue;
1371       unsigned Depth = Pred->getDepth();
1372       addConnection(PredTree, SuccTree, Depth);
1373       addConnection(SuccTree, PredTree, Depth);
1374     }
1375   }
1376 
1377 protected:
1378   /// Joins the predecessor subtree with the successor that is its DFS parent.
1379   /// Applies some heuristics before joining.
joinPredSubtree(const SDep & PredDep,const SUnit * Succ,bool CheckLimit=true)1380   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1381                        bool CheckLimit = true) {
1382     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1383 
1384     // Check if the predecessor is already joined.
1385     const SUnit *PredSU = PredDep.getSUnit();
1386     unsigned PredNum = PredSU->NodeNum;
1387     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1388       return false;
1389 
1390     // Four is the magic number of successors before a node is considered a
1391     // pinch point.
1392     unsigned NumDataSucs = 0;
1393     for (const SDep &SuccDep : PredSU->Succs) {
1394       if (SuccDep.getKind() == SDep::Data) {
1395         if (++NumDataSucs >= 4)
1396           return false;
1397       }
1398     }
1399     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1400       return false;
1401     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1402     SubtreeClasses.join(Succ->NodeNum, PredNum);
1403     return true;
1404   }
1405 
1406   /// Called by finalize() to record a connection between trees.
addConnection(unsigned FromTree,unsigned ToTree,unsigned Depth)1407   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1408     if (!Depth)
1409       return;
1410 
1411     do {
1412       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1413         R.SubtreeConnections[FromTree];
1414       for (SchedDFSResult::Connection &C : Connections) {
1415         if (C.TreeID == ToTree) {
1416           C.Level = std::max(C.Level, Depth);
1417           return;
1418         }
1419       }
1420       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1421       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1422     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1423   }
1424 };
1425 
1426 } // end namespace llvm
1427 
1428 namespace {
1429 
1430 /// Manage the stack used by a reverse depth-first search over the DAG.
1431 class SchedDAGReverseDFS {
1432   std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1433 
1434 public:
isComplete() const1435   bool isComplete() const { return DFSStack.empty(); }
1436 
follow(const SUnit * SU)1437   void follow(const SUnit *SU) {
1438     DFSStack.emplace_back(SU, SU->Preds.begin());
1439   }
advance()1440   void advance() { ++DFSStack.back().second; }
1441 
backtrack()1442   const SDep *backtrack() {
1443     DFSStack.pop_back();
1444     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1445   }
1446 
getCurr() const1447   const SUnit *getCurr() const { return DFSStack.back().first; }
1448 
getPred() const1449   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1450 
getPredEnd() const1451   SUnit::const_pred_iterator getPredEnd() const {
1452     return getCurr()->Preds.end();
1453   }
1454 };
1455 
1456 } // end anonymous namespace
1457 
hasDataSucc(const SUnit * SU)1458 static bool hasDataSucc(const SUnit *SU) {
1459   for (const SDep &SuccDep : SU->Succs) {
1460     if (SuccDep.getKind() == SDep::Data &&
1461         !SuccDep.getSUnit()->isBoundaryNode())
1462       return true;
1463   }
1464   return false;
1465 }
1466 
1467 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1468 /// search from this root.
compute(ArrayRef<SUnit> SUnits)1469 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1470   if (!IsBottomUp)
1471     llvm_unreachable("Top-down ILP metric is unimplemented");
1472 
1473   SchedDFSImpl Impl(*this);
1474   for (const SUnit &SU : SUnits) {
1475     if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1476       continue;
1477 
1478     SchedDAGReverseDFS DFS;
1479     Impl.visitPreorder(&SU);
1480     DFS.follow(&SU);
1481     while (true) {
1482       // Traverse the leftmost path as far as possible.
1483       while (DFS.getPred() != DFS.getPredEnd()) {
1484         const SDep &PredDep = *DFS.getPred();
1485         DFS.advance();
1486         // Ignore non-data edges.
1487         if (PredDep.getKind() != SDep::Data
1488             || PredDep.getSUnit()->isBoundaryNode()) {
1489           continue;
1490         }
1491         // An already visited edge is a cross edge, assuming an acyclic DAG.
1492         if (Impl.isVisited(PredDep.getSUnit())) {
1493           Impl.visitCrossEdge(PredDep, DFS.getCurr());
1494           continue;
1495         }
1496         Impl.visitPreorder(PredDep.getSUnit());
1497         DFS.follow(PredDep.getSUnit());
1498       }
1499       // Visit the top of the stack in postorder and backtrack.
1500       const SUnit *Child = DFS.getCurr();
1501       const SDep *PredDep = DFS.backtrack();
1502       Impl.visitPostorderNode(Child);
1503       if (PredDep)
1504         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1505       if (DFS.isComplete())
1506         break;
1507     }
1508   }
1509   Impl.finalize();
1510 }
1511 
1512 /// The root of the given SubtreeID was just scheduled. For all subtrees
1513 /// connected to this tree, record the depth of the connection so that the
1514 /// nearest connected subtrees can be prioritized.
scheduleTree(unsigned SubtreeID)1515 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1516   for (const Connection &C : SubtreeConnections[SubtreeID]) {
1517     SubtreeConnectLevels[C.TreeID] =
1518       std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1519     LLVM_DEBUG(dbgs() << "  Tree: " << C.TreeID << " @"
1520                       << SubtreeConnectLevels[C.TreeID] << '\n');
1521   }
1522 }
1523 
1524 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1525 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1526   OS << InstrCount << " / " << Length << " = ";
1527   if (!Length)
1528     OS << "BADILP";
1529   else
1530     OS << format("%g", ((double)InstrCount / Length));
1531 }
1532 
dump() const1533 LLVM_DUMP_METHOD void ILPValue::dump() const {
1534   dbgs() << *this << '\n';
1535 }
1536 
1537 namespace llvm {
1538 
1539 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & OS,const ILPValue & Val)1540 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1541   Val.print(OS);
1542   return OS;
1543 }
1544 
1545 } // end namespace llvm
1546 
1547 #endif
1548