1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
27 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2013 by Delphix. All rights reserved.
29 * Copyright 2015 Gary Mills
30 */
31
32 #include <sys/types.h>
33 #include <sys/utsname.h>
34 #include <sys/sysmacros.h>
35 #include <sys/proc.h>
36
37 #include <alloca.h>
38 #include <rtld_db.h>
39 #include <libgen.h>
40 #include <limits.h>
41 #include <string.h>
42 #include <stdlib.h>
43 #include <unistd.h>
44 #include <errno.h>
45 #include <gelf.h>
46 #include <stddef.h>
47 #include <signal.h>
48
49 #include "libproc.h"
50 #include "Pcontrol.h"
51 #include "P32ton.h"
52 #include "Putil.h"
53 #ifdef __x86
54 #include "Pcore_linux.h"
55 #endif
56
57 /*
58 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We
59 * allocate an additional structure to hold information from the core
60 * file, and attach this to the standard ps_prochandle in place of the
61 * ability to examine /proc/<pid>/ files.
62 */
63
64 /*
65 * Basic i/o function for reading and writing from the process address space
66 * stored in the core file and associated shared libraries. We compute the
67 * appropriate fd and offsets, and let the provided prw function do the rest.
68 */
69 static ssize_t
core_rw(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,ssize_t (* prw)(int,void *,size_t,off64_t))70 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
71 ssize_t (*prw)(int, void *, size_t, off64_t))
72 {
73 ssize_t resid = n;
74
75 while (resid != 0) {
76 map_info_t *mp = Paddr2mptr(P, addr);
77
78 uintptr_t mapoff;
79 ssize_t len;
80 off64_t off;
81 int fd;
82
83 if (mp == NULL)
84 break; /* No mapping for this address */
85
86 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
87 if (mp->map_file == NULL || mp->map_file->file_fd < 0)
88 break; /* No file or file not open */
89
90 fd = mp->map_file->file_fd;
91 } else
92 fd = P->asfd;
93
94 mapoff = addr - mp->map_pmap.pr_vaddr;
95 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
96 off = mp->map_offset + mapoff;
97
98 if ((len = prw(fd, buf, len, off)) <= 0)
99 break;
100
101 resid -= len;
102 addr += len;
103 buf = (char *)buf + len;
104 }
105
106 /*
107 * Important: Be consistent with the behavior of i/o on the as file:
108 * writing to an invalid address yields EIO; reading from an invalid
109 * address falls through to returning success and zero bytes.
110 */
111 if (resid == n && n != 0 && prw != pread64) {
112 errno = EIO;
113 return (-1);
114 }
115
116 return (n - resid);
117 }
118
119 /*ARGSUSED*/
120 static ssize_t
Pread_core(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,void * data)121 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
122 void *data)
123 {
124 return (core_rw(P, buf, n, addr, pread64));
125 }
126
127 /*ARGSUSED*/
128 static ssize_t
Pwrite_core(struct ps_prochandle * P,const void * buf,size_t n,uintptr_t addr,void * data)129 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
130 void *data)
131 {
132 return (core_rw(P, (void *)buf, n, addr,
133 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
134 }
135
136 /*ARGSUSED*/
137 static int
Pcred_core(struct ps_prochandle * P,prcred_t * pcrp,int ngroups,void * data)138 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
139 {
140 core_info_t *core = data;
141
142 if (core->core_cred != NULL) {
143 /*
144 * Avoid returning more supplementary group data than the
145 * caller has allocated in their buffer. We expect them to
146 * check pr_ngroups afterward and potentially call us again.
147 */
148 ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
149
150 (void) memcpy(pcrp, core->core_cred,
151 sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
152
153 return (0);
154 }
155
156 errno = ENODATA;
157 return (-1);
158 }
159
160 /*ARGSUSED*/
161 static int
Ppriv_core(struct ps_prochandle * P,prpriv_t ** pprv,void * data)162 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
163 {
164 core_info_t *core = data;
165
166 if (core->core_priv == NULL) {
167 errno = ENODATA;
168 return (-1);
169 }
170
171 *pprv = malloc(core->core_priv_size);
172 if (*pprv == NULL) {
173 return (-1);
174 }
175
176 (void) memcpy(*pprv, core->core_priv, core->core_priv_size);
177 return (0);
178 }
179
180 /*ARGSUSED*/
181 static const psinfo_t *
Ppsinfo_core(struct ps_prochandle * P,psinfo_t * psinfo,void * data)182 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
183 {
184 return (&P->psinfo);
185 }
186
187 /*ARGSUSED*/
188 static void
Pfini_core(struct ps_prochandle * P,void * data)189 Pfini_core(struct ps_prochandle *P, void *data)
190 {
191 core_info_t *core = data;
192
193 if (core != NULL) {
194 extern void __priv_free_info(void *);
195 lwp_info_t *nlwp, *lwp = list_next(&core->core_lwp_head);
196 int i;
197
198 for (i = 0; i < core->core_nlwp; i++, lwp = nlwp) {
199 nlwp = list_next(lwp);
200 #ifdef __sparc
201 if (lwp->lwp_gwins != NULL)
202 free(lwp->lwp_gwins);
203 if (lwp->lwp_xregs != NULL)
204 free(lwp->lwp_xregs);
205 if (lwp->lwp_asrs != NULL)
206 free(lwp->lwp_asrs);
207 #endif
208 free(lwp);
209 }
210
211 if (core->core_platform != NULL)
212 free(core->core_platform);
213 if (core->core_uts != NULL)
214 free(core->core_uts);
215 if (core->core_cred != NULL)
216 free(core->core_cred);
217 if (core->core_priv != NULL)
218 free(core->core_priv);
219 if (core->core_privinfo != NULL)
220 __priv_free_info(core->core_privinfo);
221 if (core->core_ppii != NULL)
222 free(core->core_ppii);
223 if (core->core_zonename != NULL)
224 free(core->core_zonename);
225 #ifdef __x86
226 if (core->core_ldt != NULL)
227 free(core->core_ldt);
228 #endif
229
230 free(core);
231 }
232 }
233
234 /*ARGSUSED*/
235 static char *
Pplatform_core(struct ps_prochandle * P,char * s,size_t n,void * data)236 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
237 {
238 core_info_t *core = data;
239
240 if (core->core_platform == NULL) {
241 errno = ENODATA;
242 return (NULL);
243 }
244 (void) strncpy(s, core->core_platform, n - 1);
245 s[n - 1] = '\0';
246 return (s);
247 }
248
249 /*ARGSUSED*/
250 static int
Puname_core(struct ps_prochandle * P,struct utsname * u,void * data)251 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
252 {
253 core_info_t *core = data;
254
255 if (core->core_uts == NULL) {
256 errno = ENODATA;
257 return (-1);
258 }
259 (void) memcpy(u, core->core_uts, sizeof (struct utsname));
260 return (0);
261 }
262
263 /*ARGSUSED*/
264 static char *
Pzonename_core(struct ps_prochandle * P,char * s,size_t n,void * data)265 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
266 {
267 core_info_t *core = data;
268
269 if (core->core_zonename == NULL) {
270 errno = ENODATA;
271 return (NULL);
272 }
273 (void) strlcpy(s, core->core_zonename, n);
274 return (s);
275 }
276
277 #ifdef __x86
278 /*ARGSUSED*/
279 static int
Pldt_core(struct ps_prochandle * P,struct ssd * pldt,int nldt,void * data)280 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
281 {
282 core_info_t *core = data;
283
284 if (pldt == NULL || nldt == 0)
285 return (core->core_nldt);
286
287 if (core->core_ldt != NULL) {
288 nldt = MIN(nldt, core->core_nldt);
289
290 (void) memcpy(pldt, core->core_ldt,
291 nldt * sizeof (struct ssd));
292
293 return (nldt);
294 }
295
296 errno = ENODATA;
297 return (-1);
298 }
299 #endif
300
301 static const ps_ops_t P_core_ops = {
302 .pop_pread = Pread_core,
303 .pop_pwrite = Pwrite_core,
304 .pop_cred = Pcred_core,
305 .pop_priv = Ppriv_core,
306 .pop_psinfo = Ppsinfo_core,
307 .pop_fini = Pfini_core,
308 .pop_platform = Pplatform_core,
309 .pop_uname = Puname_core,
310 .pop_zonename = Pzonename_core,
311 #ifdef __x86
312 .pop_ldt = Pldt_core
313 #endif
314 };
315
316 /*
317 * Return the lwp_info_t for the given lwpid. If no such lwpid has been
318 * encountered yet, allocate a new structure and return a pointer to it.
319 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
320 */
321 static lwp_info_t *
lwpid2info(struct ps_prochandle * P,lwpid_t id)322 lwpid2info(struct ps_prochandle *P, lwpid_t id)
323 {
324 core_info_t *core = P->data;
325 lwp_info_t *lwp = list_next(&core->core_lwp_head);
326 lwp_info_t *next;
327 uint_t i;
328
329 for (i = 0; i < core->core_nlwp; i++, lwp = list_next(lwp)) {
330 if (lwp->lwp_id == id) {
331 core->core_lwp = lwp;
332 return (lwp);
333 }
334 if (lwp->lwp_id < id) {
335 break;
336 }
337 }
338
339 next = lwp;
340 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
341 return (NULL);
342
343 list_link(lwp, next);
344 lwp->lwp_id = id;
345
346 core->core_lwp = lwp;
347 core->core_nlwp++;
348
349 return (lwp);
350 }
351
352 /*
353 * The core file itself contains a series of NOTE segments containing saved
354 * structures from /proc at the time the process died. For each note we
355 * comprehend, we define a function to read it in from the core file,
356 * convert it to our native data model if necessary, and store it inside
357 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the
358 * seek pointer on P->asfd positioned appropriately. We populate a table
359 * of pointers to these note functions below.
360 */
361
362 static int
note_pstatus(struct ps_prochandle * P,size_t nbytes)363 note_pstatus(struct ps_prochandle *P, size_t nbytes)
364 {
365 #ifdef _LP64
366 core_info_t *core = P->data;
367
368 if (core->core_dmodel == PR_MODEL_ILP32) {
369 pstatus32_t ps32;
370
371 if (nbytes < sizeof (pstatus32_t) ||
372 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
373 goto err;
374
375 pstatus_32_to_n(&ps32, &P->status);
376
377 } else
378 #endif
379 if (nbytes < sizeof (pstatus_t) ||
380 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
381 goto err;
382
383 P->orig_status = P->status;
384 P->pid = P->status.pr_pid;
385
386 return (0);
387
388 err:
389 dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
390 return (-1);
391 }
392
393 static int
note_lwpstatus(struct ps_prochandle * P,size_t nbytes)394 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
395 {
396 lwp_info_t *lwp;
397 lwpstatus_t lps;
398
399 #ifdef _LP64
400 core_info_t *core = P->data;
401
402 if (core->core_dmodel == PR_MODEL_ILP32) {
403 lwpstatus32_t l32;
404
405 if (nbytes < sizeof (lwpstatus32_t) ||
406 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
407 goto err;
408
409 lwpstatus_32_to_n(&l32, &lps);
410 } else
411 #endif
412 if (nbytes < sizeof (lwpstatus_t) ||
413 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
414 goto err;
415
416 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
417 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
418 return (-1);
419 }
420
421 /*
422 * Erase a useless and confusing artifact of the kernel implementation:
423 * the lwps which did *not* create the core will show SIGKILL. We can
424 * be assured this is bogus because SIGKILL can't produce core files.
425 */
426 if (lps.pr_cursig == SIGKILL)
427 lps.pr_cursig = 0;
428
429 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
430 return (0);
431
432 err:
433 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
434 return (-1);
435 }
436
437 #ifdef __x86
438
439 static void
lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t * p32,psinfo_t * psinfo)440 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
441 {
442 psinfo->pr_flag = p32->pr_flag;
443 psinfo->pr_pid = p32->pr_pid;
444 psinfo->pr_ppid = p32->pr_ppid;
445 psinfo->pr_uid = p32->pr_uid;
446 psinfo->pr_gid = p32->pr_gid;
447 psinfo->pr_sid = p32->pr_sid;
448 psinfo->pr_pgid = p32->pr_pgrp;
449
450 (void) memcpy(psinfo->pr_fname, p32->pr_fname,
451 sizeof (psinfo->pr_fname));
452 (void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
453 sizeof (psinfo->pr_psargs));
454 }
455
456 static void
lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t * p64,psinfo_t * psinfo)457 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
458 {
459 psinfo->pr_flag = p64->pr_flag;
460 psinfo->pr_pid = p64->pr_pid;
461 psinfo->pr_ppid = p64->pr_ppid;
462 psinfo->pr_uid = p64->pr_uid;
463 psinfo->pr_gid = p64->pr_gid;
464 psinfo->pr_sid = p64->pr_sid;
465 psinfo->pr_pgid = p64->pr_pgrp;
466 psinfo->pr_pgid = p64->pr_pgrp;
467
468 (void) memcpy(psinfo->pr_fname, p64->pr_fname,
469 sizeof (psinfo->pr_fname));
470 (void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
471 sizeof (psinfo->pr_psargs));
472 }
473
474 static int
note_linux_psinfo(struct ps_prochandle * P,size_t nbytes)475 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
476 {
477 core_info_t *core = P->data;
478 lx_prpsinfo32_t p32;
479 lx_prpsinfo64_t p64;
480
481 if (core->core_dmodel == PR_MODEL_ILP32) {
482 if (nbytes < sizeof (p32) ||
483 read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
484 goto err;
485
486 lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
487 } else {
488 if (nbytes < sizeof (p64) ||
489 read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
490 goto err;
491
492 lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
493 }
494
495
496 P->status.pr_pid = P->psinfo.pr_pid;
497 P->status.pr_ppid = P->psinfo.pr_ppid;
498 P->status.pr_pgid = P->psinfo.pr_pgid;
499 P->status.pr_sid = P->psinfo.pr_sid;
500
501 P->psinfo.pr_nlwp = 0;
502 P->status.pr_nlwp = 0;
503
504 return (0);
505 err:
506 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
507 return (-1);
508 }
509
510 static void
lx_prstatus64_to_lwp(lx_prstatus64_t * prs64,lwp_info_t * lwp)511 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
512 {
513 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
514 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
515
516 lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
517 lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
518 lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
519 lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
520 lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
521 lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
522 lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
523 lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
524
525 lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
526 lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
527 lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
528 lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
529 lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
530 lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
531 lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
532
533 lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
534 lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
535 lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
536 lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
537 lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
538 lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
539 lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
540 lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
541
542 lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
543 lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
544 }
545
546 static void
lx_prstatus32_to_lwp(lx_prstatus32_t * prs32,lwp_info_t * lwp)547 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
548 {
549 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
550 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
551
552 #ifdef __amd64
553 lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
554 lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
555 lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
556 lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
557 lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
558 lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
559 lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
560 lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
561 lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
562 lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
563 lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
564 lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
565 lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
566 lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
567 lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
568 lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
569 #else /* __amd64 */
570 lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
571 lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
572 lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
573 lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
574 lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
575 lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
576 lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
577 lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
578 lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
579
580 lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
581 lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
582 lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
583 lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
584 lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
585 lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
586
587 lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
588 #endif /* !__amd64 */
589 }
590
591 static int
note_linux_prstatus(struct ps_prochandle * P,size_t nbytes)592 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
593 {
594 core_info_t *core = P->data;
595
596 lx_prstatus64_t prs64;
597 lx_prstatus32_t prs32;
598 lwp_info_t *lwp;
599 lwpid_t tid;
600
601 dprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
602 (ulong_t)nbytes, (ulong_t)sizeof (prs32));
603 if (core->core_dmodel == PR_MODEL_ILP32) {
604 if (nbytes < sizeof (prs32) ||
605 read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
606 goto err;
607 tid = prs32.pr_pid;
608 } else {
609 if (nbytes < sizeof (prs64) ||
610 read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
611 goto err;
612 tid = prs64.pr_pid;
613 }
614
615 if ((lwp = lwpid2info(P, tid)) == NULL) {
616 dprintf("Pgrab_core: failed to add lwpid2info "
617 "linux_prstatus\n");
618 return (-1);
619 }
620
621 P->psinfo.pr_nlwp++;
622 P->status.pr_nlwp++;
623
624 lwp->lwp_status.pr_lwpid = tid;
625
626 if (core->core_dmodel == PR_MODEL_ILP32)
627 lx_prstatus32_to_lwp(&prs32, lwp);
628 else
629 lx_prstatus64_to_lwp(&prs64, lwp);
630
631 return (0);
632 err:
633 dprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
634 return (-1);
635 }
636
637 #endif /* __x86 */
638
639 static int
note_psinfo(struct ps_prochandle * P,size_t nbytes)640 note_psinfo(struct ps_prochandle *P, size_t nbytes)
641 {
642 #ifdef _LP64
643 core_info_t *core = P->data;
644
645 if (core->core_dmodel == PR_MODEL_ILP32) {
646 psinfo32_t ps32;
647
648 if (nbytes < sizeof (psinfo32_t) ||
649 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
650 goto err;
651
652 psinfo_32_to_n(&ps32, &P->psinfo);
653 } else
654 #endif
655 if (nbytes < sizeof (psinfo_t) ||
656 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
657 goto err;
658
659 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
660 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
661 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
662
663 return (0);
664
665 err:
666 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
667 return (-1);
668 }
669
670 static int
note_lwpsinfo(struct ps_prochandle * P,size_t nbytes)671 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
672 {
673 lwp_info_t *lwp;
674 lwpsinfo_t lps;
675
676 #ifdef _LP64
677 core_info_t *core = P->data;
678
679 if (core->core_dmodel == PR_MODEL_ILP32) {
680 lwpsinfo32_t l32;
681
682 if (nbytes < sizeof (lwpsinfo32_t) ||
683 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
684 goto err;
685
686 lwpsinfo_32_to_n(&l32, &lps);
687 } else
688 #endif
689 if (nbytes < sizeof (lwpsinfo_t) ||
690 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
691 goto err;
692
693 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
694 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
695 return (-1);
696 }
697
698 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
699 return (0);
700
701 err:
702 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
703 return (-1);
704 }
705
706 static int
note_fdinfo(struct ps_prochandle * P,size_t nbytes)707 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
708 {
709 prfdinfo_t prfd;
710 fd_info_t *fip;
711
712 if ((nbytes < sizeof (prfd)) ||
713 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
714 dprintf("Pgrab_core: failed to read NT_FDINFO\n");
715 return (-1);
716 }
717
718 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
719 dprintf("Pgrab_core: failed to add NT_FDINFO\n");
720 return (-1);
721 }
722 (void) memcpy(&fip->fd_info, &prfd, sizeof (prfd));
723 return (0);
724 }
725
726 static int
note_platform(struct ps_prochandle * P,size_t nbytes)727 note_platform(struct ps_prochandle *P, size_t nbytes)
728 {
729 core_info_t *core = P->data;
730 char *plat;
731
732 if (core->core_platform != NULL)
733 return (0); /* Already seen */
734
735 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
736 if (read(P->asfd, plat, nbytes) != nbytes) {
737 dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
738 free(plat);
739 return (-1);
740 }
741 plat[nbytes - 1] = '\0';
742 core->core_platform = plat;
743 }
744
745 return (0);
746 }
747
748 static int
note_utsname(struct ps_prochandle * P,size_t nbytes)749 note_utsname(struct ps_prochandle *P, size_t nbytes)
750 {
751 core_info_t *core = P->data;
752 size_t ubytes = sizeof (struct utsname);
753 struct utsname *utsp;
754
755 if (core->core_uts != NULL || nbytes < ubytes)
756 return (0); /* Already seen or bad size */
757
758 if ((utsp = malloc(ubytes)) == NULL)
759 return (-1);
760
761 if (read(P->asfd, utsp, ubytes) != ubytes) {
762 dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
763 free(utsp);
764 return (-1);
765 }
766
767 if (_libproc_debug) {
768 dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
769 dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
770 dprintf("uts.release = \"%s\"\n", utsp->release);
771 dprintf("uts.version = \"%s\"\n", utsp->version);
772 dprintf("uts.machine = \"%s\"\n", utsp->machine);
773 }
774
775 core->core_uts = utsp;
776 return (0);
777 }
778
779 static int
note_content(struct ps_prochandle * P,size_t nbytes)780 note_content(struct ps_prochandle *P, size_t nbytes)
781 {
782 core_info_t *core = P->data;
783 core_content_t content;
784
785 if (sizeof (core->core_content) != nbytes)
786 return (-1);
787
788 if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
789 return (-1);
790
791 core->core_content = content;
792
793 dprintf("core content = %llx\n", content);
794
795 return (0);
796 }
797
798 static int
note_cred(struct ps_prochandle * P,size_t nbytes)799 note_cred(struct ps_prochandle *P, size_t nbytes)
800 {
801 core_info_t *core = P->data;
802 prcred_t *pcrp;
803 int ngroups;
804 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
805
806 /*
807 * We allow for prcred_t notes that are actually smaller than a
808 * prcred_t since the last member isn't essential if there are
809 * no group memberships. This allows for more flexibility when it
810 * comes to slightly malformed -- but still valid -- notes.
811 */
812 if (core->core_cred != NULL || nbytes < min_size)
813 return (0); /* Already seen or bad size */
814
815 ngroups = (nbytes - min_size) / sizeof (gid_t);
816 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
817
818 if ((pcrp = malloc(nbytes)) == NULL)
819 return (-1);
820
821 if (read(P->asfd, pcrp, nbytes) != nbytes) {
822 dprintf("Pgrab_core: failed to read NT_PRCRED\n");
823 free(pcrp);
824 return (-1);
825 }
826
827 if (pcrp->pr_ngroups > ngroups) {
828 dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
829 pcrp->pr_ngroups, ngroups);
830 pcrp->pr_ngroups = ngroups;
831 }
832
833 core->core_cred = pcrp;
834 return (0);
835 }
836
837 #ifdef __x86
838 static int
note_ldt(struct ps_prochandle * P,size_t nbytes)839 note_ldt(struct ps_prochandle *P, size_t nbytes)
840 {
841 core_info_t *core = P->data;
842 struct ssd *pldt;
843 uint_t nldt;
844
845 if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
846 return (0); /* Already seen or bad size */
847
848 nldt = nbytes / sizeof (struct ssd);
849 nbytes = nldt * sizeof (struct ssd);
850
851 if ((pldt = malloc(nbytes)) == NULL)
852 return (-1);
853
854 if (read(P->asfd, pldt, nbytes) != nbytes) {
855 dprintf("Pgrab_core: failed to read NT_LDT\n");
856 free(pldt);
857 return (-1);
858 }
859
860 core->core_ldt = pldt;
861 core->core_nldt = nldt;
862 return (0);
863 }
864 #endif /* __i386 */
865
866 static int
note_priv(struct ps_prochandle * P,size_t nbytes)867 note_priv(struct ps_prochandle *P, size_t nbytes)
868 {
869 core_info_t *core = P->data;
870 prpriv_t *pprvp;
871
872 if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
873 return (0); /* Already seen or bad size */
874
875 if ((pprvp = malloc(nbytes)) == NULL)
876 return (-1);
877
878 if (read(P->asfd, pprvp, nbytes) != nbytes) {
879 dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
880 free(pprvp);
881 return (-1);
882 }
883
884 core->core_priv = pprvp;
885 core->core_priv_size = nbytes;
886 return (0);
887 }
888
889 static int
note_priv_info(struct ps_prochandle * P,size_t nbytes)890 note_priv_info(struct ps_prochandle *P, size_t nbytes)
891 {
892 core_info_t *core = P->data;
893 extern void *__priv_parse_info();
894 priv_impl_info_t *ppii;
895
896 if (core->core_privinfo != NULL ||
897 nbytes < sizeof (priv_impl_info_t))
898 return (0); /* Already seen or bad size */
899
900 if ((ppii = malloc(nbytes)) == NULL)
901 return (-1);
902
903 if (read(P->asfd, ppii, nbytes) != nbytes ||
904 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
905 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
906 free(ppii);
907 return (-1);
908 }
909
910 core->core_privinfo = __priv_parse_info(ppii);
911 core->core_ppii = ppii;
912 return (0);
913 }
914
915 static int
note_zonename(struct ps_prochandle * P,size_t nbytes)916 note_zonename(struct ps_prochandle *P, size_t nbytes)
917 {
918 core_info_t *core = P->data;
919 char *zonename;
920
921 if (core->core_zonename != NULL)
922 return (0); /* Already seen */
923
924 if (nbytes != 0) {
925 if ((zonename = malloc(nbytes)) == NULL)
926 return (-1);
927 if (read(P->asfd, zonename, nbytes) != nbytes) {
928 dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
929 free(zonename);
930 return (-1);
931 }
932 zonename[nbytes - 1] = '\0';
933 core->core_zonename = zonename;
934 }
935
936 return (0);
937 }
938
939 static int
note_auxv(struct ps_prochandle * P,size_t nbytes)940 note_auxv(struct ps_prochandle *P, size_t nbytes)
941 {
942 size_t n, i;
943
944 #ifdef _LP64
945 core_info_t *core = P->data;
946
947 if (core->core_dmodel == PR_MODEL_ILP32) {
948 auxv32_t *a32;
949
950 n = nbytes / sizeof (auxv32_t);
951 nbytes = n * sizeof (auxv32_t);
952 a32 = alloca(nbytes);
953
954 if (read(P->asfd, a32, nbytes) != nbytes) {
955 dprintf("Pgrab_core: failed to read NT_AUXV\n");
956 return (-1);
957 }
958
959 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
960 return (-1);
961
962 for (i = 0; i < n; i++)
963 auxv_32_to_n(&a32[i], &P->auxv[i]);
964
965 } else {
966 #endif
967 n = nbytes / sizeof (auxv_t);
968 nbytes = n * sizeof (auxv_t);
969
970 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
971 return (-1);
972
973 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
974 free(P->auxv);
975 P->auxv = NULL;
976 return (-1);
977 }
978 #ifdef _LP64
979 }
980 #endif
981
982 if (_libproc_debug) {
983 for (i = 0; i < n; i++) {
984 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
985 P->auxv[i].a_type, P->auxv[i].a_un.a_val);
986 }
987 }
988
989 /*
990 * Defensive coding for loops which depend upon the auxv array being
991 * terminated by an AT_NULL element; in each case, we've allocated
992 * P->auxv to have an additional element which we force to be AT_NULL.
993 */
994 P->auxv[n].a_type = AT_NULL;
995 P->auxv[n].a_un.a_val = 0L;
996 P->nauxv = (int)n;
997
998 return (0);
999 }
1000
1001 #ifdef __sparc
1002 static int
note_xreg(struct ps_prochandle * P,size_t nbytes)1003 note_xreg(struct ps_prochandle *P, size_t nbytes)
1004 {
1005 core_info_t *core = P->data;
1006 lwp_info_t *lwp = core->core_lwp;
1007 size_t xbytes = sizeof (prxregset_t);
1008 prxregset_t *xregs;
1009
1010 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
1011 return (0); /* No lwp yet, already seen, or bad size */
1012
1013 if ((xregs = malloc(xbytes)) == NULL)
1014 return (-1);
1015
1016 if (read(P->asfd, xregs, xbytes) != xbytes) {
1017 dprintf("Pgrab_core: failed to read NT_PRXREG\n");
1018 free(xregs);
1019 return (-1);
1020 }
1021
1022 lwp->lwp_xregs = xregs;
1023 return (0);
1024 }
1025
1026 static int
note_gwindows(struct ps_prochandle * P,size_t nbytes)1027 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1028 {
1029 core_info_t *core = P->data;
1030 lwp_info_t *lwp = core->core_lwp;
1031
1032 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1033 return (0); /* No lwp yet or already seen or no data */
1034
1035 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1036 return (-1);
1037
1038 /*
1039 * Since the amount of gwindows data varies with how many windows were
1040 * actually saved, we just read up to the minimum of the note size
1041 * and the size of the gwindows_t type. It doesn't matter if the read
1042 * fails since we have to zero out gwindows first anyway.
1043 */
1044 #ifdef _LP64
1045 if (core->core_dmodel == PR_MODEL_ILP32) {
1046 gwindows32_t g32;
1047
1048 (void) memset(&g32, 0, sizeof (g32));
1049 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1050 gwindows_32_to_n(&g32, lwp->lwp_gwins);
1051
1052 } else {
1053 #endif
1054 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1055 (void) read(P->asfd, lwp->lwp_gwins,
1056 MIN(nbytes, sizeof (gwindows_t)));
1057 #ifdef _LP64
1058 }
1059 #endif
1060 return (0);
1061 }
1062
1063 #ifdef __sparcv9
1064 static int
note_asrs(struct ps_prochandle * P,size_t nbytes)1065 note_asrs(struct ps_prochandle *P, size_t nbytes)
1066 {
1067 core_info_t *core = P->data;
1068 lwp_info_t *lwp = core->core_lwp;
1069 int64_t *asrs;
1070
1071 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1072 return (0); /* No lwp yet, already seen, or bad size */
1073
1074 if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1075 return (-1);
1076
1077 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1078 dprintf("Pgrab_core: failed to read NT_ASRS\n");
1079 free(asrs);
1080 return (-1);
1081 }
1082
1083 lwp->lwp_asrs = asrs;
1084 return (0);
1085 }
1086 #endif /* __sparcv9 */
1087 #endif /* __sparc */
1088
1089 static int
note_spymaster(struct ps_prochandle * P,size_t nbytes)1090 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1091 {
1092 #ifdef _LP64
1093 core_info_t *core = P->data;
1094
1095 if (core->core_dmodel == PR_MODEL_ILP32) {
1096 psinfo32_t ps32;
1097
1098 if (nbytes < sizeof (psinfo32_t) ||
1099 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1100 goto err;
1101
1102 psinfo_32_to_n(&ps32, &P->spymaster);
1103 } else
1104 #endif
1105 if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1106 &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1107 goto err;
1108
1109 dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1110 dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1111 dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1112
1113 return (0);
1114
1115 err:
1116 dprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1117 return (-1);
1118 }
1119
1120 /*ARGSUSED*/
1121 static int
note_notsup(struct ps_prochandle * P,size_t nbytes)1122 note_notsup(struct ps_prochandle *P, size_t nbytes)
1123 {
1124 dprintf("skipping unsupported note type of size %ld bytes\n",
1125 (ulong_t)nbytes);
1126 return (0);
1127 }
1128
1129 /*
1130 * Populate a table of function pointers indexed by Note type with our
1131 * functions to process each type of core file note:
1132 */
1133 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
1134 note_notsup, /* 0 unassigned */
1135 #ifdef __x86
1136 note_linux_prstatus, /* 1 NT_PRSTATUS (old) */
1137 #else
1138 note_notsup, /* 1 NT_PRSTATUS (old) */
1139 #endif
1140 note_notsup, /* 2 NT_PRFPREG (old) */
1141 #ifdef __x86
1142 note_linux_psinfo, /* 3 NT_PRPSINFO (old) */
1143 #else
1144 note_notsup, /* 3 NT_PRPSINFO (old) */
1145 #endif
1146 #ifdef __sparc
1147 note_xreg, /* 4 NT_PRXREG */
1148 #else
1149 note_notsup, /* 4 NT_PRXREG */
1150 #endif
1151 note_platform, /* 5 NT_PLATFORM */
1152 note_auxv, /* 6 NT_AUXV */
1153 #ifdef __sparc
1154 note_gwindows, /* 7 NT_GWINDOWS */
1155 #ifdef __sparcv9
1156 note_asrs, /* 8 NT_ASRS */
1157 #else
1158 note_notsup, /* 8 NT_ASRS */
1159 #endif
1160 #else
1161 note_notsup, /* 7 NT_GWINDOWS */
1162 note_notsup, /* 8 NT_ASRS */
1163 #endif
1164 #ifdef __x86
1165 note_ldt, /* 9 NT_LDT */
1166 #else
1167 note_notsup, /* 9 NT_LDT */
1168 #endif
1169 note_pstatus, /* 10 NT_PSTATUS */
1170 note_notsup, /* 11 unassigned */
1171 note_notsup, /* 12 unassigned */
1172 note_psinfo, /* 13 NT_PSINFO */
1173 note_cred, /* 14 NT_PRCRED */
1174 note_utsname, /* 15 NT_UTSNAME */
1175 note_lwpstatus, /* 16 NT_LWPSTATUS */
1176 note_lwpsinfo, /* 17 NT_LWPSINFO */
1177 note_priv, /* 18 NT_PRPRIV */
1178 note_priv_info, /* 19 NT_PRPRIVINFO */
1179 note_content, /* 20 NT_CONTENT */
1180 note_zonename, /* 21 NT_ZONENAME */
1181 note_fdinfo, /* 22 NT_FDINFO */
1182 note_spymaster, /* 23 NT_SPYMASTER */
1183 };
1184
1185 static void
core_report_mapping(struct ps_prochandle * P,GElf_Phdr * php)1186 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1187 {
1188 prkillinfo_t killinfo;
1189 siginfo_t *si = &killinfo.prk_info;
1190 char signame[SIG2STR_MAX], sig[64], info[64];
1191 void *addr = (void *)(uintptr_t)php->p_vaddr;
1192
1193 const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1194 const char *incfmt = "core file incomplete due to %s%s\n";
1195 const char *msgfmt = "mappings at and above %p are missing\n";
1196
1197 if (!(php->p_flags & PF_SUNW_KILLED)) {
1198 int err = 0;
1199
1200 (void) pread64(P->asfd, &err,
1201 sizeof (err), (off64_t)php->p_offset);
1202
1203 Perror_printf(P, errfmt, addr, strerror(err));
1204 dprintf(errfmt, addr, strerror(err));
1205 return;
1206 }
1207
1208 if (!(php->p_flags & PF_SUNW_SIGINFO))
1209 return;
1210
1211 (void) memset(&killinfo, 0, sizeof (killinfo));
1212
1213 (void) pread64(P->asfd, &killinfo,
1214 sizeof (killinfo), (off64_t)php->p_offset);
1215
1216 /*
1217 * While there is (or at least should be) only one segment that has
1218 * PF_SUNW_SIGINFO set, the signal information there is globally
1219 * useful (even if only to those debugging libproc consumers); we hang
1220 * the signal information gleaned here off of the ps_prochandle.
1221 */
1222 P->map_missing = php->p_vaddr;
1223 P->killinfo = killinfo.prk_info;
1224
1225 if (sig2str(si->si_signo, signame) == -1) {
1226 (void) snprintf(sig, sizeof (sig),
1227 "<Unknown signal: 0x%x>, ", si->si_signo);
1228 } else {
1229 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1230 }
1231
1232 if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1233 (void) snprintf(info, sizeof (info),
1234 "pid=%d uid=%d zone=%d ctid=%d",
1235 si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1236 } else {
1237 (void) snprintf(info, sizeof (info),
1238 "code=%d", si->si_code);
1239 }
1240
1241 Perror_printf(P, incfmt, sig, info);
1242 Perror_printf(P, msgfmt, addr);
1243
1244 dprintf(incfmt, sig, info);
1245 dprintf(msgfmt, addr);
1246 }
1247
1248 /*
1249 * Add information on the address space mapping described by the given
1250 * PT_LOAD program header. We fill in more information on the mapping later.
1251 */
1252 static int
core_add_mapping(struct ps_prochandle * P,GElf_Phdr * php)1253 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1254 {
1255 core_info_t *core = P->data;
1256 prmap_t pmap;
1257
1258 dprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1259 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1260 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1261
1262 pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1263 pmap.pr_size = php->p_memsz;
1264
1265 /*
1266 * If Pgcore() or elfcore() fail to write a mapping, they will set
1267 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1268 */
1269 if (php->p_flags & PF_SUNW_FAILURE) {
1270 core_report_mapping(P, php);
1271 } else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1272 Perror_printf(P, "core file may be corrupt -- data for mapping "
1273 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1274 dprintf("core file may be corrupt -- data for mapping "
1275 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1276 }
1277
1278 /*
1279 * The mapping name and offset will hopefully be filled in
1280 * by the librtld_db agent. Unfortunately, if it isn't a
1281 * shared library mapping, this information is gone forever.
1282 */
1283 pmap.pr_mapname[0] = '\0';
1284 pmap.pr_offset = 0;
1285
1286 pmap.pr_mflags = 0;
1287 if (php->p_flags & PF_R)
1288 pmap.pr_mflags |= MA_READ;
1289 if (php->p_flags & PF_W)
1290 pmap.pr_mflags |= MA_WRITE;
1291 if (php->p_flags & PF_X)
1292 pmap.pr_mflags |= MA_EXEC;
1293
1294 if (php->p_filesz == 0)
1295 pmap.pr_mflags |= MA_RESERVED1;
1296
1297 /*
1298 * At the time of adding this mapping, we just zero the pagesize.
1299 * Once we've processed more of the core file, we'll have the
1300 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1301 */
1302 pmap.pr_pagesize = 0;
1303
1304 /*
1305 * Unfortunately whether or not the mapping was a System V
1306 * shared memory segment is lost. We use -1 to mark it as not shm.
1307 */
1308 pmap.pr_shmid = -1;
1309
1310 return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1311 }
1312
1313 /*
1314 * Given a virtual address, name the mapping at that address using the
1315 * specified name, and return the map_info_t pointer.
1316 */
1317 static map_info_t *
core_name_mapping(struct ps_prochandle * P,uintptr_t addr,const char * name)1318 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1319 {
1320 map_info_t *mp = Paddr2mptr(P, addr);
1321
1322 if (mp != NULL) {
1323 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1324 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1325 }
1326
1327 return (mp);
1328 }
1329
1330 /*
1331 * libproc uses libelf for all of its symbol table manipulation. This function
1332 * takes a symbol table and string table from a core file and places them
1333 * in a memory backed elf file.
1334 */
1335 static void
fake_up_symtab(struct ps_prochandle * P,const elf_file_header_t * ehdr,GElf_Shdr * symtab,GElf_Shdr * strtab)1336 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1337 GElf_Shdr *symtab, GElf_Shdr *strtab)
1338 {
1339 size_t size;
1340 off64_t off, base;
1341 map_info_t *mp;
1342 file_info_t *fp;
1343 Elf_Scn *scn;
1344 Elf_Data *data;
1345
1346 if (symtab->sh_addr == 0 ||
1347 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1348 (fp = mp->map_file) == NULL) {
1349 dprintf("fake_up_symtab: invalid section\n");
1350 return;
1351 }
1352
1353 if (fp->file_symtab.sym_data_pri != NULL) {
1354 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1355 (long)symtab->sh_addr);
1356 return;
1357 }
1358
1359 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1360 struct {
1361 Elf32_Ehdr ehdr;
1362 Elf32_Shdr shdr[3];
1363 char data[1];
1364 } *b;
1365
1366 base = sizeof (b->ehdr) + sizeof (b->shdr);
1367 size = base + symtab->sh_size + strtab->sh_size;
1368
1369 if ((b = calloc(1, size)) == NULL)
1370 return;
1371
1372 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1373 sizeof (ehdr->e_ident));
1374 b->ehdr.e_type = ehdr->e_type;
1375 b->ehdr.e_machine = ehdr->e_machine;
1376 b->ehdr.e_version = ehdr->e_version;
1377 b->ehdr.e_flags = ehdr->e_flags;
1378 b->ehdr.e_ehsize = sizeof (b->ehdr);
1379 b->ehdr.e_shoff = sizeof (b->ehdr);
1380 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1381 b->ehdr.e_shnum = 3;
1382 off = 0;
1383
1384 b->shdr[1].sh_size = symtab->sh_size;
1385 b->shdr[1].sh_type = SHT_SYMTAB;
1386 b->shdr[1].sh_offset = off + base;
1387 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1388 b->shdr[1].sh_link = 2;
1389 b->shdr[1].sh_info = symtab->sh_info;
1390 b->shdr[1].sh_addralign = symtab->sh_addralign;
1391
1392 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1393 symtab->sh_offset) != b->shdr[1].sh_size) {
1394 dprintf("fake_up_symtab: pread of symtab[1] failed\n");
1395 free(b);
1396 return;
1397 }
1398
1399 off += b->shdr[1].sh_size;
1400
1401 b->shdr[2].sh_flags = SHF_STRINGS;
1402 b->shdr[2].sh_size = strtab->sh_size;
1403 b->shdr[2].sh_type = SHT_STRTAB;
1404 b->shdr[2].sh_offset = off + base;
1405 b->shdr[2].sh_info = strtab->sh_info;
1406 b->shdr[2].sh_addralign = 1;
1407
1408 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1409 strtab->sh_offset) != b->shdr[2].sh_size) {
1410 dprintf("fake_up_symtab: pread of symtab[2] failed\n");
1411 free(b);
1412 return;
1413 }
1414
1415 off += b->shdr[2].sh_size;
1416
1417 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1418 if (fp->file_symtab.sym_elf == NULL) {
1419 free(b);
1420 return;
1421 }
1422
1423 fp->file_symtab.sym_elfmem = b;
1424 #ifdef _LP64
1425 } else {
1426 struct {
1427 Elf64_Ehdr ehdr;
1428 Elf64_Shdr shdr[3];
1429 char data[1];
1430 } *b;
1431
1432 base = sizeof (b->ehdr) + sizeof (b->shdr);
1433 size = base + symtab->sh_size + strtab->sh_size;
1434
1435 if ((b = calloc(1, size)) == NULL)
1436 return;
1437
1438 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1439 sizeof (ehdr->e_ident));
1440 b->ehdr.e_type = ehdr->e_type;
1441 b->ehdr.e_machine = ehdr->e_machine;
1442 b->ehdr.e_version = ehdr->e_version;
1443 b->ehdr.e_flags = ehdr->e_flags;
1444 b->ehdr.e_ehsize = sizeof (b->ehdr);
1445 b->ehdr.e_shoff = sizeof (b->ehdr);
1446 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1447 b->ehdr.e_shnum = 3;
1448 off = 0;
1449
1450 b->shdr[1].sh_size = symtab->sh_size;
1451 b->shdr[1].sh_type = SHT_SYMTAB;
1452 b->shdr[1].sh_offset = off + base;
1453 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1454 b->shdr[1].sh_link = 2;
1455 b->shdr[1].sh_info = symtab->sh_info;
1456 b->shdr[1].sh_addralign = symtab->sh_addralign;
1457
1458 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1459 symtab->sh_offset) != b->shdr[1].sh_size) {
1460 free(b);
1461 return;
1462 }
1463
1464 off += b->shdr[1].sh_size;
1465
1466 b->shdr[2].sh_flags = SHF_STRINGS;
1467 b->shdr[2].sh_size = strtab->sh_size;
1468 b->shdr[2].sh_type = SHT_STRTAB;
1469 b->shdr[2].sh_offset = off + base;
1470 b->shdr[2].sh_info = strtab->sh_info;
1471 b->shdr[2].sh_addralign = 1;
1472
1473 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1474 strtab->sh_offset) != b->shdr[2].sh_size) {
1475 free(b);
1476 return;
1477 }
1478
1479 off += b->shdr[2].sh_size;
1480
1481 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1482 if (fp->file_symtab.sym_elf == NULL) {
1483 free(b);
1484 return;
1485 }
1486
1487 fp->file_symtab.sym_elfmem = b;
1488 #endif
1489 }
1490
1491 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1492 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1493 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1494 (data = elf_getdata(scn, NULL)) == NULL) {
1495 dprintf("fake_up_symtab: failed to get section data at %p\n",
1496 (void *)scn);
1497 goto err;
1498 }
1499
1500 fp->file_symtab.sym_strs = data->d_buf;
1501 fp->file_symtab.sym_strsz = data->d_size;
1502 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1503 fp->file_symtab.sym_hdr_pri = *symtab;
1504 fp->file_symtab.sym_strhdr = *strtab;
1505
1506 optimize_symtab(&fp->file_symtab);
1507
1508 return;
1509 err:
1510 (void) elf_end(fp->file_symtab.sym_elf);
1511 free(fp->file_symtab.sym_elfmem);
1512 fp->file_symtab.sym_elf = NULL;
1513 fp->file_symtab.sym_elfmem = NULL;
1514 }
1515
1516 static void
core_phdr_to_gelf(const Elf32_Phdr * src,GElf_Phdr * dst)1517 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1518 {
1519 dst->p_type = src->p_type;
1520 dst->p_flags = src->p_flags;
1521 dst->p_offset = (Elf64_Off)src->p_offset;
1522 dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1523 dst->p_paddr = (Elf64_Addr)src->p_paddr;
1524 dst->p_filesz = (Elf64_Xword)src->p_filesz;
1525 dst->p_memsz = (Elf64_Xword)src->p_memsz;
1526 dst->p_align = (Elf64_Xword)src->p_align;
1527 }
1528
1529 static void
core_shdr_to_gelf(const Elf32_Shdr * src,GElf_Shdr * dst)1530 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1531 {
1532 dst->sh_name = src->sh_name;
1533 dst->sh_type = src->sh_type;
1534 dst->sh_flags = (Elf64_Xword)src->sh_flags;
1535 dst->sh_addr = (Elf64_Addr)src->sh_addr;
1536 dst->sh_offset = (Elf64_Off)src->sh_offset;
1537 dst->sh_size = (Elf64_Xword)src->sh_size;
1538 dst->sh_link = src->sh_link;
1539 dst->sh_info = src->sh_info;
1540 dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1541 dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1542 }
1543
1544 /*
1545 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1546 */
1547 static int
core_elf_fdopen(elf_file_t * efp,GElf_Half type,int * perr)1548 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1549 {
1550 #ifdef _BIG_ENDIAN
1551 uchar_t order = ELFDATA2MSB;
1552 #else
1553 uchar_t order = ELFDATA2LSB;
1554 #endif
1555 Elf32_Ehdr e32;
1556 int is_noelf = -1;
1557 int isa_err = 0;
1558
1559 /*
1560 * Because 32-bit libelf cannot deal with large files, we need to read,
1561 * check, and convert the file header manually in case type == ET_CORE.
1562 */
1563 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1564 if (perr != NULL)
1565 *perr = G_FORMAT;
1566 goto err;
1567 }
1568 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1569 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1570 e32.e_version != EV_CURRENT) {
1571 if (perr != NULL) {
1572 if (is_noelf == 0 && isa_err) {
1573 *perr = G_ISAINVAL;
1574 } else {
1575 *perr = G_FORMAT;
1576 }
1577 }
1578 goto err;
1579 }
1580
1581 /*
1582 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the
1583 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1584 * and convert it to a elf_file_header_t. Otherwise, the file is
1585 * 32-bit, so convert e32 to a elf_file_header_t.
1586 */
1587 if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1588 #ifdef _LP64
1589 Elf64_Ehdr e64;
1590
1591 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1592 if (perr != NULL)
1593 *perr = G_FORMAT;
1594 goto err;
1595 }
1596
1597 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1598 efp->e_hdr.e_type = e64.e_type;
1599 efp->e_hdr.e_machine = e64.e_machine;
1600 efp->e_hdr.e_version = e64.e_version;
1601 efp->e_hdr.e_entry = e64.e_entry;
1602 efp->e_hdr.e_phoff = e64.e_phoff;
1603 efp->e_hdr.e_shoff = e64.e_shoff;
1604 efp->e_hdr.e_flags = e64.e_flags;
1605 efp->e_hdr.e_ehsize = e64.e_ehsize;
1606 efp->e_hdr.e_phentsize = e64.e_phentsize;
1607 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1608 efp->e_hdr.e_shentsize = e64.e_shentsize;
1609 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1610 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1611 #else /* _LP64 */
1612 if (perr != NULL)
1613 *perr = G_LP64;
1614 goto err;
1615 #endif /* _LP64 */
1616 } else {
1617 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1618 efp->e_hdr.e_type = e32.e_type;
1619 efp->e_hdr.e_machine = e32.e_machine;
1620 efp->e_hdr.e_version = e32.e_version;
1621 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1622 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1623 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1624 efp->e_hdr.e_flags = e32.e_flags;
1625 efp->e_hdr.e_ehsize = e32.e_ehsize;
1626 efp->e_hdr.e_phentsize = e32.e_phentsize;
1627 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1628 efp->e_hdr.e_shentsize = e32.e_shentsize;
1629 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1630 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1631 }
1632
1633 /*
1634 * If the number of section headers or program headers or the section
1635 * header string table index would overflow their respective fields
1636 * in the ELF header, they're stored in the section header at index
1637 * zero. To simplify use elsewhere, we look for those sentinel values
1638 * here.
1639 */
1640 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1641 efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1642 efp->e_hdr.e_phnum == PN_XNUM) {
1643 GElf_Shdr shdr;
1644
1645 dprintf("extended ELF header\n");
1646
1647 if (efp->e_hdr.e_shoff == 0) {
1648 if (perr != NULL)
1649 *perr = G_FORMAT;
1650 goto err;
1651 }
1652
1653 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1654 Elf32_Shdr shdr32;
1655
1656 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1657 efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1658 if (perr != NULL)
1659 *perr = G_FORMAT;
1660 goto err;
1661 }
1662
1663 core_shdr_to_gelf(&shdr32, &shdr);
1664 } else {
1665 if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1666 efp->e_hdr.e_shoff) != sizeof (shdr)) {
1667 if (perr != NULL)
1668 *perr = G_FORMAT;
1669 goto err;
1670 }
1671 }
1672
1673 if (efp->e_hdr.e_shnum == 0) {
1674 efp->e_hdr.e_shnum = shdr.sh_size;
1675 dprintf("section header count %lu\n",
1676 (ulong_t)shdr.sh_size);
1677 }
1678
1679 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1680 efp->e_hdr.e_shstrndx = shdr.sh_link;
1681 dprintf("section string index %u\n", shdr.sh_link);
1682 }
1683
1684 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1685 efp->e_hdr.e_phnum = shdr.sh_info;
1686 dprintf("program header count %u\n", shdr.sh_info);
1687 }
1688
1689 } else if (efp->e_hdr.e_phoff != 0) {
1690 GElf_Phdr phdr;
1691 uint64_t phnum;
1692
1693 /*
1694 * It's possible this core file came from a system that
1695 * accidentally truncated the e_phnum field without correctly
1696 * using the extended format in the section header at index
1697 * zero. We try to detect and correct that specific type of
1698 * corruption by using the knowledge that the core dump
1699 * routines usually place the data referenced by the first
1700 * program header immediately after the last header element.
1701 */
1702 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1703 Elf32_Phdr phdr32;
1704
1705 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1706 efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1707 if (perr != NULL)
1708 *perr = G_FORMAT;
1709 goto err;
1710 }
1711
1712 core_phdr_to_gelf(&phdr32, &phdr);
1713 } else {
1714 if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1715 efp->e_hdr.e_phoff) != sizeof (phdr)) {
1716 if (perr != NULL)
1717 *perr = G_FORMAT;
1718 goto err;
1719 }
1720 }
1721
1722 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1723 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1724 phnum /= efp->e_hdr.e_phentsize;
1725
1726 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1727 dprintf("suspicious program header count %u %u\n",
1728 (uint_t)phnum, efp->e_hdr.e_phnum);
1729
1730 /*
1731 * If the new program header count we computed doesn't
1732 * jive with count in the ELF header, we'll use the
1733 * data that's there and hope for the best.
1734 *
1735 * If it does, it's also possible that the section
1736 * header offset is incorrect; we'll check that and
1737 * possibly try to fix it.
1738 */
1739 if (phnum <= INT_MAX &&
1740 (uint16_t)phnum == efp->e_hdr.e_phnum) {
1741
1742 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1743 efp->e_hdr.e_phentsize *
1744 (uint_t)efp->e_hdr.e_phnum) {
1745 efp->e_hdr.e_shoff =
1746 efp->e_hdr.e_phoff +
1747 efp->e_hdr.e_phentsize * phnum;
1748 }
1749
1750 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1751 dprintf("using new program header count\n");
1752 } else {
1753 dprintf("inconsistent program header count\n");
1754 }
1755 }
1756 }
1757
1758 /*
1759 * The libelf implementation was never ported to be large-file aware.
1760 * This is typically not a problem for your average executable or
1761 * shared library, but a large 32-bit core file can exceed 2GB in size.
1762 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1763 * in Pfgrab_core() below will do its own i/o and struct conversion.
1764 */
1765
1766 if (type == ET_CORE) {
1767 efp->e_elf = NULL;
1768 return (0);
1769 }
1770
1771 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1772 if (perr != NULL)
1773 *perr = G_ELF;
1774 goto err;
1775 }
1776
1777 return (0);
1778
1779 err:
1780 efp->e_elf = NULL;
1781 return (-1);
1782 }
1783
1784 /*
1785 * Open the specified file and then do a core_elf_fdopen on it.
1786 */
1787 static int
core_elf_open(elf_file_t * efp,const char * path,GElf_Half type,int * perr)1788 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1789 {
1790 (void) memset(efp, 0, sizeof (elf_file_t));
1791
1792 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1793 if (core_elf_fdopen(efp, type, perr) == 0)
1794 return (0);
1795
1796 (void) close(efp->e_fd);
1797 efp->e_fd = -1;
1798 }
1799
1800 return (-1);
1801 }
1802
1803 /*
1804 * Close the ELF handle and file descriptor.
1805 */
1806 static void
core_elf_close(elf_file_t * efp)1807 core_elf_close(elf_file_t *efp)
1808 {
1809 if (efp->e_elf != NULL) {
1810 (void) elf_end(efp->e_elf);
1811 efp->e_elf = NULL;
1812 }
1813
1814 if (efp->e_fd != -1) {
1815 (void) close(efp->e_fd);
1816 efp->e_fd = -1;
1817 }
1818 }
1819
1820 /*
1821 * Given an ELF file for a statically linked executable, locate the likely
1822 * primary text section and fill in rl_base with its virtual address.
1823 */
1824 static map_info_t *
core_find_text(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)1825 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1826 {
1827 GElf_Phdr phdr;
1828 uint_t i;
1829 size_t nphdrs;
1830
1831 if (elf_getphdrnum(elf, &nphdrs) == -1)
1832 return (NULL);
1833
1834 for (i = 0; i < nphdrs; i++) {
1835 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1836 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1837 rlp->rl_base = phdr.p_vaddr;
1838 return (Paddr2mptr(P, rlp->rl_base));
1839 }
1840 }
1841
1842 return (NULL);
1843 }
1844
1845 /*
1846 * Given an ELF file and the librtld_db structure corresponding to its primary
1847 * text mapping, deduce where its data segment was loaded and fill in
1848 * rl_data_base and prmap_t.pr_offset accordingly.
1849 */
1850 static map_info_t *
core_find_data(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)1851 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1852 {
1853 GElf_Ehdr ehdr;
1854 GElf_Phdr phdr;
1855 map_info_t *mp;
1856 uint_t i, pagemask;
1857 size_t nphdrs;
1858
1859 rlp->rl_data_base = NULL;
1860
1861 /*
1862 * Find the first loadable, writeable Phdr and compute rl_data_base
1863 * as the virtual address at which is was loaded.
1864 */
1865 if (gelf_getehdr(elf, &ehdr) == NULL ||
1866 elf_getphdrnum(elf, &nphdrs) == -1)
1867 return (NULL);
1868
1869 for (i = 0; i < nphdrs; i++) {
1870 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1871 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1872 rlp->rl_data_base = phdr.p_vaddr;
1873 if (ehdr.e_type == ET_DYN)
1874 rlp->rl_data_base += rlp->rl_base;
1875 break;
1876 }
1877 }
1878
1879 /*
1880 * If we didn't find an appropriate phdr or if the address we
1881 * computed has no mapping, return NULL.
1882 */
1883 if (rlp->rl_data_base == NULL ||
1884 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1885 return (NULL);
1886
1887 /*
1888 * It wouldn't be procfs-related code if we didn't make use of
1889 * unclean knowledge of segvn, even in userland ... the prmap_t's
1890 * pr_offset field will be the segvn offset from mmap(2)ing the
1891 * data section, which will be the file offset & PAGEMASK.
1892 */
1893 pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1894 mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1895
1896 return (mp);
1897 }
1898
1899 /*
1900 * Librtld_db agent callback for iterating over load object mappings.
1901 * For each load object, we allocate a new file_info_t, perform naming,
1902 * and attempt to construct a symbol table for the load object.
1903 */
1904 static int
core_iter_mapping(const rd_loadobj_t * rlp,struct ps_prochandle * P)1905 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1906 {
1907 core_info_t *core = P->data;
1908 char lname[PATH_MAX], buf[PATH_MAX];
1909 file_info_t *fp;
1910 map_info_t *mp;
1911
1912 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1913 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1914 return (1); /* Keep going; forget this if we can't get a name */
1915 }
1916
1917 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1918 lname, (void *)rlp->rl_base);
1919
1920 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1921 dprintf("no mapping for %p\n", (void *)rlp->rl_base);
1922 return (1); /* No mapping; advance to next mapping */
1923 }
1924
1925 /*
1926 * Create a new file_info_t for this mapping, and therefore for
1927 * this load object.
1928 *
1929 * If there's an ELF header at the beginning of this mapping,
1930 * file_info_new() will try to use its section headers to
1931 * identify any other mappings that belong to this load object.
1932 */
1933 if ((fp = mp->map_file) == NULL &&
1934 (fp = file_info_new(P, mp)) == NULL) {
1935 core->core_errno = errno;
1936 dprintf("failed to malloc mapping data\n");
1937 return (0); /* Abort */
1938 }
1939 fp->file_map = mp;
1940
1941 /* Create a local copy of the load object representation */
1942 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
1943 core->core_errno = errno;
1944 dprintf("failed to malloc mapping data\n");
1945 return (0); /* Abort */
1946 }
1947 *fp->file_lo = *rlp;
1948
1949 if (lname[0] != '\0') {
1950 /*
1951 * Naming dance part 1: if we got a name from librtld_db, then
1952 * copy this name to the prmap_t if it is unnamed. If the
1953 * file_info_t is unnamed, name it after the lname.
1954 */
1955 if (mp->map_pmap.pr_mapname[0] == '\0') {
1956 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
1957 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1958 }
1959
1960 if (fp->file_lname == NULL)
1961 fp->file_lname = strdup(lname);
1962
1963 } else if (fp->file_lname == NULL &&
1964 mp->map_pmap.pr_mapname[0] != '\0') {
1965 /*
1966 * Naming dance part 2: if the mapping is named and the
1967 * file_info_t is not, name the file after the mapping.
1968 */
1969 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
1970 }
1971
1972 if ((fp->file_rname == NULL) &&
1973 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
1974 fp->file_rname = strdup(buf);
1975
1976 if (fp->file_lname != NULL)
1977 fp->file_lbase = basename(fp->file_lname);
1978 if (fp->file_rname != NULL)
1979 fp->file_rbase = basename(fp->file_rname);
1980
1981 /* Associate the file and the mapping. */
1982 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
1983 fp->file_pname[PRMAPSZ - 1] = '\0';
1984
1985 /*
1986 * If no section headers were available then we'll have to
1987 * identify this load object's other mappings with what we've
1988 * got: the start and end of the object's corresponding
1989 * address space.
1990 */
1991 if (fp->file_saddrs == NULL) {
1992 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
1993 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
1994
1995 if (mp->map_file == NULL) {
1996 dprintf("core_iter_mapping %s: associating "
1997 "segment at %p\n",
1998 fp->file_pname,
1999 (void *)mp->map_pmap.pr_vaddr);
2000 mp->map_file = fp;
2001 fp->file_ref++;
2002 } else {
2003 dprintf("core_iter_mapping %s: segment at "
2004 "%p already associated with %s\n",
2005 fp->file_pname,
2006 (void *)mp->map_pmap.pr_vaddr,
2007 (mp == fp->file_map ? "this file" :
2008 mp->map_file->file_pname));
2009 }
2010 }
2011 }
2012
2013 /* Ensure that all this file's mappings are named. */
2014 for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2015 mp->map_file == fp; mp++) {
2016 if (mp->map_pmap.pr_mapname[0] == '\0' &&
2017 !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2018 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2019 PRMAPSZ);
2020 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2021 }
2022 }
2023
2024 /* Attempt to build a symbol table for this file. */
2025 Pbuild_file_symtab(P, fp);
2026 if (fp->file_elf == NULL)
2027 dprintf("core_iter_mapping: no symtab for %s\n",
2028 fp->file_pname);
2029
2030 /* Locate the start of a data segment associated with this file. */
2031 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2032 dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2033 fp->file_pname, (void *)fp->file_lo->rl_data_base,
2034 mp->map_pmap.pr_offset);
2035 } else {
2036 dprintf("core_iter_mapping: no data found for %s\n",
2037 fp->file_pname);
2038 }
2039
2040 return (1); /* Advance to next mapping */
2041 }
2042
2043 /*
2044 * Callback function for Pfindexec(). In order to confirm a given pathname,
2045 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2046 */
2047 static int
core_exec_open(const char * path,void * efp)2048 core_exec_open(const char *path, void *efp)
2049 {
2050 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2051 return (1);
2052 if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2053 return (1);
2054 return (0);
2055 }
2056
2057 /*
2058 * Attempt to load any section headers found in the core file. If present,
2059 * this will refer to non-loadable data added to the core file by the kernel
2060 * based on coreadm(1M) settings, including CTF data and the symbol table.
2061 */
2062 static void
core_load_shdrs(struct ps_prochandle * P,elf_file_t * efp)2063 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2064 {
2065 GElf_Shdr *shp, *shdrs = NULL;
2066 char *shstrtab = NULL;
2067 ulong_t shstrtabsz;
2068 const char *name;
2069 map_info_t *mp;
2070
2071 size_t nbytes;
2072 void *buf;
2073 int i;
2074
2075 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2076 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2077 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2078 return;
2079 }
2080
2081 /*
2082 * Read the section header table from the core file and then iterate
2083 * over the section headers, converting each to a GElf_Shdr.
2084 */
2085 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2086 dprintf("failed to malloc %u section headers: %s\n",
2087 (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2088 return;
2089 }
2090
2091 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2092 if ((buf = malloc(nbytes)) == NULL) {
2093 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2094 strerror(errno));
2095 free(shdrs);
2096 goto out;
2097 }
2098
2099 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2100 dprintf("failed to read section headers at off %lld: %s\n",
2101 (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2102 free(buf);
2103 goto out;
2104 }
2105
2106 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2107 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2108
2109 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2110 core_shdr_to_gelf(p, &shdrs[i]);
2111 else
2112 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2113 }
2114
2115 free(buf);
2116 buf = NULL;
2117
2118 /*
2119 * Read the .shstrtab section from the core file, terminating it with
2120 * an extra \0 so that a corrupt section will not cause us to die.
2121 */
2122 shp = &shdrs[efp->e_hdr.e_shstrndx];
2123 shstrtabsz = shp->sh_size;
2124
2125 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2126 dprintf("failed to allocate %lu bytes for shstrtab\n",
2127 (ulong_t)shstrtabsz);
2128 goto out;
2129 }
2130
2131 if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2132 shp->sh_offset) != shstrtabsz) {
2133 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2134 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2135 goto out;
2136 }
2137
2138 shstrtab[shstrtabsz] = '\0';
2139
2140 /*
2141 * Now iterate over each section in the section header table, locating
2142 * sections of interest and initializing more of the ps_prochandle.
2143 */
2144 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2145 shp = &shdrs[i];
2146 name = shstrtab + shp->sh_name;
2147
2148 if (shp->sh_name >= shstrtabsz) {
2149 dprintf("skipping section [%d]: corrupt sh_name\n", i);
2150 continue;
2151 }
2152
2153 if (shp->sh_link >= efp->e_hdr.e_shnum) {
2154 dprintf("skipping section [%d]: corrupt sh_link\n", i);
2155 continue;
2156 }
2157
2158 dprintf("found section header %s (sh_addr 0x%llx)\n",
2159 name, (u_longlong_t)shp->sh_addr);
2160
2161 if (strcmp(name, ".SUNW_ctf") == 0) {
2162 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2163 dprintf("no map at addr 0x%llx for %s [%d]\n",
2164 (u_longlong_t)shp->sh_addr, name, i);
2165 continue;
2166 }
2167
2168 if (mp->map_file == NULL ||
2169 mp->map_file->file_ctf_buf != NULL) {
2170 dprintf("no mapping file or duplicate buffer "
2171 "for %s [%d]\n", name, i);
2172 continue;
2173 }
2174
2175 if ((buf = malloc(shp->sh_size)) == NULL ||
2176 pread64(efp->e_fd, buf, shp->sh_size,
2177 shp->sh_offset) != shp->sh_size) {
2178 dprintf("skipping section %s [%d]: %s\n",
2179 name, i, strerror(errno));
2180 free(buf);
2181 continue;
2182 }
2183
2184 mp->map_file->file_ctf_size = shp->sh_size;
2185 mp->map_file->file_ctf_buf = buf;
2186
2187 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2188 mp->map_file->file_ctf_dyn = 1;
2189
2190 } else if (strcmp(name, ".symtab") == 0) {
2191 fake_up_symtab(P, &efp->e_hdr,
2192 shp, &shdrs[shp->sh_link]);
2193 }
2194 }
2195 out:
2196 free(shstrtab);
2197 free(shdrs);
2198 }
2199
2200 /*
2201 * Main engine for core file initialization: given an fd for the core file
2202 * and an optional pathname, construct the ps_prochandle. The aout_path can
2203 * either be a suggested executable pathname, or a suggested directory to
2204 * use as a possible current working directory.
2205 */
2206 struct ps_prochandle *
Pfgrab_core(int core_fd,const char * aout_path,int * perr)2207 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2208 {
2209 struct ps_prochandle *P;
2210 core_info_t *core_info;
2211 map_info_t *stk_mp, *brk_mp;
2212 const char *execname;
2213 char *interp;
2214 int i, notes, pagesize;
2215 uintptr_t addr, base_addr;
2216 struct stat64 stbuf;
2217 void *phbuf, *php;
2218 size_t nbytes;
2219 #ifdef __x86
2220 boolean_t from_linux = B_FALSE;
2221 #endif
2222
2223 elf_file_t aout;
2224 elf_file_t core;
2225
2226 Elf_Scn *scn, *intp_scn = NULL;
2227 Elf_Data *dp;
2228
2229 GElf_Phdr phdr, note_phdr;
2230 GElf_Shdr shdr;
2231 GElf_Xword nleft;
2232
2233 if (elf_version(EV_CURRENT) == EV_NONE) {
2234 dprintf("libproc ELF version is more recent than libelf\n");
2235 *perr = G_ELF;
2236 return (NULL);
2237 }
2238
2239 aout.e_elf = NULL;
2240 aout.e_fd = -1;
2241
2242 core.e_elf = NULL;
2243 core.e_fd = core_fd;
2244
2245 /*
2246 * Allocate and initialize a ps_prochandle structure for the core.
2247 * There are several key pieces of initialization here:
2248 *
2249 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2250 * PS_DEAD also thus prevents all operations which require state
2251 * to be PS_STOP from operating on this handle.
2252 *
2253 * 2. We keep the core file fd in P->asfd since the core file contains
2254 * the remnants of the process address space.
2255 *
2256 * 3. We set the P->info_valid bit because all information about the
2257 * core is determined by the end of this function; there is no need
2258 * for proc_update_maps() to reload mappings at any later point.
2259 *
2260 * 4. The read/write ops vector uses our core_rw() function defined
2261 * above to handle i/o requests.
2262 */
2263 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2264 *perr = G_STRANGE;
2265 return (NULL);
2266 }
2267
2268 (void) memset(P, 0, sizeof (struct ps_prochandle));
2269 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2270 P->state = PS_DEAD;
2271 P->pid = (pid_t)-1;
2272 P->asfd = core.e_fd;
2273 P->ctlfd = -1;
2274 P->statfd = -1;
2275 P->agentctlfd = -1;
2276 P->agentstatfd = -1;
2277 P->zoneroot = NULL;
2278 P->info_valid = 1;
2279 Pinit_ops(&P->ops, &P_core_ops);
2280
2281 Pinitsym(P);
2282
2283 /*
2284 * Fstat and open the core file and make sure it is a valid ELF core.
2285 */
2286 if (fstat64(P->asfd, &stbuf) == -1) {
2287 *perr = G_STRANGE;
2288 goto err;
2289 }
2290
2291 if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2292 goto err;
2293
2294 /*
2295 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2296 * structure. We keep all core-specific information in this structure.
2297 */
2298 if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2299 *perr = G_STRANGE;
2300 goto err;
2301 }
2302
2303 P->data = core_info;
2304 list_link(&core_info->core_lwp_head, NULL);
2305 core_info->core_size = stbuf.st_size;
2306 /*
2307 * In the days before adjustable core file content, this was the
2308 * default core file content. For new core files, this value will
2309 * be overwritten by the NT_CONTENT note section.
2310 */
2311 core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2312 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2313 CC_CONTENT_SHANON;
2314
2315 switch (core.e_hdr.e_ident[EI_CLASS]) {
2316 case ELFCLASS32:
2317 core_info->core_dmodel = PR_MODEL_ILP32;
2318 break;
2319 case ELFCLASS64:
2320 core_info->core_dmodel = PR_MODEL_LP64;
2321 break;
2322 default:
2323 *perr = G_FORMAT;
2324 goto err;
2325 }
2326 core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2327
2328 /*
2329 * Because the core file may be a large file, we can't use libelf to
2330 * read the Phdrs. We use e_phnum and e_phentsize to simplify things.
2331 */
2332 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2333
2334 if ((phbuf = malloc(nbytes)) == NULL) {
2335 *perr = G_STRANGE;
2336 goto err;
2337 }
2338
2339 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2340 *perr = G_STRANGE;
2341 free(phbuf);
2342 goto err;
2343 }
2344
2345 /*
2346 * Iterate through the program headers in the core file.
2347 * We're interested in two types of Phdrs: PT_NOTE (which
2348 * contains a set of saved /proc structures), and PT_LOAD (which
2349 * represents a memory mapping from the process's address space).
2350 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2351 * in the core file; currently the first PT_NOTE (if present)
2352 * contains /proc structs in the pre-2.6 unstructured /proc format.
2353 */
2354 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2355 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2356 (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2357 else
2358 core_phdr_to_gelf(php, &phdr);
2359
2360 switch (phdr.p_type) {
2361 case PT_NOTE:
2362 note_phdr = phdr;
2363 notes++;
2364 break;
2365
2366 case PT_LOAD:
2367 if (core_add_mapping(P, &phdr) == -1) {
2368 *perr = G_STRANGE;
2369 free(phbuf);
2370 goto err;
2371 }
2372 break;
2373 default:
2374 dprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2375 break;
2376 }
2377
2378 php = (char *)php + core.e_hdr.e_phentsize;
2379 }
2380
2381 free(phbuf);
2382
2383 Psort_mappings(P);
2384
2385 /*
2386 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2387 * was present, abort. The core file is either corrupt or too old.
2388 */
2389 if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2390 ELFOSABI_SOLARIS)) {
2391 *perr = G_NOTE;
2392 goto err;
2393 }
2394
2395 /*
2396 * Advance the seek pointer to the start of the PT_NOTE data
2397 */
2398 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2399 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2400 *perr = G_STRANGE;
2401 goto err;
2402 }
2403
2404 /*
2405 * Now process the PT_NOTE structures. Each one is preceded by
2406 * an Elf{32/64}_Nhdr structure describing its type and size.
2407 *
2408 * +--------+
2409 * | header |
2410 * +--------+
2411 * | name |
2412 * | ... |
2413 * +--------+
2414 * | desc |
2415 * | ... |
2416 * +--------+
2417 */
2418 for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2419 Elf64_Nhdr nhdr;
2420 off64_t off, namesz, descsz;
2421
2422 /*
2423 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2424 * as different types, they are both of the same content and
2425 * size, so we don't need to worry about 32/64 conversion here.
2426 */
2427 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2428 dprintf("Pgrab_core: failed to read ELF note header\n");
2429 *perr = G_NOTE;
2430 goto err;
2431 }
2432
2433 /*
2434 * According to the System V ABI, the amount of padding
2435 * following the name field should align the description
2436 * field on a 4 byte boundary for 32-bit binaries or on an 8
2437 * byte boundary for 64-bit binaries. However, this change
2438 * was not made correctly during the 64-bit port so all
2439 * descriptions can assume only 4-byte alignment. We ignore
2440 * the name field and the padding to 4-byte alignment.
2441 */
2442 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2443
2444 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2445 dprintf("failed to seek past name and padding\n");
2446 *perr = G_STRANGE;
2447 goto err;
2448 }
2449
2450 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2451 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2452
2453 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2454
2455 /*
2456 * Invoke the note handler function from our table
2457 */
2458 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2459 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2460 dprintf("handler for type %d returned < 0",
2461 nhdr.n_type);
2462 *perr = G_NOTE;
2463 goto err;
2464 }
2465 /*
2466 * The presence of either of these notes indicates that
2467 * the dump was generated on Linux.
2468 */
2469 #ifdef __x86
2470 if (nhdr.n_type == NT_PRSTATUS ||
2471 nhdr.n_type == NT_PRPSINFO)
2472 from_linux = B_TRUE;
2473 #endif
2474 } else {
2475 (void) note_notsup(P, nhdr.n_descsz);
2476 }
2477
2478 /*
2479 * Seek past the current note data to the next Elf_Nhdr
2480 */
2481 descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2482 if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2483 dprintf("Pgrab_core: failed to seek to next nhdr\n");
2484 *perr = G_STRANGE;
2485 goto err;
2486 }
2487
2488 /*
2489 * Subtract the size of the header and its data from what
2490 * we have left to process.
2491 */
2492 nleft -= sizeof (nhdr) + namesz + descsz;
2493 }
2494
2495 #ifdef __x86
2496 if (from_linux) {
2497 size_t tcount, pid;
2498 lwp_info_t *lwp;
2499
2500 P->status.pr_dmodel = core_info->core_dmodel;
2501
2502 lwp = list_next(&core_info->core_lwp_head);
2503
2504 pid = P->status.pr_pid;
2505
2506 for (tcount = 0; tcount < core_info->core_nlwp;
2507 tcount++, lwp = list_next(lwp)) {
2508 dprintf("Linux thread with id %d\n", lwp->lwp_id);
2509
2510 /*
2511 * In the case we don't have a valid psinfo (i.e. pid is
2512 * 0, probably because of gdb creating the core) assume
2513 * lowest pid count is the first thread (what if the
2514 * next thread wraps the pid around?)
2515 */
2516 if (P->status.pr_pid == 0 &&
2517 ((pid == 0 && lwp->lwp_id > 0) ||
2518 (lwp->lwp_id < pid))) {
2519 pid = lwp->lwp_id;
2520 }
2521 }
2522
2523 if (P->status.pr_pid != pid) {
2524 dprintf("No valid pid, setting to %ld\n", (ulong_t)pid);
2525 P->status.pr_pid = pid;
2526 P->psinfo.pr_pid = pid;
2527 }
2528
2529 /*
2530 * Consumers like mdb expect the first thread to actually have
2531 * an id of 1, on linux that is actually the pid. Find the the
2532 * thread with our process id, and set the id to 1
2533 */
2534 if ((lwp = lwpid2info(P, pid)) == NULL) {
2535 dprintf("Couldn't find first thread\n");
2536 *perr = G_STRANGE;
2537 goto err;
2538 }
2539
2540 dprintf("setting representative thread: %d\n", lwp->lwp_id);
2541
2542 lwp->lwp_id = 1;
2543 lwp->lwp_status.pr_lwpid = 1;
2544
2545 /* set representative thread */
2546 (void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2547 sizeof (P->status.pr_lwp));
2548 }
2549 #endif /* __x86 */
2550
2551 if (nleft != 0) {
2552 dprintf("Pgrab_core: note section malformed\n");
2553 *perr = G_STRANGE;
2554 goto err;
2555 }
2556
2557 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2558 pagesize = getpagesize();
2559 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2560 }
2561
2562 /*
2563 * Locate and label the mappings corresponding to the end of the
2564 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2565 */
2566 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2567 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2568 P->status.pr_brksize - 1)) != NULL)
2569 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2570 else
2571 brk_mp = NULL;
2572
2573 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2574 stk_mp->map_pmap.pr_mflags |= MA_STACK;
2575
2576 /*
2577 * At this point, we have enough information to look for the
2578 * executable and open it: we have access to the auxv, a psinfo_t,
2579 * and the ability to read from mappings provided by the core file.
2580 */
2581 (void) Pfindexec(P, aout_path, core_exec_open, &aout);
2582 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2583 execname = P->execname ? P->execname : "a.out";
2584
2585 /*
2586 * Iterate through the sections, looking for the .dynamic and .interp
2587 * sections. If we encounter them, remember their section pointers.
2588 */
2589 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2590 char *sname;
2591
2592 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2593 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2594 (size_t)shdr.sh_name)) == NULL)
2595 continue;
2596
2597 if (strcmp(sname, ".interp") == 0)
2598 intp_scn = scn;
2599 }
2600
2601 /*
2602 * Get the AT_BASE auxv element. If this is missing (-1), then
2603 * we assume this is a statically-linked executable.
2604 */
2605 base_addr = Pgetauxval(P, AT_BASE);
2606
2607 /*
2608 * In order to get librtld_db initialized, we'll need to identify
2609 * and name the mapping corresponding to the run-time linker. The
2610 * AT_BASE auxv element tells us the address where it was mapped,
2611 * and the .interp section of the executable tells us its path.
2612 * If for some reason that doesn't pan out, just use ld.so.1.
2613 */
2614 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2615 dp->d_size != 0) {
2616 dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2617 interp = dp->d_buf;
2618
2619 } else if (base_addr != (uintptr_t)-1L) {
2620 if (core_info->core_dmodel == PR_MODEL_LP64)
2621 interp = "/usr/lib/64/ld.so.1";
2622 else
2623 interp = "/usr/lib/ld.so.1";
2624
2625 dprintf(".interp section is missing or could not be read; "
2626 "defaulting to %s\n", interp);
2627 } else
2628 dprintf("detected statically linked executable\n");
2629
2630 /*
2631 * If we have an AT_BASE element, name the mapping at that address
2632 * using the interpreter pathname. Name the corresponding data
2633 * mapping after the interpreter as well.
2634 */
2635 if (base_addr != (uintptr_t)-1L) {
2636 elf_file_t intf;
2637
2638 P->map_ldso = core_name_mapping(P, base_addr, interp);
2639
2640 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2641 rd_loadobj_t rl;
2642 map_info_t *dmp;
2643
2644 rl.rl_base = base_addr;
2645 dmp = core_find_data(P, intf.e_elf, &rl);
2646
2647 if (dmp != NULL) {
2648 dprintf("renamed data at %p to %s\n",
2649 (void *)rl.rl_data_base, interp);
2650 (void) strncpy(dmp->map_pmap.pr_mapname,
2651 interp, PRMAPSZ);
2652 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2653 }
2654 }
2655
2656 core_elf_close(&intf);
2657 }
2658
2659 /*
2660 * If we have an AT_ENTRY element, name the mapping at that address
2661 * using the special name "a.out" just like /proc does.
2662 */
2663 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2664 P->map_exec = core_name_mapping(P, addr, "a.out");
2665
2666 /*
2667 * If we're a statically linked executable (or we're on x86 and looking
2668 * at a Linux core dump), then just locate the executable's text and
2669 * data and name them after the executable.
2670 */
2671 #ifndef __x86
2672 if (base_addr == (uintptr_t)-1L) {
2673 #else
2674 if (base_addr == (uintptr_t)-1L || from_linux) {
2675 #endif
2676 dprintf("looking for text and data: %s\n", execname);
2677 map_info_t *tmp, *dmp;
2678 file_info_t *fp;
2679 rd_loadobj_t rl;
2680
2681 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2682 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2683 (void) strncpy(tmp->map_pmap.pr_mapname,
2684 execname, PRMAPSZ);
2685 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2686 (void) strncpy(dmp->map_pmap.pr_mapname,
2687 execname, PRMAPSZ);
2688 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2689 }
2690
2691 if ((P->map_exec = tmp) != NULL &&
2692 (fp = malloc(sizeof (file_info_t))) != NULL) {
2693
2694 (void) memset(fp, 0, sizeof (file_info_t));
2695
2696 list_link(fp, &P->file_head);
2697 tmp->map_file = fp;
2698 P->num_files++;
2699
2700 fp->file_ref = 1;
2701 fp->file_fd = -1;
2702
2703 fp->file_lo = malloc(sizeof (rd_loadobj_t));
2704 fp->file_lname = strdup(execname);
2705
2706 if (fp->file_lo)
2707 *fp->file_lo = rl;
2708 if (fp->file_lname)
2709 fp->file_lbase = basename(fp->file_lname);
2710 if (fp->file_rname)
2711 fp->file_rbase = basename(fp->file_rname);
2712
2713 (void) strcpy(fp->file_pname,
2714 P->mappings[0].map_pmap.pr_mapname);
2715 fp->file_map = tmp;
2716
2717 Pbuild_file_symtab(P, fp);
2718
2719 if (dmp != NULL) {
2720 dmp->map_file = fp;
2721 fp->file_ref++;
2722 }
2723 }
2724 }
2725
2726 core_elf_close(&aout);
2727
2728 /*
2729 * We now have enough information to initialize librtld_db.
2730 * After it warms up, we can iterate through the load object chain
2731 * in the core, which will allow us to construct the file info
2732 * we need to provide symbol information for the other shared
2733 * libraries, and also to fill in the missing mapping names.
2734 */
2735 rd_log(_libproc_debug);
2736
2737 if ((P->rap = rd_new(P)) != NULL) {
2738 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2739 core_iter_mapping, P);
2740
2741 if (core_info->core_errno != 0) {
2742 errno = core_info->core_errno;
2743 *perr = G_STRANGE;
2744 goto err;
2745 }
2746 } else
2747 dprintf("failed to initialize rtld_db agent\n");
2748
2749 /*
2750 * If there are sections, load them and process the data from any
2751 * sections that we can use to annotate the file_info_t's.
2752 */
2753 core_load_shdrs(P, &core);
2754
2755 /*
2756 * If we previously located a stack or break mapping, and they are
2757 * still anonymous, we now assume that they were MAP_ANON mappings.
2758 * If brk_mp turns out to now have a name, then the heap is still
2759 * sitting at the end of the executable's data+bss mapping: remove
2760 * the previous MA_BREAK setting to be consistent with /proc.
2761 */
2762 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2763 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2764 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2765 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2766 else if (brk_mp != NULL)
2767 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2768
2769 *perr = 0;
2770 return (P);
2771
2772 err:
2773 Pfree(P);
2774 core_elf_close(&aout);
2775 return (NULL);
2776 }
2777
2778 /*
2779 * Grab a core file using a pathname. We just open it and call Pfgrab_core().
2780 */
2781 struct ps_prochandle *
2782 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2783 {
2784 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2785
2786 if ((fd = open64(core, oflag)) >= 0)
2787 return (Pfgrab_core(fd, aout, perr));
2788
2789 if (errno != ENOENT)
2790 *perr = G_STRANGE;
2791 else
2792 *perr = G_NOCORE;
2793
2794 return (NULL);
2795 }
2796