xref: /illumos-gate/usr/src/lib/libproc/common/Pcore.c (revision 72dae0eb2635f5732d4165158288e85a4b68729d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
27  * Copyright (c) 2018, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2013 by Delphix. All rights reserved.
29  * Copyright 2015 Gary Mills
30  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
31  * Copyright 2024 Oxide Computer Company
32  */
33 
34 #include <sys/types.h>
35 #include <sys/utsname.h>
36 #include <sys/sysmacros.h>
37 #include <sys/proc.h>
38 
39 #include <alloca.h>
40 #include <rtld_db.h>
41 #include <libgen.h>
42 #include <limits.h>
43 #include <string.h>
44 #include <stdlib.h>
45 #include <unistd.h>
46 #include <errno.h>
47 #include <gelf.h>
48 #include <stddef.h>
49 #include <signal.h>
50 
51 #include "libproc.h"
52 #include "Pcontrol.h"
53 #include "P32ton.h"
54 #include "Putil.h"
55 #include "proc_fd.h"
56 #ifdef __x86
57 #include "Pcore_linux.h"
58 #endif
59 
60 /*
61  * Pcore.c - Code to initialize a ps_prochandle from a core dump.  We
62  * allocate an additional structure to hold information from the core
63  * file, and attach this to the standard ps_prochandle in place of the
64  * ability to examine /proc/<pid>/ files.
65  */
66 
67 /*
68  * Basic i/o function for reading and writing from the process address space
69  * stored in the core file and associated shared libraries.  We compute the
70  * appropriate fd and offsets, and let the provided prw function do the rest.
71  */
72 static ssize_t
core_rw(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,ssize_t (* prw)(int,void *,size_t,off64_t))73 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
74     ssize_t (*prw)(int, void *, size_t, off64_t))
75 {
76 	ssize_t resid = n;
77 
78 	while (resid != 0) {
79 		map_info_t *mp = Paddr2mptr(P, addr);
80 
81 		uintptr_t mapoff;
82 		ssize_t len;
83 		off64_t off;
84 		int fd;
85 
86 		if (mp == NULL)
87 			break;	/* No mapping for this address */
88 
89 		if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
90 			if (mp->map_file == NULL || mp->map_file->file_fd < 0)
91 				break;	/* No file or file not open */
92 
93 			fd = mp->map_file->file_fd;
94 		} else
95 			fd = P->asfd;
96 
97 		mapoff = addr - mp->map_pmap.pr_vaddr;
98 		len = MIN(resid, mp->map_pmap.pr_size - mapoff);
99 		off = mp->map_offset + mapoff;
100 
101 		if ((len = prw(fd, buf, len, off)) <= 0)
102 			break;
103 
104 		resid -= len;
105 		addr += len;
106 		buf = (char *)buf + len;
107 	}
108 
109 	/*
110 	 * Important: Be consistent with the behavior of i/o on the as file:
111 	 * writing to an invalid address yields EIO; reading from an invalid
112 	 * address falls through to returning success and zero bytes.
113 	 */
114 	if (resid == n && n != 0 && prw != pread64) {
115 		errno = EIO;
116 		return (-1);
117 	}
118 
119 	return (n - resid);
120 }
121 
122 static ssize_t
Pread_core(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,void * data)123 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
124     void *data)
125 {
126 	return (core_rw(P, buf, n, addr, pread64));
127 }
128 
129 static ssize_t
Pwrite_core(struct ps_prochandle * P,const void * buf,size_t n,uintptr_t addr,void * data)130 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
131     void *data)
132 {
133 	return (core_rw(P, (void *)buf, n, addr,
134 	    (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
135 }
136 
137 static int
Pcred_core(struct ps_prochandle * P,prcred_t * pcrp,int ngroups,void * data)138 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
139 {
140 	core_info_t *core = data;
141 
142 	if (core->core_cred != NULL) {
143 		/*
144 		 * Avoid returning more supplementary group data than the
145 		 * caller has allocated in their buffer.  We expect them to
146 		 * check pr_ngroups afterward and potentially call us again.
147 		 */
148 		ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
149 
150 		(void) memcpy(pcrp, core->core_cred,
151 		    sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
152 
153 		return (0);
154 	}
155 
156 	errno = ENODATA;
157 	return (-1);
158 }
159 
160 static int
Psecflags_core(struct ps_prochandle * P,prsecflags_t ** psf,void * data)161 Psecflags_core(struct ps_prochandle *P, prsecflags_t **psf, void *data)
162 {
163 	core_info_t *core = data;
164 
165 	if (core->core_secflags == NULL) {
166 		errno = ENODATA;
167 		return (-1);
168 	}
169 
170 	if ((*psf = calloc(1, sizeof (prsecflags_t))) == NULL)
171 		return (-1);
172 
173 	(void) memcpy(*psf, core->core_secflags, sizeof (prsecflags_t));
174 
175 	return (0);
176 }
177 
178 static int
Ppriv_core(struct ps_prochandle * P,prpriv_t ** pprv,void * data)179 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
180 {
181 	core_info_t *core = data;
182 
183 	if (core->core_priv == NULL) {
184 		errno = ENODATA;
185 		return (-1);
186 	}
187 
188 	*pprv = malloc(core->core_priv_size);
189 	if (*pprv == NULL) {
190 		return (-1);
191 	}
192 
193 	(void) memcpy(*pprv, core->core_priv, core->core_priv_size);
194 	return (0);
195 }
196 
197 static const psinfo_t *
Ppsinfo_core(struct ps_prochandle * P,psinfo_t * psinfo,void * data)198 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
199 {
200 	return (&P->psinfo);
201 }
202 
203 static void
Pfini_core(struct ps_prochandle * P,void * data)204 Pfini_core(struct ps_prochandle *P, void *data)
205 {
206 	core_info_t *core = data;
207 
208 	if (core != NULL) {
209 		extern void __priv_free_info(void *);
210 		lwp_info_t *lwp;
211 
212 		while ((lwp = list_remove_head(&core->core_lwp_head)) != NULL) {
213 #ifdef __sparc
214 			if (lwp->lwp_gwins != NULL)
215 				free(lwp->lwp_gwins);
216 			if (lwp->lwp_xregs != NULL)
217 				free(lwp->lwp_xregs);
218 			if (lwp->lwp_asrs != NULL)
219 				free(lwp->lwp_asrs);
220 #endif
221 			free(lwp);
222 		}
223 
224 		if (core->core_platform != NULL)
225 			free(core->core_platform);
226 		if (core->core_uts != NULL)
227 			free(core->core_uts);
228 		if (core->core_cred != NULL)
229 			free(core->core_cred);
230 		if (core->core_priv != NULL)
231 			free(core->core_priv);
232 		if (core->core_privinfo != NULL)
233 			__priv_free_info(core->core_privinfo);
234 		if (core->core_ppii != NULL)
235 			free(core->core_ppii);
236 		if (core->core_zonename != NULL)
237 			free(core->core_zonename);
238 		if (core->core_secflags != NULL)
239 			free(core->core_secflags);
240 		if (core->core_upanic != NULL)
241 			free(core->core_upanic);
242 		if (core->core_cwd != NULL)
243 			free(core->core_cwd);
244 #ifdef __x86
245 		if (core->core_ldt != NULL)
246 			free(core->core_ldt);
247 #endif
248 
249 		free(core);
250 	}
251 }
252 
253 static char *
Pplatform_core(struct ps_prochandle * P,char * s,size_t n,void * data)254 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
255 {
256 	core_info_t *core = data;
257 
258 	if (core->core_platform == NULL) {
259 		errno = ENODATA;
260 		return (NULL);
261 	}
262 	(void) strncpy(s, core->core_platform, n - 1);
263 	s[n - 1] = '\0';
264 	return (s);
265 }
266 
267 static int
Puname_core(struct ps_prochandle * P,struct utsname * u,void * data)268 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
269 {
270 	core_info_t *core = data;
271 
272 	if (core->core_uts == NULL) {
273 		errno = ENODATA;
274 		return (-1);
275 	}
276 	(void) memcpy(u, core->core_uts, sizeof (struct utsname));
277 	return (0);
278 }
279 
280 static char *
Pzonename_core(struct ps_prochandle * P,char * s,size_t n,void * data)281 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
282 {
283 	core_info_t *core = data;
284 
285 	if (core->core_zonename == NULL) {
286 		errno = ENODATA;
287 		return (NULL);
288 	}
289 	(void) strlcpy(s, core->core_zonename, n);
290 	return (s);
291 }
292 
293 static int
Pcwd_core(struct ps_prochandle * P,prcwd_t ** cwdp,void * data)294 Pcwd_core(struct ps_prochandle *P, prcwd_t **cwdp, void *data)
295 {
296 	prcwd_t *cwd;
297 	core_info_t *core = data;
298 
299 	if (core->core_cwd == NULL) {
300 		errno = ENODATA;
301 		return (-1);
302 	}
303 
304 	if ((cwd = calloc(1, sizeof (prcwd_t))) == NULL)
305 		return (-1);
306 
307 	(void) memcpy(cwd, core->core_cwd, sizeof (prcwd_t));
308 	cwd->prcwd_fsname[sizeof (cwd->prcwd_fsname) - 1] = '\0';
309 	cwd->prcwd_mntpt[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
310 	cwd->prcwd_mntspec[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
311 	cwd->prcwd_cwd[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
312 	*cwdp = cwd;
313 
314 	return (0);
315 }
316 
317 #ifdef __x86
318 static int
Pldt_core(struct ps_prochandle * P,struct ssd * pldt,int nldt,void * data)319 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
320 {
321 	core_info_t *core = data;
322 
323 	if (pldt == NULL || nldt == 0)
324 		return (core->core_nldt);
325 
326 	if (core->core_ldt != NULL) {
327 		nldt = MIN(nldt, core->core_nldt);
328 
329 		(void) memcpy(pldt, core->core_ldt,
330 		    nldt * sizeof (struct ssd));
331 
332 		return (nldt);
333 	}
334 
335 	errno = ENODATA;
336 	return (-1);
337 }
338 #endif
339 
340 static const ps_ops_t P_core_ops = {
341 	.pop_pread	= Pread_core,
342 	.pop_pwrite	= Pwrite_core,
343 	.pop_cred	= Pcred_core,
344 	.pop_priv	= Ppriv_core,
345 	.pop_psinfo	= Ppsinfo_core,
346 	.pop_fini	= Pfini_core,
347 	.pop_platform	= Pplatform_core,
348 	.pop_uname	= Puname_core,
349 	.pop_zonename	= Pzonename_core,
350 	.pop_secflags	= Psecflags_core,
351 	.pop_cwd	= Pcwd_core,
352 #ifdef __x86
353 	.pop_ldt	= Pldt_core
354 #endif
355 };
356 
357 /*
358  * Return the lwp_info_t for the given lwpid.  If no such lwpid has been
359  * encountered yet, allocate a new structure and return a pointer to it.
360  * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
361  */
362 static lwp_info_t *
lwpid2info(struct ps_prochandle * P,lwpid_t id)363 lwpid2info(struct ps_prochandle *P, lwpid_t id)
364 {
365 	core_info_t *core = P->data;
366 	lwp_info_t *lwp, *prev;
367 
368 	for (lwp = list_head(&core->core_lwp_head); lwp != NULL;
369 	    lwp = list_next(&core->core_lwp_head, lwp)) {
370 		if (lwp->lwp_id == id) {
371 			core->core_lwp = lwp;
372 			return (lwp);
373 		}
374 		if (lwp->lwp_id < id) {
375 			break;
376 		}
377 	}
378 
379 	prev = lwp;
380 	if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
381 		return (NULL);
382 
383 	list_insert_before(&core->core_lwp_head, prev, lwp);
384 	lwp->lwp_id = id;
385 
386 	core->core_lwp = lwp;
387 
388 	return (lwp);
389 }
390 
391 /*
392  * The core file itself contains a series of NOTE segments containing saved
393  * structures from /proc at the time the process died.  For each note we
394  * comprehend, we define a function to read it in from the core file,
395  * convert it to our native data model if necessary, and store it inside
396  * the ps_prochandle.  Each function is invoked by Pfgrab_core() with the
397  * seek pointer on P->asfd positioned appropriately.  We populate a table
398  * of pointers to these note functions below.
399  */
400 
401 static int
note_pstatus(struct ps_prochandle * P,size_t nbytes)402 note_pstatus(struct ps_prochandle *P, size_t nbytes)
403 {
404 #ifdef _LP64
405 	core_info_t *core = P->data;
406 
407 	if (core->core_dmodel == PR_MODEL_ILP32) {
408 		pstatus32_t ps32;
409 
410 		if (nbytes < sizeof (pstatus32_t) ||
411 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
412 			goto err;
413 
414 		pstatus_32_to_n(&ps32, &P->status);
415 
416 	} else
417 #endif
418 	if (nbytes < sizeof (pstatus_t) ||
419 	    read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
420 		goto err;
421 
422 	P->orig_status = P->status;
423 	P->pid = P->status.pr_pid;
424 
425 	return (0);
426 
427 err:
428 	Pdprintf("Pgrab_core: failed to read NT_PSTATUS\n");
429 	return (-1);
430 }
431 
432 static int
note_lwpstatus(struct ps_prochandle * P,size_t nbytes)433 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
434 {
435 	lwp_info_t *lwp;
436 	lwpstatus_t lps;
437 
438 #ifdef _LP64
439 	core_info_t *core = P->data;
440 
441 	if (core->core_dmodel == PR_MODEL_ILP32) {
442 		lwpstatus32_t l32;
443 
444 		if (nbytes < sizeof (lwpstatus32_t) ||
445 		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
446 			goto err;
447 
448 		lwpstatus_32_to_n(&l32, &lps);
449 	} else
450 #endif
451 	if (nbytes < sizeof (lwpstatus_t) ||
452 	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
453 		goto err;
454 
455 	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
456 		Pdprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
457 		return (-1);
458 	}
459 
460 	/*
461 	 * Erase a useless and confusing artifact of the kernel implementation:
462 	 * the lwps which did *not* create the core will show SIGKILL.  We can
463 	 * be assured this is bogus because SIGKILL can't produce core files.
464 	 */
465 	if (lps.pr_cursig == SIGKILL)
466 		lps.pr_cursig = 0;
467 
468 	(void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
469 	return (0);
470 
471 err:
472 	Pdprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
473 	return (-1);
474 }
475 
476 #ifdef __x86
477 
478 static void
lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t * p32,psinfo_t * psinfo)479 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
480 {
481 	psinfo->pr_flag = p32->pr_flag;
482 	psinfo->pr_pid = p32->pr_pid;
483 	psinfo->pr_ppid = p32->pr_ppid;
484 	psinfo->pr_uid = p32->pr_uid;
485 	psinfo->pr_gid = p32->pr_gid;
486 	psinfo->pr_sid = p32->pr_sid;
487 	psinfo->pr_pgid = p32->pr_pgrp;
488 
489 	(void) memcpy(psinfo->pr_fname, p32->pr_fname,
490 	    sizeof (psinfo->pr_fname));
491 	(void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
492 	    sizeof (psinfo->pr_psargs));
493 }
494 
495 static void
lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t * p64,psinfo_t * psinfo)496 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
497 {
498 	psinfo->pr_flag = p64->pr_flag;
499 	psinfo->pr_pid = p64->pr_pid;
500 	psinfo->pr_ppid = p64->pr_ppid;
501 	psinfo->pr_uid = p64->pr_uid;
502 	psinfo->pr_gid = p64->pr_gid;
503 	psinfo->pr_sid = p64->pr_sid;
504 	psinfo->pr_pgid = p64->pr_pgrp;
505 	psinfo->pr_pgid = p64->pr_pgrp;
506 
507 	(void) memcpy(psinfo->pr_fname, p64->pr_fname,
508 	    sizeof (psinfo->pr_fname));
509 	(void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
510 	    sizeof (psinfo->pr_psargs));
511 }
512 
513 static int
note_linux_psinfo(struct ps_prochandle * P,size_t nbytes)514 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
515 {
516 	core_info_t *core = P->data;
517 	lx_prpsinfo32_t p32;
518 	lx_prpsinfo64_t p64;
519 
520 	if (core->core_dmodel == PR_MODEL_ILP32) {
521 		if (nbytes < sizeof (p32) ||
522 		    read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
523 			goto err;
524 
525 		lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
526 	} else {
527 		if (nbytes < sizeof (p64) ||
528 		    read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
529 			goto err;
530 
531 		lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
532 	}
533 
534 
535 	P->status.pr_pid = P->psinfo.pr_pid;
536 	P->status.pr_ppid = P->psinfo.pr_ppid;
537 	P->status.pr_pgid = P->psinfo.pr_pgid;
538 	P->status.pr_sid = P->psinfo.pr_sid;
539 
540 	P->psinfo.pr_nlwp = 0;
541 	P->status.pr_nlwp = 0;
542 
543 	return (0);
544 err:
545 	Pdprintf("Pgrab_core: failed to read NT_PSINFO\n");
546 	return (-1);
547 }
548 
549 static void
lx_prstatus64_to_lwp(lx_prstatus64_t * prs64,lwp_info_t * lwp)550 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
551 {
552 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
553 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
554 
555 	lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
556 	lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
557 	lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
558 	lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
559 	lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
560 	lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
561 	lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
562 	lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
563 
564 	lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
565 	lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
566 	lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
567 	lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
568 	lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
569 	lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
570 	lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
571 
572 	lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
573 	lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
574 	lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
575 	lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
576 	lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
577 	lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
578 	lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
579 	lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
580 
581 	lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
582 	lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
583 }
584 
585 static void
lx_prstatus32_to_lwp(lx_prstatus32_t * prs32,lwp_info_t * lwp)586 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
587 {
588 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
589 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
590 
591 #ifdef __amd64
592 	lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
593 	lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
594 	lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
595 	lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
596 	lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
597 	lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
598 	lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
599 	lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
600 	lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
601 	lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
602 	lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
603 	lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
604 	lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
605 	lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
606 	lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
607 	lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
608 #else /* __amd64 */
609 	lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
610 	lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
611 	lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
612 	lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
613 	lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
614 	lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
615 	lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
616 	lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
617 	lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
618 
619 	lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
620 	lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
621 	lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
622 	lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
623 	lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
624 	lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
625 
626 	lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
627 #endif	/* !__amd64 */
628 }
629 
630 static int
note_linux_prstatus(struct ps_prochandle * P,size_t nbytes)631 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
632 {
633 	core_info_t *core = P->data;
634 
635 	lx_prstatus64_t prs64;
636 	lx_prstatus32_t prs32;
637 	lwp_info_t *lwp;
638 	lwpid_t tid;
639 
640 	Pdprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
641 	    (ulong_t)nbytes, (ulong_t)sizeof (prs32));
642 	if (core->core_dmodel == PR_MODEL_ILP32) {
643 		if (nbytes < sizeof (prs32) ||
644 		    read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
645 			goto err;
646 		tid = prs32.pr_pid;
647 	} else {
648 		if (nbytes < sizeof (prs64) ||
649 		    read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
650 			goto err;
651 		tid = prs64.pr_pid;
652 	}
653 
654 	if ((lwp = lwpid2info(P, tid)) == NULL) {
655 		Pdprintf("Pgrab_core: failed to add lwpid2info "
656 		    "linux_prstatus\n");
657 		return (-1);
658 	}
659 
660 	P->psinfo.pr_nlwp++;
661 	P->status.pr_nlwp++;
662 
663 	lwp->lwp_status.pr_lwpid = tid;
664 
665 	if (core->core_dmodel == PR_MODEL_ILP32)
666 		lx_prstatus32_to_lwp(&prs32, lwp);
667 	else
668 		lx_prstatus64_to_lwp(&prs64, lwp);
669 
670 	return (0);
671 err:
672 	Pdprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
673 	return (-1);
674 }
675 
676 #endif /* __x86 */
677 
678 static int
note_psinfo(struct ps_prochandle * P,size_t nbytes)679 note_psinfo(struct ps_prochandle *P, size_t nbytes)
680 {
681 #ifdef _LP64
682 	core_info_t *core = P->data;
683 
684 	if (core->core_dmodel == PR_MODEL_ILP32) {
685 		psinfo32_t ps32;
686 
687 		if (nbytes < sizeof (psinfo32_t) ||
688 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
689 			goto err;
690 
691 		psinfo_32_to_n(&ps32, &P->psinfo);
692 	} else
693 #endif
694 	if (nbytes < sizeof (psinfo_t) ||
695 	    read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
696 		goto err;
697 
698 	Pdprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
699 	Pdprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
700 	Pdprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
701 
702 	return (0);
703 
704 err:
705 	Pdprintf("Pgrab_core: failed to read NT_PSINFO\n");
706 	return (-1);
707 }
708 
709 static int
note_lwpsinfo(struct ps_prochandle * P,size_t nbytes)710 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
711 {
712 	lwp_info_t *lwp;
713 	lwpsinfo_t lps;
714 
715 #ifdef _LP64
716 	core_info_t *core = P->data;
717 
718 	if (core->core_dmodel == PR_MODEL_ILP32) {
719 		lwpsinfo32_t l32;
720 
721 		if (nbytes < sizeof (lwpsinfo32_t) ||
722 		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
723 			goto err;
724 
725 		lwpsinfo_32_to_n(&l32, &lps);
726 	} else
727 #endif
728 	if (nbytes < sizeof (lwpsinfo_t) ||
729 	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
730 		goto err;
731 
732 	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
733 		Pdprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
734 		return (-1);
735 	}
736 
737 	(void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
738 	return (0);
739 
740 err:
741 	Pdprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
742 	return (-1);
743 }
744 
745 static int
note_lwpname(struct ps_prochandle * P,size_t nbytes)746 note_lwpname(struct ps_prochandle *P, size_t nbytes)
747 {
748 	prlwpname_t name;
749 	lwp_info_t *lwp;
750 
751 	if (nbytes != sizeof (name) ||
752 	    read(P->asfd, &name, sizeof (name)) != sizeof (name))
753 		goto err;
754 
755 	if ((lwp = lwpid2info(P, name.pr_lwpid)) == NULL)
756 		goto err;
757 
758 	if (strlcpy(lwp->lwp_name, name.pr_lwpname,
759 	    sizeof (lwp->lwp_name)) >= sizeof (lwp->lwp_name)) {
760 		errno = ENAMETOOLONG;
761 		goto err;
762 	}
763 
764 	return (0);
765 
766 err:
767 	Pdprintf("Pgrab_core: failed to read NT_LWPNAME\n");
768 	return (-1);
769 }
770 
771 static int
note_fdinfo(struct ps_prochandle * P,size_t nbytes)772 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
773 {
774 	prfdinfo_core_t prfd;
775 	fd_info_t *fip;
776 
777 	if ((nbytes < sizeof (prfd)) ||
778 	    (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
779 		Pdprintf("Pgrab_core: failed to read NT_FDINFO\n");
780 		return (-1);
781 	}
782 
783 	if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
784 		Pdprintf("Pgrab_core: failed to add NT_FDINFO\n");
785 		return (-1);
786 	}
787 	if (fip->fd_info == NULL) {
788 		if (proc_fdinfo_from_core(&prfd, &fip->fd_info) != 0) {
789 			Pdprintf("Pgrab_core: failed to convert NT_FDINFO\n");
790 			return (-1);
791 		}
792 	}
793 
794 	return (0);
795 }
796 
797 static int
note_platform(struct ps_prochandle * P,size_t nbytes)798 note_platform(struct ps_prochandle *P, size_t nbytes)
799 {
800 	core_info_t *core = P->data;
801 	char *plat;
802 
803 	if (core->core_platform != NULL)
804 		return (0);	/* Already seen */
805 
806 	if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
807 		if (read(P->asfd, plat, nbytes) != nbytes) {
808 			Pdprintf("Pgrab_core: failed to read NT_PLATFORM\n");
809 			free(plat);
810 			return (-1);
811 		}
812 		plat[nbytes - 1] = '\0';
813 		core->core_platform = plat;
814 	}
815 
816 	return (0);
817 }
818 
819 static int
note_secflags(struct ps_prochandle * P,size_t nbytes)820 note_secflags(struct ps_prochandle *P, size_t nbytes)
821 {
822 	core_info_t *core = P->data;
823 	prsecflags_t *psf;
824 
825 	if (core->core_secflags != NULL)
826 		return (0);	/* Already seen */
827 
828 	if (sizeof (*psf) != nbytes) {
829 		Pdprintf("Pgrab_core: NT_SECFLAGS changed size."
830 		    "  Need to handle a version change?\n");
831 		return (-1);
832 	}
833 
834 	if (nbytes != 0 && ((psf = malloc(nbytes)) != NULL)) {
835 		if (read(P->asfd, psf, nbytes) != nbytes) {
836 			Pdprintf("Pgrab_core: failed to read NT_SECFLAGS\n");
837 			free(psf);
838 			return (-1);
839 		}
840 
841 		core->core_secflags = psf;
842 	}
843 
844 	return (0);
845 }
846 
847 static int
note_utsname(struct ps_prochandle * P,size_t nbytes)848 note_utsname(struct ps_prochandle *P, size_t nbytes)
849 {
850 	core_info_t *core = P->data;
851 	size_t ubytes = sizeof (struct utsname);
852 	struct utsname *utsp;
853 
854 	if (core->core_uts != NULL || nbytes < ubytes)
855 		return (0);	/* Already seen or bad size */
856 
857 	if ((utsp = malloc(ubytes)) == NULL)
858 		return (-1);
859 
860 	if (read(P->asfd, utsp, ubytes) != ubytes) {
861 		Pdprintf("Pgrab_core: failed to read NT_UTSNAME\n");
862 		free(utsp);
863 		return (-1);
864 	}
865 
866 	if (_libproc_debug) {
867 		Pdprintf("uts.sysname = \"%s\"\n", utsp->sysname);
868 		Pdprintf("uts.nodename = \"%s\"\n", utsp->nodename);
869 		Pdprintf("uts.release = \"%s\"\n", utsp->release);
870 		Pdprintf("uts.version = \"%s\"\n", utsp->version);
871 		Pdprintf("uts.machine = \"%s\"\n", utsp->machine);
872 	}
873 
874 	core->core_uts = utsp;
875 	return (0);
876 }
877 
878 static int
note_content(struct ps_prochandle * P,size_t nbytes)879 note_content(struct ps_prochandle *P, size_t nbytes)
880 {
881 	core_info_t *core = P->data;
882 	core_content_t content;
883 
884 	if (sizeof (core->core_content) != nbytes)
885 		return (-1);
886 
887 	if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
888 		return (-1);
889 
890 	core->core_content = content;
891 
892 	Pdprintf("core content = %llx\n", content);
893 
894 	return (0);
895 }
896 
897 static int
note_cred(struct ps_prochandle * P,size_t nbytes)898 note_cred(struct ps_prochandle *P, size_t nbytes)
899 {
900 	core_info_t *core = P->data;
901 	prcred_t *pcrp;
902 	int ngroups;
903 	const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
904 
905 	/*
906 	 * We allow for prcred_t notes that are actually smaller than a
907 	 * prcred_t since the last member isn't essential if there are
908 	 * no group memberships. This allows for more flexibility when it
909 	 * comes to slightly malformed -- but still valid -- notes.
910 	 */
911 	if (core->core_cred != NULL || nbytes < min_size)
912 		return (0);	/* Already seen or bad size */
913 
914 	ngroups = (nbytes - min_size) / sizeof (gid_t);
915 	nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
916 
917 	if ((pcrp = malloc(nbytes)) == NULL)
918 		return (-1);
919 
920 	if (read(P->asfd, pcrp, nbytes) != nbytes) {
921 		Pdprintf("Pgrab_core: failed to read NT_PRCRED\n");
922 		free(pcrp);
923 		return (-1);
924 	}
925 
926 	if (pcrp->pr_ngroups > ngroups) {
927 		Pdprintf(
928 		    "pr_ngroups = %d; resetting to %d based on note size\n",
929 		    pcrp->pr_ngroups, ngroups);
930 		pcrp->pr_ngroups = ngroups;
931 	}
932 
933 	core->core_cred = pcrp;
934 	return (0);
935 }
936 
937 #ifdef __x86
938 static int
note_ldt(struct ps_prochandle * P,size_t nbytes)939 note_ldt(struct ps_prochandle *P, size_t nbytes)
940 {
941 	core_info_t *core = P->data;
942 	struct ssd *pldt;
943 	uint_t nldt;
944 
945 	if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
946 		return (0);	/* Already seen or bad size */
947 
948 	nldt = nbytes / sizeof (struct ssd);
949 	nbytes = nldt * sizeof (struct ssd);
950 
951 	if ((pldt = malloc(nbytes)) == NULL)
952 		return (-1);
953 
954 	if (read(P->asfd, pldt, nbytes) != nbytes) {
955 		Pdprintf("Pgrab_core: failed to read NT_LDT\n");
956 		free(pldt);
957 		return (-1);
958 	}
959 
960 	core->core_ldt = pldt;
961 	core->core_nldt = nldt;
962 	return (0);
963 }
964 #endif	/* __i386 */
965 
966 static int
note_priv(struct ps_prochandle * P,size_t nbytes)967 note_priv(struct ps_prochandle *P, size_t nbytes)
968 {
969 	core_info_t *core = P->data;
970 	prpriv_t *pprvp;
971 
972 	if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
973 		return (0);	/* Already seen or bad size */
974 
975 	if ((pprvp = malloc(nbytes)) == NULL)
976 		return (-1);
977 
978 	if (read(P->asfd, pprvp, nbytes) != nbytes) {
979 		Pdprintf("Pgrab_core: failed to read NT_PRPRIV\n");
980 		free(pprvp);
981 		return (-1);
982 	}
983 
984 	core->core_priv = pprvp;
985 	core->core_priv_size = nbytes;
986 	return (0);
987 }
988 
989 static int
note_priv_info(struct ps_prochandle * P,size_t nbytes)990 note_priv_info(struct ps_prochandle *P, size_t nbytes)
991 {
992 	core_info_t *core = P->data;
993 	extern void *__priv_parse_info();
994 	priv_impl_info_t *ppii;
995 
996 	if (core->core_privinfo != NULL ||
997 	    nbytes < sizeof (priv_impl_info_t))
998 		return (0);	/* Already seen or bad size */
999 
1000 	if ((ppii = malloc(nbytes)) == NULL)
1001 		return (-1);
1002 
1003 	if (read(P->asfd, ppii, nbytes) != nbytes ||
1004 	    PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
1005 		Pdprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
1006 		free(ppii);
1007 		return (-1);
1008 	}
1009 
1010 	core->core_privinfo = __priv_parse_info(ppii);
1011 	core->core_ppii = ppii;
1012 	return (0);
1013 }
1014 
1015 static int
note_zonename(struct ps_prochandle * P,size_t nbytes)1016 note_zonename(struct ps_prochandle *P, size_t nbytes)
1017 {
1018 	core_info_t *core = P->data;
1019 	char *zonename;
1020 
1021 	if (core->core_zonename != NULL)
1022 		return (0);	/* Already seen */
1023 
1024 	if (nbytes != 0) {
1025 		if ((zonename = malloc(nbytes)) == NULL)
1026 			return (-1);
1027 		if (read(P->asfd, zonename, nbytes) != nbytes) {
1028 			Pdprintf("Pgrab_core: failed to read NT_ZONENAME\n");
1029 			free(zonename);
1030 			return (-1);
1031 		}
1032 		zonename[nbytes - 1] = '\0';
1033 		core->core_zonename = zonename;
1034 	}
1035 
1036 	return (0);
1037 }
1038 
1039 static int
note_auxv(struct ps_prochandle * P,size_t nbytes)1040 note_auxv(struct ps_prochandle *P, size_t nbytes)
1041 {
1042 	size_t n, i;
1043 
1044 #ifdef _LP64
1045 	core_info_t *core = P->data;
1046 
1047 	if (core->core_dmodel == PR_MODEL_ILP32) {
1048 		auxv32_t *a32;
1049 
1050 		n = nbytes / sizeof (auxv32_t);
1051 		nbytes = n * sizeof (auxv32_t);
1052 		a32 = alloca(nbytes);
1053 
1054 		if (read(P->asfd, a32, nbytes) != nbytes) {
1055 			Pdprintf("Pgrab_core: failed to read NT_AUXV\n");
1056 			return (-1);
1057 		}
1058 
1059 		if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
1060 			return (-1);
1061 
1062 		for (i = 0; i < n; i++)
1063 			auxv_32_to_n(&a32[i], &P->auxv[i]);
1064 
1065 	} else {
1066 #endif
1067 		n = nbytes / sizeof (auxv_t);
1068 		nbytes = n * sizeof (auxv_t);
1069 
1070 		if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
1071 			return (-1);
1072 
1073 		if (read(P->asfd, P->auxv, nbytes) != nbytes) {
1074 			free(P->auxv);
1075 			P->auxv = NULL;
1076 			return (-1);
1077 		}
1078 #ifdef _LP64
1079 	}
1080 #endif
1081 
1082 	if (_libproc_debug) {
1083 		for (i = 0; i < n; i++) {
1084 			Pdprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
1085 			    P->auxv[i].a_type, P->auxv[i].a_un.a_val);
1086 		}
1087 	}
1088 
1089 	/*
1090 	 * Defensive coding for loops which depend upon the auxv array being
1091 	 * terminated by an AT_NULL element; in each case, we've allocated
1092 	 * P->auxv to have an additional element which we force to be AT_NULL.
1093 	 */
1094 	P->auxv[n].a_type = AT_NULL;
1095 	P->auxv[n].a_un.a_val = 0L;
1096 	P->nauxv = (int)n;
1097 
1098 	return (0);
1099 }
1100 
1101 /*
1102  * The xregs are not a fixed size on all architectures (notably x86) and in
1103  * general the prxregset_t has become opaque to deal with this. This means that
1104  * validating the note itself can be a little more challenging. Especially as
1105  * this can change across time. In this case we require that our consumers
1106  * perform this validation.
1107  */
1108 static int
note_xreg(struct ps_prochandle * P,size_t nbytes)1109 note_xreg(struct ps_prochandle *P, size_t nbytes)
1110 {
1111 	core_info_t *core = P->data;
1112 	lwp_info_t *lwp = core->core_lwp;
1113 	prxregset_t *xregs;
1114 	ssize_t sret;
1115 
1116 	if (lwp == NULL || lwp->lwp_xregs != NULL)
1117 		return (0);	/* No lwp yet, already seen, or bad size */
1118 
1119 	if ((xregs = malloc(nbytes)) == NULL)
1120 		return (-1);
1121 
1122 	sret = read(P->asfd, xregs, nbytes);
1123 	if (sret < 0 || (size_t)sret != nbytes) {
1124 		Pdprintf("Pgrab_core: failed to read NT_PRXREG\n");
1125 		free(xregs);
1126 		return (-1);
1127 	}
1128 
1129 	lwp->lwp_xregs = xregs;
1130 	lwp->lwp_xregsize = nbytes;
1131 	return (0);
1132 }
1133 
1134 #ifdef __sparc
1135 static int
note_gwindows(struct ps_prochandle * P,size_t nbytes)1136 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1137 {
1138 	core_info_t *core = P->data;
1139 	lwp_info_t *lwp = core->core_lwp;
1140 
1141 	if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1142 		return (0);	/* No lwp yet or already seen or no data */
1143 
1144 	if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1145 		return (-1);
1146 
1147 	/*
1148 	 * Since the amount of gwindows data varies with how many windows were
1149 	 * actually saved, we just read up to the minimum of the note size
1150 	 * and the size of the gwindows_t type.  It doesn't matter if the read
1151 	 * fails since we have to zero out gwindows first anyway.
1152 	 */
1153 #ifdef _LP64
1154 	if (core->core_dmodel == PR_MODEL_ILP32) {
1155 		gwindows32_t g32;
1156 
1157 		(void) memset(&g32, 0, sizeof (g32));
1158 		(void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1159 		gwindows_32_to_n(&g32, lwp->lwp_gwins);
1160 
1161 	} else {
1162 #endif
1163 		(void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1164 		(void) read(P->asfd, lwp->lwp_gwins,
1165 		    MIN(nbytes, sizeof (gwindows_t)));
1166 #ifdef _LP64
1167 	}
1168 #endif
1169 	return (0);
1170 }
1171 
1172 #ifdef __sparcv9
1173 static int
note_asrs(struct ps_prochandle * P,size_t nbytes)1174 note_asrs(struct ps_prochandle *P, size_t nbytes)
1175 {
1176 	core_info_t *core = P->data;
1177 	lwp_info_t *lwp = core->core_lwp;
1178 	int64_t *asrs;
1179 
1180 	if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1181 		return (0);	/* No lwp yet, already seen, or bad size */
1182 
1183 	if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1184 		return (-1);
1185 
1186 	if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1187 		Pdprintf("Pgrab_core: failed to read NT_ASRS\n");
1188 		free(asrs);
1189 		return (-1);
1190 	}
1191 
1192 	lwp->lwp_asrs = asrs;
1193 	return (0);
1194 }
1195 #endif	/* __sparcv9 */
1196 #endif	/* __sparc */
1197 
1198 static int
note_spymaster(struct ps_prochandle * P,size_t nbytes)1199 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1200 {
1201 #ifdef _LP64
1202 	core_info_t *core = P->data;
1203 
1204 	if (core->core_dmodel == PR_MODEL_ILP32) {
1205 		psinfo32_t ps32;
1206 
1207 		if (nbytes < sizeof (psinfo32_t) ||
1208 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1209 			goto err;
1210 
1211 		psinfo_32_to_n(&ps32, &P->spymaster);
1212 	} else
1213 #endif
1214 	if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1215 	    &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1216 		goto err;
1217 
1218 	Pdprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1219 	Pdprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1220 	Pdprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1221 
1222 	return (0);
1223 
1224 err:
1225 	Pdprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1226 	return (-1);
1227 }
1228 
1229 static int
note_upanic(struct ps_prochandle * P,size_t nbytes)1230 note_upanic(struct ps_prochandle *P, size_t nbytes)
1231 {
1232 	core_info_t *core = P->data;
1233 	prupanic_t *pru;
1234 
1235 	if (core->core_upanic != NULL)
1236 		return (0);
1237 
1238 	if (sizeof (*pru) != nbytes) {
1239 		Pdprintf("Pgrab_core: NT_UPANIC changed size."
1240 		    "  Need to handle a version change?\n");
1241 		return (-1);
1242 	}
1243 
1244 	if (nbytes != 0 && ((pru = malloc(nbytes)) != NULL)) {
1245 		if (read(P->asfd, pru, nbytes) != nbytes) {
1246 			Pdprintf("Pgrab_core: failed to read NT_UPANIC\n");
1247 			free(pru);
1248 			return (-1);
1249 		}
1250 
1251 		core->core_upanic = pru;
1252 	}
1253 
1254 	return (0);
1255 }
1256 
1257 static int
note_cwd(struct ps_prochandle * P,size_t nbytes)1258 note_cwd(struct ps_prochandle *P, size_t nbytes)
1259 {
1260 	core_info_t *core = P->data;
1261 	prcwd_t *cwd;
1262 
1263 	if (core->core_cwd != NULL)
1264 		return (0);
1265 
1266 	if (sizeof (*cwd) != nbytes) {
1267 		Pdprintf("Pgrab_core: NT_CWD changed size."
1268 		    "  Need to handle a version change?\n");
1269 		return (-1);
1270 	}
1271 
1272 	if (nbytes != 0 && ((cwd = malloc(nbytes)) != NULL)) {
1273 		if (read(P->asfd, cwd, nbytes) != nbytes) {
1274 			Pdprintf("Pgrab_core: failed to read NT_CWD\n");
1275 			free(cwd);
1276 			return (-1);
1277 		}
1278 
1279 		core->core_cwd = cwd;
1280 	}
1281 
1282 	return (0);
1283 }
1284 
1285 static int
note_notsup(struct ps_prochandle * P,size_t nbytes)1286 note_notsup(struct ps_prochandle *P, size_t nbytes)
1287 {
1288 	Pdprintf("skipping unsupported note type of size %ld bytes\n",
1289 	    (ulong_t)nbytes);
1290 	return (0);
1291 }
1292 
1293 #if NT_NUM != NT_CWD
1294 #error "NT_NUM has grown. Update nhdlrs array"
1295 #endif
1296 
1297 /*
1298  * Populate a table of function pointers indexed by Note type with our
1299  * functions to process each type of core file note:
1300  */
1301 static int (*nhdlrs[NT_NUM + 1])(struct ps_prochandle *, size_t) = {
1302 #ifdef __x86
1303 	[NT_PRSTATUS] = note_linux_prstatus,
1304 #endif
1305 	[NT_PRFPREG] = note_notsup,
1306 #ifdef __x86
1307 	[NT_PRPSINFO] = note_linux_psinfo,
1308 #endif
1309 	[NT_PRXREG] = note_xreg,
1310 	[NT_PLATFORM] = note_platform,
1311 	[NT_AUXV] = note_auxv,
1312 #ifdef __sparc
1313 	[NT_GWINDOWS] = note_gwindows,
1314 #ifdef __sparcv9
1315 	[NT_ASRS] = note_asrs,
1316 #endif
1317 #endif
1318 #ifdef __x86
1319 	[NT_LDT] = note_ldt,
1320 #endif
1321 	[NT_PSTATUS] = note_pstatus,
1322 	[NT_PSINFO] = note_psinfo,
1323 	[NT_PRCRED] = note_cred,
1324 	[NT_UTSNAME] = note_utsname,
1325 	[NT_LWPSTATUS] = note_lwpstatus,
1326 	[NT_LWPSINFO] = note_lwpsinfo,
1327 	[NT_PRPRIV] = note_priv,
1328 	[NT_PRPRIVINFO] = note_priv_info,
1329 	[NT_CONTENT] = note_content,
1330 	[NT_ZONENAME] = note_zonename,
1331 	[NT_FDINFO] = note_fdinfo,
1332 	[NT_SPYMASTER] = note_spymaster,
1333 	[NT_SECFLAGS] = note_secflags,
1334 	[NT_LWPNAME] = note_lwpname,
1335 	[NT_UPANIC] = note_upanic,
1336 	[NT_CWD] = note_cwd
1337 };
1338 
1339 static void
core_report_mapping(struct ps_prochandle * P,GElf_Phdr * php)1340 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1341 {
1342 	prkillinfo_t killinfo;
1343 	siginfo_t *si = &killinfo.prk_info;
1344 	char signame[SIG2STR_MAX], sig[64], info[64];
1345 	void *addr = (void *)(uintptr_t)php->p_vaddr;
1346 
1347 	const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1348 	const char *incfmt = "core file incomplete due to %s%s\n";
1349 	const char *msgfmt = "mappings at and above %p are missing\n";
1350 
1351 	if (!(php->p_flags & PF_SUNW_KILLED)) {
1352 		int err = 0;
1353 
1354 		(void) pread64(P->asfd, &err,
1355 		    sizeof (err), (off64_t)php->p_offset);
1356 
1357 		Perror_printf(P, errfmt, addr, strerror(err));
1358 		Pdprintf(errfmt, addr, strerror(err));
1359 		return;
1360 	}
1361 
1362 	if (!(php->p_flags & PF_SUNW_SIGINFO))
1363 		return;
1364 
1365 	(void) memset(&killinfo, 0, sizeof (killinfo));
1366 
1367 	(void) pread64(P->asfd, &killinfo,
1368 	    sizeof (killinfo), (off64_t)php->p_offset);
1369 
1370 	/*
1371 	 * While there is (or at least should be) only one segment that has
1372 	 * PF_SUNW_SIGINFO set, the signal information there is globally
1373 	 * useful (even if only to those debugging libproc consumers); we hang
1374 	 * the signal information gleaned here off of the ps_prochandle.
1375 	 */
1376 	P->map_missing = php->p_vaddr;
1377 	P->killinfo = killinfo.prk_info;
1378 
1379 	if (sig2str(si->si_signo, signame) == -1) {
1380 		(void) snprintf(sig, sizeof (sig),
1381 		    "<Unknown signal: 0x%x>, ", si->si_signo);
1382 	} else {
1383 		(void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1384 	}
1385 
1386 	if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1387 		(void) snprintf(info, sizeof (info),
1388 		    "pid=%d uid=%d zone=%d ctid=%d",
1389 		    si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1390 	} else {
1391 		(void) snprintf(info, sizeof (info),
1392 		    "code=%d", si->si_code);
1393 	}
1394 
1395 	Perror_printf(P, incfmt, sig, info);
1396 	Perror_printf(P, msgfmt, addr);
1397 
1398 	Pdprintf(incfmt, sig, info);
1399 	Pdprintf(msgfmt, addr);
1400 }
1401 
1402 /*
1403  * Add information on the address space mapping described by the given
1404  * PT_LOAD program header.  We fill in more information on the mapping later.
1405  */
1406 static int
core_add_mapping(struct ps_prochandle * P,GElf_Phdr * php)1407 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1408 {
1409 	core_info_t *core = P->data;
1410 	prmap_t pmap;
1411 
1412 	Pdprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1413 	    (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1414 	    (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1415 
1416 	pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1417 	pmap.pr_size = php->p_memsz;
1418 
1419 	/*
1420 	 * If Pgcore() or elfcore() fail to write a mapping, they will set
1421 	 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1422 	 */
1423 	if (php->p_flags & PF_SUNW_FAILURE) {
1424 		core_report_mapping(P, php);
1425 	} else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1426 		Perror_printf(P, "core file may be corrupt -- data for mapping "
1427 		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1428 		Pdprintf("core file may be corrupt -- data for mapping "
1429 		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1430 	}
1431 
1432 	/*
1433 	 * The mapping name and offset will hopefully be filled in
1434 	 * by the librtld_db agent.  Unfortunately, if it isn't a
1435 	 * shared library mapping, this information is gone forever.
1436 	 */
1437 	pmap.pr_mapname[0] = '\0';
1438 	pmap.pr_offset = 0;
1439 
1440 	pmap.pr_mflags = 0;
1441 	if (php->p_flags & PF_R)
1442 		pmap.pr_mflags |= MA_READ;
1443 	if (php->p_flags & PF_W)
1444 		pmap.pr_mflags |= MA_WRITE;
1445 	if (php->p_flags & PF_X)
1446 		pmap.pr_mflags |= MA_EXEC;
1447 
1448 	if (php->p_filesz == 0)
1449 		pmap.pr_mflags |= MA_RESERVED1;
1450 
1451 	/*
1452 	 * At the time of adding this mapping, we just zero the pagesize.
1453 	 * Once we've processed more of the core file, we'll have the
1454 	 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1455 	 */
1456 	pmap.pr_pagesize = 0;
1457 
1458 	/*
1459 	 * Unfortunately whether or not the mapping was a System V
1460 	 * shared memory segment is lost.  We use -1 to mark it as not shm.
1461 	 */
1462 	pmap.pr_shmid = -1;
1463 
1464 	return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1465 }
1466 
1467 /*
1468  * Given a virtual address, name the mapping at that address using the
1469  * specified name, and return the map_info_t pointer.
1470  */
1471 static map_info_t *
core_name_mapping(struct ps_prochandle * P,uintptr_t addr,const char * name)1472 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1473 {
1474 	map_info_t *mp = Paddr2mptr(P, addr);
1475 
1476 	if (mp != NULL) {
1477 		(void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1478 		mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1479 	}
1480 
1481 	return (mp);
1482 }
1483 
1484 /*
1485  * libproc uses libelf for all of its symbol table manipulation. This function
1486  * takes a symbol table and string table from a core file and places them
1487  * in a memory backed elf file.
1488  */
1489 static void
fake_up_symtab(struct ps_prochandle * P,const elf_file_header_t * ehdr,GElf_Shdr * symtab,GElf_Shdr * strtab)1490 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1491     GElf_Shdr *symtab, GElf_Shdr *strtab)
1492 {
1493 	size_t size;
1494 	off64_t off, base;
1495 	map_info_t *mp;
1496 	file_info_t *fp;
1497 	Elf_Scn *scn;
1498 	Elf_Data *data;
1499 
1500 	if (symtab->sh_addr == 0 ||
1501 	    (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1502 	    (fp = mp->map_file) == NULL) {
1503 		Pdprintf("fake_up_symtab: invalid section\n");
1504 		return;
1505 	}
1506 
1507 	if (fp->file_symtab.sym_data_pri != NULL) {
1508 		Pdprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1509 		    (long)symtab->sh_addr);
1510 		return;
1511 	}
1512 
1513 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1514 		struct {
1515 			Elf32_Ehdr ehdr;
1516 			Elf32_Shdr shdr[3];
1517 			char data[1];
1518 		} *b;
1519 
1520 		base = sizeof (b->ehdr) + sizeof (b->shdr);
1521 		size = base + symtab->sh_size + strtab->sh_size;
1522 
1523 		if ((b = calloc(1, size)) == NULL)
1524 			return;
1525 
1526 		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1527 		    sizeof (ehdr->e_ident));
1528 		b->ehdr.e_type = ehdr->e_type;
1529 		b->ehdr.e_machine = ehdr->e_machine;
1530 		b->ehdr.e_version = ehdr->e_version;
1531 		b->ehdr.e_flags = ehdr->e_flags;
1532 		b->ehdr.e_ehsize = sizeof (b->ehdr);
1533 		b->ehdr.e_shoff = sizeof (b->ehdr);
1534 		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1535 		b->ehdr.e_shnum = 3;
1536 		off = 0;
1537 
1538 		b->shdr[1].sh_size = symtab->sh_size;
1539 		b->shdr[1].sh_type = SHT_SYMTAB;
1540 		b->shdr[1].sh_offset = off + base;
1541 		b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1542 		b->shdr[1].sh_link = 2;
1543 		b->shdr[1].sh_info =  symtab->sh_info;
1544 		b->shdr[1].sh_addralign = symtab->sh_addralign;
1545 
1546 		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1547 		    symtab->sh_offset) != b->shdr[1].sh_size) {
1548 			Pdprintf("fake_up_symtab: pread of symtab[1] failed\n");
1549 			free(b);
1550 			return;
1551 		}
1552 
1553 		off += b->shdr[1].sh_size;
1554 
1555 		b->shdr[2].sh_flags = SHF_STRINGS;
1556 		b->shdr[2].sh_size = strtab->sh_size;
1557 		b->shdr[2].sh_type = SHT_STRTAB;
1558 		b->shdr[2].sh_offset = off + base;
1559 		b->shdr[2].sh_info =  strtab->sh_info;
1560 		b->shdr[2].sh_addralign = 1;
1561 
1562 		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1563 		    strtab->sh_offset) != b->shdr[2].sh_size) {
1564 			Pdprintf("fake_up_symtab: pread of symtab[2] failed\n");
1565 			free(b);
1566 			return;
1567 		}
1568 
1569 		off += b->shdr[2].sh_size;
1570 
1571 		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1572 		if (fp->file_symtab.sym_elf == NULL) {
1573 			free(b);
1574 			return;
1575 		}
1576 
1577 		fp->file_symtab.sym_elfmem = b;
1578 #ifdef _LP64
1579 	} else {
1580 		struct {
1581 			Elf64_Ehdr ehdr;
1582 			Elf64_Shdr shdr[3];
1583 			char data[1];
1584 		} *b;
1585 
1586 		base = sizeof (b->ehdr) + sizeof (b->shdr);
1587 		size = base + symtab->sh_size + strtab->sh_size;
1588 
1589 		if ((b = calloc(1, size)) == NULL)
1590 			return;
1591 
1592 		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1593 		    sizeof (ehdr->e_ident));
1594 		b->ehdr.e_type = ehdr->e_type;
1595 		b->ehdr.e_machine = ehdr->e_machine;
1596 		b->ehdr.e_version = ehdr->e_version;
1597 		b->ehdr.e_flags = ehdr->e_flags;
1598 		b->ehdr.e_ehsize = sizeof (b->ehdr);
1599 		b->ehdr.e_shoff = sizeof (b->ehdr);
1600 		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1601 		b->ehdr.e_shnum = 3;
1602 		off = 0;
1603 
1604 		b->shdr[1].sh_size = symtab->sh_size;
1605 		b->shdr[1].sh_type = SHT_SYMTAB;
1606 		b->shdr[1].sh_offset = off + base;
1607 		b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1608 		b->shdr[1].sh_link = 2;
1609 		b->shdr[1].sh_info =  symtab->sh_info;
1610 		b->shdr[1].sh_addralign = symtab->sh_addralign;
1611 
1612 		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1613 		    symtab->sh_offset) != b->shdr[1].sh_size) {
1614 			free(b);
1615 			return;
1616 		}
1617 
1618 		off += b->shdr[1].sh_size;
1619 
1620 		b->shdr[2].sh_flags = SHF_STRINGS;
1621 		b->shdr[2].sh_size = strtab->sh_size;
1622 		b->shdr[2].sh_type = SHT_STRTAB;
1623 		b->shdr[2].sh_offset = off + base;
1624 		b->shdr[2].sh_info =  strtab->sh_info;
1625 		b->shdr[2].sh_addralign = 1;
1626 
1627 		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1628 		    strtab->sh_offset) != b->shdr[2].sh_size) {
1629 			free(b);
1630 			return;
1631 		}
1632 
1633 		off += b->shdr[2].sh_size;
1634 
1635 		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1636 		if (fp->file_symtab.sym_elf == NULL) {
1637 			free(b);
1638 			return;
1639 		}
1640 
1641 		fp->file_symtab.sym_elfmem = b;
1642 #endif
1643 	}
1644 
1645 	if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1646 	    (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1647 	    (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1648 	    (data = elf_getdata(scn, NULL)) == NULL) {
1649 		Pdprintf("fake_up_symtab: failed to get section data at %p\n",
1650 		    (void *)scn);
1651 		goto err;
1652 	}
1653 
1654 	fp->file_symtab.sym_strs = data->d_buf;
1655 	fp->file_symtab.sym_strsz = data->d_size;
1656 	fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1657 	fp->file_symtab.sym_hdr_pri = *symtab;
1658 	fp->file_symtab.sym_strhdr = *strtab;
1659 
1660 	optimize_symtab(&fp->file_symtab);
1661 
1662 	return;
1663 err:
1664 	(void) elf_end(fp->file_symtab.sym_elf);
1665 	free(fp->file_symtab.sym_elfmem);
1666 	fp->file_symtab.sym_elf = NULL;
1667 	fp->file_symtab.sym_elfmem = NULL;
1668 }
1669 
1670 static void
core_phdr_to_gelf(const Elf32_Phdr * src,GElf_Phdr * dst)1671 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1672 {
1673 	dst->p_type = src->p_type;
1674 	dst->p_flags = src->p_flags;
1675 	dst->p_offset = (Elf64_Off)src->p_offset;
1676 	dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1677 	dst->p_paddr = (Elf64_Addr)src->p_paddr;
1678 	dst->p_filesz = (Elf64_Xword)src->p_filesz;
1679 	dst->p_memsz = (Elf64_Xword)src->p_memsz;
1680 	dst->p_align = (Elf64_Xword)src->p_align;
1681 }
1682 
1683 static void
core_shdr_to_gelf(const Elf32_Shdr * src,GElf_Shdr * dst)1684 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1685 {
1686 	dst->sh_name = src->sh_name;
1687 	dst->sh_type = src->sh_type;
1688 	dst->sh_flags = (Elf64_Xword)src->sh_flags;
1689 	dst->sh_addr = (Elf64_Addr)src->sh_addr;
1690 	dst->sh_offset = (Elf64_Off)src->sh_offset;
1691 	dst->sh_size = (Elf64_Xword)src->sh_size;
1692 	dst->sh_link = src->sh_link;
1693 	dst->sh_info = src->sh_info;
1694 	dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1695 	dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1696 }
1697 
1698 /*
1699  * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1700  */
1701 static int
core_elf_fdopen(elf_file_t * efp,GElf_Half type,int * perr)1702 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1703 {
1704 #ifdef _BIG_ENDIAN
1705 	uchar_t order = ELFDATA2MSB;
1706 #else
1707 	uchar_t order = ELFDATA2LSB;
1708 #endif
1709 	Elf32_Ehdr e32;
1710 	int is_noelf = -1;
1711 	int isa_err = 0;
1712 
1713 	/*
1714 	 * Because 32-bit libelf cannot deal with large files, we need to read,
1715 	 * check, and convert the file header manually in case type == ET_CORE.
1716 	 */
1717 	if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1718 		if (perr != NULL)
1719 			*perr = G_FORMAT;
1720 		goto err;
1721 	}
1722 	if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1723 	    e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1724 	    e32.e_version != EV_CURRENT) {
1725 		if (perr != NULL) {
1726 			if (is_noelf == 0 && isa_err) {
1727 				*perr = G_ISAINVAL;
1728 			} else {
1729 				*perr = G_FORMAT;
1730 			}
1731 		}
1732 		goto err;
1733 	}
1734 
1735 	/*
1736 	 * If the file is 64-bit and we are 32-bit, fail with G_LP64.  If the
1737 	 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1738 	 * and convert it to a elf_file_header_t.  Otherwise, the file is
1739 	 * 32-bit, so convert e32 to a elf_file_header_t.
1740 	 */
1741 	if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1742 #ifdef _LP64
1743 		Elf64_Ehdr e64;
1744 
1745 		if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1746 			if (perr != NULL)
1747 				*perr = G_FORMAT;
1748 			goto err;
1749 		}
1750 
1751 		(void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1752 		efp->e_hdr.e_type = e64.e_type;
1753 		efp->e_hdr.e_machine = e64.e_machine;
1754 		efp->e_hdr.e_version = e64.e_version;
1755 		efp->e_hdr.e_entry = e64.e_entry;
1756 		efp->e_hdr.e_phoff = e64.e_phoff;
1757 		efp->e_hdr.e_shoff = e64.e_shoff;
1758 		efp->e_hdr.e_flags = e64.e_flags;
1759 		efp->e_hdr.e_ehsize = e64.e_ehsize;
1760 		efp->e_hdr.e_phentsize = e64.e_phentsize;
1761 		efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1762 		efp->e_hdr.e_shentsize = e64.e_shentsize;
1763 		efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1764 		efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1765 #else	/* _LP64 */
1766 		if (perr != NULL)
1767 			*perr = G_LP64;
1768 		goto err;
1769 #endif	/* _LP64 */
1770 	} else {
1771 		(void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1772 		efp->e_hdr.e_type = e32.e_type;
1773 		efp->e_hdr.e_machine = e32.e_machine;
1774 		efp->e_hdr.e_version = e32.e_version;
1775 		efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1776 		efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1777 		efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1778 		efp->e_hdr.e_flags = e32.e_flags;
1779 		efp->e_hdr.e_ehsize = e32.e_ehsize;
1780 		efp->e_hdr.e_phentsize = e32.e_phentsize;
1781 		efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1782 		efp->e_hdr.e_shentsize = e32.e_shentsize;
1783 		efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1784 		efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1785 	}
1786 
1787 	/*
1788 	 * If the number of section headers or program headers or the section
1789 	 * header string table index would overflow their respective fields
1790 	 * in the ELF header, they're stored in the section header at index
1791 	 * zero. To simplify use elsewhere, we look for those sentinel values
1792 	 * here.
1793 	 */
1794 	if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1795 	    efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1796 	    efp->e_hdr.e_phnum == PN_XNUM) {
1797 		GElf_Shdr shdr;
1798 
1799 		Pdprintf("extended ELF header\n");
1800 
1801 		if (efp->e_hdr.e_shoff == 0) {
1802 			if (perr != NULL)
1803 				*perr = G_FORMAT;
1804 			goto err;
1805 		}
1806 
1807 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1808 			Elf32_Shdr shdr32;
1809 
1810 			if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1811 			    efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1812 				if (perr != NULL)
1813 					*perr = G_FORMAT;
1814 				goto err;
1815 			}
1816 
1817 			core_shdr_to_gelf(&shdr32, &shdr);
1818 		} else {
1819 			if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1820 			    efp->e_hdr.e_shoff) != sizeof (shdr)) {
1821 				if (perr != NULL)
1822 					*perr = G_FORMAT;
1823 				goto err;
1824 			}
1825 		}
1826 
1827 		if (efp->e_hdr.e_shnum == 0) {
1828 			efp->e_hdr.e_shnum = shdr.sh_size;
1829 			Pdprintf("section header count %lu\n",
1830 			    (ulong_t)shdr.sh_size);
1831 		}
1832 
1833 		if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1834 			efp->e_hdr.e_shstrndx = shdr.sh_link;
1835 			Pdprintf("section string index %u\n", shdr.sh_link);
1836 		}
1837 
1838 		if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1839 			efp->e_hdr.e_phnum = shdr.sh_info;
1840 			Pdprintf("program header count %u\n", shdr.sh_info);
1841 		}
1842 
1843 	} else if (efp->e_hdr.e_phoff != 0) {
1844 		GElf_Phdr phdr;
1845 		uint64_t phnum;
1846 
1847 		/*
1848 		 * It's possible this core file came from a system that
1849 		 * accidentally truncated the e_phnum field without correctly
1850 		 * using the extended format in the section header at index
1851 		 * zero. We try to detect and correct that specific type of
1852 		 * corruption by using the knowledge that the core dump
1853 		 * routines usually place the data referenced by the first
1854 		 * program header immediately after the last header element.
1855 		 */
1856 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1857 			Elf32_Phdr phdr32;
1858 
1859 			if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1860 			    efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1861 				if (perr != NULL)
1862 					*perr = G_FORMAT;
1863 				goto err;
1864 			}
1865 
1866 			core_phdr_to_gelf(&phdr32, &phdr);
1867 		} else {
1868 			if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1869 			    efp->e_hdr.e_phoff) != sizeof (phdr)) {
1870 				if (perr != NULL)
1871 					*perr = G_FORMAT;
1872 				goto err;
1873 			}
1874 		}
1875 
1876 		phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1877 		    (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1878 		phnum /= efp->e_hdr.e_phentsize;
1879 
1880 		if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1881 			Pdprintf("suspicious program header count %u %u\n",
1882 			    (uint_t)phnum, efp->e_hdr.e_phnum);
1883 
1884 			/*
1885 			 * If the new program header count we computed doesn't
1886 			 * jive with count in the ELF header, we'll use the
1887 			 * data that's there and hope for the best.
1888 			 *
1889 			 * If it does, it's also possible that the section
1890 			 * header offset is incorrect; we'll check that and
1891 			 * possibly try to fix it.
1892 			 */
1893 			if (phnum <= INT_MAX &&
1894 			    (uint16_t)phnum == efp->e_hdr.e_phnum) {
1895 
1896 				if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1897 				    efp->e_hdr.e_phentsize *
1898 				    (uint_t)efp->e_hdr.e_phnum) {
1899 					efp->e_hdr.e_shoff =
1900 					    efp->e_hdr.e_phoff +
1901 					    efp->e_hdr.e_phentsize * phnum;
1902 				}
1903 
1904 				efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1905 				Pdprintf("using new program header count\n");
1906 			} else {
1907 				Pdprintf("inconsistent program header count\n");
1908 			}
1909 		}
1910 	}
1911 
1912 	/*
1913 	 * The libelf implementation was never ported to be large-file aware.
1914 	 * This is typically not a problem for your average executable or
1915 	 * shared library, but a large 32-bit core file can exceed 2GB in size.
1916 	 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1917 	 * in Pfgrab_core() below will do its own i/o and struct conversion.
1918 	 */
1919 
1920 	if (type == ET_CORE) {
1921 		efp->e_elf = NULL;
1922 		return (0);
1923 	}
1924 
1925 	if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1926 		if (perr != NULL)
1927 			*perr = G_ELF;
1928 		goto err;
1929 	}
1930 
1931 	return (0);
1932 
1933 err:
1934 	efp->e_elf = NULL;
1935 	return (-1);
1936 }
1937 
1938 /*
1939  * Open the specified file and then do a core_elf_fdopen on it.
1940  */
1941 static int
core_elf_open(elf_file_t * efp,const char * path,GElf_Half type,int * perr)1942 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1943 {
1944 	(void) memset(efp, 0, sizeof (elf_file_t));
1945 
1946 	if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1947 		if (core_elf_fdopen(efp, type, perr) == 0)
1948 			return (0);
1949 
1950 		(void) close(efp->e_fd);
1951 		efp->e_fd = -1;
1952 	}
1953 
1954 	return (-1);
1955 }
1956 
1957 /*
1958  * Close the ELF handle and file descriptor.
1959  */
1960 static void
core_elf_close(elf_file_t * efp)1961 core_elf_close(elf_file_t *efp)
1962 {
1963 	if (efp->e_elf != NULL) {
1964 		(void) elf_end(efp->e_elf);
1965 		efp->e_elf = NULL;
1966 	}
1967 
1968 	if (efp->e_fd != -1) {
1969 		(void) close(efp->e_fd);
1970 		efp->e_fd = -1;
1971 	}
1972 }
1973 
1974 /*
1975  * Given an ELF file for a statically linked executable, locate the likely
1976  * primary text section and fill in rl_base with its virtual address.
1977  */
1978 static map_info_t *
core_find_text(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)1979 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1980 {
1981 	GElf_Phdr phdr;
1982 	uint_t i;
1983 	size_t nphdrs;
1984 
1985 	if (elf_getphdrnum(elf, &nphdrs) == -1)
1986 		return (NULL);
1987 
1988 	for (i = 0; i < nphdrs; i++) {
1989 		if (gelf_getphdr(elf, i, &phdr) != NULL &&
1990 		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1991 			rlp->rl_base = phdr.p_vaddr;
1992 			return (Paddr2mptr(P, rlp->rl_base));
1993 		}
1994 	}
1995 
1996 	return (NULL);
1997 }
1998 
1999 /*
2000  * Given an ELF file and the librtld_db structure corresponding to its primary
2001  * text mapping, deduce where its data segment was loaded and fill in
2002  * rl_data_base and prmap_t.pr_offset accordingly.
2003  */
2004 static map_info_t *
core_find_data(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)2005 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
2006 {
2007 	GElf_Ehdr ehdr;
2008 	GElf_Phdr phdr;
2009 	map_info_t *mp;
2010 	uint_t i, pagemask;
2011 	size_t nphdrs;
2012 
2013 	rlp->rl_data_base = (uintptr_t)NULL;
2014 
2015 	/*
2016 	 * Find the first loadable, writeable Phdr and compute rl_data_base
2017 	 * as the virtual address at which is was loaded.
2018 	 */
2019 	if (gelf_getehdr(elf, &ehdr) == NULL ||
2020 	    elf_getphdrnum(elf, &nphdrs) == -1)
2021 		return (NULL);
2022 
2023 	for (i = 0; i < nphdrs; i++) {
2024 		if (gelf_getphdr(elf, i, &phdr) != NULL &&
2025 		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
2026 			rlp->rl_data_base = phdr.p_vaddr;
2027 			if (ehdr.e_type == ET_DYN)
2028 				rlp->rl_data_base += rlp->rl_base;
2029 			break;
2030 		}
2031 	}
2032 
2033 	/*
2034 	 * If we didn't find an appropriate phdr or if the address we
2035 	 * computed has no mapping, return NULL.
2036 	 */
2037 	if (rlp->rl_data_base == (uintptr_t)NULL ||
2038 	    (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
2039 		return (NULL);
2040 
2041 	/*
2042 	 * It wouldn't be procfs-related code if we didn't make use of
2043 	 * unclean knowledge of segvn, even in userland ... the prmap_t's
2044 	 * pr_offset field will be the segvn offset from mmap(2)ing the
2045 	 * data section, which will be the file offset & PAGEMASK.
2046 	 */
2047 	pagemask = ~(mp->map_pmap.pr_pagesize - 1);
2048 	mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
2049 
2050 	return (mp);
2051 }
2052 
2053 /*
2054  * Librtld_db agent callback for iterating over load object mappings.
2055  * For each load object, we allocate a new file_info_t, perform naming,
2056  * and attempt to construct a symbol table for the load object.
2057  */
2058 static int
core_iter_mapping(const rd_loadobj_t * rlp,struct ps_prochandle * P)2059 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
2060 {
2061 	core_info_t *core = P->data;
2062 	char lname[PATH_MAX], buf[PATH_MAX];
2063 	file_info_t *fp;
2064 	map_info_t *mp;
2065 
2066 	if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
2067 		Pdprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
2068 		return (1); /* Keep going; forget this if we can't get a name */
2069 	}
2070 
2071 	Pdprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
2072 	    lname, (void *)rlp->rl_base);
2073 
2074 	if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
2075 		Pdprintf("no mapping for %p\n", (void *)rlp->rl_base);
2076 		return (1); /* No mapping; advance to next mapping */
2077 	}
2078 
2079 	/*
2080 	 * Create a new file_info_t for this mapping, and therefore for
2081 	 * this load object.
2082 	 *
2083 	 * If there's an ELF header at the beginning of this mapping,
2084 	 * file_info_new() will try to use its section headers to
2085 	 * identify any other mappings that belong to this load object.
2086 	 */
2087 	if ((fp = mp->map_file) == NULL &&
2088 	    (fp = file_info_new(P, mp)) == NULL) {
2089 		core->core_errno = errno;
2090 		Pdprintf("failed to malloc mapping data\n");
2091 		return (0); /* Abort */
2092 	}
2093 	fp->file_map = mp;
2094 
2095 	/* Create a local copy of the load object representation */
2096 	if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
2097 		core->core_errno = errno;
2098 		Pdprintf("failed to malloc mapping data\n");
2099 		return (0); /* Abort */
2100 	}
2101 	*fp->file_lo = *rlp;
2102 
2103 	if (lname[0] != '\0') {
2104 		/*
2105 		 * Naming dance part 1: if we got a name from librtld_db, then
2106 		 * copy this name to the prmap_t if it is unnamed.  If the
2107 		 * file_info_t is unnamed, name it after the lname.
2108 		 */
2109 		if (mp->map_pmap.pr_mapname[0] == '\0') {
2110 			(void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
2111 			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2112 		}
2113 
2114 		if (fp->file_lname == NULL)
2115 			fp->file_lname = strdup(lname);
2116 
2117 	} else if (fp->file_lname == NULL &&
2118 	    mp->map_pmap.pr_mapname[0] != '\0') {
2119 		/*
2120 		 * Naming dance part 2: if the mapping is named and the
2121 		 * file_info_t is not, name the file after the mapping.
2122 		 */
2123 		fp->file_lname = strdup(mp->map_pmap.pr_mapname);
2124 	}
2125 
2126 	if ((fp->file_rname == NULL) &&
2127 	    (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
2128 		fp->file_rname = strdup(buf);
2129 
2130 	if (fp->file_lname != NULL)
2131 		fp->file_lbase = basename(fp->file_lname);
2132 	if (fp->file_rname != NULL)
2133 		fp->file_rbase = basename(fp->file_rname);
2134 
2135 	/* Associate the file and the mapping. */
2136 	(void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
2137 	fp->file_pname[PRMAPSZ - 1] = '\0';
2138 
2139 	/*
2140 	 * If no section headers were available then we'll have to
2141 	 * identify this load object's other mappings with what we've
2142 	 * got: the start and end of the object's corresponding
2143 	 * address space.
2144 	 */
2145 	if (fp->file_saddrs == NULL) {
2146 		for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
2147 		    mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
2148 
2149 			if (mp->map_file == NULL) {
2150 				Pdprintf("core_iter_mapping %s: associating "
2151 				    "segment at %p\n",
2152 				    fp->file_pname,
2153 				    (void *)mp->map_pmap.pr_vaddr);
2154 				mp->map_file = fp;
2155 				fp->file_ref++;
2156 			} else {
2157 				Pdprintf("core_iter_mapping %s: segment at "
2158 				    "%p already associated with %s\n",
2159 				    fp->file_pname,
2160 				    (void *)mp->map_pmap.pr_vaddr,
2161 				    (mp == fp->file_map ? "this file" :
2162 				    mp->map_file->file_pname));
2163 			}
2164 		}
2165 	}
2166 
2167 	/* Ensure that all this file's mappings are named. */
2168 	for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2169 	    mp->map_file == fp; mp++) {
2170 		if (mp->map_pmap.pr_mapname[0] == '\0' &&
2171 		    !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2172 			(void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2173 			    PRMAPSZ);
2174 			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2175 		}
2176 	}
2177 
2178 	/* Attempt to build a symbol table for this file. */
2179 	Pbuild_file_symtab(P, fp);
2180 	if (fp->file_elf == NULL)
2181 		Pdprintf("core_iter_mapping: no symtab for %s\n",
2182 		    fp->file_pname);
2183 
2184 	/* Locate the start of a data segment associated with this file. */
2185 	if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2186 		Pdprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2187 		    fp->file_pname, (void *)fp->file_lo->rl_data_base,
2188 		    mp->map_pmap.pr_offset);
2189 	} else {
2190 		Pdprintf("core_iter_mapping: no data found for %s\n",
2191 		    fp->file_pname);
2192 	}
2193 
2194 	return (1); /* Advance to next mapping */
2195 }
2196 
2197 /*
2198  * Callback function for Pfindexec().  In order to confirm a given pathname,
2199  * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2200  */
2201 static int
core_exec_open(const char * path,void * efp)2202 core_exec_open(const char *path, void *efp)
2203 {
2204 	if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2205 		return (1);
2206 	if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2207 		return (1);
2208 	return (0);
2209 }
2210 
2211 /*
2212  * Attempt to load any section headers found in the core file.  If present,
2213  * this will refer to non-loadable data added to the core file by the kernel
2214  * based on coreadm(8) settings, including CTF data and the symbol table.
2215  */
2216 static void
core_load_shdrs(struct ps_prochandle * P,elf_file_t * efp)2217 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2218 {
2219 	GElf_Shdr *shp, *shdrs = NULL;
2220 	char *shstrtab = NULL;
2221 	ulong_t shstrtabsz;
2222 	const char *name;
2223 	map_info_t *mp;
2224 
2225 	size_t nbytes;
2226 	void *buf;
2227 	int i;
2228 
2229 	if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2230 		Pdprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2231 		    efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2232 		return;
2233 	}
2234 
2235 	/*
2236 	 * Read the section header table from the core file and then iterate
2237 	 * over the section headers, converting each to a GElf_Shdr.
2238 	 */
2239 	if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2240 		Pdprintf("failed to malloc %u section headers: %s\n",
2241 		    (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2242 		return;
2243 	}
2244 
2245 	nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2246 	if ((buf = malloc(nbytes)) == NULL) {
2247 		Pdprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2248 		    strerror(errno));
2249 		free(shdrs);
2250 		goto out;
2251 	}
2252 
2253 	if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2254 		Pdprintf("failed to read section headers at off %lld: %s\n",
2255 		    (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2256 		free(buf);
2257 		goto out;
2258 	}
2259 
2260 	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2261 		void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2262 
2263 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2264 			core_shdr_to_gelf(p, &shdrs[i]);
2265 		else
2266 			(void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2267 	}
2268 
2269 	free(buf);
2270 	buf = NULL;
2271 
2272 	/*
2273 	 * Read the .shstrtab section from the core file, terminating it with
2274 	 * an extra \0 so that a corrupt section will not cause us to die.
2275 	 */
2276 	shp = &shdrs[efp->e_hdr.e_shstrndx];
2277 	shstrtabsz = shp->sh_size;
2278 
2279 	if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2280 		Pdprintf("failed to allocate %lu bytes for shstrtab\n",
2281 		    (ulong_t)shstrtabsz);
2282 		goto out;
2283 	}
2284 
2285 	if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2286 	    shp->sh_offset) != shstrtabsz) {
2287 		Pdprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2288 		    shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2289 		goto out;
2290 	}
2291 
2292 	shstrtab[shstrtabsz] = '\0';
2293 
2294 	/*
2295 	 * Now iterate over each section in the section header table, locating
2296 	 * sections of interest and initializing more of the ps_prochandle.
2297 	 */
2298 	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2299 		shp = &shdrs[i];
2300 		name = shstrtab + shp->sh_name;
2301 
2302 		if (shp->sh_name >= shstrtabsz) {
2303 			Pdprintf("skipping section [%d]: corrupt sh_name\n", i);
2304 			continue;
2305 		}
2306 
2307 		if (shp->sh_link >= efp->e_hdr.e_shnum) {
2308 			Pdprintf("skipping section [%d]: corrupt sh_link\n", i);
2309 			continue;
2310 		}
2311 
2312 		Pdprintf("found section header %s (sh_addr 0x%llx)\n",
2313 		    name, (u_longlong_t)shp->sh_addr);
2314 
2315 		if (strcmp(name, ".SUNW_ctf") == 0) {
2316 			if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2317 				Pdprintf("no map at addr 0x%llx for %s [%d]\n",
2318 				    (u_longlong_t)shp->sh_addr, name, i);
2319 				continue;
2320 			}
2321 
2322 			if (mp->map_file == NULL ||
2323 			    mp->map_file->file_ctf_buf != NULL) {
2324 				Pdprintf("no mapping file or duplicate buffer "
2325 				    "for %s [%d]\n", name, i);
2326 				continue;
2327 			}
2328 
2329 			if ((buf = malloc(shp->sh_size)) == NULL ||
2330 			    pread64(efp->e_fd, buf, shp->sh_size,
2331 			    shp->sh_offset) != shp->sh_size) {
2332 				Pdprintf("skipping section %s [%d]: %s\n",
2333 				    name, i, strerror(errno));
2334 				free(buf);
2335 				continue;
2336 			}
2337 
2338 			mp->map_file->file_ctf_size = shp->sh_size;
2339 			mp->map_file->file_ctf_buf = buf;
2340 
2341 			if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2342 				mp->map_file->file_ctf_dyn = 1;
2343 
2344 		} else if (strcmp(name, ".symtab") == 0) {
2345 			fake_up_symtab(P, &efp->e_hdr,
2346 			    shp, &shdrs[shp->sh_link]);
2347 		}
2348 	}
2349 out:
2350 	free(shstrtab);
2351 	free(shdrs);
2352 }
2353 
2354 /*
2355  * Main engine for core file initialization: given an fd for the core file
2356  * and an optional pathname, construct the ps_prochandle.  The aout_path can
2357  * either be a suggested executable pathname, or a suggested directory to
2358  * use as a possible current working directory.
2359  */
2360 struct ps_prochandle *
Pfgrab_core(int core_fd,const char * aout_path,int * perr)2361 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2362 {
2363 	struct ps_prochandle *P;
2364 	core_info_t *core_info;
2365 	map_info_t *stk_mp, *brk_mp;
2366 	const char *execname;
2367 	char *interp;
2368 	int i, notes, pagesize;
2369 	uintptr_t addr, base_addr;
2370 	struct stat64 stbuf;
2371 	void *phbuf, *php;
2372 	size_t nbytes;
2373 #ifdef __x86
2374 	boolean_t from_linux = B_FALSE;
2375 #endif
2376 
2377 	elf_file_t aout;
2378 	elf_file_t core;
2379 
2380 	Elf_Scn *scn, *intp_scn = NULL;
2381 	Elf_Data *dp;
2382 
2383 	GElf_Phdr phdr, note_phdr;
2384 	GElf_Shdr shdr;
2385 	GElf_Xword nleft;
2386 
2387 	if (elf_version(EV_CURRENT) == EV_NONE) {
2388 		Pdprintf("libproc ELF version is more recent than libelf\n");
2389 		*perr = G_ELF;
2390 		return (NULL);
2391 	}
2392 
2393 	aout.e_elf = NULL;
2394 	aout.e_fd = -1;
2395 
2396 	core.e_elf = NULL;
2397 	core.e_fd = core_fd;
2398 
2399 	/*
2400 	 * Allocate and initialize a ps_prochandle structure for the core.
2401 	 * There are several key pieces of initialization here:
2402 	 *
2403 	 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2404 	 *    PS_DEAD also thus prevents all operations which require state
2405 	 *    to be PS_STOP from operating on this handle.
2406 	 *
2407 	 * 2. We keep the core file fd in P->asfd since the core file contains
2408 	 *    the remnants of the process address space.
2409 	 *
2410 	 * 3. We set the P->info_valid bit because all information about the
2411 	 *    core is determined by the end of this function; there is no need
2412 	 *    for proc_update_maps() to reload mappings at any later point.
2413 	 *
2414 	 * 4. The read/write ops vector uses our core_rw() function defined
2415 	 *    above to handle i/o requests.
2416 	 */
2417 	if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2418 		*perr = G_STRANGE;
2419 		return (NULL);
2420 	}
2421 
2422 	(void) memset(P, 0, sizeof (struct ps_prochandle));
2423 	(void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2424 	P->state = PS_DEAD;
2425 	P->pid = (pid_t)-1;
2426 	P->asfd = core.e_fd;
2427 	P->ctlfd = -1;
2428 	P->statfd = -1;
2429 	P->agentctlfd = -1;
2430 	P->agentstatfd = -1;
2431 	P->zoneroot = NULL;
2432 	P->info_valid = 1;
2433 	Pinit_ops(&P->ops, &P_core_ops);
2434 
2435 	Pinitsym(P);
2436 	Pinitfd(P);
2437 
2438 	/*
2439 	 * Fstat and open the core file and make sure it is a valid ELF core.
2440 	 */
2441 	if (fstat64(P->asfd, &stbuf) == -1) {
2442 		*perr = G_STRANGE;
2443 		goto err;
2444 	}
2445 
2446 	if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2447 		goto err;
2448 
2449 	/*
2450 	 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2451 	 * structure.  We keep all core-specific information in this structure.
2452 	 */
2453 	if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2454 		*perr = G_STRANGE;
2455 		goto err;
2456 	}
2457 
2458 	P->data = core_info;
2459 	list_create(&core_info->core_lwp_head, sizeof (lwp_info_t),
2460 	    offsetof(lwp_info_t, lwp_list));
2461 	core_info->core_size = stbuf.st_size;
2462 	/*
2463 	 * In the days before adjustable core file content, this was the
2464 	 * default core file content. For new core files, this value will
2465 	 * be overwritten by the NT_CONTENT note section.
2466 	 */
2467 	core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2468 	    CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2469 	    CC_CONTENT_SHANON;
2470 
2471 	switch (core.e_hdr.e_ident[EI_CLASS]) {
2472 	case ELFCLASS32:
2473 		core_info->core_dmodel = PR_MODEL_ILP32;
2474 		break;
2475 	case ELFCLASS64:
2476 		core_info->core_dmodel = PR_MODEL_LP64;
2477 		break;
2478 	default:
2479 		*perr = G_FORMAT;
2480 		goto err;
2481 	}
2482 	core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2483 
2484 	/*
2485 	 * Because the core file may be a large file, we can't use libelf to
2486 	 * read the Phdrs.  We use e_phnum and e_phentsize to simplify things.
2487 	 */
2488 	nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2489 
2490 	if ((phbuf = malloc(nbytes)) == NULL) {
2491 		*perr = G_STRANGE;
2492 		goto err;
2493 	}
2494 
2495 	if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2496 		*perr = G_STRANGE;
2497 		free(phbuf);
2498 		goto err;
2499 	}
2500 
2501 	/*
2502 	 * Iterate through the program headers in the core file.
2503 	 * We're interested in two types of Phdrs: PT_NOTE (which
2504 	 * contains a set of saved /proc structures), and PT_LOAD (which
2505 	 * represents a memory mapping from the process's address space).
2506 	 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2507 	 * in the core file; currently the first PT_NOTE (if present)
2508 	 * contains /proc structs in the pre-2.6 unstructured /proc format.
2509 	 */
2510 	for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2511 		if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2512 			(void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2513 		else
2514 			core_phdr_to_gelf(php, &phdr);
2515 
2516 		switch (phdr.p_type) {
2517 		case PT_NOTE:
2518 			note_phdr = phdr;
2519 			notes++;
2520 			break;
2521 
2522 		case PT_LOAD:
2523 			if (core_add_mapping(P, &phdr) == -1) {
2524 				*perr = G_STRANGE;
2525 				free(phbuf);
2526 				goto err;
2527 			}
2528 			break;
2529 		default:
2530 			Pdprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2531 			break;
2532 		}
2533 
2534 		php = (char *)php + core.e_hdr.e_phentsize;
2535 	}
2536 
2537 	free(phbuf);
2538 
2539 	Psort_mappings(P);
2540 
2541 	/*
2542 	 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2543 	 * was present, abort.  The core file is either corrupt or too old.
2544 	 */
2545 	if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2546 	    ELFOSABI_SOLARIS)) {
2547 		*perr = G_NOTE;
2548 		goto err;
2549 	}
2550 
2551 	/*
2552 	 * Advance the seek pointer to the start of the PT_NOTE data
2553 	 */
2554 	if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2555 		Pdprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2556 		*perr = G_STRANGE;
2557 		goto err;
2558 	}
2559 
2560 	/*
2561 	 * Now process the PT_NOTE structures.  Each one is preceded by
2562 	 * an Elf{32/64}_Nhdr structure describing its type and size.
2563 	 *
2564 	 *  +--------+
2565 	 *  | header |
2566 	 *  +--------+
2567 	 *  | name   |
2568 	 *  | ...    |
2569 	 *  +--------+
2570 	 *  | desc   |
2571 	 *  | ...    |
2572 	 *  +--------+
2573 	 */
2574 	for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2575 		Elf64_Nhdr nhdr;
2576 		off64_t off, namesz, descsz;
2577 
2578 		/*
2579 		 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2580 		 * as different types, they are both of the same content and
2581 		 * size, so we don't need to worry about 32/64 conversion here.
2582 		 */
2583 		if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2584 			Pdprintf(
2585 			    "Pgrab_core: failed to read ELF note header\n");
2586 			*perr = G_NOTE;
2587 			goto err;
2588 		}
2589 
2590 		/*
2591 		 * According to the System V ABI, the amount of padding
2592 		 * following the name field should align the description
2593 		 * field on a 4 byte boundary for 32-bit binaries or on an 8
2594 		 * byte boundary for 64-bit binaries. However, this change
2595 		 * was not made correctly during the 64-bit port so all
2596 		 * descriptions can assume only 4-byte alignment. We ignore
2597 		 * the name field and the padding to 4-byte alignment.
2598 		 */
2599 		namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2600 
2601 		if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2602 			Pdprintf("failed to seek past name and padding\n");
2603 			*perr = G_STRANGE;
2604 			goto err;
2605 		}
2606 
2607 		Pdprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2608 		    nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2609 
2610 		off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2611 
2612 		/*
2613 		 * Invoke the note handler function from our table
2614 		 */
2615 		if (nhdr.n_type < ARRAY_SIZE(nhdlrs) &&
2616 		    nhdlrs[nhdr.n_type] != NULL) {
2617 			if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2618 				Pdprintf("handler for type %d returned < 0",
2619 				    nhdr.n_type);
2620 				*perr = G_NOTE;
2621 				goto err;
2622 			}
2623 			/*
2624 			 * The presence of either of these notes indicates that
2625 			 * the dump was generated on Linux.
2626 			 */
2627 #ifdef __x86
2628 			if (nhdr.n_type == NT_PRSTATUS ||
2629 			    nhdr.n_type == NT_PRPSINFO)
2630 				from_linux = B_TRUE;
2631 #endif
2632 		} else {
2633 			(void) note_notsup(P, nhdr.n_descsz);
2634 		}
2635 
2636 		/*
2637 		 * Seek past the current note data to the next Elf_Nhdr
2638 		 */
2639 		descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2640 		if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2641 			Pdprintf("Pgrab_core: failed to seek to next nhdr\n");
2642 			*perr = G_STRANGE;
2643 			goto err;
2644 		}
2645 
2646 		/*
2647 		 * Subtract the size of the header and its data from what
2648 		 * we have left to process.
2649 		 */
2650 		nleft -= sizeof (nhdr) + namesz + descsz;
2651 	}
2652 
2653 #ifdef __x86
2654 	if (from_linux) {
2655 		size_t pid;
2656 		lwp_info_t *lwp;
2657 
2658 		P->status.pr_dmodel = core_info->core_dmodel;
2659 
2660 		pid = P->status.pr_pid;
2661 
2662 		for (lwp = list_head(&core_info->core_lwp_head); lwp != NULL;
2663 		    lwp = list_next(&core_info->core_lwp_head, lwp)) {
2664 			Pdprintf("Linux thread with id %d\n", lwp->lwp_id);
2665 
2666 			/*
2667 			 * In the case we don't have a valid psinfo (i.e. pid is
2668 			 * 0, probably because of gdb creating the core) assume
2669 			 * lowest pid count is the first thread (what if the
2670 			 * next thread wraps the pid around?)
2671 			 */
2672 			if (P->status.pr_pid == 0 &&
2673 			    ((pid == 0 && lwp->lwp_id > 0) ||
2674 			    (lwp->lwp_id < pid))) {
2675 				pid = lwp->lwp_id;
2676 			}
2677 		}
2678 
2679 		if (P->status.pr_pid != pid) {
2680 			Pdprintf("No valid pid, setting to %ld\n",
2681 			    (ulong_t)pid);
2682 			P->status.pr_pid = pid;
2683 			P->psinfo.pr_pid = pid;
2684 		}
2685 
2686 		/*
2687 		 * Consumers like mdb expect the first thread to actually have
2688 		 * an id of 1, on linux that is actually the pid. Find the the
2689 		 * thread with our process id, and set the id to 1
2690 		 */
2691 		if ((lwp = lwpid2info(P, pid)) == NULL) {
2692 			Pdprintf("Couldn't find first thread\n");
2693 			*perr = G_STRANGE;
2694 			goto err;
2695 		}
2696 
2697 		Pdprintf("setting representative thread: %d\n", lwp->lwp_id);
2698 
2699 		lwp->lwp_id = 1;
2700 		lwp->lwp_status.pr_lwpid = 1;
2701 
2702 		/* set representative thread */
2703 		(void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2704 		    sizeof (P->status.pr_lwp));
2705 	}
2706 #endif /* __x86 */
2707 
2708 	if (nleft != 0) {
2709 		Pdprintf("Pgrab_core: note section malformed\n");
2710 		*perr = G_STRANGE;
2711 		goto err;
2712 	}
2713 
2714 	if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2715 		pagesize = getpagesize();
2716 		Pdprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2717 	}
2718 
2719 	/*
2720 	 * Locate and label the mappings corresponding to the end of the
2721 	 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2722 	 */
2723 	if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2724 	    (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2725 	    P->status.pr_brksize - 1)) != NULL)
2726 		brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2727 	else
2728 		brk_mp = NULL;
2729 
2730 	if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2731 		stk_mp->map_pmap.pr_mflags |= MA_STACK;
2732 
2733 	/*
2734 	 * At this point, we have enough information to look for the
2735 	 * executable and open it: we have access to the auxv, a psinfo_t,
2736 	 * and the ability to read from mappings provided by the core file.
2737 	 */
2738 	(void) Pfindexec(P, aout_path, core_exec_open, &aout);
2739 	Pdprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2740 	execname = P->execname ? P->execname : "a.out";
2741 
2742 	/*
2743 	 * Iterate through the sections, looking for the .dynamic and .interp
2744 	 * sections.  If we encounter them, remember their section pointers.
2745 	 */
2746 	for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2747 		char *sname;
2748 
2749 		if ((gelf_getshdr(scn, &shdr) == NULL) ||
2750 		    (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2751 		    (size_t)shdr.sh_name)) == NULL)
2752 			continue;
2753 
2754 		if (strcmp(sname, ".interp") == 0)
2755 			intp_scn = scn;
2756 	}
2757 
2758 	/*
2759 	 * Get the AT_BASE auxv element.  If this is missing (-1), then
2760 	 * we assume this is a statically-linked executable.
2761 	 */
2762 	base_addr = Pgetauxval(P, AT_BASE);
2763 
2764 	/*
2765 	 * In order to get librtld_db initialized, we'll need to identify
2766 	 * and name the mapping corresponding to the run-time linker.  The
2767 	 * AT_BASE auxv element tells us the address where it was mapped,
2768 	 * and the .interp section of the executable tells us its path.
2769 	 * If for some reason that doesn't pan out, just use ld.so.1.
2770 	 */
2771 	if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2772 	    dp->d_size != 0) {
2773 		Pdprintf(".interp = <%s>\n", (char *)dp->d_buf);
2774 		interp = dp->d_buf;
2775 
2776 	} else if (base_addr != (uintptr_t)-1L) {
2777 		if (core_info->core_dmodel == PR_MODEL_LP64)
2778 			interp = "/usr/lib/64/ld.so.1";
2779 		else
2780 			interp = "/usr/lib/ld.so.1";
2781 
2782 		Pdprintf(".interp section is missing or could not be read; "
2783 		    "defaulting to %s\n", interp);
2784 	} else
2785 		Pdprintf("detected statically linked executable\n");
2786 
2787 	/*
2788 	 * If we have an AT_BASE element, name the mapping at that address
2789 	 * using the interpreter pathname.  Name the corresponding data
2790 	 * mapping after the interpreter as well.
2791 	 */
2792 	if (base_addr != (uintptr_t)-1L) {
2793 		elf_file_t intf;
2794 
2795 		P->map_ldso = core_name_mapping(P, base_addr, interp);
2796 
2797 		if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2798 			rd_loadobj_t rl;
2799 			map_info_t *dmp;
2800 
2801 			rl.rl_base = base_addr;
2802 			dmp = core_find_data(P, intf.e_elf, &rl);
2803 
2804 			if (dmp != NULL) {
2805 				Pdprintf("renamed data at %p to %s\n",
2806 				    (void *)rl.rl_data_base, interp);
2807 				(void) strncpy(dmp->map_pmap.pr_mapname,
2808 				    interp, PRMAPSZ);
2809 				dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2810 			}
2811 		}
2812 
2813 		core_elf_close(&intf);
2814 	}
2815 
2816 	/*
2817 	 * If we have an AT_ENTRY element, name the mapping at that address
2818 	 * using the special name "a.out" just like /proc does.
2819 	 */
2820 	if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2821 		P->map_exec = core_name_mapping(P, addr, "a.out");
2822 
2823 	/*
2824 	 * If we're a statically linked executable (or we're on x86 and looking
2825 	 * at a Linux core dump), then just locate the executable's text and
2826 	 * data and name them after the executable.
2827 	 */
2828 #ifndef __x86
2829 	if (base_addr == (uintptr_t)-1L) {
2830 #else
2831 	if (base_addr == (uintptr_t)-1L || from_linux) {
2832 #endif
2833 		Pdprintf("looking for text and data: %s\n", execname);
2834 		map_info_t *tmp, *dmp;
2835 		file_info_t *fp;
2836 		rd_loadobj_t rl;
2837 
2838 		if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2839 		    (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2840 			(void) strncpy(tmp->map_pmap.pr_mapname,
2841 			    execname, PRMAPSZ);
2842 			tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2843 			(void) strncpy(dmp->map_pmap.pr_mapname,
2844 			    execname, PRMAPSZ);
2845 			dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2846 		}
2847 
2848 		if ((P->map_exec = tmp) != NULL &&
2849 		    (fp = malloc(sizeof (file_info_t))) != NULL) {
2850 
2851 			(void) memset(fp, 0, sizeof (file_info_t));
2852 
2853 			list_insert_head(&P->file_head, fp);
2854 			tmp->map_file = fp;
2855 			P->num_files++;
2856 
2857 			fp->file_ref = 1;
2858 			fp->file_fd = -1;
2859 			fp->file_dbgfile = -1;
2860 
2861 			fp->file_lo = malloc(sizeof (rd_loadobj_t));
2862 			fp->file_lname = strdup(execname);
2863 
2864 			if (fp->file_lo)
2865 				*fp->file_lo = rl;
2866 			if (fp->file_lname)
2867 				fp->file_lbase = basename(fp->file_lname);
2868 			if (fp->file_rname)
2869 				fp->file_rbase = basename(fp->file_rname);
2870 
2871 			(void) strcpy(fp->file_pname,
2872 			    P->mappings[0].map_pmap.pr_mapname);
2873 			fp->file_map = tmp;
2874 
2875 			Pbuild_file_symtab(P, fp);
2876 
2877 			if (dmp != NULL) {
2878 				dmp->map_file = fp;
2879 				fp->file_ref++;
2880 			}
2881 		}
2882 	}
2883 
2884 	core_elf_close(&aout);
2885 
2886 	/*
2887 	 * We now have enough information to initialize librtld_db.
2888 	 * After it warms up, we can iterate through the load object chain
2889 	 * in the core, which will allow us to construct the file info
2890 	 * we need to provide symbol information for the other shared
2891 	 * libraries, and also to fill in the missing mapping names.
2892 	 */
2893 	rd_log(_libproc_debug);
2894 
2895 	if ((P->rap = rd_new(P)) != NULL) {
2896 		(void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2897 		    core_iter_mapping, P);
2898 
2899 		if (core_info->core_errno != 0) {
2900 			errno = core_info->core_errno;
2901 			*perr = G_STRANGE;
2902 			goto err;
2903 		}
2904 	} else
2905 		Pdprintf("failed to initialize rtld_db agent\n");
2906 
2907 	/*
2908 	 * If there are sections, load them and process the data from any
2909 	 * sections that we can use to annotate the file_info_t's.
2910 	 */
2911 	core_load_shdrs(P, &core);
2912 
2913 	/*
2914 	 * If we previously located a stack or break mapping, and they are
2915 	 * still anonymous, we now assume that they were MAP_ANON mappings.
2916 	 * If brk_mp turns out to now have a name, then the heap is still
2917 	 * sitting at the end of the executable's data+bss mapping: remove
2918 	 * the previous MA_BREAK setting to be consistent with /proc.
2919 	 */
2920 	if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2921 		stk_mp->map_pmap.pr_mflags |= MA_ANON;
2922 	if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2923 		brk_mp->map_pmap.pr_mflags |= MA_ANON;
2924 	else if (brk_mp != NULL)
2925 		brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2926 
2927 	*perr = 0;
2928 	return (P);
2929 
2930 err:
2931 	Pfree(P);
2932 	core_elf_close(&aout);
2933 	return (NULL);
2934 }
2935 
2936 /*
2937  * Grab a core file using a pathname.  We just open it and call Pfgrab_core().
2938  */
2939 struct ps_prochandle *
2940 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2941 {
2942 	int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2943 
2944 	if ((fd = open64(core, oflag)) >= 0)
2945 		return (Pfgrab_core(fd, aout, perr));
2946 
2947 	if (errno != ENOENT)
2948 		*perr = G_STRANGE;
2949 	else
2950 		*perr = G_NOCORE;
2951 
2952 	return (NULL);
2953 }
2954 
2955 int
2956 Pupanic(struct ps_prochandle *P, prupanic_t **pru)
2957 {
2958 	core_info_t *core;
2959 
2960 	if (P->state != PS_DEAD) {
2961 		errno = ENODATA;
2962 		return (-1);
2963 	}
2964 
2965 	core = P->data;
2966 	if (core->core_upanic == NULL) {
2967 		errno = ENOENT;
2968 		return (-1);
2969 	}
2970 
2971 	if (core->core_upanic->pru_version != PRUPANIC_VERSION_1) {
2972 		errno = EINVAL;
2973 		return (-1);
2974 	}
2975 
2976 	if ((*pru = calloc(1, sizeof (prupanic_t))) == NULL)
2977 		return (-1);
2978 	(void) memcpy(*pru, core->core_upanic, sizeof (prupanic_t));
2979 
2980 	return (0);
2981 }
2982 
2983 void
2984 Pupanic_free(prupanic_t *pru)
2985 {
2986 	free(pru);
2987 }
2988