1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
27 * Copyright (c) 2018, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2013 by Delphix. All rights reserved.
29 * Copyright 2015 Gary Mills
30 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
31 * Copyright 2024 Oxide Computer Company
32 */
33
34 #include <sys/types.h>
35 #include <sys/utsname.h>
36 #include <sys/sysmacros.h>
37 #include <sys/proc.h>
38
39 #include <alloca.h>
40 #include <rtld_db.h>
41 #include <libgen.h>
42 #include <limits.h>
43 #include <string.h>
44 #include <stdlib.h>
45 #include <unistd.h>
46 #include <errno.h>
47 #include <gelf.h>
48 #include <stddef.h>
49 #include <signal.h>
50
51 #include "libproc.h"
52 #include "Pcontrol.h"
53 #include "P32ton.h"
54 #include "Putil.h"
55 #include "proc_fd.h"
56 #ifdef __x86
57 #include "Pcore_linux.h"
58 #endif
59
60 /*
61 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We
62 * allocate an additional structure to hold information from the core
63 * file, and attach this to the standard ps_prochandle in place of the
64 * ability to examine /proc/<pid>/ files.
65 */
66
67 /*
68 * Basic i/o function for reading and writing from the process address space
69 * stored in the core file and associated shared libraries. We compute the
70 * appropriate fd and offsets, and let the provided prw function do the rest.
71 */
72 static ssize_t
core_rw(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,ssize_t (* prw)(int,void *,size_t,off64_t))73 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
74 ssize_t (*prw)(int, void *, size_t, off64_t))
75 {
76 ssize_t resid = n;
77
78 while (resid != 0) {
79 map_info_t *mp = Paddr2mptr(P, addr);
80
81 uintptr_t mapoff;
82 ssize_t len;
83 off64_t off;
84 int fd;
85
86 if (mp == NULL)
87 break; /* No mapping for this address */
88
89 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
90 if (mp->map_file == NULL || mp->map_file->file_fd < 0)
91 break; /* No file or file not open */
92
93 fd = mp->map_file->file_fd;
94 } else
95 fd = P->asfd;
96
97 mapoff = addr - mp->map_pmap.pr_vaddr;
98 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
99 off = mp->map_offset + mapoff;
100
101 if ((len = prw(fd, buf, len, off)) <= 0)
102 break;
103
104 resid -= len;
105 addr += len;
106 buf = (char *)buf + len;
107 }
108
109 /*
110 * Important: Be consistent with the behavior of i/o on the as file:
111 * writing to an invalid address yields EIO; reading from an invalid
112 * address falls through to returning success and zero bytes.
113 */
114 if (resid == n && n != 0 && prw != pread64) {
115 errno = EIO;
116 return (-1);
117 }
118
119 return (n - resid);
120 }
121
122 static ssize_t
Pread_core(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,void * data)123 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
124 void *data)
125 {
126 return (core_rw(P, buf, n, addr, pread64));
127 }
128
129 static ssize_t
Pwrite_core(struct ps_prochandle * P,const void * buf,size_t n,uintptr_t addr,void * data)130 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
131 void *data)
132 {
133 return (core_rw(P, (void *)buf, n, addr,
134 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
135 }
136
137 static int
Pcred_core(struct ps_prochandle * P,prcred_t * pcrp,int ngroups,void * data)138 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
139 {
140 core_info_t *core = data;
141
142 if (core->core_cred != NULL) {
143 /*
144 * Avoid returning more supplementary group data than the
145 * caller has allocated in their buffer. We expect them to
146 * check pr_ngroups afterward and potentially call us again.
147 */
148 ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
149
150 (void) memcpy(pcrp, core->core_cred,
151 sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
152
153 return (0);
154 }
155
156 errno = ENODATA;
157 return (-1);
158 }
159
160 static int
Psecflags_core(struct ps_prochandle * P,prsecflags_t ** psf,void * data)161 Psecflags_core(struct ps_prochandle *P, prsecflags_t **psf, void *data)
162 {
163 core_info_t *core = data;
164
165 if (core->core_secflags == NULL) {
166 errno = ENODATA;
167 return (-1);
168 }
169
170 if ((*psf = calloc(1, sizeof (prsecflags_t))) == NULL)
171 return (-1);
172
173 (void) memcpy(*psf, core->core_secflags, sizeof (prsecflags_t));
174
175 return (0);
176 }
177
178 static int
Ppriv_core(struct ps_prochandle * P,prpriv_t ** pprv,void * data)179 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
180 {
181 core_info_t *core = data;
182
183 if (core->core_priv == NULL) {
184 errno = ENODATA;
185 return (-1);
186 }
187
188 *pprv = malloc(core->core_priv_size);
189 if (*pprv == NULL) {
190 return (-1);
191 }
192
193 (void) memcpy(*pprv, core->core_priv, core->core_priv_size);
194 return (0);
195 }
196
197 static const psinfo_t *
Ppsinfo_core(struct ps_prochandle * P,psinfo_t * psinfo,void * data)198 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
199 {
200 return (&P->psinfo);
201 }
202
203 static void
Pfini_core(struct ps_prochandle * P,void * data)204 Pfini_core(struct ps_prochandle *P, void *data)
205 {
206 core_info_t *core = data;
207
208 if (core != NULL) {
209 extern void __priv_free_info(void *);
210 lwp_info_t *lwp;
211
212 while ((lwp = list_remove_head(&core->core_lwp_head)) != NULL) {
213 #ifdef __sparc
214 if (lwp->lwp_gwins != NULL)
215 free(lwp->lwp_gwins);
216 if (lwp->lwp_xregs != NULL)
217 free(lwp->lwp_xregs);
218 if (lwp->lwp_asrs != NULL)
219 free(lwp->lwp_asrs);
220 #endif
221 free(lwp);
222 }
223
224 if (core->core_platform != NULL)
225 free(core->core_platform);
226 if (core->core_uts != NULL)
227 free(core->core_uts);
228 if (core->core_cred != NULL)
229 free(core->core_cred);
230 if (core->core_priv != NULL)
231 free(core->core_priv);
232 if (core->core_privinfo != NULL)
233 __priv_free_info(core->core_privinfo);
234 if (core->core_ppii != NULL)
235 free(core->core_ppii);
236 if (core->core_zonename != NULL)
237 free(core->core_zonename);
238 if (core->core_secflags != NULL)
239 free(core->core_secflags);
240 if (core->core_upanic != NULL)
241 free(core->core_upanic);
242 if (core->core_cwd != NULL)
243 free(core->core_cwd);
244 #ifdef __x86
245 if (core->core_ldt != NULL)
246 free(core->core_ldt);
247 #endif
248
249 free(core);
250 }
251 }
252
253 static char *
Pplatform_core(struct ps_prochandle * P,char * s,size_t n,void * data)254 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
255 {
256 core_info_t *core = data;
257
258 if (core->core_platform == NULL) {
259 errno = ENODATA;
260 return (NULL);
261 }
262 (void) strncpy(s, core->core_platform, n - 1);
263 s[n - 1] = '\0';
264 return (s);
265 }
266
267 static int
Puname_core(struct ps_prochandle * P,struct utsname * u,void * data)268 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
269 {
270 core_info_t *core = data;
271
272 if (core->core_uts == NULL) {
273 errno = ENODATA;
274 return (-1);
275 }
276 (void) memcpy(u, core->core_uts, sizeof (struct utsname));
277 return (0);
278 }
279
280 static char *
Pzonename_core(struct ps_prochandle * P,char * s,size_t n,void * data)281 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
282 {
283 core_info_t *core = data;
284
285 if (core->core_zonename == NULL) {
286 errno = ENODATA;
287 return (NULL);
288 }
289 (void) strlcpy(s, core->core_zonename, n);
290 return (s);
291 }
292
293 static int
Pcwd_core(struct ps_prochandle * P,prcwd_t ** cwdp,void * data)294 Pcwd_core(struct ps_prochandle *P, prcwd_t **cwdp, void *data)
295 {
296 prcwd_t *cwd;
297 core_info_t *core = data;
298
299 if (core->core_cwd == NULL) {
300 errno = ENODATA;
301 return (-1);
302 }
303
304 if ((cwd = calloc(1, sizeof (prcwd_t))) == NULL)
305 return (-1);
306
307 (void) memcpy(cwd, core->core_cwd, sizeof (prcwd_t));
308 cwd->prcwd_fsname[sizeof (cwd->prcwd_fsname) - 1] = '\0';
309 cwd->prcwd_mntpt[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
310 cwd->prcwd_mntspec[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
311 cwd->prcwd_cwd[sizeof (cwd->prcwd_mntpt) - 1] = '\0';
312 *cwdp = cwd;
313
314 return (0);
315 }
316
317 #ifdef __x86
318 static int
Pldt_core(struct ps_prochandle * P,struct ssd * pldt,int nldt,void * data)319 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
320 {
321 core_info_t *core = data;
322
323 if (pldt == NULL || nldt == 0)
324 return (core->core_nldt);
325
326 if (core->core_ldt != NULL) {
327 nldt = MIN(nldt, core->core_nldt);
328
329 (void) memcpy(pldt, core->core_ldt,
330 nldt * sizeof (struct ssd));
331
332 return (nldt);
333 }
334
335 errno = ENODATA;
336 return (-1);
337 }
338 #endif
339
340 static const ps_ops_t P_core_ops = {
341 .pop_pread = Pread_core,
342 .pop_pwrite = Pwrite_core,
343 .pop_cred = Pcred_core,
344 .pop_priv = Ppriv_core,
345 .pop_psinfo = Ppsinfo_core,
346 .pop_fini = Pfini_core,
347 .pop_platform = Pplatform_core,
348 .pop_uname = Puname_core,
349 .pop_zonename = Pzonename_core,
350 .pop_secflags = Psecflags_core,
351 .pop_cwd = Pcwd_core,
352 #ifdef __x86
353 .pop_ldt = Pldt_core
354 #endif
355 };
356
357 /*
358 * Return the lwp_info_t for the given lwpid. If no such lwpid has been
359 * encountered yet, allocate a new structure and return a pointer to it.
360 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
361 */
362 static lwp_info_t *
lwpid2info(struct ps_prochandle * P,lwpid_t id)363 lwpid2info(struct ps_prochandle *P, lwpid_t id)
364 {
365 core_info_t *core = P->data;
366 lwp_info_t *lwp, *prev;
367
368 for (lwp = list_head(&core->core_lwp_head); lwp != NULL;
369 lwp = list_next(&core->core_lwp_head, lwp)) {
370 if (lwp->lwp_id == id) {
371 core->core_lwp = lwp;
372 return (lwp);
373 }
374 if (lwp->lwp_id < id) {
375 break;
376 }
377 }
378
379 prev = lwp;
380 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
381 return (NULL);
382
383 list_insert_before(&core->core_lwp_head, prev, lwp);
384 lwp->lwp_id = id;
385
386 core->core_lwp = lwp;
387
388 return (lwp);
389 }
390
391 /*
392 * The core file itself contains a series of NOTE segments containing saved
393 * structures from /proc at the time the process died. For each note we
394 * comprehend, we define a function to read it in from the core file,
395 * convert it to our native data model if necessary, and store it inside
396 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the
397 * seek pointer on P->asfd positioned appropriately. We populate a table
398 * of pointers to these note functions below.
399 */
400
401 static int
note_pstatus(struct ps_prochandle * P,size_t nbytes)402 note_pstatus(struct ps_prochandle *P, size_t nbytes)
403 {
404 #ifdef _LP64
405 core_info_t *core = P->data;
406
407 if (core->core_dmodel == PR_MODEL_ILP32) {
408 pstatus32_t ps32;
409
410 if (nbytes < sizeof (pstatus32_t) ||
411 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
412 goto err;
413
414 pstatus_32_to_n(&ps32, &P->status);
415
416 } else
417 #endif
418 if (nbytes < sizeof (pstatus_t) ||
419 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
420 goto err;
421
422 P->orig_status = P->status;
423 P->pid = P->status.pr_pid;
424
425 return (0);
426
427 err:
428 Pdprintf("Pgrab_core: failed to read NT_PSTATUS\n");
429 return (-1);
430 }
431
432 static int
note_lwpstatus(struct ps_prochandle * P,size_t nbytes)433 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
434 {
435 lwp_info_t *lwp;
436 lwpstatus_t lps;
437
438 #ifdef _LP64
439 core_info_t *core = P->data;
440
441 if (core->core_dmodel == PR_MODEL_ILP32) {
442 lwpstatus32_t l32;
443
444 if (nbytes < sizeof (lwpstatus32_t) ||
445 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
446 goto err;
447
448 lwpstatus_32_to_n(&l32, &lps);
449 } else
450 #endif
451 if (nbytes < sizeof (lwpstatus_t) ||
452 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
453 goto err;
454
455 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
456 Pdprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
457 return (-1);
458 }
459
460 /*
461 * Erase a useless and confusing artifact of the kernel implementation:
462 * the lwps which did *not* create the core will show SIGKILL. We can
463 * be assured this is bogus because SIGKILL can't produce core files.
464 */
465 if (lps.pr_cursig == SIGKILL)
466 lps.pr_cursig = 0;
467
468 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
469 return (0);
470
471 err:
472 Pdprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
473 return (-1);
474 }
475
476 #ifdef __x86
477
478 static void
lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t * p32,psinfo_t * psinfo)479 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
480 {
481 psinfo->pr_flag = p32->pr_flag;
482 psinfo->pr_pid = p32->pr_pid;
483 psinfo->pr_ppid = p32->pr_ppid;
484 psinfo->pr_uid = p32->pr_uid;
485 psinfo->pr_gid = p32->pr_gid;
486 psinfo->pr_sid = p32->pr_sid;
487 psinfo->pr_pgid = p32->pr_pgrp;
488
489 (void) memcpy(psinfo->pr_fname, p32->pr_fname,
490 sizeof (psinfo->pr_fname));
491 (void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
492 sizeof (psinfo->pr_psargs));
493 }
494
495 static void
lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t * p64,psinfo_t * psinfo)496 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
497 {
498 psinfo->pr_flag = p64->pr_flag;
499 psinfo->pr_pid = p64->pr_pid;
500 psinfo->pr_ppid = p64->pr_ppid;
501 psinfo->pr_uid = p64->pr_uid;
502 psinfo->pr_gid = p64->pr_gid;
503 psinfo->pr_sid = p64->pr_sid;
504 psinfo->pr_pgid = p64->pr_pgrp;
505 psinfo->pr_pgid = p64->pr_pgrp;
506
507 (void) memcpy(psinfo->pr_fname, p64->pr_fname,
508 sizeof (psinfo->pr_fname));
509 (void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
510 sizeof (psinfo->pr_psargs));
511 }
512
513 static int
note_linux_psinfo(struct ps_prochandle * P,size_t nbytes)514 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
515 {
516 core_info_t *core = P->data;
517 lx_prpsinfo32_t p32;
518 lx_prpsinfo64_t p64;
519
520 if (core->core_dmodel == PR_MODEL_ILP32) {
521 if (nbytes < sizeof (p32) ||
522 read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
523 goto err;
524
525 lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
526 } else {
527 if (nbytes < sizeof (p64) ||
528 read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
529 goto err;
530
531 lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
532 }
533
534
535 P->status.pr_pid = P->psinfo.pr_pid;
536 P->status.pr_ppid = P->psinfo.pr_ppid;
537 P->status.pr_pgid = P->psinfo.pr_pgid;
538 P->status.pr_sid = P->psinfo.pr_sid;
539
540 P->psinfo.pr_nlwp = 0;
541 P->status.pr_nlwp = 0;
542
543 return (0);
544 err:
545 Pdprintf("Pgrab_core: failed to read NT_PSINFO\n");
546 return (-1);
547 }
548
549 static void
lx_prstatus64_to_lwp(lx_prstatus64_t * prs64,lwp_info_t * lwp)550 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
551 {
552 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
553 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
554
555 lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
556 lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
557 lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
558 lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
559 lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
560 lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
561 lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
562 lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
563
564 lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
565 lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
566 lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
567 lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
568 lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
569 lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
570 lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
571
572 lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
573 lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
574 lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
575 lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
576 lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
577 lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
578 lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
579 lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
580
581 lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
582 lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
583 }
584
585 static void
lx_prstatus32_to_lwp(lx_prstatus32_t * prs32,lwp_info_t * lwp)586 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
587 {
588 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
589 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
590
591 #ifdef __amd64
592 lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
593 lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
594 lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
595 lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
596 lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
597 lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
598 lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
599 lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
600 lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
601 lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
602 lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
603 lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
604 lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
605 lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
606 lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
607 lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
608 #else /* __amd64 */
609 lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
610 lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
611 lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
612 lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
613 lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
614 lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
615 lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
616 lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
617 lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
618
619 lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
620 lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
621 lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
622 lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
623 lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
624 lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
625
626 lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
627 #endif /* !__amd64 */
628 }
629
630 static int
note_linux_prstatus(struct ps_prochandle * P,size_t nbytes)631 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
632 {
633 core_info_t *core = P->data;
634
635 lx_prstatus64_t prs64;
636 lx_prstatus32_t prs32;
637 lwp_info_t *lwp;
638 lwpid_t tid;
639
640 Pdprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
641 (ulong_t)nbytes, (ulong_t)sizeof (prs32));
642 if (core->core_dmodel == PR_MODEL_ILP32) {
643 if (nbytes < sizeof (prs32) ||
644 read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
645 goto err;
646 tid = prs32.pr_pid;
647 } else {
648 if (nbytes < sizeof (prs64) ||
649 read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
650 goto err;
651 tid = prs64.pr_pid;
652 }
653
654 if ((lwp = lwpid2info(P, tid)) == NULL) {
655 Pdprintf("Pgrab_core: failed to add lwpid2info "
656 "linux_prstatus\n");
657 return (-1);
658 }
659
660 P->psinfo.pr_nlwp++;
661 P->status.pr_nlwp++;
662
663 lwp->lwp_status.pr_lwpid = tid;
664
665 if (core->core_dmodel == PR_MODEL_ILP32)
666 lx_prstatus32_to_lwp(&prs32, lwp);
667 else
668 lx_prstatus64_to_lwp(&prs64, lwp);
669
670 return (0);
671 err:
672 Pdprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
673 return (-1);
674 }
675
676 #endif /* __x86 */
677
678 static int
note_psinfo(struct ps_prochandle * P,size_t nbytes)679 note_psinfo(struct ps_prochandle *P, size_t nbytes)
680 {
681 #ifdef _LP64
682 core_info_t *core = P->data;
683
684 if (core->core_dmodel == PR_MODEL_ILP32) {
685 psinfo32_t ps32;
686
687 if (nbytes < sizeof (psinfo32_t) ||
688 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
689 goto err;
690
691 psinfo_32_to_n(&ps32, &P->psinfo);
692 } else
693 #endif
694 if (nbytes < sizeof (psinfo_t) ||
695 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
696 goto err;
697
698 Pdprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
699 Pdprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
700 Pdprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
701
702 return (0);
703
704 err:
705 Pdprintf("Pgrab_core: failed to read NT_PSINFO\n");
706 return (-1);
707 }
708
709 static int
note_lwpsinfo(struct ps_prochandle * P,size_t nbytes)710 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
711 {
712 lwp_info_t *lwp;
713 lwpsinfo_t lps;
714
715 #ifdef _LP64
716 core_info_t *core = P->data;
717
718 if (core->core_dmodel == PR_MODEL_ILP32) {
719 lwpsinfo32_t l32;
720
721 if (nbytes < sizeof (lwpsinfo32_t) ||
722 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
723 goto err;
724
725 lwpsinfo_32_to_n(&l32, &lps);
726 } else
727 #endif
728 if (nbytes < sizeof (lwpsinfo_t) ||
729 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
730 goto err;
731
732 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
733 Pdprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
734 return (-1);
735 }
736
737 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
738 return (0);
739
740 err:
741 Pdprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
742 return (-1);
743 }
744
745 static int
note_lwpname(struct ps_prochandle * P,size_t nbytes)746 note_lwpname(struct ps_prochandle *P, size_t nbytes)
747 {
748 prlwpname_t name;
749 lwp_info_t *lwp;
750
751 if (nbytes != sizeof (name) ||
752 read(P->asfd, &name, sizeof (name)) != sizeof (name))
753 goto err;
754
755 if ((lwp = lwpid2info(P, name.pr_lwpid)) == NULL)
756 goto err;
757
758 if (strlcpy(lwp->lwp_name, name.pr_lwpname,
759 sizeof (lwp->lwp_name)) >= sizeof (lwp->lwp_name)) {
760 errno = ENAMETOOLONG;
761 goto err;
762 }
763
764 return (0);
765
766 err:
767 Pdprintf("Pgrab_core: failed to read NT_LWPNAME\n");
768 return (-1);
769 }
770
771 static int
note_fdinfo(struct ps_prochandle * P,size_t nbytes)772 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
773 {
774 prfdinfo_core_t prfd;
775 fd_info_t *fip;
776
777 if ((nbytes < sizeof (prfd)) ||
778 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
779 Pdprintf("Pgrab_core: failed to read NT_FDINFO\n");
780 return (-1);
781 }
782
783 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
784 Pdprintf("Pgrab_core: failed to add NT_FDINFO\n");
785 return (-1);
786 }
787 if (fip->fd_info == NULL) {
788 if (proc_fdinfo_from_core(&prfd, &fip->fd_info) != 0) {
789 Pdprintf("Pgrab_core: failed to convert NT_FDINFO\n");
790 return (-1);
791 }
792 }
793
794 return (0);
795 }
796
797 static int
note_platform(struct ps_prochandle * P,size_t nbytes)798 note_platform(struct ps_prochandle *P, size_t nbytes)
799 {
800 core_info_t *core = P->data;
801 char *plat;
802
803 if (core->core_platform != NULL)
804 return (0); /* Already seen */
805
806 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
807 if (read(P->asfd, plat, nbytes) != nbytes) {
808 Pdprintf("Pgrab_core: failed to read NT_PLATFORM\n");
809 free(plat);
810 return (-1);
811 }
812 plat[nbytes - 1] = '\0';
813 core->core_platform = plat;
814 }
815
816 return (0);
817 }
818
819 static int
note_secflags(struct ps_prochandle * P,size_t nbytes)820 note_secflags(struct ps_prochandle *P, size_t nbytes)
821 {
822 core_info_t *core = P->data;
823 prsecflags_t *psf;
824
825 if (core->core_secflags != NULL)
826 return (0); /* Already seen */
827
828 if (sizeof (*psf) != nbytes) {
829 Pdprintf("Pgrab_core: NT_SECFLAGS changed size."
830 " Need to handle a version change?\n");
831 return (-1);
832 }
833
834 if (nbytes != 0 && ((psf = malloc(nbytes)) != NULL)) {
835 if (read(P->asfd, psf, nbytes) != nbytes) {
836 Pdprintf("Pgrab_core: failed to read NT_SECFLAGS\n");
837 free(psf);
838 return (-1);
839 }
840
841 core->core_secflags = psf;
842 }
843
844 return (0);
845 }
846
847 static int
note_utsname(struct ps_prochandle * P,size_t nbytes)848 note_utsname(struct ps_prochandle *P, size_t nbytes)
849 {
850 core_info_t *core = P->data;
851 size_t ubytes = sizeof (struct utsname);
852 struct utsname *utsp;
853
854 if (core->core_uts != NULL || nbytes < ubytes)
855 return (0); /* Already seen or bad size */
856
857 if ((utsp = malloc(ubytes)) == NULL)
858 return (-1);
859
860 if (read(P->asfd, utsp, ubytes) != ubytes) {
861 Pdprintf("Pgrab_core: failed to read NT_UTSNAME\n");
862 free(utsp);
863 return (-1);
864 }
865
866 if (_libproc_debug) {
867 Pdprintf("uts.sysname = \"%s\"\n", utsp->sysname);
868 Pdprintf("uts.nodename = \"%s\"\n", utsp->nodename);
869 Pdprintf("uts.release = \"%s\"\n", utsp->release);
870 Pdprintf("uts.version = \"%s\"\n", utsp->version);
871 Pdprintf("uts.machine = \"%s\"\n", utsp->machine);
872 }
873
874 core->core_uts = utsp;
875 return (0);
876 }
877
878 static int
note_content(struct ps_prochandle * P,size_t nbytes)879 note_content(struct ps_prochandle *P, size_t nbytes)
880 {
881 core_info_t *core = P->data;
882 core_content_t content;
883
884 if (sizeof (core->core_content) != nbytes)
885 return (-1);
886
887 if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
888 return (-1);
889
890 core->core_content = content;
891
892 Pdprintf("core content = %llx\n", content);
893
894 return (0);
895 }
896
897 static int
note_cred(struct ps_prochandle * P,size_t nbytes)898 note_cred(struct ps_prochandle *P, size_t nbytes)
899 {
900 core_info_t *core = P->data;
901 prcred_t *pcrp;
902 int ngroups;
903 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
904
905 /*
906 * We allow for prcred_t notes that are actually smaller than a
907 * prcred_t since the last member isn't essential if there are
908 * no group memberships. This allows for more flexibility when it
909 * comes to slightly malformed -- but still valid -- notes.
910 */
911 if (core->core_cred != NULL || nbytes < min_size)
912 return (0); /* Already seen or bad size */
913
914 ngroups = (nbytes - min_size) / sizeof (gid_t);
915 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
916
917 if ((pcrp = malloc(nbytes)) == NULL)
918 return (-1);
919
920 if (read(P->asfd, pcrp, nbytes) != nbytes) {
921 Pdprintf("Pgrab_core: failed to read NT_PRCRED\n");
922 free(pcrp);
923 return (-1);
924 }
925
926 if (pcrp->pr_ngroups > ngroups) {
927 Pdprintf(
928 "pr_ngroups = %d; resetting to %d based on note size\n",
929 pcrp->pr_ngroups, ngroups);
930 pcrp->pr_ngroups = ngroups;
931 }
932
933 core->core_cred = pcrp;
934 return (0);
935 }
936
937 #ifdef __x86
938 static int
note_ldt(struct ps_prochandle * P,size_t nbytes)939 note_ldt(struct ps_prochandle *P, size_t nbytes)
940 {
941 core_info_t *core = P->data;
942 struct ssd *pldt;
943 uint_t nldt;
944
945 if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
946 return (0); /* Already seen or bad size */
947
948 nldt = nbytes / sizeof (struct ssd);
949 nbytes = nldt * sizeof (struct ssd);
950
951 if ((pldt = malloc(nbytes)) == NULL)
952 return (-1);
953
954 if (read(P->asfd, pldt, nbytes) != nbytes) {
955 Pdprintf("Pgrab_core: failed to read NT_LDT\n");
956 free(pldt);
957 return (-1);
958 }
959
960 core->core_ldt = pldt;
961 core->core_nldt = nldt;
962 return (0);
963 }
964 #endif /* __i386 */
965
966 static int
note_priv(struct ps_prochandle * P,size_t nbytes)967 note_priv(struct ps_prochandle *P, size_t nbytes)
968 {
969 core_info_t *core = P->data;
970 prpriv_t *pprvp;
971
972 if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
973 return (0); /* Already seen or bad size */
974
975 if ((pprvp = malloc(nbytes)) == NULL)
976 return (-1);
977
978 if (read(P->asfd, pprvp, nbytes) != nbytes) {
979 Pdprintf("Pgrab_core: failed to read NT_PRPRIV\n");
980 free(pprvp);
981 return (-1);
982 }
983
984 core->core_priv = pprvp;
985 core->core_priv_size = nbytes;
986 return (0);
987 }
988
989 static int
note_priv_info(struct ps_prochandle * P,size_t nbytes)990 note_priv_info(struct ps_prochandle *P, size_t nbytes)
991 {
992 core_info_t *core = P->data;
993 extern void *__priv_parse_info();
994 priv_impl_info_t *ppii;
995
996 if (core->core_privinfo != NULL ||
997 nbytes < sizeof (priv_impl_info_t))
998 return (0); /* Already seen or bad size */
999
1000 if ((ppii = malloc(nbytes)) == NULL)
1001 return (-1);
1002
1003 if (read(P->asfd, ppii, nbytes) != nbytes ||
1004 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
1005 Pdprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
1006 free(ppii);
1007 return (-1);
1008 }
1009
1010 core->core_privinfo = __priv_parse_info(ppii);
1011 core->core_ppii = ppii;
1012 return (0);
1013 }
1014
1015 static int
note_zonename(struct ps_prochandle * P,size_t nbytes)1016 note_zonename(struct ps_prochandle *P, size_t nbytes)
1017 {
1018 core_info_t *core = P->data;
1019 char *zonename;
1020
1021 if (core->core_zonename != NULL)
1022 return (0); /* Already seen */
1023
1024 if (nbytes != 0) {
1025 if ((zonename = malloc(nbytes)) == NULL)
1026 return (-1);
1027 if (read(P->asfd, zonename, nbytes) != nbytes) {
1028 Pdprintf("Pgrab_core: failed to read NT_ZONENAME\n");
1029 free(zonename);
1030 return (-1);
1031 }
1032 zonename[nbytes - 1] = '\0';
1033 core->core_zonename = zonename;
1034 }
1035
1036 return (0);
1037 }
1038
1039 static int
note_auxv(struct ps_prochandle * P,size_t nbytes)1040 note_auxv(struct ps_prochandle *P, size_t nbytes)
1041 {
1042 size_t n, i;
1043
1044 #ifdef _LP64
1045 core_info_t *core = P->data;
1046
1047 if (core->core_dmodel == PR_MODEL_ILP32) {
1048 auxv32_t *a32;
1049
1050 n = nbytes / sizeof (auxv32_t);
1051 nbytes = n * sizeof (auxv32_t);
1052 a32 = alloca(nbytes);
1053
1054 if (read(P->asfd, a32, nbytes) != nbytes) {
1055 Pdprintf("Pgrab_core: failed to read NT_AUXV\n");
1056 return (-1);
1057 }
1058
1059 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
1060 return (-1);
1061
1062 for (i = 0; i < n; i++)
1063 auxv_32_to_n(&a32[i], &P->auxv[i]);
1064
1065 } else {
1066 #endif
1067 n = nbytes / sizeof (auxv_t);
1068 nbytes = n * sizeof (auxv_t);
1069
1070 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
1071 return (-1);
1072
1073 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
1074 free(P->auxv);
1075 P->auxv = NULL;
1076 return (-1);
1077 }
1078 #ifdef _LP64
1079 }
1080 #endif
1081
1082 if (_libproc_debug) {
1083 for (i = 0; i < n; i++) {
1084 Pdprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
1085 P->auxv[i].a_type, P->auxv[i].a_un.a_val);
1086 }
1087 }
1088
1089 /*
1090 * Defensive coding for loops which depend upon the auxv array being
1091 * terminated by an AT_NULL element; in each case, we've allocated
1092 * P->auxv to have an additional element which we force to be AT_NULL.
1093 */
1094 P->auxv[n].a_type = AT_NULL;
1095 P->auxv[n].a_un.a_val = 0L;
1096 P->nauxv = (int)n;
1097
1098 return (0);
1099 }
1100
1101 /*
1102 * The xregs are not a fixed size on all architectures (notably x86) and in
1103 * general the prxregset_t has become opaque to deal with this. This means that
1104 * validating the note itself can be a little more challenging. Especially as
1105 * this can change across time. In this case we require that our consumers
1106 * perform this validation.
1107 */
1108 static int
note_xreg(struct ps_prochandle * P,size_t nbytes)1109 note_xreg(struct ps_prochandle *P, size_t nbytes)
1110 {
1111 core_info_t *core = P->data;
1112 lwp_info_t *lwp = core->core_lwp;
1113 prxregset_t *xregs;
1114 ssize_t sret;
1115
1116 if (lwp == NULL || lwp->lwp_xregs != NULL)
1117 return (0); /* No lwp yet, already seen, or bad size */
1118
1119 if ((xregs = malloc(nbytes)) == NULL)
1120 return (-1);
1121
1122 sret = read(P->asfd, xregs, nbytes);
1123 if (sret < 0 || (size_t)sret != nbytes) {
1124 Pdprintf("Pgrab_core: failed to read NT_PRXREG\n");
1125 free(xregs);
1126 return (-1);
1127 }
1128
1129 lwp->lwp_xregs = xregs;
1130 lwp->lwp_xregsize = nbytes;
1131 return (0);
1132 }
1133
1134 #ifdef __sparc
1135 static int
note_gwindows(struct ps_prochandle * P,size_t nbytes)1136 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1137 {
1138 core_info_t *core = P->data;
1139 lwp_info_t *lwp = core->core_lwp;
1140
1141 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1142 return (0); /* No lwp yet or already seen or no data */
1143
1144 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1145 return (-1);
1146
1147 /*
1148 * Since the amount of gwindows data varies with how many windows were
1149 * actually saved, we just read up to the minimum of the note size
1150 * and the size of the gwindows_t type. It doesn't matter if the read
1151 * fails since we have to zero out gwindows first anyway.
1152 */
1153 #ifdef _LP64
1154 if (core->core_dmodel == PR_MODEL_ILP32) {
1155 gwindows32_t g32;
1156
1157 (void) memset(&g32, 0, sizeof (g32));
1158 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1159 gwindows_32_to_n(&g32, lwp->lwp_gwins);
1160
1161 } else {
1162 #endif
1163 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1164 (void) read(P->asfd, lwp->lwp_gwins,
1165 MIN(nbytes, sizeof (gwindows_t)));
1166 #ifdef _LP64
1167 }
1168 #endif
1169 return (0);
1170 }
1171
1172 #ifdef __sparcv9
1173 static int
note_asrs(struct ps_prochandle * P,size_t nbytes)1174 note_asrs(struct ps_prochandle *P, size_t nbytes)
1175 {
1176 core_info_t *core = P->data;
1177 lwp_info_t *lwp = core->core_lwp;
1178 int64_t *asrs;
1179
1180 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1181 return (0); /* No lwp yet, already seen, or bad size */
1182
1183 if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1184 return (-1);
1185
1186 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1187 Pdprintf("Pgrab_core: failed to read NT_ASRS\n");
1188 free(asrs);
1189 return (-1);
1190 }
1191
1192 lwp->lwp_asrs = asrs;
1193 return (0);
1194 }
1195 #endif /* __sparcv9 */
1196 #endif /* __sparc */
1197
1198 static int
note_spymaster(struct ps_prochandle * P,size_t nbytes)1199 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1200 {
1201 #ifdef _LP64
1202 core_info_t *core = P->data;
1203
1204 if (core->core_dmodel == PR_MODEL_ILP32) {
1205 psinfo32_t ps32;
1206
1207 if (nbytes < sizeof (psinfo32_t) ||
1208 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1209 goto err;
1210
1211 psinfo_32_to_n(&ps32, &P->spymaster);
1212 } else
1213 #endif
1214 if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1215 &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1216 goto err;
1217
1218 Pdprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1219 Pdprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1220 Pdprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1221
1222 return (0);
1223
1224 err:
1225 Pdprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1226 return (-1);
1227 }
1228
1229 static int
note_upanic(struct ps_prochandle * P,size_t nbytes)1230 note_upanic(struct ps_prochandle *P, size_t nbytes)
1231 {
1232 core_info_t *core = P->data;
1233 prupanic_t *pru;
1234
1235 if (core->core_upanic != NULL)
1236 return (0);
1237
1238 if (sizeof (*pru) != nbytes) {
1239 Pdprintf("Pgrab_core: NT_UPANIC changed size."
1240 " Need to handle a version change?\n");
1241 return (-1);
1242 }
1243
1244 if (nbytes != 0 && ((pru = malloc(nbytes)) != NULL)) {
1245 if (read(P->asfd, pru, nbytes) != nbytes) {
1246 Pdprintf("Pgrab_core: failed to read NT_UPANIC\n");
1247 free(pru);
1248 return (-1);
1249 }
1250
1251 core->core_upanic = pru;
1252 }
1253
1254 return (0);
1255 }
1256
1257 static int
note_cwd(struct ps_prochandle * P,size_t nbytes)1258 note_cwd(struct ps_prochandle *P, size_t nbytes)
1259 {
1260 core_info_t *core = P->data;
1261 prcwd_t *cwd;
1262
1263 if (core->core_cwd != NULL)
1264 return (0);
1265
1266 if (sizeof (*cwd) != nbytes) {
1267 Pdprintf("Pgrab_core: NT_CWD changed size."
1268 " Need to handle a version change?\n");
1269 return (-1);
1270 }
1271
1272 if (nbytes != 0 && ((cwd = malloc(nbytes)) != NULL)) {
1273 if (read(P->asfd, cwd, nbytes) != nbytes) {
1274 Pdprintf("Pgrab_core: failed to read NT_CWD\n");
1275 free(cwd);
1276 return (-1);
1277 }
1278
1279 core->core_cwd = cwd;
1280 }
1281
1282 return (0);
1283 }
1284
1285 static int
note_notsup(struct ps_prochandle * P,size_t nbytes)1286 note_notsup(struct ps_prochandle *P, size_t nbytes)
1287 {
1288 Pdprintf("skipping unsupported note type of size %ld bytes\n",
1289 (ulong_t)nbytes);
1290 return (0);
1291 }
1292
1293 #if NT_NUM != NT_CWD
1294 #error "NT_NUM has grown. Update nhdlrs array"
1295 #endif
1296
1297 /*
1298 * Populate a table of function pointers indexed by Note type with our
1299 * functions to process each type of core file note:
1300 */
1301 static int (*nhdlrs[NT_NUM + 1])(struct ps_prochandle *, size_t) = {
1302 #ifdef __x86
1303 [NT_PRSTATUS] = note_linux_prstatus,
1304 #endif
1305 [NT_PRFPREG] = note_notsup,
1306 #ifdef __x86
1307 [NT_PRPSINFO] = note_linux_psinfo,
1308 #endif
1309 [NT_PRXREG] = note_xreg,
1310 [NT_PLATFORM] = note_platform,
1311 [NT_AUXV] = note_auxv,
1312 #ifdef __sparc
1313 [NT_GWINDOWS] = note_gwindows,
1314 #ifdef __sparcv9
1315 [NT_ASRS] = note_asrs,
1316 #endif
1317 #endif
1318 #ifdef __x86
1319 [NT_LDT] = note_ldt,
1320 #endif
1321 [NT_PSTATUS] = note_pstatus,
1322 [NT_PSINFO] = note_psinfo,
1323 [NT_PRCRED] = note_cred,
1324 [NT_UTSNAME] = note_utsname,
1325 [NT_LWPSTATUS] = note_lwpstatus,
1326 [NT_LWPSINFO] = note_lwpsinfo,
1327 [NT_PRPRIV] = note_priv,
1328 [NT_PRPRIVINFO] = note_priv_info,
1329 [NT_CONTENT] = note_content,
1330 [NT_ZONENAME] = note_zonename,
1331 [NT_FDINFO] = note_fdinfo,
1332 [NT_SPYMASTER] = note_spymaster,
1333 [NT_SECFLAGS] = note_secflags,
1334 [NT_LWPNAME] = note_lwpname,
1335 [NT_UPANIC] = note_upanic,
1336 [NT_CWD] = note_cwd
1337 };
1338
1339 static void
core_report_mapping(struct ps_prochandle * P,GElf_Phdr * php)1340 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1341 {
1342 prkillinfo_t killinfo;
1343 siginfo_t *si = &killinfo.prk_info;
1344 char signame[SIG2STR_MAX], sig[64], info[64];
1345 void *addr = (void *)(uintptr_t)php->p_vaddr;
1346
1347 const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1348 const char *incfmt = "core file incomplete due to %s%s\n";
1349 const char *msgfmt = "mappings at and above %p are missing\n";
1350
1351 if (!(php->p_flags & PF_SUNW_KILLED)) {
1352 int err = 0;
1353
1354 (void) pread64(P->asfd, &err,
1355 sizeof (err), (off64_t)php->p_offset);
1356
1357 Perror_printf(P, errfmt, addr, strerror(err));
1358 Pdprintf(errfmt, addr, strerror(err));
1359 return;
1360 }
1361
1362 if (!(php->p_flags & PF_SUNW_SIGINFO))
1363 return;
1364
1365 (void) memset(&killinfo, 0, sizeof (killinfo));
1366
1367 (void) pread64(P->asfd, &killinfo,
1368 sizeof (killinfo), (off64_t)php->p_offset);
1369
1370 /*
1371 * While there is (or at least should be) only one segment that has
1372 * PF_SUNW_SIGINFO set, the signal information there is globally
1373 * useful (even if only to those debugging libproc consumers); we hang
1374 * the signal information gleaned here off of the ps_prochandle.
1375 */
1376 P->map_missing = php->p_vaddr;
1377 P->killinfo = killinfo.prk_info;
1378
1379 if (sig2str(si->si_signo, signame) == -1) {
1380 (void) snprintf(sig, sizeof (sig),
1381 "<Unknown signal: 0x%x>, ", si->si_signo);
1382 } else {
1383 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1384 }
1385
1386 if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1387 (void) snprintf(info, sizeof (info),
1388 "pid=%d uid=%d zone=%d ctid=%d",
1389 si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1390 } else {
1391 (void) snprintf(info, sizeof (info),
1392 "code=%d", si->si_code);
1393 }
1394
1395 Perror_printf(P, incfmt, sig, info);
1396 Perror_printf(P, msgfmt, addr);
1397
1398 Pdprintf(incfmt, sig, info);
1399 Pdprintf(msgfmt, addr);
1400 }
1401
1402 /*
1403 * Add information on the address space mapping described by the given
1404 * PT_LOAD program header. We fill in more information on the mapping later.
1405 */
1406 static int
core_add_mapping(struct ps_prochandle * P,GElf_Phdr * php)1407 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1408 {
1409 core_info_t *core = P->data;
1410 prmap_t pmap;
1411
1412 Pdprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1413 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1414 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1415
1416 pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1417 pmap.pr_size = php->p_memsz;
1418
1419 /*
1420 * If Pgcore() or elfcore() fail to write a mapping, they will set
1421 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1422 */
1423 if (php->p_flags & PF_SUNW_FAILURE) {
1424 core_report_mapping(P, php);
1425 } else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1426 Perror_printf(P, "core file may be corrupt -- data for mapping "
1427 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1428 Pdprintf("core file may be corrupt -- data for mapping "
1429 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1430 }
1431
1432 /*
1433 * The mapping name and offset will hopefully be filled in
1434 * by the librtld_db agent. Unfortunately, if it isn't a
1435 * shared library mapping, this information is gone forever.
1436 */
1437 pmap.pr_mapname[0] = '\0';
1438 pmap.pr_offset = 0;
1439
1440 pmap.pr_mflags = 0;
1441 if (php->p_flags & PF_R)
1442 pmap.pr_mflags |= MA_READ;
1443 if (php->p_flags & PF_W)
1444 pmap.pr_mflags |= MA_WRITE;
1445 if (php->p_flags & PF_X)
1446 pmap.pr_mflags |= MA_EXEC;
1447
1448 if (php->p_filesz == 0)
1449 pmap.pr_mflags |= MA_RESERVED1;
1450
1451 /*
1452 * At the time of adding this mapping, we just zero the pagesize.
1453 * Once we've processed more of the core file, we'll have the
1454 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1455 */
1456 pmap.pr_pagesize = 0;
1457
1458 /*
1459 * Unfortunately whether or not the mapping was a System V
1460 * shared memory segment is lost. We use -1 to mark it as not shm.
1461 */
1462 pmap.pr_shmid = -1;
1463
1464 return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1465 }
1466
1467 /*
1468 * Given a virtual address, name the mapping at that address using the
1469 * specified name, and return the map_info_t pointer.
1470 */
1471 static map_info_t *
core_name_mapping(struct ps_prochandle * P,uintptr_t addr,const char * name)1472 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1473 {
1474 map_info_t *mp = Paddr2mptr(P, addr);
1475
1476 if (mp != NULL) {
1477 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1478 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1479 }
1480
1481 return (mp);
1482 }
1483
1484 /*
1485 * libproc uses libelf for all of its symbol table manipulation. This function
1486 * takes a symbol table and string table from a core file and places them
1487 * in a memory backed elf file.
1488 */
1489 static void
fake_up_symtab(struct ps_prochandle * P,const elf_file_header_t * ehdr,GElf_Shdr * symtab,GElf_Shdr * strtab)1490 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1491 GElf_Shdr *symtab, GElf_Shdr *strtab)
1492 {
1493 size_t size;
1494 off64_t off, base;
1495 map_info_t *mp;
1496 file_info_t *fp;
1497 Elf_Scn *scn;
1498 Elf_Data *data;
1499
1500 if (symtab->sh_addr == 0 ||
1501 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1502 (fp = mp->map_file) == NULL) {
1503 Pdprintf("fake_up_symtab: invalid section\n");
1504 return;
1505 }
1506
1507 if (fp->file_symtab.sym_data_pri != NULL) {
1508 Pdprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1509 (long)symtab->sh_addr);
1510 return;
1511 }
1512
1513 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1514 struct {
1515 Elf32_Ehdr ehdr;
1516 Elf32_Shdr shdr[3];
1517 char data[1];
1518 } *b;
1519
1520 base = sizeof (b->ehdr) + sizeof (b->shdr);
1521 size = base + symtab->sh_size + strtab->sh_size;
1522
1523 if ((b = calloc(1, size)) == NULL)
1524 return;
1525
1526 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1527 sizeof (ehdr->e_ident));
1528 b->ehdr.e_type = ehdr->e_type;
1529 b->ehdr.e_machine = ehdr->e_machine;
1530 b->ehdr.e_version = ehdr->e_version;
1531 b->ehdr.e_flags = ehdr->e_flags;
1532 b->ehdr.e_ehsize = sizeof (b->ehdr);
1533 b->ehdr.e_shoff = sizeof (b->ehdr);
1534 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1535 b->ehdr.e_shnum = 3;
1536 off = 0;
1537
1538 b->shdr[1].sh_size = symtab->sh_size;
1539 b->shdr[1].sh_type = SHT_SYMTAB;
1540 b->shdr[1].sh_offset = off + base;
1541 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1542 b->shdr[1].sh_link = 2;
1543 b->shdr[1].sh_info = symtab->sh_info;
1544 b->shdr[1].sh_addralign = symtab->sh_addralign;
1545
1546 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1547 symtab->sh_offset) != b->shdr[1].sh_size) {
1548 Pdprintf("fake_up_symtab: pread of symtab[1] failed\n");
1549 free(b);
1550 return;
1551 }
1552
1553 off += b->shdr[1].sh_size;
1554
1555 b->shdr[2].sh_flags = SHF_STRINGS;
1556 b->shdr[2].sh_size = strtab->sh_size;
1557 b->shdr[2].sh_type = SHT_STRTAB;
1558 b->shdr[2].sh_offset = off + base;
1559 b->shdr[2].sh_info = strtab->sh_info;
1560 b->shdr[2].sh_addralign = 1;
1561
1562 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1563 strtab->sh_offset) != b->shdr[2].sh_size) {
1564 Pdprintf("fake_up_symtab: pread of symtab[2] failed\n");
1565 free(b);
1566 return;
1567 }
1568
1569 off += b->shdr[2].sh_size;
1570
1571 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1572 if (fp->file_symtab.sym_elf == NULL) {
1573 free(b);
1574 return;
1575 }
1576
1577 fp->file_symtab.sym_elfmem = b;
1578 #ifdef _LP64
1579 } else {
1580 struct {
1581 Elf64_Ehdr ehdr;
1582 Elf64_Shdr shdr[3];
1583 char data[1];
1584 } *b;
1585
1586 base = sizeof (b->ehdr) + sizeof (b->shdr);
1587 size = base + symtab->sh_size + strtab->sh_size;
1588
1589 if ((b = calloc(1, size)) == NULL)
1590 return;
1591
1592 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1593 sizeof (ehdr->e_ident));
1594 b->ehdr.e_type = ehdr->e_type;
1595 b->ehdr.e_machine = ehdr->e_machine;
1596 b->ehdr.e_version = ehdr->e_version;
1597 b->ehdr.e_flags = ehdr->e_flags;
1598 b->ehdr.e_ehsize = sizeof (b->ehdr);
1599 b->ehdr.e_shoff = sizeof (b->ehdr);
1600 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1601 b->ehdr.e_shnum = 3;
1602 off = 0;
1603
1604 b->shdr[1].sh_size = symtab->sh_size;
1605 b->shdr[1].sh_type = SHT_SYMTAB;
1606 b->shdr[1].sh_offset = off + base;
1607 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1608 b->shdr[1].sh_link = 2;
1609 b->shdr[1].sh_info = symtab->sh_info;
1610 b->shdr[1].sh_addralign = symtab->sh_addralign;
1611
1612 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1613 symtab->sh_offset) != b->shdr[1].sh_size) {
1614 free(b);
1615 return;
1616 }
1617
1618 off += b->shdr[1].sh_size;
1619
1620 b->shdr[2].sh_flags = SHF_STRINGS;
1621 b->shdr[2].sh_size = strtab->sh_size;
1622 b->shdr[2].sh_type = SHT_STRTAB;
1623 b->shdr[2].sh_offset = off + base;
1624 b->shdr[2].sh_info = strtab->sh_info;
1625 b->shdr[2].sh_addralign = 1;
1626
1627 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1628 strtab->sh_offset) != b->shdr[2].sh_size) {
1629 free(b);
1630 return;
1631 }
1632
1633 off += b->shdr[2].sh_size;
1634
1635 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1636 if (fp->file_symtab.sym_elf == NULL) {
1637 free(b);
1638 return;
1639 }
1640
1641 fp->file_symtab.sym_elfmem = b;
1642 #endif
1643 }
1644
1645 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1646 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1647 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1648 (data = elf_getdata(scn, NULL)) == NULL) {
1649 Pdprintf("fake_up_symtab: failed to get section data at %p\n",
1650 (void *)scn);
1651 goto err;
1652 }
1653
1654 fp->file_symtab.sym_strs = data->d_buf;
1655 fp->file_symtab.sym_strsz = data->d_size;
1656 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1657 fp->file_symtab.sym_hdr_pri = *symtab;
1658 fp->file_symtab.sym_strhdr = *strtab;
1659
1660 optimize_symtab(&fp->file_symtab);
1661
1662 return;
1663 err:
1664 (void) elf_end(fp->file_symtab.sym_elf);
1665 free(fp->file_symtab.sym_elfmem);
1666 fp->file_symtab.sym_elf = NULL;
1667 fp->file_symtab.sym_elfmem = NULL;
1668 }
1669
1670 static void
core_phdr_to_gelf(const Elf32_Phdr * src,GElf_Phdr * dst)1671 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1672 {
1673 dst->p_type = src->p_type;
1674 dst->p_flags = src->p_flags;
1675 dst->p_offset = (Elf64_Off)src->p_offset;
1676 dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1677 dst->p_paddr = (Elf64_Addr)src->p_paddr;
1678 dst->p_filesz = (Elf64_Xword)src->p_filesz;
1679 dst->p_memsz = (Elf64_Xword)src->p_memsz;
1680 dst->p_align = (Elf64_Xword)src->p_align;
1681 }
1682
1683 static void
core_shdr_to_gelf(const Elf32_Shdr * src,GElf_Shdr * dst)1684 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1685 {
1686 dst->sh_name = src->sh_name;
1687 dst->sh_type = src->sh_type;
1688 dst->sh_flags = (Elf64_Xword)src->sh_flags;
1689 dst->sh_addr = (Elf64_Addr)src->sh_addr;
1690 dst->sh_offset = (Elf64_Off)src->sh_offset;
1691 dst->sh_size = (Elf64_Xword)src->sh_size;
1692 dst->sh_link = src->sh_link;
1693 dst->sh_info = src->sh_info;
1694 dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1695 dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1696 }
1697
1698 /*
1699 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1700 */
1701 static int
core_elf_fdopen(elf_file_t * efp,GElf_Half type,int * perr)1702 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1703 {
1704 #ifdef _BIG_ENDIAN
1705 uchar_t order = ELFDATA2MSB;
1706 #else
1707 uchar_t order = ELFDATA2LSB;
1708 #endif
1709 Elf32_Ehdr e32;
1710 int is_noelf = -1;
1711 int isa_err = 0;
1712
1713 /*
1714 * Because 32-bit libelf cannot deal with large files, we need to read,
1715 * check, and convert the file header manually in case type == ET_CORE.
1716 */
1717 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1718 if (perr != NULL)
1719 *perr = G_FORMAT;
1720 goto err;
1721 }
1722 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1723 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1724 e32.e_version != EV_CURRENT) {
1725 if (perr != NULL) {
1726 if (is_noelf == 0 && isa_err) {
1727 *perr = G_ISAINVAL;
1728 } else {
1729 *perr = G_FORMAT;
1730 }
1731 }
1732 goto err;
1733 }
1734
1735 /*
1736 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the
1737 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1738 * and convert it to a elf_file_header_t. Otherwise, the file is
1739 * 32-bit, so convert e32 to a elf_file_header_t.
1740 */
1741 if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1742 #ifdef _LP64
1743 Elf64_Ehdr e64;
1744
1745 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1746 if (perr != NULL)
1747 *perr = G_FORMAT;
1748 goto err;
1749 }
1750
1751 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1752 efp->e_hdr.e_type = e64.e_type;
1753 efp->e_hdr.e_machine = e64.e_machine;
1754 efp->e_hdr.e_version = e64.e_version;
1755 efp->e_hdr.e_entry = e64.e_entry;
1756 efp->e_hdr.e_phoff = e64.e_phoff;
1757 efp->e_hdr.e_shoff = e64.e_shoff;
1758 efp->e_hdr.e_flags = e64.e_flags;
1759 efp->e_hdr.e_ehsize = e64.e_ehsize;
1760 efp->e_hdr.e_phentsize = e64.e_phentsize;
1761 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1762 efp->e_hdr.e_shentsize = e64.e_shentsize;
1763 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1764 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1765 #else /* _LP64 */
1766 if (perr != NULL)
1767 *perr = G_LP64;
1768 goto err;
1769 #endif /* _LP64 */
1770 } else {
1771 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1772 efp->e_hdr.e_type = e32.e_type;
1773 efp->e_hdr.e_machine = e32.e_machine;
1774 efp->e_hdr.e_version = e32.e_version;
1775 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1776 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1777 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1778 efp->e_hdr.e_flags = e32.e_flags;
1779 efp->e_hdr.e_ehsize = e32.e_ehsize;
1780 efp->e_hdr.e_phentsize = e32.e_phentsize;
1781 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1782 efp->e_hdr.e_shentsize = e32.e_shentsize;
1783 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1784 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1785 }
1786
1787 /*
1788 * If the number of section headers or program headers or the section
1789 * header string table index would overflow their respective fields
1790 * in the ELF header, they're stored in the section header at index
1791 * zero. To simplify use elsewhere, we look for those sentinel values
1792 * here.
1793 */
1794 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1795 efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1796 efp->e_hdr.e_phnum == PN_XNUM) {
1797 GElf_Shdr shdr;
1798
1799 Pdprintf("extended ELF header\n");
1800
1801 if (efp->e_hdr.e_shoff == 0) {
1802 if (perr != NULL)
1803 *perr = G_FORMAT;
1804 goto err;
1805 }
1806
1807 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1808 Elf32_Shdr shdr32;
1809
1810 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1811 efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1812 if (perr != NULL)
1813 *perr = G_FORMAT;
1814 goto err;
1815 }
1816
1817 core_shdr_to_gelf(&shdr32, &shdr);
1818 } else {
1819 if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1820 efp->e_hdr.e_shoff) != sizeof (shdr)) {
1821 if (perr != NULL)
1822 *perr = G_FORMAT;
1823 goto err;
1824 }
1825 }
1826
1827 if (efp->e_hdr.e_shnum == 0) {
1828 efp->e_hdr.e_shnum = shdr.sh_size;
1829 Pdprintf("section header count %lu\n",
1830 (ulong_t)shdr.sh_size);
1831 }
1832
1833 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1834 efp->e_hdr.e_shstrndx = shdr.sh_link;
1835 Pdprintf("section string index %u\n", shdr.sh_link);
1836 }
1837
1838 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1839 efp->e_hdr.e_phnum = shdr.sh_info;
1840 Pdprintf("program header count %u\n", shdr.sh_info);
1841 }
1842
1843 } else if (efp->e_hdr.e_phoff != 0) {
1844 GElf_Phdr phdr;
1845 uint64_t phnum;
1846
1847 /*
1848 * It's possible this core file came from a system that
1849 * accidentally truncated the e_phnum field without correctly
1850 * using the extended format in the section header at index
1851 * zero. We try to detect and correct that specific type of
1852 * corruption by using the knowledge that the core dump
1853 * routines usually place the data referenced by the first
1854 * program header immediately after the last header element.
1855 */
1856 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1857 Elf32_Phdr phdr32;
1858
1859 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1860 efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1861 if (perr != NULL)
1862 *perr = G_FORMAT;
1863 goto err;
1864 }
1865
1866 core_phdr_to_gelf(&phdr32, &phdr);
1867 } else {
1868 if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1869 efp->e_hdr.e_phoff) != sizeof (phdr)) {
1870 if (perr != NULL)
1871 *perr = G_FORMAT;
1872 goto err;
1873 }
1874 }
1875
1876 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1877 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1878 phnum /= efp->e_hdr.e_phentsize;
1879
1880 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1881 Pdprintf("suspicious program header count %u %u\n",
1882 (uint_t)phnum, efp->e_hdr.e_phnum);
1883
1884 /*
1885 * If the new program header count we computed doesn't
1886 * jive with count in the ELF header, we'll use the
1887 * data that's there and hope for the best.
1888 *
1889 * If it does, it's also possible that the section
1890 * header offset is incorrect; we'll check that and
1891 * possibly try to fix it.
1892 */
1893 if (phnum <= INT_MAX &&
1894 (uint16_t)phnum == efp->e_hdr.e_phnum) {
1895
1896 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1897 efp->e_hdr.e_phentsize *
1898 (uint_t)efp->e_hdr.e_phnum) {
1899 efp->e_hdr.e_shoff =
1900 efp->e_hdr.e_phoff +
1901 efp->e_hdr.e_phentsize * phnum;
1902 }
1903
1904 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1905 Pdprintf("using new program header count\n");
1906 } else {
1907 Pdprintf("inconsistent program header count\n");
1908 }
1909 }
1910 }
1911
1912 /*
1913 * The libelf implementation was never ported to be large-file aware.
1914 * This is typically not a problem for your average executable or
1915 * shared library, but a large 32-bit core file can exceed 2GB in size.
1916 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1917 * in Pfgrab_core() below will do its own i/o and struct conversion.
1918 */
1919
1920 if (type == ET_CORE) {
1921 efp->e_elf = NULL;
1922 return (0);
1923 }
1924
1925 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1926 if (perr != NULL)
1927 *perr = G_ELF;
1928 goto err;
1929 }
1930
1931 return (0);
1932
1933 err:
1934 efp->e_elf = NULL;
1935 return (-1);
1936 }
1937
1938 /*
1939 * Open the specified file and then do a core_elf_fdopen on it.
1940 */
1941 static int
core_elf_open(elf_file_t * efp,const char * path,GElf_Half type,int * perr)1942 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1943 {
1944 (void) memset(efp, 0, sizeof (elf_file_t));
1945
1946 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1947 if (core_elf_fdopen(efp, type, perr) == 0)
1948 return (0);
1949
1950 (void) close(efp->e_fd);
1951 efp->e_fd = -1;
1952 }
1953
1954 return (-1);
1955 }
1956
1957 /*
1958 * Close the ELF handle and file descriptor.
1959 */
1960 static void
core_elf_close(elf_file_t * efp)1961 core_elf_close(elf_file_t *efp)
1962 {
1963 if (efp->e_elf != NULL) {
1964 (void) elf_end(efp->e_elf);
1965 efp->e_elf = NULL;
1966 }
1967
1968 if (efp->e_fd != -1) {
1969 (void) close(efp->e_fd);
1970 efp->e_fd = -1;
1971 }
1972 }
1973
1974 /*
1975 * Given an ELF file for a statically linked executable, locate the likely
1976 * primary text section and fill in rl_base with its virtual address.
1977 */
1978 static map_info_t *
core_find_text(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)1979 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1980 {
1981 GElf_Phdr phdr;
1982 uint_t i;
1983 size_t nphdrs;
1984
1985 if (elf_getphdrnum(elf, &nphdrs) == -1)
1986 return (NULL);
1987
1988 for (i = 0; i < nphdrs; i++) {
1989 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1990 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1991 rlp->rl_base = phdr.p_vaddr;
1992 return (Paddr2mptr(P, rlp->rl_base));
1993 }
1994 }
1995
1996 return (NULL);
1997 }
1998
1999 /*
2000 * Given an ELF file and the librtld_db structure corresponding to its primary
2001 * text mapping, deduce where its data segment was loaded and fill in
2002 * rl_data_base and prmap_t.pr_offset accordingly.
2003 */
2004 static map_info_t *
core_find_data(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)2005 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
2006 {
2007 GElf_Ehdr ehdr;
2008 GElf_Phdr phdr;
2009 map_info_t *mp;
2010 uint_t i, pagemask;
2011 size_t nphdrs;
2012
2013 rlp->rl_data_base = (uintptr_t)NULL;
2014
2015 /*
2016 * Find the first loadable, writeable Phdr and compute rl_data_base
2017 * as the virtual address at which is was loaded.
2018 */
2019 if (gelf_getehdr(elf, &ehdr) == NULL ||
2020 elf_getphdrnum(elf, &nphdrs) == -1)
2021 return (NULL);
2022
2023 for (i = 0; i < nphdrs; i++) {
2024 if (gelf_getphdr(elf, i, &phdr) != NULL &&
2025 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
2026 rlp->rl_data_base = phdr.p_vaddr;
2027 if (ehdr.e_type == ET_DYN)
2028 rlp->rl_data_base += rlp->rl_base;
2029 break;
2030 }
2031 }
2032
2033 /*
2034 * If we didn't find an appropriate phdr or if the address we
2035 * computed has no mapping, return NULL.
2036 */
2037 if (rlp->rl_data_base == (uintptr_t)NULL ||
2038 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
2039 return (NULL);
2040
2041 /*
2042 * It wouldn't be procfs-related code if we didn't make use of
2043 * unclean knowledge of segvn, even in userland ... the prmap_t's
2044 * pr_offset field will be the segvn offset from mmap(2)ing the
2045 * data section, which will be the file offset & PAGEMASK.
2046 */
2047 pagemask = ~(mp->map_pmap.pr_pagesize - 1);
2048 mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
2049
2050 return (mp);
2051 }
2052
2053 /*
2054 * Librtld_db agent callback for iterating over load object mappings.
2055 * For each load object, we allocate a new file_info_t, perform naming,
2056 * and attempt to construct a symbol table for the load object.
2057 */
2058 static int
core_iter_mapping(const rd_loadobj_t * rlp,struct ps_prochandle * P)2059 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
2060 {
2061 core_info_t *core = P->data;
2062 char lname[PATH_MAX], buf[PATH_MAX];
2063 file_info_t *fp;
2064 map_info_t *mp;
2065
2066 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
2067 Pdprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
2068 return (1); /* Keep going; forget this if we can't get a name */
2069 }
2070
2071 Pdprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
2072 lname, (void *)rlp->rl_base);
2073
2074 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
2075 Pdprintf("no mapping for %p\n", (void *)rlp->rl_base);
2076 return (1); /* No mapping; advance to next mapping */
2077 }
2078
2079 /*
2080 * Create a new file_info_t for this mapping, and therefore for
2081 * this load object.
2082 *
2083 * If there's an ELF header at the beginning of this mapping,
2084 * file_info_new() will try to use its section headers to
2085 * identify any other mappings that belong to this load object.
2086 */
2087 if ((fp = mp->map_file) == NULL &&
2088 (fp = file_info_new(P, mp)) == NULL) {
2089 core->core_errno = errno;
2090 Pdprintf("failed to malloc mapping data\n");
2091 return (0); /* Abort */
2092 }
2093 fp->file_map = mp;
2094
2095 /* Create a local copy of the load object representation */
2096 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
2097 core->core_errno = errno;
2098 Pdprintf("failed to malloc mapping data\n");
2099 return (0); /* Abort */
2100 }
2101 *fp->file_lo = *rlp;
2102
2103 if (lname[0] != '\0') {
2104 /*
2105 * Naming dance part 1: if we got a name from librtld_db, then
2106 * copy this name to the prmap_t if it is unnamed. If the
2107 * file_info_t is unnamed, name it after the lname.
2108 */
2109 if (mp->map_pmap.pr_mapname[0] == '\0') {
2110 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
2111 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2112 }
2113
2114 if (fp->file_lname == NULL)
2115 fp->file_lname = strdup(lname);
2116
2117 } else if (fp->file_lname == NULL &&
2118 mp->map_pmap.pr_mapname[0] != '\0') {
2119 /*
2120 * Naming dance part 2: if the mapping is named and the
2121 * file_info_t is not, name the file after the mapping.
2122 */
2123 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
2124 }
2125
2126 if ((fp->file_rname == NULL) &&
2127 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
2128 fp->file_rname = strdup(buf);
2129
2130 if (fp->file_lname != NULL)
2131 fp->file_lbase = basename(fp->file_lname);
2132 if (fp->file_rname != NULL)
2133 fp->file_rbase = basename(fp->file_rname);
2134
2135 /* Associate the file and the mapping. */
2136 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
2137 fp->file_pname[PRMAPSZ - 1] = '\0';
2138
2139 /*
2140 * If no section headers were available then we'll have to
2141 * identify this load object's other mappings with what we've
2142 * got: the start and end of the object's corresponding
2143 * address space.
2144 */
2145 if (fp->file_saddrs == NULL) {
2146 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
2147 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
2148
2149 if (mp->map_file == NULL) {
2150 Pdprintf("core_iter_mapping %s: associating "
2151 "segment at %p\n",
2152 fp->file_pname,
2153 (void *)mp->map_pmap.pr_vaddr);
2154 mp->map_file = fp;
2155 fp->file_ref++;
2156 } else {
2157 Pdprintf("core_iter_mapping %s: segment at "
2158 "%p already associated with %s\n",
2159 fp->file_pname,
2160 (void *)mp->map_pmap.pr_vaddr,
2161 (mp == fp->file_map ? "this file" :
2162 mp->map_file->file_pname));
2163 }
2164 }
2165 }
2166
2167 /* Ensure that all this file's mappings are named. */
2168 for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2169 mp->map_file == fp; mp++) {
2170 if (mp->map_pmap.pr_mapname[0] == '\0' &&
2171 !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2172 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2173 PRMAPSZ);
2174 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2175 }
2176 }
2177
2178 /* Attempt to build a symbol table for this file. */
2179 Pbuild_file_symtab(P, fp);
2180 if (fp->file_elf == NULL)
2181 Pdprintf("core_iter_mapping: no symtab for %s\n",
2182 fp->file_pname);
2183
2184 /* Locate the start of a data segment associated with this file. */
2185 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2186 Pdprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2187 fp->file_pname, (void *)fp->file_lo->rl_data_base,
2188 mp->map_pmap.pr_offset);
2189 } else {
2190 Pdprintf("core_iter_mapping: no data found for %s\n",
2191 fp->file_pname);
2192 }
2193
2194 return (1); /* Advance to next mapping */
2195 }
2196
2197 /*
2198 * Callback function for Pfindexec(). In order to confirm a given pathname,
2199 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2200 */
2201 static int
core_exec_open(const char * path,void * efp)2202 core_exec_open(const char *path, void *efp)
2203 {
2204 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2205 return (1);
2206 if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2207 return (1);
2208 return (0);
2209 }
2210
2211 /*
2212 * Attempt to load any section headers found in the core file. If present,
2213 * this will refer to non-loadable data added to the core file by the kernel
2214 * based on coreadm(8) settings, including CTF data and the symbol table.
2215 */
2216 static void
core_load_shdrs(struct ps_prochandle * P,elf_file_t * efp)2217 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2218 {
2219 GElf_Shdr *shp, *shdrs = NULL;
2220 char *shstrtab = NULL;
2221 ulong_t shstrtabsz;
2222 const char *name;
2223 map_info_t *mp;
2224
2225 size_t nbytes;
2226 void *buf;
2227 int i;
2228
2229 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2230 Pdprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2231 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2232 return;
2233 }
2234
2235 /*
2236 * Read the section header table from the core file and then iterate
2237 * over the section headers, converting each to a GElf_Shdr.
2238 */
2239 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2240 Pdprintf("failed to malloc %u section headers: %s\n",
2241 (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2242 return;
2243 }
2244
2245 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2246 if ((buf = malloc(nbytes)) == NULL) {
2247 Pdprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2248 strerror(errno));
2249 free(shdrs);
2250 goto out;
2251 }
2252
2253 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2254 Pdprintf("failed to read section headers at off %lld: %s\n",
2255 (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2256 free(buf);
2257 goto out;
2258 }
2259
2260 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2261 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2262
2263 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2264 core_shdr_to_gelf(p, &shdrs[i]);
2265 else
2266 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2267 }
2268
2269 free(buf);
2270 buf = NULL;
2271
2272 /*
2273 * Read the .shstrtab section from the core file, terminating it with
2274 * an extra \0 so that a corrupt section will not cause us to die.
2275 */
2276 shp = &shdrs[efp->e_hdr.e_shstrndx];
2277 shstrtabsz = shp->sh_size;
2278
2279 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2280 Pdprintf("failed to allocate %lu bytes for shstrtab\n",
2281 (ulong_t)shstrtabsz);
2282 goto out;
2283 }
2284
2285 if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2286 shp->sh_offset) != shstrtabsz) {
2287 Pdprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2288 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2289 goto out;
2290 }
2291
2292 shstrtab[shstrtabsz] = '\0';
2293
2294 /*
2295 * Now iterate over each section in the section header table, locating
2296 * sections of interest and initializing more of the ps_prochandle.
2297 */
2298 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2299 shp = &shdrs[i];
2300 name = shstrtab + shp->sh_name;
2301
2302 if (shp->sh_name >= shstrtabsz) {
2303 Pdprintf("skipping section [%d]: corrupt sh_name\n", i);
2304 continue;
2305 }
2306
2307 if (shp->sh_link >= efp->e_hdr.e_shnum) {
2308 Pdprintf("skipping section [%d]: corrupt sh_link\n", i);
2309 continue;
2310 }
2311
2312 Pdprintf("found section header %s (sh_addr 0x%llx)\n",
2313 name, (u_longlong_t)shp->sh_addr);
2314
2315 if (strcmp(name, ".SUNW_ctf") == 0) {
2316 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2317 Pdprintf("no map at addr 0x%llx for %s [%d]\n",
2318 (u_longlong_t)shp->sh_addr, name, i);
2319 continue;
2320 }
2321
2322 if (mp->map_file == NULL ||
2323 mp->map_file->file_ctf_buf != NULL) {
2324 Pdprintf("no mapping file or duplicate buffer "
2325 "for %s [%d]\n", name, i);
2326 continue;
2327 }
2328
2329 if ((buf = malloc(shp->sh_size)) == NULL ||
2330 pread64(efp->e_fd, buf, shp->sh_size,
2331 shp->sh_offset) != shp->sh_size) {
2332 Pdprintf("skipping section %s [%d]: %s\n",
2333 name, i, strerror(errno));
2334 free(buf);
2335 continue;
2336 }
2337
2338 mp->map_file->file_ctf_size = shp->sh_size;
2339 mp->map_file->file_ctf_buf = buf;
2340
2341 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2342 mp->map_file->file_ctf_dyn = 1;
2343
2344 } else if (strcmp(name, ".symtab") == 0) {
2345 fake_up_symtab(P, &efp->e_hdr,
2346 shp, &shdrs[shp->sh_link]);
2347 }
2348 }
2349 out:
2350 free(shstrtab);
2351 free(shdrs);
2352 }
2353
2354 /*
2355 * Main engine for core file initialization: given an fd for the core file
2356 * and an optional pathname, construct the ps_prochandle. The aout_path can
2357 * either be a suggested executable pathname, or a suggested directory to
2358 * use as a possible current working directory.
2359 */
2360 struct ps_prochandle *
Pfgrab_core(int core_fd,const char * aout_path,int * perr)2361 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2362 {
2363 struct ps_prochandle *P;
2364 core_info_t *core_info;
2365 map_info_t *stk_mp, *brk_mp;
2366 const char *execname;
2367 char *interp;
2368 int i, notes, pagesize;
2369 uintptr_t addr, base_addr;
2370 struct stat64 stbuf;
2371 void *phbuf, *php;
2372 size_t nbytes;
2373 #ifdef __x86
2374 boolean_t from_linux = B_FALSE;
2375 #endif
2376
2377 elf_file_t aout;
2378 elf_file_t core;
2379
2380 Elf_Scn *scn, *intp_scn = NULL;
2381 Elf_Data *dp;
2382
2383 GElf_Phdr phdr, note_phdr;
2384 GElf_Shdr shdr;
2385 GElf_Xword nleft;
2386
2387 if (elf_version(EV_CURRENT) == EV_NONE) {
2388 Pdprintf("libproc ELF version is more recent than libelf\n");
2389 *perr = G_ELF;
2390 return (NULL);
2391 }
2392
2393 aout.e_elf = NULL;
2394 aout.e_fd = -1;
2395
2396 core.e_elf = NULL;
2397 core.e_fd = core_fd;
2398
2399 /*
2400 * Allocate and initialize a ps_prochandle structure for the core.
2401 * There are several key pieces of initialization here:
2402 *
2403 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2404 * PS_DEAD also thus prevents all operations which require state
2405 * to be PS_STOP from operating on this handle.
2406 *
2407 * 2. We keep the core file fd in P->asfd since the core file contains
2408 * the remnants of the process address space.
2409 *
2410 * 3. We set the P->info_valid bit because all information about the
2411 * core is determined by the end of this function; there is no need
2412 * for proc_update_maps() to reload mappings at any later point.
2413 *
2414 * 4. The read/write ops vector uses our core_rw() function defined
2415 * above to handle i/o requests.
2416 */
2417 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2418 *perr = G_STRANGE;
2419 return (NULL);
2420 }
2421
2422 (void) memset(P, 0, sizeof (struct ps_prochandle));
2423 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2424 P->state = PS_DEAD;
2425 P->pid = (pid_t)-1;
2426 P->asfd = core.e_fd;
2427 P->ctlfd = -1;
2428 P->statfd = -1;
2429 P->agentctlfd = -1;
2430 P->agentstatfd = -1;
2431 P->zoneroot = NULL;
2432 P->info_valid = 1;
2433 Pinit_ops(&P->ops, &P_core_ops);
2434
2435 Pinitsym(P);
2436 Pinitfd(P);
2437
2438 /*
2439 * Fstat and open the core file and make sure it is a valid ELF core.
2440 */
2441 if (fstat64(P->asfd, &stbuf) == -1) {
2442 *perr = G_STRANGE;
2443 goto err;
2444 }
2445
2446 if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2447 goto err;
2448
2449 /*
2450 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2451 * structure. We keep all core-specific information in this structure.
2452 */
2453 if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2454 *perr = G_STRANGE;
2455 goto err;
2456 }
2457
2458 P->data = core_info;
2459 list_create(&core_info->core_lwp_head, sizeof (lwp_info_t),
2460 offsetof(lwp_info_t, lwp_list));
2461 core_info->core_size = stbuf.st_size;
2462 /*
2463 * In the days before adjustable core file content, this was the
2464 * default core file content. For new core files, this value will
2465 * be overwritten by the NT_CONTENT note section.
2466 */
2467 core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2468 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2469 CC_CONTENT_SHANON;
2470
2471 switch (core.e_hdr.e_ident[EI_CLASS]) {
2472 case ELFCLASS32:
2473 core_info->core_dmodel = PR_MODEL_ILP32;
2474 break;
2475 case ELFCLASS64:
2476 core_info->core_dmodel = PR_MODEL_LP64;
2477 break;
2478 default:
2479 *perr = G_FORMAT;
2480 goto err;
2481 }
2482 core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2483
2484 /*
2485 * Because the core file may be a large file, we can't use libelf to
2486 * read the Phdrs. We use e_phnum and e_phentsize to simplify things.
2487 */
2488 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2489
2490 if ((phbuf = malloc(nbytes)) == NULL) {
2491 *perr = G_STRANGE;
2492 goto err;
2493 }
2494
2495 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2496 *perr = G_STRANGE;
2497 free(phbuf);
2498 goto err;
2499 }
2500
2501 /*
2502 * Iterate through the program headers in the core file.
2503 * We're interested in two types of Phdrs: PT_NOTE (which
2504 * contains a set of saved /proc structures), and PT_LOAD (which
2505 * represents a memory mapping from the process's address space).
2506 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2507 * in the core file; currently the first PT_NOTE (if present)
2508 * contains /proc structs in the pre-2.6 unstructured /proc format.
2509 */
2510 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2511 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2512 (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2513 else
2514 core_phdr_to_gelf(php, &phdr);
2515
2516 switch (phdr.p_type) {
2517 case PT_NOTE:
2518 note_phdr = phdr;
2519 notes++;
2520 break;
2521
2522 case PT_LOAD:
2523 if (core_add_mapping(P, &phdr) == -1) {
2524 *perr = G_STRANGE;
2525 free(phbuf);
2526 goto err;
2527 }
2528 break;
2529 default:
2530 Pdprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2531 break;
2532 }
2533
2534 php = (char *)php + core.e_hdr.e_phentsize;
2535 }
2536
2537 free(phbuf);
2538
2539 Psort_mappings(P);
2540
2541 /*
2542 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2543 * was present, abort. The core file is either corrupt or too old.
2544 */
2545 if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2546 ELFOSABI_SOLARIS)) {
2547 *perr = G_NOTE;
2548 goto err;
2549 }
2550
2551 /*
2552 * Advance the seek pointer to the start of the PT_NOTE data
2553 */
2554 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2555 Pdprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2556 *perr = G_STRANGE;
2557 goto err;
2558 }
2559
2560 /*
2561 * Now process the PT_NOTE structures. Each one is preceded by
2562 * an Elf{32/64}_Nhdr structure describing its type and size.
2563 *
2564 * +--------+
2565 * | header |
2566 * +--------+
2567 * | name |
2568 * | ... |
2569 * +--------+
2570 * | desc |
2571 * | ... |
2572 * +--------+
2573 */
2574 for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2575 Elf64_Nhdr nhdr;
2576 off64_t off, namesz, descsz;
2577
2578 /*
2579 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2580 * as different types, they are both of the same content and
2581 * size, so we don't need to worry about 32/64 conversion here.
2582 */
2583 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2584 Pdprintf(
2585 "Pgrab_core: failed to read ELF note header\n");
2586 *perr = G_NOTE;
2587 goto err;
2588 }
2589
2590 /*
2591 * According to the System V ABI, the amount of padding
2592 * following the name field should align the description
2593 * field on a 4 byte boundary for 32-bit binaries or on an 8
2594 * byte boundary for 64-bit binaries. However, this change
2595 * was not made correctly during the 64-bit port so all
2596 * descriptions can assume only 4-byte alignment. We ignore
2597 * the name field and the padding to 4-byte alignment.
2598 */
2599 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2600
2601 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2602 Pdprintf("failed to seek past name and padding\n");
2603 *perr = G_STRANGE;
2604 goto err;
2605 }
2606
2607 Pdprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2608 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2609
2610 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2611
2612 /*
2613 * Invoke the note handler function from our table
2614 */
2615 if (nhdr.n_type < ARRAY_SIZE(nhdlrs) &&
2616 nhdlrs[nhdr.n_type] != NULL) {
2617 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2618 Pdprintf("handler for type %d returned < 0",
2619 nhdr.n_type);
2620 *perr = G_NOTE;
2621 goto err;
2622 }
2623 /*
2624 * The presence of either of these notes indicates that
2625 * the dump was generated on Linux.
2626 */
2627 #ifdef __x86
2628 if (nhdr.n_type == NT_PRSTATUS ||
2629 nhdr.n_type == NT_PRPSINFO)
2630 from_linux = B_TRUE;
2631 #endif
2632 } else {
2633 (void) note_notsup(P, nhdr.n_descsz);
2634 }
2635
2636 /*
2637 * Seek past the current note data to the next Elf_Nhdr
2638 */
2639 descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2640 if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2641 Pdprintf("Pgrab_core: failed to seek to next nhdr\n");
2642 *perr = G_STRANGE;
2643 goto err;
2644 }
2645
2646 /*
2647 * Subtract the size of the header and its data from what
2648 * we have left to process.
2649 */
2650 nleft -= sizeof (nhdr) + namesz + descsz;
2651 }
2652
2653 #ifdef __x86
2654 if (from_linux) {
2655 size_t pid;
2656 lwp_info_t *lwp;
2657
2658 P->status.pr_dmodel = core_info->core_dmodel;
2659
2660 pid = P->status.pr_pid;
2661
2662 for (lwp = list_head(&core_info->core_lwp_head); lwp != NULL;
2663 lwp = list_next(&core_info->core_lwp_head, lwp)) {
2664 Pdprintf("Linux thread with id %d\n", lwp->lwp_id);
2665
2666 /*
2667 * In the case we don't have a valid psinfo (i.e. pid is
2668 * 0, probably because of gdb creating the core) assume
2669 * lowest pid count is the first thread (what if the
2670 * next thread wraps the pid around?)
2671 */
2672 if (P->status.pr_pid == 0 &&
2673 ((pid == 0 && lwp->lwp_id > 0) ||
2674 (lwp->lwp_id < pid))) {
2675 pid = lwp->lwp_id;
2676 }
2677 }
2678
2679 if (P->status.pr_pid != pid) {
2680 Pdprintf("No valid pid, setting to %ld\n",
2681 (ulong_t)pid);
2682 P->status.pr_pid = pid;
2683 P->psinfo.pr_pid = pid;
2684 }
2685
2686 /*
2687 * Consumers like mdb expect the first thread to actually have
2688 * an id of 1, on linux that is actually the pid. Find the the
2689 * thread with our process id, and set the id to 1
2690 */
2691 if ((lwp = lwpid2info(P, pid)) == NULL) {
2692 Pdprintf("Couldn't find first thread\n");
2693 *perr = G_STRANGE;
2694 goto err;
2695 }
2696
2697 Pdprintf("setting representative thread: %d\n", lwp->lwp_id);
2698
2699 lwp->lwp_id = 1;
2700 lwp->lwp_status.pr_lwpid = 1;
2701
2702 /* set representative thread */
2703 (void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2704 sizeof (P->status.pr_lwp));
2705 }
2706 #endif /* __x86 */
2707
2708 if (nleft != 0) {
2709 Pdprintf("Pgrab_core: note section malformed\n");
2710 *perr = G_STRANGE;
2711 goto err;
2712 }
2713
2714 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2715 pagesize = getpagesize();
2716 Pdprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2717 }
2718
2719 /*
2720 * Locate and label the mappings corresponding to the end of the
2721 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2722 */
2723 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2724 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2725 P->status.pr_brksize - 1)) != NULL)
2726 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2727 else
2728 brk_mp = NULL;
2729
2730 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2731 stk_mp->map_pmap.pr_mflags |= MA_STACK;
2732
2733 /*
2734 * At this point, we have enough information to look for the
2735 * executable and open it: we have access to the auxv, a psinfo_t,
2736 * and the ability to read from mappings provided by the core file.
2737 */
2738 (void) Pfindexec(P, aout_path, core_exec_open, &aout);
2739 Pdprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2740 execname = P->execname ? P->execname : "a.out";
2741
2742 /*
2743 * Iterate through the sections, looking for the .dynamic and .interp
2744 * sections. If we encounter them, remember their section pointers.
2745 */
2746 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2747 char *sname;
2748
2749 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2750 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2751 (size_t)shdr.sh_name)) == NULL)
2752 continue;
2753
2754 if (strcmp(sname, ".interp") == 0)
2755 intp_scn = scn;
2756 }
2757
2758 /*
2759 * Get the AT_BASE auxv element. If this is missing (-1), then
2760 * we assume this is a statically-linked executable.
2761 */
2762 base_addr = Pgetauxval(P, AT_BASE);
2763
2764 /*
2765 * In order to get librtld_db initialized, we'll need to identify
2766 * and name the mapping corresponding to the run-time linker. The
2767 * AT_BASE auxv element tells us the address where it was mapped,
2768 * and the .interp section of the executable tells us its path.
2769 * If for some reason that doesn't pan out, just use ld.so.1.
2770 */
2771 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2772 dp->d_size != 0) {
2773 Pdprintf(".interp = <%s>\n", (char *)dp->d_buf);
2774 interp = dp->d_buf;
2775
2776 } else if (base_addr != (uintptr_t)-1L) {
2777 if (core_info->core_dmodel == PR_MODEL_LP64)
2778 interp = "/usr/lib/64/ld.so.1";
2779 else
2780 interp = "/usr/lib/ld.so.1";
2781
2782 Pdprintf(".interp section is missing or could not be read; "
2783 "defaulting to %s\n", interp);
2784 } else
2785 Pdprintf("detected statically linked executable\n");
2786
2787 /*
2788 * If we have an AT_BASE element, name the mapping at that address
2789 * using the interpreter pathname. Name the corresponding data
2790 * mapping after the interpreter as well.
2791 */
2792 if (base_addr != (uintptr_t)-1L) {
2793 elf_file_t intf;
2794
2795 P->map_ldso = core_name_mapping(P, base_addr, interp);
2796
2797 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2798 rd_loadobj_t rl;
2799 map_info_t *dmp;
2800
2801 rl.rl_base = base_addr;
2802 dmp = core_find_data(P, intf.e_elf, &rl);
2803
2804 if (dmp != NULL) {
2805 Pdprintf("renamed data at %p to %s\n",
2806 (void *)rl.rl_data_base, interp);
2807 (void) strncpy(dmp->map_pmap.pr_mapname,
2808 interp, PRMAPSZ);
2809 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2810 }
2811 }
2812
2813 core_elf_close(&intf);
2814 }
2815
2816 /*
2817 * If we have an AT_ENTRY element, name the mapping at that address
2818 * using the special name "a.out" just like /proc does.
2819 */
2820 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2821 P->map_exec = core_name_mapping(P, addr, "a.out");
2822
2823 /*
2824 * If we're a statically linked executable (or we're on x86 and looking
2825 * at a Linux core dump), then just locate the executable's text and
2826 * data and name them after the executable.
2827 */
2828 #ifndef __x86
2829 if (base_addr == (uintptr_t)-1L) {
2830 #else
2831 if (base_addr == (uintptr_t)-1L || from_linux) {
2832 #endif
2833 Pdprintf("looking for text and data: %s\n", execname);
2834 map_info_t *tmp, *dmp;
2835 file_info_t *fp;
2836 rd_loadobj_t rl;
2837
2838 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2839 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2840 (void) strncpy(tmp->map_pmap.pr_mapname,
2841 execname, PRMAPSZ);
2842 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2843 (void) strncpy(dmp->map_pmap.pr_mapname,
2844 execname, PRMAPSZ);
2845 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2846 }
2847
2848 if ((P->map_exec = tmp) != NULL &&
2849 (fp = malloc(sizeof (file_info_t))) != NULL) {
2850
2851 (void) memset(fp, 0, sizeof (file_info_t));
2852
2853 list_insert_head(&P->file_head, fp);
2854 tmp->map_file = fp;
2855 P->num_files++;
2856
2857 fp->file_ref = 1;
2858 fp->file_fd = -1;
2859 fp->file_dbgfile = -1;
2860
2861 fp->file_lo = malloc(sizeof (rd_loadobj_t));
2862 fp->file_lname = strdup(execname);
2863
2864 if (fp->file_lo)
2865 *fp->file_lo = rl;
2866 if (fp->file_lname)
2867 fp->file_lbase = basename(fp->file_lname);
2868 if (fp->file_rname)
2869 fp->file_rbase = basename(fp->file_rname);
2870
2871 (void) strcpy(fp->file_pname,
2872 P->mappings[0].map_pmap.pr_mapname);
2873 fp->file_map = tmp;
2874
2875 Pbuild_file_symtab(P, fp);
2876
2877 if (dmp != NULL) {
2878 dmp->map_file = fp;
2879 fp->file_ref++;
2880 }
2881 }
2882 }
2883
2884 core_elf_close(&aout);
2885
2886 /*
2887 * We now have enough information to initialize librtld_db.
2888 * After it warms up, we can iterate through the load object chain
2889 * in the core, which will allow us to construct the file info
2890 * we need to provide symbol information for the other shared
2891 * libraries, and also to fill in the missing mapping names.
2892 */
2893 rd_log(_libproc_debug);
2894
2895 if ((P->rap = rd_new(P)) != NULL) {
2896 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2897 core_iter_mapping, P);
2898
2899 if (core_info->core_errno != 0) {
2900 errno = core_info->core_errno;
2901 *perr = G_STRANGE;
2902 goto err;
2903 }
2904 } else
2905 Pdprintf("failed to initialize rtld_db agent\n");
2906
2907 /*
2908 * If there are sections, load them and process the data from any
2909 * sections that we can use to annotate the file_info_t's.
2910 */
2911 core_load_shdrs(P, &core);
2912
2913 /*
2914 * If we previously located a stack or break mapping, and they are
2915 * still anonymous, we now assume that they were MAP_ANON mappings.
2916 * If brk_mp turns out to now have a name, then the heap is still
2917 * sitting at the end of the executable's data+bss mapping: remove
2918 * the previous MA_BREAK setting to be consistent with /proc.
2919 */
2920 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2921 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2922 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2923 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2924 else if (brk_mp != NULL)
2925 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2926
2927 *perr = 0;
2928 return (P);
2929
2930 err:
2931 Pfree(P);
2932 core_elf_close(&aout);
2933 return (NULL);
2934 }
2935
2936 /*
2937 * Grab a core file using a pathname. We just open it and call Pfgrab_core().
2938 */
2939 struct ps_prochandle *
2940 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2941 {
2942 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2943
2944 if ((fd = open64(core, oflag)) >= 0)
2945 return (Pfgrab_core(fd, aout, perr));
2946
2947 if (errno != ENOENT)
2948 *perr = G_STRANGE;
2949 else
2950 *perr = G_NOCORE;
2951
2952 return (NULL);
2953 }
2954
2955 int
2956 Pupanic(struct ps_prochandle *P, prupanic_t **pru)
2957 {
2958 core_info_t *core;
2959
2960 if (P->state != PS_DEAD) {
2961 errno = ENODATA;
2962 return (-1);
2963 }
2964
2965 core = P->data;
2966 if (core->core_upanic == NULL) {
2967 errno = ENOENT;
2968 return (-1);
2969 }
2970
2971 if (core->core_upanic->pru_version != PRUPANIC_VERSION_1) {
2972 errno = EINVAL;
2973 return (-1);
2974 }
2975
2976 if ((*pru = calloc(1, sizeof (prupanic_t))) == NULL)
2977 return (-1);
2978 (void) memcpy(*pru, core->core_upanic, sizeof (prupanic_t));
2979
2980 return (0);
2981 }
2982
2983 void
2984 Pupanic_free(prupanic_t *pru)
2985 {
2986 free(pru);
2987 }
2988