xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Transforms/IPO/LowerTypeTests.h (revision e8d8bef961a50d4dc22501cde4fb9fb0be1b2532)
1 //===- LowerTypeTests.h - type metadata lowering pass -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines parts of the type test lowering pass implementation that
10 // may be usefully unit tested.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
15 #define LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
16 
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/IR/PassManager.h"
19 #include <cstdint>
20 #include <cstring>
21 #include <limits>
22 #include <set>
23 #include <vector>
24 
25 namespace llvm {
26 
27 class Module;
28 class ModuleSummaryIndex;
29 class raw_ostream;
30 
31 namespace lowertypetests {
32 
33 struct BitSetInfo {
34   // The indices of the set bits in the bitset.
35   std::set<uint64_t> Bits;
36 
37   // The byte offset into the combined global represented by the bitset.
38   uint64_t ByteOffset;
39 
40   // The size of the bitset in bits.
41   uint64_t BitSize;
42 
43   // Log2 alignment of the bit set relative to the combined global.
44   // For example, a log2 alignment of 3 means that bits in the bitset
45   // represent addresses 8 bytes apart.
46   unsigned AlignLog2;
47 
isSingleOffsetBitSetInfo48   bool isSingleOffset() const {
49     return Bits.size() == 1;
50   }
51 
isAllOnesBitSetInfo52   bool isAllOnes() const {
53     return Bits.size() == BitSize;
54   }
55 
56   bool containsGlobalOffset(uint64_t Offset) const;
57 
58   void print(raw_ostream &OS) const;
59 };
60 
61 struct BitSetBuilder {
62   SmallVector<uint64_t, 16> Offsets;
63   uint64_t Min = std::numeric_limits<uint64_t>::max();
64   uint64_t Max = 0;
65 
66   BitSetBuilder() = default;
67 
addOffsetBitSetBuilder68   void addOffset(uint64_t Offset) {
69     if (Min > Offset)
70       Min = Offset;
71     if (Max < Offset)
72       Max = Offset;
73 
74     Offsets.push_back(Offset);
75   }
76 
77   BitSetInfo build();
78 };
79 
80 /// This class implements a layout algorithm for globals referenced by bit sets
81 /// that tries to keep members of small bit sets together. This can
82 /// significantly reduce bit set sizes in many cases.
83 ///
84 /// It works by assembling fragments of layout from sets of referenced globals.
85 /// Each set of referenced globals causes the algorithm to create a new
86 /// fragment, which is assembled by appending each referenced global in the set
87 /// into the fragment. If a referenced global has already been referenced by an
88 /// fragment created earlier, we instead delete that fragment and append its
89 /// contents into the fragment we are assembling.
90 ///
91 /// By starting with the smallest fragments, we minimize the size of the
92 /// fragments that are copied into larger fragments. This is most intuitively
93 /// thought about when considering the case where the globals are virtual tables
94 /// and the bit sets represent their derived classes: in a single inheritance
95 /// hierarchy, the optimum layout would involve a depth-first search of the
96 /// class hierarchy (and in fact the computed layout ends up looking a lot like
97 /// a DFS), but a naive DFS would not work well in the presence of multiple
98 /// inheritance. This aspect of the algorithm ends up fitting smaller
99 /// hierarchies inside larger ones where that would be beneficial.
100 ///
101 /// For example, consider this class hierarchy:
102 ///
103 /// A       B
104 ///   \   / | \
105 ///     C   D   E
106 ///
107 /// We have five bit sets: bsA (A, C), bsB (B, C, D, E), bsC (C), bsD (D) and
108 /// bsE (E). If we laid out our objects by DFS traversing B followed by A, our
109 /// layout would be {B, C, D, E, A}. This is optimal for bsB as it needs to
110 /// cover the only 4 objects in its hierarchy, but not for bsA as it needs to
111 /// cover 5 objects, i.e. the entire layout. Our algorithm proceeds as follows:
112 ///
113 /// Add bsC, fragments {{C}}
114 /// Add bsD, fragments {{C}, {D}}
115 /// Add bsE, fragments {{C}, {D}, {E}}
116 /// Add bsA, fragments {{A, C}, {D}, {E}}
117 /// Add bsB, fragments {{B, A, C, D, E}}
118 ///
119 /// This layout is optimal for bsA, as it now only needs to cover two (i.e. 3
120 /// fewer) objects, at the cost of bsB needing to cover 1 more object.
121 ///
122 /// The bit set lowering pass assigns an object index to each object that needs
123 /// to be laid out, and calls addFragment for each bit set passing the object
124 /// indices of its referenced globals. It then assembles a layout from the
125 /// computed layout in the Fragments field.
126 struct GlobalLayoutBuilder {
127   /// The computed layout. Each element of this vector contains a fragment of
128   /// layout (which may be empty) consisting of object indices.
129   std::vector<std::vector<uint64_t>> Fragments;
130 
131   /// Mapping from object index to fragment index.
132   std::vector<uint64_t> FragmentMap;
133 
GlobalLayoutBuilderGlobalLayoutBuilder134   GlobalLayoutBuilder(uint64_t NumObjects)
135       : Fragments(1), FragmentMap(NumObjects) {}
136 
137   /// Add F to the layout while trying to keep its indices contiguous.
138   /// If a previously seen fragment uses any of F's indices, that
139   /// fragment will be laid out inside F.
140   void addFragment(const std::set<uint64_t> &F);
141 };
142 
143 /// This class is used to build a byte array containing overlapping bit sets. By
144 /// loading from indexed offsets into the byte array and applying a mask, a
145 /// program can test bits from the bit set with a relatively short instruction
146 /// sequence. For example, suppose we have 15 bit sets to lay out:
147 ///
148 /// A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
149 /// F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
150 /// L (4 bits), M (3 bits), N (2 bits), O (1 bit)
151 ///
152 /// These bits can be laid out in a 16-byte array like this:
153 ///
154 ///       Byte Offset
155 ///     0123456789ABCDEF
156 /// Bit
157 ///   7 HHHHHHHHHIIIIIII
158 ///   6 GGGGGGGGGGJJJJJJ
159 ///   5 FFFFFFFFFFFKKKKK
160 ///   4 EEEEEEEEEEEELLLL
161 ///   3 DDDDDDDDDDDDDMMM
162 ///   2 CCCCCCCCCCCCCCNN
163 ///   1 BBBBBBBBBBBBBBBO
164 ///   0 AAAAAAAAAAAAAAAA
165 ///
166 /// For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
167 /// test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
168 /// in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
169 ///
170 /// This is a byte array, rather than (say) a 2-byte array or a 4-byte array,
171 /// because for one thing it gives us better packing (the more bins there are,
172 /// the less evenly they will be filled), and for another, the instruction
173 /// sequences can be slightly shorter, both on x86 and ARM.
174 struct ByteArrayBuilder {
175   /// The byte array built so far.
176   std::vector<uint8_t> Bytes;
177 
178   enum { BitsPerByte = 8 };
179 
180   /// The number of bytes allocated so far for each of the bits.
181   uint64_t BitAllocs[BitsPerByte];
182 
ByteArrayBuilderByteArrayBuilder183   ByteArrayBuilder() {
184     memset(BitAllocs, 0, sizeof(BitAllocs));
185   }
186 
187   /// Allocate BitSize bits in the byte array where Bits contains the bits to
188   /// set. AllocByteOffset is set to the offset within the byte array and
189   /// AllocMask is set to the bitmask for those bits. This uses the LPT (Longest
190   /// Processing Time) multiprocessor scheduling algorithm to lay out the bits
191   /// efficiently; the pass allocates bit sets in decreasing size order.
192   void allocate(const std::set<uint64_t> &Bits, uint64_t BitSize,
193                 uint64_t &AllocByteOffset, uint8_t &AllocMask);
194 };
195 
196 bool isJumpTableCanonical(Function *F);
197 
198 } // end namespace lowertypetests
199 
200 class LowerTypeTestsPass : public PassInfoMixin<LowerTypeTestsPass> {
201   bool UseCommandLine = false;
202 
203   ModuleSummaryIndex *ExportSummary = nullptr;
204   const ModuleSummaryIndex *ImportSummary = nullptr;
205   bool DropTypeTests = true;
206 
207 public:
LowerTypeTestsPass()208   LowerTypeTestsPass() : UseCommandLine(true) {}
209   LowerTypeTestsPass(ModuleSummaryIndex *ExportSummary,
210                      const ModuleSummaryIndex *ImportSummary,
211                      bool DropTypeTests = false)
ExportSummary(ExportSummary)212       : ExportSummary(ExportSummary), ImportSummary(ImportSummary),
213         DropTypeTests(DropTypeTests) {}
214   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
215 };
216 
217 } // end namespace llvm
218 
219 #endif // LLVM_TRANSFORMS_IPO_LOWERTYPETESTS_H
220