1 //===-- LanaiMemAluCombiner.cpp - Pass to combine memory & ALU operations -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // Simple pass to combine memory and ALU operations 9 // 10 // The Lanai ISA supports instructions where a load/store modifies the base 11 // register used in the load/store operation. This pass finds suitable 12 // load/store and ALU instructions and combines them into one instruction. 13 // 14 // For example, 15 // ld [ %r6 -- ], %r12 16 // is a supported instruction that is not currently generated by the instruction 17 // selection pass of this backend. This pass generates these instructions by 18 // merging 19 // add %r6, -4, %r6 20 // followed by 21 // ld [ %r6 ], %r12 22 // in the same machine basic block into one machine instruction. 23 //===----------------------------------------------------------------------===// 24 25 #include "LanaiAluCode.h" 26 #include "LanaiTargetMachine.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/RegisterScavenging.h" 31 #include "llvm/CodeGen/TargetInstrInfo.h" 32 #include "llvm/Support/CommandLine.h" 33 using namespace llvm; 34 35 #define GET_INSTRMAP_INFO 36 #include "LanaiGenInstrInfo.inc" 37 38 #define DEBUG_TYPE "lanai-mem-alu-combiner" 39 40 STATISTIC(NumLdStAluCombined, "Number of memory and ALU instructions combined"); 41 42 static llvm::cl::opt<bool> DisableMemAluCombiner( 43 "disable-lanai-mem-alu-combiner", llvm::cl::init(false), 44 llvm::cl::desc("Do not combine ALU and memory operators"), 45 llvm::cl::Hidden); 46 47 namespace llvm { 48 void initializeLanaiMemAluCombinerPass(PassRegistry &); 49 } // namespace llvm 50 51 namespace { 52 typedef MachineBasicBlock::iterator MbbIterator; 53 typedef MachineFunction::iterator MfIterator; 54 55 class LanaiMemAluCombiner : public MachineFunctionPass { 56 public: 57 static char ID; 58 explicit LanaiMemAluCombiner() : MachineFunctionPass(ID) { 59 initializeLanaiMemAluCombinerPass(*PassRegistry::getPassRegistry()); 60 } 61 62 StringRef getPassName() const override { 63 return "Lanai load / store optimization pass"; 64 } 65 66 bool runOnMachineFunction(MachineFunction &F) override; 67 68 MachineFunctionProperties getRequiredProperties() const override { 69 return MachineFunctionProperties().set( 70 MachineFunctionProperties::Property::NoVRegs); 71 } 72 73 private: 74 MbbIterator findClosestSuitableAluInstr(MachineBasicBlock *BB, 75 const MbbIterator &MemInstr, 76 bool Decrement); 77 void insertMergedInstruction(MachineBasicBlock *BB, 78 const MbbIterator &MemInstr, 79 const MbbIterator &AluInstr, bool Before); 80 bool combineMemAluInBasicBlock(MachineBasicBlock *BB); 81 82 // Target machine description which we query for register names, data 83 // layout, etc. 84 const TargetInstrInfo *TII; 85 }; 86 } // namespace 87 88 char LanaiMemAluCombiner::ID = 0; 89 90 INITIALIZE_PASS(LanaiMemAluCombiner, DEBUG_TYPE, 91 "Lanai memory ALU combiner pass", false, false) 92 93 namespace { 94 bool isSpls(uint16_t Opcode) { return Lanai::splsIdempotent(Opcode) == Opcode; } 95 96 // Determine the opcode for the merged instruction created by considering the 97 // old memory operation's opcode and whether the merged opcode will have an 98 // immediate offset. 99 unsigned mergedOpcode(unsigned OldOpcode, bool ImmediateOffset) { 100 switch (OldOpcode) { 101 case Lanai::LDW_RI: 102 case Lanai::LDW_RR: 103 if (ImmediateOffset) 104 return Lanai::LDW_RI; 105 return Lanai::LDW_RR; 106 case Lanai::LDHs_RI: 107 case Lanai::LDHs_RR: 108 if (ImmediateOffset) 109 return Lanai::LDHs_RI; 110 return Lanai::LDHs_RR; 111 case Lanai::LDHz_RI: 112 case Lanai::LDHz_RR: 113 if (ImmediateOffset) 114 return Lanai::LDHz_RI; 115 return Lanai::LDHz_RR; 116 case Lanai::LDBs_RI: 117 case Lanai::LDBs_RR: 118 if (ImmediateOffset) 119 return Lanai::LDBs_RI; 120 return Lanai::LDBs_RR; 121 case Lanai::LDBz_RI: 122 case Lanai::LDBz_RR: 123 if (ImmediateOffset) 124 return Lanai::LDBz_RI; 125 return Lanai::LDBz_RR; 126 case Lanai::SW_RI: 127 case Lanai::SW_RR: 128 if (ImmediateOffset) 129 return Lanai::SW_RI; 130 return Lanai::SW_RR; 131 case Lanai::STB_RI: 132 case Lanai::STB_RR: 133 if (ImmediateOffset) 134 return Lanai::STB_RI; 135 return Lanai::STB_RR; 136 case Lanai::STH_RI: 137 case Lanai::STH_RR: 138 if (ImmediateOffset) 139 return Lanai::STH_RI; 140 return Lanai::STH_RR; 141 default: 142 return 0; 143 } 144 } 145 146 // Check if the machine instruction has non-volatile memory operands of the type 147 // supported for combining with ALU instructions. 148 bool isNonVolatileMemoryOp(const MachineInstr &MI) { 149 if (!MI.hasOneMemOperand()) 150 return false; 151 152 // Determine if the machine instruction is a supported memory operation by 153 // testing if the computed merge opcode is a valid memory operation opcode. 154 if (mergedOpcode(MI.getOpcode(), false) == 0) 155 return false; 156 157 const MachineMemOperand *MemOperand = *MI.memoperands_begin(); 158 159 // Don't move volatile memory accesses 160 // TODO: unclear if we need to be as conservative about atomics 161 if (MemOperand->isVolatile() || MemOperand->isAtomic()) 162 return false; 163 164 return true; 165 } 166 167 // Test to see if two machine operands are of the same type. This test is less 168 // strict than the MachineOperand::isIdenticalTo function. 169 bool isSameOperand(const MachineOperand &Op1, const MachineOperand &Op2) { 170 if (Op1.getType() != Op2.getType()) 171 return false; 172 173 switch (Op1.getType()) { 174 case MachineOperand::MO_Register: 175 return Op1.getReg() == Op2.getReg(); 176 case MachineOperand::MO_Immediate: 177 return Op1.getImm() == Op2.getImm(); 178 default: 179 return false; 180 } 181 } 182 183 bool isZeroOperand(const MachineOperand &Op) { 184 return ((Op.isReg() && Op.getReg() == Lanai::R0) || 185 (Op.isImm() && Op.getImm() == 0)); 186 } 187 188 // Determines whether a register is used by an instruction. 189 bool InstrUsesReg(const MbbIterator &Instr, const MachineOperand *Reg) { 190 for (MachineInstr::const_mop_iterator Mop = Instr->operands_begin(); 191 Mop != Instr->operands_end(); ++Mop) { 192 if (isSameOperand(*Mop, *Reg)) 193 return true; 194 } 195 return false; 196 } 197 198 // Converts between machine opcode and AluCode. 199 // Flag using/modifying ALU operations should not be considered for merging and 200 // are omitted from this list. 201 LPAC::AluCode mergedAluCode(unsigned AluOpcode) { 202 switch (AluOpcode) { 203 case Lanai::ADD_I_LO: 204 case Lanai::ADD_R: 205 return LPAC::ADD; 206 case Lanai::SUB_I_LO: 207 case Lanai::SUB_R: 208 return LPAC::SUB; 209 case Lanai::AND_I_LO: 210 case Lanai::AND_R: 211 return LPAC::AND; 212 case Lanai::OR_I_LO: 213 case Lanai::OR_R: 214 return LPAC::OR; 215 case Lanai::XOR_I_LO: 216 case Lanai::XOR_R: 217 return LPAC::XOR; 218 case Lanai::SHL_R: 219 return LPAC::SHL; 220 case Lanai::SRL_R: 221 return LPAC::SRL; 222 case Lanai::SRA_R: 223 return LPAC::SRA; 224 case Lanai::SA_I: 225 case Lanai::SL_I: 226 default: 227 return LPAC::UNKNOWN; 228 } 229 } 230 231 // Insert a new combined memory and ALU operation instruction. 232 // 233 // This function builds a new machine instruction using the MachineInstrBuilder 234 // class and inserts it before the memory instruction. 235 void LanaiMemAluCombiner::insertMergedInstruction(MachineBasicBlock *BB, 236 const MbbIterator &MemInstr, 237 const MbbIterator &AluInstr, 238 bool Before) { 239 // Insert new combined load/store + alu operation 240 MachineOperand Dest = MemInstr->getOperand(0); 241 MachineOperand Base = MemInstr->getOperand(1); 242 MachineOperand MemOffset = MemInstr->getOperand(2); 243 MachineOperand AluOffset = AluInstr->getOperand(2); 244 245 // Abort if ALU offset is not a register or immediate 246 assert((AluOffset.isReg() || AluOffset.isImm()) && 247 "Unsupported operand type in merge"); 248 249 // Determined merged instructions opcode and ALU code 250 LPAC::AluCode AluOpcode = mergedAluCode(AluInstr->getOpcode()); 251 unsigned NewOpc = mergedOpcode(MemInstr->getOpcode(), AluOffset.isImm()); 252 253 assert(AluOpcode != LPAC::UNKNOWN && "Unknown ALU code in merging"); 254 assert(NewOpc != 0 && "Unknown merged node opcode"); 255 256 // Build and insert new machine instruction 257 MachineInstrBuilder InstrBuilder = 258 BuildMI(*BB, MemInstr, MemInstr->getDebugLoc(), TII->get(NewOpc)); 259 InstrBuilder.addReg(Dest.getReg(), getDefRegState(true)); 260 InstrBuilder.addReg(Base.getReg(), getKillRegState(true)); 261 262 // Add offset to machine instruction 263 if (AluOffset.isReg()) 264 InstrBuilder.addReg(AluOffset.getReg()); 265 else if (AluOffset.isImm()) 266 InstrBuilder.addImm(AluOffset.getImm()); 267 else 268 llvm_unreachable("Unsupported ld/st ALU merge."); 269 270 // Create a pre-op if the ALU operation preceded the memory operation or the 271 // MemOffset is non-zero (i.e. the memory value should be adjusted before 272 // accessing it), else create a post-op. 273 if (Before || !isZeroOperand(MemOffset)) 274 InstrBuilder.addImm(LPAC::makePreOp(AluOpcode)); 275 else 276 InstrBuilder.addImm(LPAC::makePostOp(AluOpcode)); 277 278 // Transfer memory operands. 279 InstrBuilder.setMemRefs(MemInstr->memoperands()); 280 } 281 282 // Function determines if ALU operation (in alu_iter) can be combined with 283 // a load/store with base and offset. 284 bool isSuitableAluInstr(bool IsSpls, const MbbIterator &AluIter, 285 const MachineOperand &Base, 286 const MachineOperand &Offset) { 287 // ALU operations have 3 operands 288 if (AluIter->getNumOperands() != 3) 289 return false; 290 291 MachineOperand &Dest = AluIter->getOperand(0); 292 MachineOperand &Op1 = AluIter->getOperand(1); 293 MachineOperand &Op2 = AluIter->getOperand(2); 294 295 // Only match instructions using the base register as destination and with the 296 // base and first operand equal 297 if (!isSameOperand(Dest, Base) || !isSameOperand(Dest, Op1)) 298 return false; 299 300 if (Op2.isImm()) { 301 // It is not a match if the 2nd operand in the ALU operation is an 302 // immediate but the ALU operation is not an addition. 303 if (AluIter->getOpcode() != Lanai::ADD_I_LO) 304 return false; 305 306 if (Offset.isReg() && Offset.getReg() == Lanai::R0) 307 return true; 308 309 if (Offset.isImm() && 310 ((Offset.getImm() == 0 && 311 // Check that the Op2 would fit in the immediate field of the 312 // memory operation. 313 ((IsSpls && isInt<10>(Op2.getImm())) || 314 (!IsSpls && isInt<16>(Op2.getImm())))) || 315 Offset.getImm() == Op2.getImm())) 316 return true; 317 } else if (Op2.isReg()) { 318 // The Offset and 2nd operand are both registers and equal 319 if (Offset.isReg() && Op2.getReg() == Offset.getReg()) 320 return true; 321 } else 322 // Only consider operations with register or immediate values 323 return false; 324 325 return false; 326 } 327 328 MbbIterator LanaiMemAluCombiner::findClosestSuitableAluInstr( 329 MachineBasicBlock *BB, const MbbIterator &MemInstr, const bool Decrement) { 330 MachineOperand *Base = &MemInstr->getOperand(1); 331 MachineOperand *Offset = &MemInstr->getOperand(2); 332 bool IsSpls = isSpls(MemInstr->getOpcode()); 333 334 MbbIterator First = MemInstr; 335 MbbIterator Last = Decrement ? BB->begin() : BB->end(); 336 337 while (First != Last) { 338 Decrement ? --First : ++First; 339 340 if (First == Last) 341 break; 342 343 // Skip over debug instructions 344 if (First->isDebugInstr()) 345 continue; 346 347 if (isSuitableAluInstr(IsSpls, First, *Base, *Offset)) { 348 return First; 349 } 350 351 // Usage of the base or offset register is not a form suitable for merging. 352 if (First != Last) { 353 if (InstrUsesReg(First, Base)) 354 break; 355 if (Offset->isReg() && InstrUsesReg(First, Offset)) 356 break; 357 } 358 } 359 360 return MemInstr; 361 } 362 363 bool LanaiMemAluCombiner::combineMemAluInBasicBlock(MachineBasicBlock *BB) { 364 bool Modified = false; 365 366 MbbIterator MBBIter = BB->begin(), End = BB->end(); 367 while (MBBIter != End) { 368 bool IsMemOp = isNonVolatileMemoryOp(*MBBIter); 369 370 if (IsMemOp) { 371 MachineOperand AluOperand = MBBIter->getOperand(3); 372 unsigned int DestReg = MBBIter->getOperand(0).getReg(), 373 BaseReg = MBBIter->getOperand(1).getReg(); 374 assert(AluOperand.isImm() && "Unexpected memory operator type"); 375 LPAC::AluCode AluOpcode = static_cast<LPAC::AluCode>(AluOperand.getImm()); 376 377 // Skip memory operations that already modify the base register or if 378 // the destination and base register are the same 379 if (!LPAC::modifiesOp(AluOpcode) && DestReg != BaseReg) { 380 for (int Inc = 0; Inc <= 1; ++Inc) { 381 MbbIterator AluIter = 382 findClosestSuitableAluInstr(BB, MBBIter, Inc == 0); 383 if (AluIter != MBBIter) { 384 insertMergedInstruction(BB, MBBIter, AluIter, Inc == 0); 385 386 ++NumLdStAluCombined; 387 Modified = true; 388 389 // Erase the matching ALU instruction 390 BB->erase(AluIter); 391 // Erase old load/store instruction 392 BB->erase(MBBIter++); 393 break; 394 } 395 } 396 } 397 } 398 if (MBBIter == End) 399 break; 400 ++MBBIter; 401 } 402 403 return Modified; 404 } 405 406 // Driver function that iterates over the machine basic building blocks of a 407 // machine function 408 bool LanaiMemAluCombiner::runOnMachineFunction(MachineFunction &MF) { 409 if (DisableMemAluCombiner) 410 return false; 411 412 TII = MF.getSubtarget<LanaiSubtarget>().getInstrInfo(); 413 bool Modified = false; 414 for (MachineBasicBlock &MBB : MF) 415 Modified |= combineMemAluInBasicBlock(&MBB); 416 return Modified; 417 } 418 } // namespace 419 420 FunctionPass *llvm::createLanaiMemAluCombinerPass() { 421 return new LanaiMemAluCombiner(); 422 } 423