1 //===------------------------- LSUnit.h --------------------------*- C++-*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// 10 /// A Load/Store unit class that models load/store queues and that implements 11 /// a simple weak memory consistency model. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_MCA_HARDWAREUNITS_LSUNIT_H 16 #define LLVM_MCA_HARDWAREUNITS_LSUNIT_H 17 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/MC/MCSchedule.h" 21 #include "llvm/MCA/HardwareUnits/HardwareUnit.h" 22 #include "llvm/MCA/Instruction.h" 23 24 namespace llvm { 25 namespace mca { 26 27 /// A node of a memory dependency graph. A MemoryGroup describes a set of 28 /// instructions with same memory dependencies. 29 /// 30 /// By construction, instructions of a MemoryGroup don't depend on each other. 31 /// At dispatch stage, instructions are mapped by the LSUnit to MemoryGroups. 32 /// A Memory group identifier is then stored as a "token" in field 33 /// Instruction::LSUTokenID of each dispatched instructions. That token is used 34 /// internally by the LSUnit to track memory dependencies. 35 class MemoryGroup { 36 unsigned NumPredecessors = 0; 37 unsigned NumExecutingPredecessors = 0; 38 unsigned NumExecutedPredecessors = 0; 39 40 unsigned NumInstructions = 0; 41 unsigned NumExecuting = 0; 42 unsigned NumExecuted = 0; 43 // Successors that are in a order dependency with this group. 44 SmallVector<MemoryGroup *, 4> OrderSucc; 45 // Successors that are in a data dependency with this group. 46 SmallVector<MemoryGroup *, 4> DataSucc; 47 48 CriticalDependency CriticalPredecessor; 49 InstRef CriticalMemoryInstruction; 50 51 MemoryGroup(const MemoryGroup &) = delete; 52 MemoryGroup &operator=(const MemoryGroup &) = delete; 53 54 public: 55 MemoryGroup() = default; 56 MemoryGroup(MemoryGroup &&) = default; 57 getNumSuccessors()58 size_t getNumSuccessors() const { 59 return OrderSucc.size() + DataSucc.size(); 60 } getNumPredecessors()61 unsigned getNumPredecessors() const { return NumPredecessors; } getNumExecutingPredecessors()62 unsigned getNumExecutingPredecessors() const { 63 return NumExecutingPredecessors; 64 } getNumExecutedPredecessors()65 unsigned getNumExecutedPredecessors() const { 66 return NumExecutedPredecessors; 67 } getNumInstructions()68 unsigned getNumInstructions() const { return NumInstructions; } getNumExecuting()69 unsigned getNumExecuting() const { return NumExecuting; } getNumExecuted()70 unsigned getNumExecuted() const { return NumExecuted; } 71 getCriticalMemoryInstruction()72 const InstRef &getCriticalMemoryInstruction() const { 73 return CriticalMemoryInstruction; 74 } getCriticalPredecessor()75 const CriticalDependency &getCriticalPredecessor() const { 76 return CriticalPredecessor; 77 } 78 addSuccessor(MemoryGroup * Group,bool IsDataDependent)79 void addSuccessor(MemoryGroup *Group, bool IsDataDependent) { 80 // Do not need to add a dependency if there is no data 81 // dependency and all instructions from this group have been 82 // issued already. 83 if (!IsDataDependent && isExecuting()) 84 return; 85 86 Group->NumPredecessors++; 87 assert(!isExecuted() && "Should have been removed!"); 88 if (isExecuting()) 89 Group->onGroupIssued(CriticalMemoryInstruction, IsDataDependent); 90 91 if (IsDataDependent) 92 DataSucc.emplace_back(Group); 93 else 94 OrderSucc.emplace_back(Group); 95 } 96 isWaiting()97 bool isWaiting() const { 98 return NumPredecessors > 99 (NumExecutingPredecessors + NumExecutedPredecessors); 100 } isPending()101 bool isPending() const { 102 return NumExecutingPredecessors && 103 ((NumExecutedPredecessors + NumExecutingPredecessors) == 104 NumPredecessors); 105 } isReady()106 bool isReady() const { return NumExecutedPredecessors == NumPredecessors; } isExecuting()107 bool isExecuting() const { 108 return NumExecuting && (NumExecuting == (NumInstructions - NumExecuted)); 109 } isExecuted()110 bool isExecuted() const { return NumInstructions == NumExecuted; } 111 onGroupIssued(const InstRef & IR,bool ShouldUpdateCriticalDep)112 void onGroupIssued(const InstRef &IR, bool ShouldUpdateCriticalDep) { 113 assert(!isReady() && "Unexpected group-start event!"); 114 NumExecutingPredecessors++; 115 116 if (!ShouldUpdateCriticalDep) 117 return; 118 119 unsigned Cycles = IR.getInstruction()->getCyclesLeft(); 120 if (CriticalPredecessor.Cycles < Cycles) { 121 CriticalPredecessor.IID = IR.getSourceIndex(); 122 CriticalPredecessor.Cycles = Cycles; 123 } 124 } 125 onGroupExecuted()126 void onGroupExecuted() { 127 assert(!isReady() && "Inconsistent state found!"); 128 NumExecutingPredecessors--; 129 NumExecutedPredecessors++; 130 } 131 onInstructionIssued(const InstRef & IR)132 void onInstructionIssued(const InstRef &IR) { 133 assert(!isExecuting() && "Invalid internal state!"); 134 ++NumExecuting; 135 136 // update the CriticalMemDep. 137 const Instruction &IS = *IR.getInstruction(); 138 if ((bool)CriticalMemoryInstruction) { 139 const Instruction &OtherIS = *CriticalMemoryInstruction.getInstruction(); 140 if (OtherIS.getCyclesLeft() < IS.getCyclesLeft()) 141 CriticalMemoryInstruction = IR; 142 } else { 143 CriticalMemoryInstruction = IR; 144 } 145 146 if (!isExecuting()) 147 return; 148 149 // Notify successors that this group started execution. 150 for (MemoryGroup *MG : OrderSucc) { 151 MG->onGroupIssued(CriticalMemoryInstruction, false); 152 // Release the order dependency with this group. 153 MG->onGroupExecuted(); 154 } 155 156 for (MemoryGroup *MG : DataSucc) 157 MG->onGroupIssued(CriticalMemoryInstruction, true); 158 } 159 onInstructionExecuted(const InstRef & IR)160 void onInstructionExecuted(const InstRef &IR) { 161 assert(isReady() && !isExecuted() && "Invalid internal state!"); 162 --NumExecuting; 163 ++NumExecuted; 164 165 if (CriticalMemoryInstruction && 166 CriticalMemoryInstruction.getSourceIndex() == IR.getSourceIndex()) { 167 CriticalMemoryInstruction.invalidate(); 168 } 169 170 if (!isExecuted()) 171 return; 172 173 // Notify data dependent successors that this group has finished execution. 174 for (MemoryGroup *MG : DataSucc) 175 MG->onGroupExecuted(); 176 } 177 addInstruction()178 void addInstruction() { 179 assert(!getNumSuccessors() && "Cannot add instructions to this group!"); 180 ++NumInstructions; 181 } 182 cycleEvent()183 void cycleEvent() { 184 if (isWaiting() && CriticalPredecessor.Cycles) 185 CriticalPredecessor.Cycles--; 186 } 187 }; 188 189 /// Abstract base interface for LS (load/store) units in llvm-mca. 190 class LSUnitBase : public HardwareUnit { 191 /// Load queue size. 192 /// 193 /// A value of zero for this field means that the load queue is unbounded. 194 /// Processor models can declare the size of a load queue via tablegen (see 195 /// the definition of tablegen class LoadQueue in 196 /// llvm/Target/TargetSchedule.td). 197 unsigned LQSize; 198 199 /// Load queue size. 200 /// 201 /// A value of zero for this field means that the store queue is unbounded. 202 /// Processor models can declare the size of a store queue via tablegen (see 203 /// the definition of tablegen class StoreQueue in 204 /// llvm/Target/TargetSchedule.td). 205 unsigned SQSize; 206 207 unsigned UsedLQEntries; 208 unsigned UsedSQEntries; 209 210 /// True if loads don't alias with stores. 211 /// 212 /// By default, the LS unit assumes that loads and stores don't alias with 213 /// eachother. If this field is set to false, then loads are always assumed to 214 /// alias with stores. 215 const bool NoAlias; 216 217 /// Used to map group identifiers to MemoryGroups. 218 DenseMap<unsigned, std::unique_ptr<MemoryGroup>> Groups; 219 unsigned NextGroupID; 220 221 public: 222 LSUnitBase(const MCSchedModel &SM, unsigned LoadQueueSize, 223 unsigned StoreQueueSize, bool AssumeNoAlias); 224 225 virtual ~LSUnitBase(); 226 227 /// Returns the total number of entries in the load queue. getLoadQueueSize()228 unsigned getLoadQueueSize() const { return LQSize; } 229 230 /// Returns the total number of entries in the store queue. getStoreQueueSize()231 unsigned getStoreQueueSize() const { return SQSize; } 232 getUsedLQEntries()233 unsigned getUsedLQEntries() const { return UsedLQEntries; } getUsedSQEntries()234 unsigned getUsedSQEntries() const { return UsedSQEntries; } acquireLQSlot()235 void acquireLQSlot() { ++UsedLQEntries; } acquireSQSlot()236 void acquireSQSlot() { ++UsedSQEntries; } releaseLQSlot()237 void releaseLQSlot() { --UsedLQEntries; } releaseSQSlot()238 void releaseSQSlot() { --UsedSQEntries; } 239 assumeNoAlias()240 bool assumeNoAlias() const { return NoAlias; } 241 242 enum Status { 243 LSU_AVAILABLE = 0, 244 LSU_LQUEUE_FULL, // Load Queue unavailable 245 LSU_SQUEUE_FULL // Store Queue unavailable 246 }; 247 248 /// This method checks the availability of the load/store buffers. 249 /// 250 /// Returns LSU_AVAILABLE if there are enough load/store queue entries to 251 /// accomodate instruction IR. By default, LSU_AVAILABLE is returned if IR is 252 /// not a memory operation. 253 virtual Status isAvailable(const InstRef &IR) const = 0; 254 255 /// Allocates LS resources for instruction IR. 256 /// 257 /// This method assumes that a previous call to `isAvailable(IR)` succeeded 258 /// with a LSUnitBase::Status value of LSU_AVAILABLE. 259 /// Returns the GroupID associated with this instruction. That value will be 260 /// used to set the LSUTokenID field in class Instruction. 261 virtual unsigned dispatch(const InstRef &IR) = 0; 262 isSQEmpty()263 bool isSQEmpty() const { return !UsedSQEntries; } isLQEmpty()264 bool isLQEmpty() const { return !UsedLQEntries; } isSQFull()265 bool isSQFull() const { return SQSize && SQSize == UsedSQEntries; } isLQFull()266 bool isLQFull() const { return LQSize && LQSize == UsedLQEntries; } 267 isValidGroupID(unsigned Index)268 bool isValidGroupID(unsigned Index) const { 269 return Index && Groups.contains(Index); 270 } 271 272 /// Check if a peviously dispatched instruction IR is now ready for execution. isReady(const InstRef & IR)273 bool isReady(const InstRef &IR) const { 274 unsigned GroupID = IR.getInstruction()->getLSUTokenID(); 275 const MemoryGroup &Group = getGroup(GroupID); 276 return Group.isReady(); 277 } 278 279 /// Check if instruction IR only depends on memory instructions that are 280 /// currently executing. isPending(const InstRef & IR)281 bool isPending(const InstRef &IR) const { 282 unsigned GroupID = IR.getInstruction()->getLSUTokenID(); 283 const MemoryGroup &Group = getGroup(GroupID); 284 return Group.isPending(); 285 } 286 287 /// Check if instruction IR is still waiting on memory operations, and the 288 /// wait time is still unknown. isWaiting(const InstRef & IR)289 bool isWaiting(const InstRef &IR) const { 290 unsigned GroupID = IR.getInstruction()->getLSUTokenID(); 291 const MemoryGroup &Group = getGroup(GroupID); 292 return Group.isWaiting(); 293 } 294 hasDependentUsers(const InstRef & IR)295 bool hasDependentUsers(const InstRef &IR) const { 296 unsigned GroupID = IR.getInstruction()->getLSUTokenID(); 297 const MemoryGroup &Group = getGroup(GroupID); 298 return !Group.isExecuted() && Group.getNumSuccessors(); 299 } 300 getGroup(unsigned Index)301 const MemoryGroup &getGroup(unsigned Index) const { 302 assert(isValidGroupID(Index) && "Group doesn't exist!"); 303 return *Groups.find(Index)->second; 304 } 305 getGroup(unsigned Index)306 MemoryGroup &getGroup(unsigned Index) { 307 assert(isValidGroupID(Index) && "Group doesn't exist!"); 308 return *Groups.find(Index)->second; 309 } 310 createMemoryGroup()311 unsigned createMemoryGroup() { 312 Groups.insert( 313 std::make_pair(NextGroupID, std::make_unique<MemoryGroup>())); 314 return NextGroupID++; 315 } 316 317 virtual void onInstructionExecuted(const InstRef &IR); 318 319 // Loads are tracked by the LDQ (load queue) from dispatch until completion. 320 // Stores are tracked by the STQ (store queue) from dispatch until commitment. 321 // By default we conservatively assume that the LDQ receives a load at 322 // dispatch. Loads leave the LDQ at retirement stage. 323 virtual void onInstructionRetired(const InstRef &IR); 324 onInstructionIssued(const InstRef & IR)325 virtual void onInstructionIssued(const InstRef &IR) { 326 unsigned GroupID = IR.getInstruction()->getLSUTokenID(); 327 Groups[GroupID]->onInstructionIssued(IR); 328 } 329 330 virtual void cycleEvent(); 331 332 #ifndef NDEBUG 333 void dump() const; 334 #endif 335 }; 336 337 /// Default Load/Store Unit (LS Unit) for simulated processors. 338 /// 339 /// Each load (or store) consumes one entry in the load (or store) queue. 340 /// 341 /// Rules are: 342 /// 1) A younger load is allowed to pass an older load only if there are no 343 /// stores nor barriers in between the two loads. 344 /// 2) An younger store is not allowed to pass an older store. 345 /// 3) A younger store is not allowed to pass an older load. 346 /// 4) A younger load is allowed to pass an older store only if the load does 347 /// not alias with the store. 348 /// 349 /// This class optimistically assumes that loads don't alias store operations. 350 /// Under this assumption, younger loads are always allowed to pass older 351 /// stores (this would only affects rule 4). 352 /// Essentially, this class doesn't perform any sort alias analysis to 353 /// identify aliasing loads and stores. 354 /// 355 /// To enforce aliasing between loads and stores, flag `AssumeNoAlias` must be 356 /// set to `false` by the constructor of LSUnit. 357 /// 358 /// Note that this class doesn't know about the existence of different memory 359 /// types for memory operations (example: write-through, write-combining, etc.). 360 /// Derived classes are responsible for implementing that extra knowledge, and 361 /// provide different sets of rules for loads and stores by overriding method 362 /// `isReady()`. 363 /// To emulate a write-combining memory type, rule 2. must be relaxed in a 364 /// derived class to enable the reordering of non-aliasing store operations. 365 /// 366 /// No assumptions are made by this class on the size of the store buffer. This 367 /// class doesn't know how to identify cases where store-to-load forwarding may 368 /// occur. 369 /// 370 /// LSUnit doesn't attempt to predict whether a load or store hits or misses 371 /// the L1 cache. To be more specific, LSUnit doesn't know anything about 372 /// cache hierarchy and memory types. 373 /// It only knows if an instruction "mayLoad" and/or "mayStore". For loads, the 374 /// scheduling model provides an "optimistic" load-to-use latency (which usually 375 /// matches the load-to-use latency for when there is a hit in the L1D). 376 /// Derived classes may expand this knowledge. 377 /// 378 /// Class MCInstrDesc in LLVM doesn't know about serializing operations, nor 379 /// memory-barrier like instructions. 380 /// LSUnit conservatively assumes that an instruction which `mayLoad` and has 381 /// `unmodeled side effects` behave like a "soft" load-barrier. That means, it 382 /// serializes loads without forcing a flush of the load queue. 383 /// Similarly, instructions that both `mayStore` and have `unmodeled side 384 /// effects` are treated like store barriers. A full memory 385 /// barrier is a 'mayLoad' and 'mayStore' instruction with unmodeled side 386 /// effects. This is obviously inaccurate, but this is the best that we can do 387 /// at the moment. 388 /// 389 /// Each load/store barrier consumes one entry in the load/store queue. A 390 /// load/store barrier enforces ordering of loads/stores: 391 /// - A younger load cannot pass a load barrier. 392 /// - A younger store cannot pass a store barrier. 393 /// 394 /// A younger load has to wait for the memory load barrier to execute. 395 /// A load/store barrier is "executed" when it becomes the oldest entry in 396 /// the load/store queue(s). That also means, all the older loads/stores have 397 /// already been executed. 398 class LSUnit : public LSUnitBase { 399 // This class doesn't know about the latency of a load instruction. So, it 400 // conservatively/pessimistically assumes that the latency of a load opcode 401 // matches the instruction latency. 402 // 403 // FIXME: In the absence of cache misses (i.e. L1I/L1D/iTLB/dTLB hits/misses), 404 // and load/store conflicts, the latency of a load is determined by the depth 405 // of the load pipeline. So, we could use field `LoadLatency` in the 406 // MCSchedModel to model that latency. 407 // Field `LoadLatency` often matches the so-called 'load-to-use' latency from 408 // L1D, and it usually already accounts for any extra latency due to data 409 // forwarding. 410 // When doing throughput analysis, `LoadLatency` is likely to 411 // be a better predictor of load latency than instruction latency. This is 412 // particularly true when simulating code with temporal/spatial locality of 413 // memory accesses. 414 // Using `LoadLatency` (instead of the instruction latency) is also expected 415 // to improve the load queue allocation for long latency instructions with 416 // folded memory operands (See PR39829). 417 // 418 // FIXME: On some processors, load/store operations are split into multiple 419 // uOps. For example, X86 AMD Jaguar natively supports 128-bit data types, but 420 // not 256-bit data types. So, a 256-bit load is effectively split into two 421 // 128-bit loads, and each split load consumes one 'LoadQueue' entry. For 422 // simplicity, this class optimistically assumes that a load instruction only 423 // consumes one entry in the LoadQueue. Similarly, store instructions only 424 // consume a single entry in the StoreQueue. 425 // In future, we should reassess the quality of this design, and consider 426 // alternative approaches that let instructions specify the number of 427 // load/store queue entries which they consume at dispatch stage (See 428 // PR39830). 429 // 430 // An instruction that both 'mayStore' and 'HasUnmodeledSideEffects' is 431 // conservatively treated as a store barrier. It forces older store to be 432 // executed before newer stores are issued. 433 // 434 // An instruction that both 'MayLoad' and 'HasUnmodeledSideEffects' is 435 // conservatively treated as a load barrier. It forces older loads to execute 436 // before newer loads are issued. 437 unsigned CurrentLoadGroupID; 438 unsigned CurrentLoadBarrierGroupID; 439 unsigned CurrentStoreGroupID; 440 unsigned CurrentStoreBarrierGroupID; 441 442 public: LSUnit(const MCSchedModel & SM)443 LSUnit(const MCSchedModel &SM) 444 : LSUnit(SM, /* LQSize */ 0, /* SQSize */ 0, /* NoAlias */ false) {} LSUnit(const MCSchedModel & SM,unsigned LQ,unsigned SQ)445 LSUnit(const MCSchedModel &SM, unsigned LQ, unsigned SQ) 446 : LSUnit(SM, LQ, SQ, /* NoAlias */ false) {} LSUnit(const MCSchedModel & SM,unsigned LQ,unsigned SQ,bool AssumeNoAlias)447 LSUnit(const MCSchedModel &SM, unsigned LQ, unsigned SQ, bool AssumeNoAlias) 448 : LSUnitBase(SM, LQ, SQ, AssumeNoAlias), CurrentLoadGroupID(0), 449 CurrentLoadBarrierGroupID(0), CurrentStoreGroupID(0), 450 CurrentStoreBarrierGroupID(0) {} 451 452 /// Returns LSU_AVAILABLE if there are enough load/store queue entries to 453 /// accomodate instruction IR. 454 Status isAvailable(const InstRef &IR) const override; 455 456 /// Allocates LS resources for instruction IR. 457 /// 458 /// This method assumes that a previous call to `isAvailable(IR)` succeeded 459 /// returning LSU_AVAILABLE. 460 /// 461 /// Rules are: 462 /// By default, rules are: 463 /// 1. A store may not pass a previous store. 464 /// 2. A load may not pass a previous store unless flag 'NoAlias' is set. 465 /// 3. A load may pass a previous load. 466 /// 4. A store may not pass a previous load (regardless of flag 'NoAlias'). 467 /// 5. A load has to wait until an older load barrier is fully executed. 468 /// 6. A store has to wait until an older store barrier is fully executed. 469 unsigned dispatch(const InstRef &IR) override; 470 471 void onInstructionExecuted(const InstRef &IR) override; 472 }; 473 474 } // namespace mca 475 } // namespace llvm 476 477 #endif // LLVM_MCA_HARDWAREUNITS_LSUNIT_H 478