xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGObjC.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1  //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This contains code to emit Objective-C code as LLVM code.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "CGDebugInfo.h"
14  #include "CGObjCRuntime.h"
15  #include "CodeGenFunction.h"
16  #include "CodeGenModule.h"
17  #include "ConstantEmitter.h"
18  #include "TargetInfo.h"
19  #include "clang/AST/ASTContext.h"
20  #include "clang/AST/Attr.h"
21  #include "clang/AST/DeclObjC.h"
22  #include "clang/AST/StmtObjC.h"
23  #include "clang/Basic/Diagnostic.h"
24  #include "clang/CodeGen/CGFunctionInfo.h"
25  #include "clang/CodeGen/CodeGenABITypes.h"
26  #include "llvm/ADT/STLExtras.h"
27  #include "llvm/Analysis/ObjCARCUtil.h"
28  #include "llvm/BinaryFormat/MachO.h"
29  #include "llvm/IR/Constants.h"
30  #include "llvm/IR/DataLayout.h"
31  #include "llvm/IR/InlineAsm.h"
32  #include <optional>
33  using namespace clang;
34  using namespace CodeGen;
35  
36  typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
37  static TryEmitResult
38  tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
39  static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
40                                     QualType ET,
41                                     RValue Result);
42  
43  /// Given the address of a variable of pointer type, find the correct
44  /// null to store into it.
getNullForVariable(Address addr)45  static llvm::Constant *getNullForVariable(Address addr) {
46    llvm::Type *type = addr.getElementType();
47    return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
48  }
49  
50  /// Emits an instance of NSConstantString representing the object.
EmitObjCStringLiteral(const ObjCStringLiteral * E)51  llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
52  {
53    llvm::Constant *C =
54        CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
55    return C;
56  }
57  
58  /// EmitObjCBoxedExpr - This routine generates code to call
59  /// the appropriate expression boxing method. This will either be
60  /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
61  /// or [NSValue valueWithBytes:objCType:].
62  ///
63  llvm::Value *
EmitObjCBoxedExpr(const ObjCBoxedExpr * E)64  CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
65    // Generate the correct selector for this literal's concrete type.
66    // Get the method.
67    const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
68    const Expr *SubExpr = E->getSubExpr();
69  
70    if (E->isExpressibleAsConstantInitializer()) {
71      ConstantEmitter ConstEmitter(CGM);
72      return ConstEmitter.tryEmitAbstract(E, E->getType());
73    }
74  
75    assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
76    Selector Sel = BoxingMethod->getSelector();
77  
78    // Generate a reference to the class pointer, which will be the receiver.
79    // Assumes that the method was introduced in the class that should be
80    // messaged (avoids pulling it out of the result type).
81    CGObjCRuntime &Runtime = CGM.getObjCRuntime();
82    const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
83    llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
84  
85    CallArgList Args;
86    const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
87    QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
88  
89    // ObjCBoxedExpr supports boxing of structs and unions
90    // via [NSValue valueWithBytes:objCType:]
91    const QualType ValueType(SubExpr->getType().getCanonicalType());
92    if (ValueType->isObjCBoxableRecordType()) {
93      // Emit CodeGen for first parameter
94      // and cast value to correct type
95      Address Temporary = CreateMemTemp(SubExpr->getType());
96      EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
97      llvm::Value *BitCast = Builder.CreateBitCast(
98          Temporary.emitRawPointer(*this), ConvertType(ArgQT));
99      Args.add(RValue::get(BitCast), ArgQT);
100  
101      // Create char array to store type encoding
102      std::string Str;
103      getContext().getObjCEncodingForType(ValueType, Str);
104      llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
105  
106      // Cast type encoding to correct type
107      const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
108      QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
109      llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
110  
111      Args.add(RValue::get(Cast), EncodingQT);
112    } else {
113      Args.add(EmitAnyExpr(SubExpr), ArgQT);
114    }
115  
116    RValue result = Runtime.GenerateMessageSend(
117        *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
118        Args, ClassDecl, BoxingMethod);
119    return Builder.CreateBitCast(result.getScalarVal(),
120                                 ConvertType(E->getType()));
121  }
122  
EmitObjCCollectionLiteral(const Expr * E,const ObjCMethodDecl * MethodWithObjects)123  llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
124                                      const ObjCMethodDecl *MethodWithObjects) {
125    ASTContext &Context = CGM.getContext();
126    const ObjCDictionaryLiteral *DLE = nullptr;
127    const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
128    if (!ALE)
129      DLE = cast<ObjCDictionaryLiteral>(E);
130  
131    // Optimize empty collections by referencing constants, when available.
132    uint64_t NumElements =
133      ALE ? ALE->getNumElements() : DLE->getNumElements();
134    if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
135      StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
136      QualType IdTy(CGM.getContext().getObjCIdType());
137      llvm::Constant *Constant =
138          CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
139      LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
140      llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
141      cast<llvm::LoadInst>(Ptr)->setMetadata(
142          llvm::LLVMContext::MD_invariant_load,
143          llvm::MDNode::get(getLLVMContext(), std::nullopt));
144      return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
145    }
146  
147    // Compute the type of the array we're initializing.
148    llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
149                              NumElements);
150    QualType ElementType = Context.getObjCIdType().withConst();
151    QualType ElementArrayType = Context.getConstantArrayType(
152        ElementType, APNumElements, nullptr, ArraySizeModifier::Normal,
153        /*IndexTypeQuals=*/0);
154  
155    // Allocate the temporary array(s).
156    Address Objects = CreateMemTemp(ElementArrayType, "objects");
157    Address Keys = Address::invalid();
158    if (DLE)
159      Keys = CreateMemTemp(ElementArrayType, "keys");
160  
161    // In ARC, we may need to do extra work to keep all the keys and
162    // values alive until after the call.
163    SmallVector<llvm::Value *, 16> NeededObjects;
164    bool TrackNeededObjects =
165      (getLangOpts().ObjCAutoRefCount &&
166      CGM.getCodeGenOpts().OptimizationLevel != 0);
167  
168    // Perform the actual initialialization of the array(s).
169    for (uint64_t i = 0; i < NumElements; i++) {
170      if (ALE) {
171        // Emit the element and store it to the appropriate array slot.
172        const Expr *Rhs = ALE->getElement(i);
173        LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
174                                   ElementType, AlignmentSource::Decl);
175  
176        llvm::Value *value = EmitScalarExpr(Rhs);
177        EmitStoreThroughLValue(RValue::get(value), LV, true);
178        if (TrackNeededObjects) {
179          NeededObjects.push_back(value);
180        }
181      } else {
182        // Emit the key and store it to the appropriate array slot.
183        const Expr *Key = DLE->getKeyValueElement(i).Key;
184        LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
185                                      ElementType, AlignmentSource::Decl);
186        llvm::Value *keyValue = EmitScalarExpr(Key);
187        EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
188  
189        // Emit the value and store it to the appropriate array slot.
190        const Expr *Value = DLE->getKeyValueElement(i).Value;
191        LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
192                                        ElementType, AlignmentSource::Decl);
193        llvm::Value *valueValue = EmitScalarExpr(Value);
194        EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
195        if (TrackNeededObjects) {
196          NeededObjects.push_back(keyValue);
197          NeededObjects.push_back(valueValue);
198        }
199      }
200    }
201  
202    // Generate the argument list.
203    CallArgList Args;
204    ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
205    const ParmVarDecl *argDecl = *PI++;
206    QualType ArgQT = argDecl->getType().getUnqualifiedType();
207    Args.add(RValue::get(Objects, *this), ArgQT);
208    if (DLE) {
209      argDecl = *PI++;
210      ArgQT = argDecl->getType().getUnqualifiedType();
211      Args.add(RValue::get(Keys, *this), ArgQT);
212    }
213    argDecl = *PI;
214    ArgQT = argDecl->getType().getUnqualifiedType();
215    llvm::Value *Count =
216      llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
217    Args.add(RValue::get(Count), ArgQT);
218  
219    // Generate a reference to the class pointer, which will be the receiver.
220    Selector Sel = MethodWithObjects->getSelector();
221    QualType ResultType = E->getType();
222    const ObjCObjectPointerType *InterfacePointerType
223      = ResultType->getAsObjCInterfacePointerType();
224    assert(InterfacePointerType && "Unexpected InterfacePointerType - null");
225    ObjCInterfaceDecl *Class
226      = InterfacePointerType->getObjectType()->getInterface();
227    CGObjCRuntime &Runtime = CGM.getObjCRuntime();
228    llvm::Value *Receiver = Runtime.GetClass(*this, Class);
229  
230    // Generate the message send.
231    RValue result = Runtime.GenerateMessageSend(
232        *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
233        Receiver, Args, Class, MethodWithObjects);
234  
235    // The above message send needs these objects, but in ARC they are
236    // passed in a buffer that is essentially __unsafe_unretained.
237    // Therefore we must prevent the optimizer from releasing them until
238    // after the call.
239    if (TrackNeededObjects) {
240      EmitARCIntrinsicUse(NeededObjects);
241    }
242  
243    return Builder.CreateBitCast(result.getScalarVal(),
244                                 ConvertType(E->getType()));
245  }
246  
EmitObjCArrayLiteral(const ObjCArrayLiteral * E)247  llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
248    return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
249  }
250  
EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral * E)251  llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
252                                              const ObjCDictionaryLiteral *E) {
253    return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
254  }
255  
256  /// Emit a selector.
EmitObjCSelectorExpr(const ObjCSelectorExpr * E)257  llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
258    // Untyped selector.
259    // Note that this implementation allows for non-constant strings to be passed
260    // as arguments to @selector().  Currently, the only thing preventing this
261    // behaviour is the type checking in the front end.
262    return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
263  }
264  
EmitObjCProtocolExpr(const ObjCProtocolExpr * E)265  llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
266    // FIXME: This should pass the Decl not the name.
267    return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
268  }
269  
270  /// Adjust the type of an Objective-C object that doesn't match up due
271  /// to type erasure at various points, e.g., related result types or the use
272  /// of parameterized classes.
AdjustObjCObjectType(CodeGenFunction & CGF,QualType ExpT,RValue Result)273  static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
274                                     RValue Result) {
275    if (!ExpT->isObjCRetainableType())
276      return Result;
277  
278    // If the converted types are the same, we're done.
279    llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
280    if (ExpLLVMTy == Result.getScalarVal()->getType())
281      return Result;
282  
283    // We have applied a substitution. Cast the rvalue appropriately.
284    return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
285                                                 ExpLLVMTy));
286  }
287  
288  /// Decide whether to extend the lifetime of the receiver of a
289  /// returns-inner-pointer message.
290  static bool
shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr * message)291  shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
292    switch (message->getReceiverKind()) {
293  
294    // For a normal instance message, we should extend unless the
295    // receiver is loaded from a variable with precise lifetime.
296    case ObjCMessageExpr::Instance: {
297      const Expr *receiver = message->getInstanceReceiver();
298  
299      // Look through OVEs.
300      if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
301        if (opaque->getSourceExpr())
302          receiver = opaque->getSourceExpr()->IgnoreParens();
303      }
304  
305      const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
306      if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
307      receiver = ice->getSubExpr()->IgnoreParens();
308  
309      // Look through OVEs.
310      if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
311        if (opaque->getSourceExpr())
312          receiver = opaque->getSourceExpr()->IgnoreParens();
313      }
314  
315      // Only __strong variables.
316      if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
317        return true;
318  
319      // All ivars and fields have precise lifetime.
320      if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
321        return false;
322  
323      // Otherwise, check for variables.
324      const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
325      if (!declRef) return true;
326      const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
327      if (!var) return true;
328  
329      // All variables have precise lifetime except local variables with
330      // automatic storage duration that aren't specially marked.
331      return (var->hasLocalStorage() &&
332              !var->hasAttr<ObjCPreciseLifetimeAttr>());
333    }
334  
335    case ObjCMessageExpr::Class:
336    case ObjCMessageExpr::SuperClass:
337      // It's never necessary for class objects.
338      return false;
339  
340    case ObjCMessageExpr::SuperInstance:
341      // We generally assume that 'self' lives throughout a method call.
342      return false;
343    }
344  
345    llvm_unreachable("invalid receiver kind");
346  }
347  
348  /// Given an expression of ObjC pointer type, check whether it was
349  /// immediately loaded from an ARC __weak l-value.
findWeakLValue(const Expr * E)350  static const Expr *findWeakLValue(const Expr *E) {
351    assert(E->getType()->isObjCRetainableType());
352    E = E->IgnoreParens();
353    if (auto CE = dyn_cast<CastExpr>(E)) {
354      if (CE->getCastKind() == CK_LValueToRValue) {
355        if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
356          return CE->getSubExpr();
357      }
358    }
359  
360    return nullptr;
361  }
362  
363  /// The ObjC runtime may provide entrypoints that are likely to be faster
364  /// than an ordinary message send of the appropriate selector.
365  ///
366  /// The entrypoints are guaranteed to be equivalent to just sending the
367  /// corresponding message.  If the entrypoint is implemented naively as just a
368  /// message send, using it is a trade-off: it sacrifices a few cycles of
369  /// overhead to save a small amount of code.  However, it's possible for
370  /// runtimes to detect and special-case classes that use "standard"
371  /// behavior; if that's dynamically a large proportion of all objects, using
372  /// the entrypoint will also be faster than using a message send.
373  ///
374  /// If the runtime does support a required entrypoint, then this method will
375  /// generate a call and return the resulting value.  Otherwise it will return
376  /// std::nullopt and the caller can generate a msgSend instead.
tryGenerateSpecializedMessageSend(CodeGenFunction & CGF,QualType ResultType,llvm::Value * Receiver,const CallArgList & Args,Selector Sel,const ObjCMethodDecl * method,bool isClassMessage)377  static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend(
378      CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver,
379      const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method,
380      bool isClassMessage) {
381    auto &CGM = CGF.CGM;
382    if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
383      return std::nullopt;
384  
385    auto &Runtime = CGM.getLangOpts().ObjCRuntime;
386    switch (Sel.getMethodFamily()) {
387    case OMF_alloc:
388      if (isClassMessage &&
389          Runtime.shouldUseRuntimeFunctionsForAlloc() &&
390          ResultType->isObjCObjectPointerType()) {
391          // [Foo alloc] -> objc_alloc(Foo) or
392          // [self alloc] -> objc_alloc(self)
393          if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
394            return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
395          // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
396          // [self allocWithZone:nil] -> objc_allocWithZone(self)
397          if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
398              Args.size() == 1 && Args.front().getType()->isPointerType() &&
399              Sel.getNameForSlot(0) == "allocWithZone") {
400            const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
401            if (isa<llvm::ConstantPointerNull>(arg))
402              return CGF.EmitObjCAllocWithZone(Receiver,
403                                               CGF.ConvertType(ResultType));
404            return std::nullopt;
405          }
406      }
407      break;
408  
409    case OMF_autorelease:
410      if (ResultType->isObjCObjectPointerType() &&
411          CGM.getLangOpts().getGC() == LangOptions::NonGC &&
412          Runtime.shouldUseARCFunctionsForRetainRelease())
413        return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
414      break;
415  
416    case OMF_retain:
417      if (ResultType->isObjCObjectPointerType() &&
418          CGM.getLangOpts().getGC() == LangOptions::NonGC &&
419          Runtime.shouldUseARCFunctionsForRetainRelease())
420        return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
421      break;
422  
423    case OMF_release:
424      if (ResultType->isVoidType() &&
425          CGM.getLangOpts().getGC() == LangOptions::NonGC &&
426          Runtime.shouldUseARCFunctionsForRetainRelease()) {
427        CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
428        return nullptr;
429      }
430      break;
431  
432    default:
433      break;
434    }
435    return std::nullopt;
436  }
437  
GeneratePossiblySpecializedMessageSend(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & Args,const ObjCInterfaceDecl * OID,const ObjCMethodDecl * Method,bool isClassMessage)438  CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
439      CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
440      Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
441      const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
442      bool isClassMessage) {
443    if (std::optional<llvm::Value *> SpecializedResult =
444            tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
445                                              Sel, Method, isClassMessage)) {
446      return RValue::get(*SpecializedResult);
447    }
448    return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
449                               Method);
450  }
451  
AppendFirstImpliedRuntimeProtocols(const ObjCProtocolDecl * PD,llvm::UniqueVector<const ObjCProtocolDecl * > & PDs)452  static void AppendFirstImpliedRuntimeProtocols(
453      const ObjCProtocolDecl *PD,
454      llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) {
455    if (!PD->isNonRuntimeProtocol()) {
456      const auto *Can = PD->getCanonicalDecl();
457      PDs.insert(Can);
458      return;
459    }
460  
461    for (const auto *ParentPD : PD->protocols())
462      AppendFirstImpliedRuntimeProtocols(ParentPD, PDs);
463  }
464  
465  std::vector<const ObjCProtocolDecl *>
GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,ObjCProtocolDecl::protocol_iterator end)466  CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin,
467                                        ObjCProtocolDecl::protocol_iterator end) {
468    std::vector<const ObjCProtocolDecl *> RuntimePds;
469    llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs;
470  
471    for (; begin != end; ++begin) {
472      const auto *It = *begin;
473      const auto *Can = It->getCanonicalDecl();
474      if (Can->isNonRuntimeProtocol())
475        NonRuntimePDs.insert(Can);
476      else
477        RuntimePds.push_back(Can);
478    }
479  
480    // If there are no non-runtime protocols then we can just stop now.
481    if (NonRuntimePDs.empty())
482      return RuntimePds;
483  
484    // Else we have to search through the non-runtime protocol's inheritancy
485    // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
486    // a non-runtime protocol without any parents. These are the "first-implied"
487    // protocols from a non-runtime protocol.
488    llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos;
489    for (const auto *PD : NonRuntimePDs)
490      AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos);
491  
492    // Walk the Runtime list to get all protocols implied via the inclusion of
493    // this protocol, e.g. all protocols it inherits from including itself.
494    llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols;
495    for (const auto *PD : RuntimePds) {
496      const auto *Can = PD->getCanonicalDecl();
497      AllImpliedProtocols.insert(Can);
498      Can->getImpliedProtocols(AllImpliedProtocols);
499    }
500  
501    // Similar to above, walk the list of first-implied protocols to find the set
502    // all the protocols implied excluding the listed protocols themselves since
503    // they are not yet a part of the `RuntimePds` list.
504    for (const auto *PD : FirstImpliedProtos) {
505      PD->getImpliedProtocols(AllImpliedProtocols);
506    }
507  
508    // From the first-implied list we have to finish building the final protocol
509    // list. If a protocol in the first-implied list was already implied via some
510    // inheritance path through some other protocols then it would be redundant to
511    // add it here and so we skip over it.
512    for (const auto *PD : FirstImpliedProtos) {
513      if (!AllImpliedProtocols.contains(PD)) {
514        RuntimePds.push_back(PD);
515      }
516    }
517  
518    return RuntimePds;
519  }
520  
521  /// Instead of '[[MyClass alloc] init]', try to generate
522  /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
523  /// caller side, as well as the optimized objc_alloc.
524  static std::optional<llvm::Value *>
tryEmitSpecializedAllocInit(CodeGenFunction & CGF,const ObjCMessageExpr * OME)525  tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
526    auto &Runtime = CGF.getLangOpts().ObjCRuntime;
527    if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
528      return std::nullopt;
529  
530    // Match the exact pattern '[[MyClass alloc] init]'.
531    Selector Sel = OME->getSelector();
532    if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
533        !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
534        Sel.getNameForSlot(0) != "init")
535      return std::nullopt;
536  
537    // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
538    // with 'cls' a Class.
539    auto *SubOME =
540        dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
541    if (!SubOME)
542      return std::nullopt;
543    Selector SubSel = SubOME->getSelector();
544  
545    if (!SubOME->getType()->isObjCObjectPointerType() ||
546        !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
547      return std::nullopt;
548  
549    llvm::Value *Receiver = nullptr;
550    switch (SubOME->getReceiverKind()) {
551    case ObjCMessageExpr::Instance:
552      if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType())
553        return std::nullopt;
554      Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver());
555      break;
556  
557    case ObjCMessageExpr::Class: {
558      QualType ReceiverType = SubOME->getClassReceiver();
559      const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>();
560      const ObjCInterfaceDecl *ID = ObjTy->getInterface();
561      assert(ID && "null interface should be impossible here");
562      Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
563      break;
564    }
565    case ObjCMessageExpr::SuperInstance:
566    case ObjCMessageExpr::SuperClass:
567      return std::nullopt;
568    }
569  
570    return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
571  }
572  
EmitObjCMessageExpr(const ObjCMessageExpr * E,ReturnValueSlot Return)573  RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
574                                              ReturnValueSlot Return) {
575    // Only the lookup mechanism and first two arguments of the method
576    // implementation vary between runtimes.  We can get the receiver and
577    // arguments in generic code.
578  
579    bool isDelegateInit = E->isDelegateInitCall();
580  
581    const ObjCMethodDecl *method = E->getMethodDecl();
582  
583    // If the method is -retain, and the receiver's being loaded from
584    // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
585    if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
586        method->getMethodFamily() == OMF_retain) {
587      if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
588        LValue lvalue = EmitLValue(lvalueExpr);
589        llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
590        return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
591      }
592    }
593  
594    if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
595      return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
596  
597    // We don't retain the receiver in delegate init calls, and this is
598    // safe because the receiver value is always loaded from 'self',
599    // which we zero out.  We don't want to Block_copy block receivers,
600    // though.
601    bool retainSelf =
602      (!isDelegateInit &&
603       CGM.getLangOpts().ObjCAutoRefCount &&
604       method &&
605       method->hasAttr<NSConsumesSelfAttr>());
606  
607    CGObjCRuntime &Runtime = CGM.getObjCRuntime();
608    bool isSuperMessage = false;
609    bool isClassMessage = false;
610    ObjCInterfaceDecl *OID = nullptr;
611    // Find the receiver
612    QualType ReceiverType;
613    llvm::Value *Receiver = nullptr;
614    switch (E->getReceiverKind()) {
615    case ObjCMessageExpr::Instance:
616      ReceiverType = E->getInstanceReceiver()->getType();
617      isClassMessage = ReceiverType->isObjCClassType();
618      if (retainSelf) {
619        TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
620                                                     E->getInstanceReceiver());
621        Receiver = ter.getPointer();
622        if (ter.getInt()) retainSelf = false;
623      } else
624        Receiver = EmitScalarExpr(E->getInstanceReceiver());
625      break;
626  
627    case ObjCMessageExpr::Class: {
628      ReceiverType = E->getClassReceiver();
629      OID = ReceiverType->castAs<ObjCObjectType>()->getInterface();
630      assert(OID && "Invalid Objective-C class message send");
631      Receiver = Runtime.GetClass(*this, OID);
632      isClassMessage = true;
633      break;
634    }
635  
636    case ObjCMessageExpr::SuperInstance:
637      ReceiverType = E->getSuperType();
638      Receiver = LoadObjCSelf();
639      isSuperMessage = true;
640      break;
641  
642    case ObjCMessageExpr::SuperClass:
643      ReceiverType = E->getSuperType();
644      Receiver = LoadObjCSelf();
645      isSuperMessage = true;
646      isClassMessage = true;
647      break;
648    }
649  
650    if (retainSelf)
651      Receiver = EmitARCRetainNonBlock(Receiver);
652  
653    // In ARC, we sometimes want to "extend the lifetime"
654    // (i.e. retain+autorelease) of receivers of returns-inner-pointer
655    // messages.
656    if (getLangOpts().ObjCAutoRefCount && method &&
657        method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
658        shouldExtendReceiverForInnerPointerMessage(E))
659      Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
660  
661    QualType ResultType = method ? method->getReturnType() : E->getType();
662  
663    CallArgList Args;
664    EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
665  
666    // For delegate init calls in ARC, do an unsafe store of null into
667    // self.  This represents the call taking direct ownership of that
668    // value.  We have to do this after emitting the other call
669    // arguments because they might also reference self, but we don't
670    // have to worry about any of them modifying self because that would
671    // be an undefined read and write of an object in unordered
672    // expressions.
673    if (isDelegateInit) {
674      assert(getLangOpts().ObjCAutoRefCount &&
675             "delegate init calls should only be marked in ARC");
676  
677      // Do an unsafe store of null into self.
678      Address selfAddr =
679        GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
680      Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
681    }
682  
683    RValue result;
684    if (isSuperMessage) {
685      // super is only valid in an Objective-C method
686      const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
687      bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
688      result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
689                                                E->getSelector(),
690                                                OMD->getClassInterface(),
691                                                isCategoryImpl,
692                                                Receiver,
693                                                isClassMessage,
694                                                Args,
695                                                method);
696    } else {
697      // Call runtime methods directly if we can.
698      result = Runtime.GeneratePossiblySpecializedMessageSend(
699          *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
700          method, isClassMessage);
701    }
702  
703    // For delegate init calls in ARC, implicitly store the result of
704    // the call back into self.  This takes ownership of the value.
705    if (isDelegateInit) {
706      Address selfAddr =
707        GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
708      llvm::Value *newSelf = result.getScalarVal();
709  
710      // The delegate return type isn't necessarily a matching type; in
711      // fact, it's quite likely to be 'id'.
712      llvm::Type *selfTy = selfAddr.getElementType();
713      newSelf = Builder.CreateBitCast(newSelf, selfTy);
714  
715      Builder.CreateStore(newSelf, selfAddr);
716    }
717  
718    return AdjustObjCObjectType(*this, E->getType(), result);
719  }
720  
721  namespace {
722  struct FinishARCDealloc final : EHScopeStack::Cleanup {
Emit__anon4d4041c60111::FinishARCDealloc723    void Emit(CodeGenFunction &CGF, Flags flags) override {
724      const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
725  
726      const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
727      const ObjCInterfaceDecl *iface = impl->getClassInterface();
728      if (!iface->getSuperClass()) return;
729  
730      bool isCategory = isa<ObjCCategoryImplDecl>(impl);
731  
732      // Call [super dealloc] if we have a superclass.
733      llvm::Value *self = CGF.LoadObjCSelf();
734  
735      CallArgList args;
736      CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
737                                                        CGF.getContext().VoidTy,
738                                                        method->getSelector(),
739                                                        iface,
740                                                        isCategory,
741                                                        self,
742                                                        /*is class msg*/ false,
743                                                        args,
744                                                        method);
745    }
746  };
747  }
748  
749  /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
750  /// the LLVM function and sets the other context used by
751  /// CodeGenFunction.
StartObjCMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)752  void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
753                                        const ObjCContainerDecl *CD) {
754    SourceLocation StartLoc = OMD->getBeginLoc();
755    FunctionArgList args;
756    // Check if we should generate debug info for this method.
757    if (OMD->hasAttr<NoDebugAttr>())
758      DebugInfo = nullptr; // disable debug info indefinitely for this function
759  
760    llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
761  
762    const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
763    if (OMD->isDirectMethod()) {
764      Fn->setVisibility(llvm::Function::HiddenVisibility);
765      CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false);
766      CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
767    } else {
768      CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
769    }
770  
771    args.push_back(OMD->getSelfDecl());
772    if (!OMD->isDirectMethod())
773      args.push_back(OMD->getCmdDecl());
774  
775    args.append(OMD->param_begin(), OMD->param_end());
776  
777    CurGD = OMD;
778    CurEHLocation = OMD->getEndLoc();
779  
780    StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
781                  OMD->getLocation(), StartLoc);
782  
783    if (OMD->isDirectMethod()) {
784      // This function is a direct call, it has to implement a nil check
785      // on entry.
786      //
787      // TODO: possibly have several entry points to elide the check
788      CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
789    }
790  
791    // In ARC, certain methods get an extra cleanup.
792    if (CGM.getLangOpts().ObjCAutoRefCount &&
793        OMD->isInstanceMethod() &&
794        OMD->getSelector().isUnarySelector()) {
795      const IdentifierInfo *ident =
796        OMD->getSelector().getIdentifierInfoForSlot(0);
797      if (ident->isStr("dealloc"))
798        EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
799    }
800  }
801  
802  static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
803                                                LValue lvalue, QualType type);
804  
805  /// Generate an Objective-C method.  An Objective-C method is a C function with
806  /// its pointer, name, and types registered in the class structure.
GenerateObjCMethod(const ObjCMethodDecl * OMD)807  void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
808    StartObjCMethod(OMD, OMD->getClassInterface());
809    PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
810    assert(isa<CompoundStmt>(OMD->getBody()));
811    incrementProfileCounter(OMD->getBody());
812    EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
813    FinishFunction(OMD->getBodyRBrace());
814  }
815  
816  /// emitStructGetterCall - Call the runtime function to load a property
817  /// into the return value slot.
emitStructGetterCall(CodeGenFunction & CGF,ObjCIvarDecl * ivar,bool isAtomic,bool hasStrong)818  static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
819                                   bool isAtomic, bool hasStrong) {
820    ASTContext &Context = CGF.getContext();
821  
822    llvm::Value *src =
823        CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
824            .getPointer(CGF);
825  
826    // objc_copyStruct (ReturnValue, &structIvar,
827    //                  sizeof (Type of Ivar), isAtomic, false);
828    CallArgList args;
829  
830    llvm::Value *dest = CGF.ReturnValue.emitRawPointer(CGF);
831    args.add(RValue::get(dest), Context.VoidPtrTy);
832    args.add(RValue::get(src), Context.VoidPtrTy);
833  
834    CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
835    args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
836    args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
837    args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
838  
839    llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
840    CGCallee callee = CGCallee::forDirect(fn);
841    CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
842                 callee, ReturnValueSlot(), args);
843  }
844  
845  /// Determine whether the given architecture supports unaligned atomic
846  /// accesses.  They don't have to be fast, just faster than a function
847  /// call and a mutex.
hasUnalignedAtomics(llvm::Triple::ArchType arch)848  static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
849    // FIXME: Allow unaligned atomic load/store on x86.  (It is not
850    // currently supported by the backend.)
851    return false;
852  }
853  
854  /// Return the maximum size that permits atomic accesses for the given
855  /// architecture.
getMaxAtomicAccessSize(CodeGenModule & CGM,llvm::Triple::ArchType arch)856  static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
857                                          llvm::Triple::ArchType arch) {
858    // ARM has 8-byte atomic accesses, but it's not clear whether we
859    // want to rely on them here.
860  
861    // In the default case, just assume that any size up to a pointer is
862    // fine given adequate alignment.
863    return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
864  }
865  
866  namespace {
867    class PropertyImplStrategy {
868    public:
869      enum StrategyKind {
870        /// The 'native' strategy is to use the architecture's provided
871        /// reads and writes.
872        Native,
873  
874        /// Use objc_setProperty and objc_getProperty.
875        GetSetProperty,
876  
877        /// Use objc_setProperty for the setter, but use expression
878        /// evaluation for the getter.
879        SetPropertyAndExpressionGet,
880  
881        /// Use objc_copyStruct.
882        CopyStruct,
883  
884        /// The 'expression' strategy is to emit normal assignment or
885        /// lvalue-to-rvalue expressions.
886        Expression
887      };
888  
getKind() const889      StrategyKind getKind() const { return StrategyKind(Kind); }
890  
hasStrongMember() const891      bool hasStrongMember() const { return HasStrong; }
isAtomic() const892      bool isAtomic() const { return IsAtomic; }
isCopy() const893      bool isCopy() const { return IsCopy; }
894  
getIvarSize() const895      CharUnits getIvarSize() const { return IvarSize; }
getIvarAlignment() const896      CharUnits getIvarAlignment() const { return IvarAlignment; }
897  
898      PropertyImplStrategy(CodeGenModule &CGM,
899                           const ObjCPropertyImplDecl *propImpl);
900  
901    private:
902      LLVM_PREFERRED_TYPE(StrategyKind)
903      unsigned Kind : 8;
904      LLVM_PREFERRED_TYPE(bool)
905      unsigned IsAtomic : 1;
906      LLVM_PREFERRED_TYPE(bool)
907      unsigned IsCopy : 1;
908      LLVM_PREFERRED_TYPE(bool)
909      unsigned HasStrong : 1;
910  
911      CharUnits IvarSize;
912      CharUnits IvarAlignment;
913    };
914  }
915  
916  /// Pick an implementation strategy for the given property synthesis.
PropertyImplStrategy(CodeGenModule & CGM,const ObjCPropertyImplDecl * propImpl)917  PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
918                                       const ObjCPropertyImplDecl *propImpl) {
919    const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
920    ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
921  
922    IsCopy = (setterKind == ObjCPropertyDecl::Copy);
923    IsAtomic = prop->isAtomic();
924    HasStrong = false; // doesn't matter here.
925  
926    // Evaluate the ivar's size and alignment.
927    ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
928    QualType ivarType = ivar->getType();
929    auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
930    IvarSize = TInfo.Width;
931    IvarAlignment = TInfo.Align;
932  
933    // If we have a copy property, we always have to use setProperty.
934    // If the property is atomic we need to use getProperty, but in
935    // the nonatomic case we can just use expression.
936    if (IsCopy) {
937      Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet;
938      return;
939    }
940  
941    // Handle retain.
942    if (setterKind == ObjCPropertyDecl::Retain) {
943      // In GC-only, there's nothing special that needs to be done.
944      if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
945        // fallthrough
946  
947      // In ARC, if the property is non-atomic, use expression emission,
948      // which translates to objc_storeStrong.  This isn't required, but
949      // it's slightly nicer.
950      } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
951        // Using standard expression emission for the setter is only
952        // acceptable if the ivar is __strong, which won't be true if
953        // the property is annotated with __attribute__((NSObject)).
954        // TODO: falling all the way back to objc_setProperty here is
955        // just laziness, though;  we could still use objc_storeStrong
956        // if we hacked it right.
957        if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
958          Kind = Expression;
959        else
960          Kind = SetPropertyAndExpressionGet;
961        return;
962  
963      // Otherwise, we need to at least use setProperty.  However, if
964      // the property isn't atomic, we can use normal expression
965      // emission for the getter.
966      } else if (!IsAtomic) {
967        Kind = SetPropertyAndExpressionGet;
968        return;
969  
970      // Otherwise, we have to use both setProperty and getProperty.
971      } else {
972        Kind = GetSetProperty;
973        return;
974      }
975    }
976  
977    // If we're not atomic, just use expression accesses.
978    if (!IsAtomic) {
979      Kind = Expression;
980      return;
981    }
982  
983    // Properties on bitfield ivars need to be emitted using expression
984    // accesses even if they're nominally atomic.
985    if (ivar->isBitField()) {
986      Kind = Expression;
987      return;
988    }
989  
990    // GC-qualified or ARC-qualified ivars need to be emitted as
991    // expressions.  This actually works out to being atomic anyway,
992    // except for ARC __strong, but that should trigger the above code.
993    if (ivarType.hasNonTrivialObjCLifetime() ||
994        (CGM.getLangOpts().getGC() &&
995         CGM.getContext().getObjCGCAttrKind(ivarType))) {
996      Kind = Expression;
997      return;
998    }
999  
1000    // Compute whether the ivar has strong members.
1001    if (CGM.getLangOpts().getGC())
1002      if (const RecordType *recordType = ivarType->getAs<RecordType>())
1003        HasStrong = recordType->getDecl()->hasObjectMember();
1004  
1005    // We can never access structs with object members with a native
1006    // access, because we need to use write barriers.  This is what
1007    // objc_copyStruct is for.
1008    if (HasStrong) {
1009      Kind = CopyStruct;
1010      return;
1011    }
1012  
1013    // Otherwise, this is target-dependent and based on the size and
1014    // alignment of the ivar.
1015  
1016    // If the size of the ivar is not a power of two, give up.  We don't
1017    // want to get into the business of doing compare-and-swaps.
1018    if (!IvarSize.isPowerOfTwo()) {
1019      Kind = CopyStruct;
1020      return;
1021    }
1022  
1023    llvm::Triple::ArchType arch =
1024      CGM.getTarget().getTriple().getArch();
1025  
1026    // Most architectures require memory to fit within a single cache
1027    // line, so the alignment has to be at least the size of the access.
1028    // Otherwise we have to grab a lock.
1029    if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
1030      Kind = CopyStruct;
1031      return;
1032    }
1033  
1034    // If the ivar's size exceeds the architecture's maximum atomic
1035    // access size, we have to use CopyStruct.
1036    if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
1037      Kind = CopyStruct;
1038      return;
1039    }
1040  
1041    // Otherwise, we can use native loads and stores.
1042    Kind = Native;
1043  }
1044  
1045  /// Generate an Objective-C property getter function.
1046  ///
1047  /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1048  /// is illegal within a category.
GenerateObjCGetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1049  void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
1050                                           const ObjCPropertyImplDecl *PID) {
1051    llvm::Constant *AtomicHelperFn =
1052        CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
1053    ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
1054    assert(OMD && "Invalid call to generate getter (empty method)");
1055    StartObjCMethod(OMD, IMP->getClassInterface());
1056  
1057    generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
1058  
1059    FinishFunction(OMD->getEndLoc());
1060  }
1061  
hasTrivialGetExpr(const ObjCPropertyImplDecl * propImpl)1062  static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
1063    const Expr *getter = propImpl->getGetterCXXConstructor();
1064    if (!getter) return true;
1065  
1066    // Sema only makes only of these when the ivar has a C++ class type,
1067    // so the form is pretty constrained.
1068  
1069    // If the property has a reference type, we might just be binding a
1070    // reference, in which case the result will be a gl-value.  We should
1071    // treat this as a non-trivial operation.
1072    if (getter->isGLValue())
1073      return false;
1074  
1075    // If we selected a trivial copy-constructor, we're okay.
1076    if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1077      return (construct->getConstructor()->isTrivial());
1078  
1079    // The constructor might require cleanups (in which case it's never
1080    // trivial).
1081    assert(isa<ExprWithCleanups>(getter));
1082    return false;
1083  }
1084  
1085  /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1086  /// copy the ivar into the resturn slot.
emitCPPObjectAtomicGetterCall(CodeGenFunction & CGF,llvm::Value * returnAddr,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)1087  static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1088                                            llvm::Value *returnAddr,
1089                                            ObjCIvarDecl *ivar,
1090                                            llvm::Constant *AtomicHelperFn) {
1091    // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1092    //                           AtomicHelperFn);
1093    CallArgList args;
1094  
1095    // The 1st argument is the return Slot.
1096    args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1097  
1098    // The 2nd argument is the address of the ivar.
1099    llvm::Value *ivarAddr =
1100        CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1101            .getPointer(CGF);
1102    args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1103  
1104    // Third argument is the helper function.
1105    args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1106  
1107    llvm::FunctionCallee copyCppAtomicObjectFn =
1108        CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1109    CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1110    CGF.EmitCall(
1111        CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1112                 callee, ReturnValueSlot(), args);
1113  }
1114  
1115  // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1116  // the `_cmd` selector argument for getter/setter bodies. For direct methods,
1117  // this returns an undefined/poison value; this matches behavior prior to `_cmd`
1118  // being removed from the direct method ABI as the getter/setter caller would
1119  // never load one. For non-direct methods, this emits a load of the implicit
1120  // `_cmd` storage.
emitCmdValueForGetterSetterBody(CodeGenFunction & CGF,ObjCMethodDecl * MD)1121  static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF,
1122                                                     ObjCMethodDecl *MD) {
1123    if (MD->isDirectMethod()) {
1124      // Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1125      // value. This will be passed to objc_getProperty/objc_setProperty, which
1126      // has not appeared bothered by the `_cmd` argument being undefined before.
1127      llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType());
1128      return llvm::PoisonValue::get(selType);
1129    }
1130  
1131    return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd");
1132  }
1133  
1134  void
generateObjCGetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,const ObjCMethodDecl * GetterMethodDecl,llvm::Constant * AtomicHelperFn)1135  CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1136                                          const ObjCPropertyImplDecl *propImpl,
1137                                          const ObjCMethodDecl *GetterMethodDecl,
1138                                          llvm::Constant *AtomicHelperFn) {
1139  
1140    ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1141  
1142    if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1143      if (!AtomicHelperFn) {
1144        LValue Src =
1145            EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1146        LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType());
1147        callCStructCopyConstructor(Dst, Src);
1148      } else {
1149        ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1150        emitCPPObjectAtomicGetterCall(*this, ReturnValue.emitRawPointer(*this),
1151                                      ivar, AtomicHelperFn);
1152      }
1153      return;
1154    }
1155  
1156    // If there's a non-trivial 'get' expression, we just have to emit that.
1157    if (!hasTrivialGetExpr(propImpl)) {
1158      if (!AtomicHelperFn) {
1159        auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1160                                       propImpl->getGetterCXXConstructor(),
1161                                       /* NRVOCandidate=*/nullptr);
1162        EmitReturnStmt(*ret);
1163      }
1164      else {
1165        ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1166        emitCPPObjectAtomicGetterCall(*this, ReturnValue.emitRawPointer(*this),
1167                                      ivar, AtomicHelperFn);
1168      }
1169      return;
1170    }
1171  
1172    const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1173    QualType propType = prop->getType();
1174    ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1175  
1176    // Pick an implementation strategy.
1177    PropertyImplStrategy strategy(CGM, propImpl);
1178    switch (strategy.getKind()) {
1179    case PropertyImplStrategy::Native: {
1180      // We don't need to do anything for a zero-size struct.
1181      if (strategy.getIvarSize().isZero())
1182        return;
1183  
1184      LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1185  
1186      // Currently, all atomic accesses have to be through integer
1187      // types, so there's no point in trying to pick a prettier type.
1188      uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1189      llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1190  
1191      // Perform an atomic load.  This does not impose ordering constraints.
1192      Address ivarAddr = LV.getAddress();
1193      ivarAddr = ivarAddr.withElementType(bitcastType);
1194      llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1195      load->setAtomic(llvm::AtomicOrdering::Unordered);
1196  
1197      // Store that value into the return address.  Doing this with a
1198      // bitcast is likely to produce some pretty ugly IR, but it's not
1199      // the *most* terrible thing in the world.
1200      llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1201      uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1202      llvm::Value *ivarVal = load;
1203      if (ivarSize > retTySize) {
1204        bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1205        ivarVal = Builder.CreateTrunc(load, bitcastType);
1206      }
1207      Builder.CreateStore(ivarVal, ReturnValue.withElementType(bitcastType));
1208  
1209      // Make sure we don't do an autorelease.
1210      AutoreleaseResult = false;
1211      return;
1212    }
1213  
1214    case PropertyImplStrategy::GetSetProperty: {
1215      llvm::FunctionCallee getPropertyFn =
1216          CGM.getObjCRuntime().GetPropertyGetFunction();
1217      if (!getPropertyFn) {
1218        CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1219        return;
1220      }
1221      CGCallee callee = CGCallee::forDirect(getPropertyFn);
1222  
1223      // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1224      // FIXME: Can't this be simpler? This might even be worse than the
1225      // corresponding gcc code.
1226      llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod);
1227      llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1228      llvm::Value *ivarOffset =
1229          EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1230  
1231      CallArgList args;
1232      args.add(RValue::get(self), getContext().getObjCIdType());
1233      args.add(RValue::get(cmd), getContext().getObjCSelType());
1234      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1235      args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1236               getContext().BoolTy);
1237  
1238      // FIXME: We shouldn't need to get the function info here, the
1239      // runtime already should have computed it to build the function.
1240      llvm::CallBase *CallInstruction;
1241      RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1242                               getContext().getObjCIdType(), args),
1243                           callee, ReturnValueSlot(), args, &CallInstruction);
1244      if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1245        call->setTailCall();
1246  
1247      // We need to fix the type here. Ivars with copy & retain are
1248      // always objects so we don't need to worry about complex or
1249      // aggregates.
1250      RV = RValue::get(Builder.CreateBitCast(
1251          RV.getScalarVal(),
1252          getTypes().ConvertType(getterMethod->getReturnType())));
1253  
1254      EmitReturnOfRValue(RV, propType);
1255  
1256      // objc_getProperty does an autorelease, so we should suppress ours.
1257      AutoreleaseResult = false;
1258  
1259      return;
1260    }
1261  
1262    case PropertyImplStrategy::CopyStruct:
1263      emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1264                           strategy.hasStrongMember());
1265      return;
1266  
1267    case PropertyImplStrategy::Expression:
1268    case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1269      LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1270  
1271      QualType ivarType = ivar->getType();
1272      switch (getEvaluationKind(ivarType)) {
1273      case TEK_Complex: {
1274        ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1275        EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1276                           /*init*/ true);
1277        return;
1278      }
1279      case TEK_Aggregate: {
1280        // The return value slot is guaranteed to not be aliased, but
1281        // that's not necessarily the same as "on the stack", so
1282        // we still potentially need objc_memmove_collectable.
1283        EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1284                          /* Src= */ LV, ivarType, getOverlapForReturnValue());
1285        return;
1286      }
1287      case TEK_Scalar: {
1288        llvm::Value *value;
1289        if (propType->isReferenceType()) {
1290          value = LV.getAddress().emitRawPointer(*this);
1291        } else {
1292          // We want to load and autoreleaseReturnValue ARC __weak ivars.
1293          if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1294            if (getLangOpts().ObjCAutoRefCount) {
1295              value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1296            } else {
1297              value = EmitARCLoadWeak(LV.getAddress());
1298            }
1299  
1300          // Otherwise we want to do a simple load, suppressing the
1301          // final autorelease.
1302          } else {
1303            value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1304            AutoreleaseResult = false;
1305          }
1306  
1307          value = Builder.CreateBitCast(
1308              value, ConvertType(GetterMethodDecl->getReturnType()));
1309        }
1310  
1311        EmitReturnOfRValue(RValue::get(value), propType);
1312        return;
1313      }
1314      }
1315      llvm_unreachable("bad evaluation kind");
1316    }
1317  
1318    }
1319    llvm_unreachable("bad @property implementation strategy!");
1320  }
1321  
1322  /// emitStructSetterCall - Call the runtime function to store the value
1323  /// from the first formal parameter into the given ivar.
emitStructSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar)1324  static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1325                                   ObjCIvarDecl *ivar) {
1326    // objc_copyStruct (&structIvar, &Arg,
1327    //                  sizeof (struct something), true, false);
1328    CallArgList args;
1329  
1330    // The first argument is the address of the ivar.
1331    llvm::Value *ivarAddr =
1332        CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1333            .getPointer(CGF);
1334    ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1335    args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1336  
1337    // The second argument is the address of the parameter variable.
1338    ParmVarDecl *argVar = *OMD->param_begin();
1339    DeclRefExpr argRef(CGF.getContext(), argVar, false,
1340                       argVar->getType().getNonReferenceType(), VK_LValue,
1341                       SourceLocation());
1342    llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1343    args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1344  
1345    // The third argument is the sizeof the type.
1346    llvm::Value *size =
1347      CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1348    args.add(RValue::get(size), CGF.getContext().getSizeType());
1349  
1350    // The fourth argument is the 'isAtomic' flag.
1351    args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1352  
1353    // The fifth argument is the 'hasStrong' flag.
1354    // FIXME: should this really always be false?
1355    args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1356  
1357    llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1358    CGCallee callee = CGCallee::forDirect(fn);
1359    CGF.EmitCall(
1360        CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1361                 callee, ReturnValueSlot(), args);
1362  }
1363  
1364  /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1365  /// the value from the first formal parameter into the given ivar, using
1366  /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
emitCPPObjectAtomicSetterCall(CodeGenFunction & CGF,ObjCMethodDecl * OMD,ObjCIvarDecl * ivar,llvm::Constant * AtomicHelperFn)1367  static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1368                                            ObjCMethodDecl *OMD,
1369                                            ObjCIvarDecl *ivar,
1370                                            llvm::Constant *AtomicHelperFn) {
1371    // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1372    //                           AtomicHelperFn);
1373    CallArgList args;
1374  
1375    // The first argument is the address of the ivar.
1376    llvm::Value *ivarAddr =
1377        CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1378            .getPointer(CGF);
1379    args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1380  
1381    // The second argument is the address of the parameter variable.
1382    ParmVarDecl *argVar = *OMD->param_begin();
1383    DeclRefExpr argRef(CGF.getContext(), argVar, false,
1384                       argVar->getType().getNonReferenceType(), VK_LValue,
1385                       SourceLocation());
1386    llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1387    args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1388  
1389    // Third argument is the helper function.
1390    args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1391  
1392    llvm::FunctionCallee fn =
1393        CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1394    CGCallee callee = CGCallee::forDirect(fn);
1395    CGF.EmitCall(
1396        CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1397                 callee, ReturnValueSlot(), args);
1398  }
1399  
1400  
hasTrivialSetExpr(const ObjCPropertyImplDecl * PID)1401  static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1402    Expr *setter = PID->getSetterCXXAssignment();
1403    if (!setter) return true;
1404  
1405    // Sema only makes only of these when the ivar has a C++ class type,
1406    // so the form is pretty constrained.
1407  
1408    // An operator call is trivial if the function it calls is trivial.
1409    // This also implies that there's nothing non-trivial going on with
1410    // the arguments, because operator= can only be trivial if it's a
1411    // synthesized assignment operator and therefore both parameters are
1412    // references.
1413    if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1414      if (const FunctionDecl *callee
1415            = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1416        if (callee->isTrivial())
1417          return true;
1418      return false;
1419    }
1420  
1421    assert(isa<ExprWithCleanups>(setter));
1422    return false;
1423  }
1424  
UseOptimizedSetter(CodeGenModule & CGM)1425  static bool UseOptimizedSetter(CodeGenModule &CGM) {
1426    if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1427      return false;
1428    return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1429  }
1430  
1431  void
generateObjCSetterBody(const ObjCImplementationDecl * classImpl,const ObjCPropertyImplDecl * propImpl,llvm::Constant * AtomicHelperFn)1432  CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1433                                          const ObjCPropertyImplDecl *propImpl,
1434                                          llvm::Constant *AtomicHelperFn) {
1435    ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1436    ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1437  
1438    if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
1439      ParmVarDecl *PVD = *setterMethod->param_begin();
1440      if (!AtomicHelperFn) {
1441        // Call the move assignment operator instead of calling the copy
1442        // assignment operator and destructor.
1443        LValue Dst = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar,
1444                                       /*quals*/ 0);
1445        LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType());
1446        callCStructMoveAssignmentOperator(Dst, Src);
1447      } else {
1448        // If atomic, assignment is called via a locking api.
1449        emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn);
1450      }
1451      // Decativate the destructor for the setter parameter.
1452      DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt);
1453      return;
1454    }
1455  
1456    // Just use the setter expression if Sema gave us one and it's
1457    // non-trivial.
1458    if (!hasTrivialSetExpr(propImpl)) {
1459      if (!AtomicHelperFn)
1460        // If non-atomic, assignment is called directly.
1461        EmitStmt(propImpl->getSetterCXXAssignment());
1462      else
1463        // If atomic, assignment is called via a locking api.
1464        emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1465                                      AtomicHelperFn);
1466      return;
1467    }
1468  
1469    PropertyImplStrategy strategy(CGM, propImpl);
1470    switch (strategy.getKind()) {
1471    case PropertyImplStrategy::Native: {
1472      // We don't need to do anything for a zero-size struct.
1473      if (strategy.getIvarSize().isZero())
1474        return;
1475  
1476      Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1477  
1478      LValue ivarLValue =
1479        EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1480      Address ivarAddr = ivarLValue.getAddress();
1481  
1482      // Currently, all atomic accesses have to be through integer
1483      // types, so there's no point in trying to pick a prettier type.
1484      llvm::Type *castType = llvm::Type::getIntNTy(
1485          getLLVMContext(), getContext().toBits(strategy.getIvarSize()));
1486  
1487      // Cast both arguments to the chosen operation type.
1488      argAddr = argAddr.withElementType(castType);
1489      ivarAddr = ivarAddr.withElementType(castType);
1490  
1491      llvm::Value *load = Builder.CreateLoad(argAddr);
1492  
1493      // Perform an atomic store.  There are no memory ordering requirements.
1494      llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1495      store->setAtomic(llvm::AtomicOrdering::Unordered);
1496      return;
1497    }
1498  
1499    case PropertyImplStrategy::GetSetProperty:
1500    case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1501  
1502      llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1503      llvm::FunctionCallee setPropertyFn = nullptr;
1504      if (UseOptimizedSetter(CGM)) {
1505        // 10.8 and iOS 6.0 code and GC is off
1506        setOptimizedPropertyFn =
1507            CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1508                strategy.isAtomic(), strategy.isCopy());
1509        if (!setOptimizedPropertyFn) {
1510          CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1511          return;
1512        }
1513      }
1514      else {
1515        setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1516        if (!setPropertyFn) {
1517          CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1518          return;
1519        }
1520      }
1521  
1522      // Emit objc_setProperty((id) self, _cmd, offset, arg,
1523      //                       <is-atomic>, <is-copy>).
1524      llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod);
1525      llvm::Value *self =
1526        Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1527      llvm::Value *ivarOffset =
1528          EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar);
1529      Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1530      llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1531      arg = Builder.CreateBitCast(arg, VoidPtrTy);
1532  
1533      CallArgList args;
1534      args.add(RValue::get(self), getContext().getObjCIdType());
1535      args.add(RValue::get(cmd), getContext().getObjCSelType());
1536      if (setOptimizedPropertyFn) {
1537        args.add(RValue::get(arg), getContext().getObjCIdType());
1538        args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1539        CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1540        EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1541                 callee, ReturnValueSlot(), args);
1542      } else {
1543        args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1544        args.add(RValue::get(arg), getContext().getObjCIdType());
1545        args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1546                 getContext().BoolTy);
1547        args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1548                 getContext().BoolTy);
1549        // FIXME: We shouldn't need to get the function info here, the runtime
1550        // already should have computed it to build the function.
1551        CGCallee callee = CGCallee::forDirect(setPropertyFn);
1552        EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1553                 callee, ReturnValueSlot(), args);
1554      }
1555  
1556      return;
1557    }
1558  
1559    case PropertyImplStrategy::CopyStruct:
1560      emitStructSetterCall(*this, setterMethod, ivar);
1561      return;
1562  
1563    case PropertyImplStrategy::Expression:
1564      break;
1565    }
1566  
1567    // Otherwise, fake up some ASTs and emit a normal assignment.
1568    ValueDecl *selfDecl = setterMethod->getSelfDecl();
1569    DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1570                     VK_LValue, SourceLocation());
1571    ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(),
1572                              CK_LValueToRValue, &self, VK_PRValue,
1573                              FPOptionsOverride());
1574    ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1575                            SourceLocation(), SourceLocation(),
1576                            &selfLoad, true, true);
1577  
1578    ParmVarDecl *argDecl = *setterMethod->param_begin();
1579    QualType argType = argDecl->getType().getNonReferenceType();
1580    DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1581                    SourceLocation());
1582    ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1583                             argType.getUnqualifiedType(), CK_LValueToRValue,
1584                             &arg, VK_PRValue, FPOptionsOverride());
1585  
1586    // The property type can differ from the ivar type in some situations with
1587    // Objective-C pointer types, we can always bit cast the RHS in these cases.
1588    // The following absurdity is just to ensure well-formed IR.
1589    CastKind argCK = CK_NoOp;
1590    if (ivarRef.getType()->isObjCObjectPointerType()) {
1591      if (argLoad.getType()->isObjCObjectPointerType())
1592        argCK = CK_BitCast;
1593      else if (argLoad.getType()->isBlockPointerType())
1594        argCK = CK_BlockPointerToObjCPointerCast;
1595      else
1596        argCK = CK_CPointerToObjCPointerCast;
1597    } else if (ivarRef.getType()->isBlockPointerType()) {
1598       if (argLoad.getType()->isBlockPointerType())
1599        argCK = CK_BitCast;
1600      else
1601        argCK = CK_AnyPointerToBlockPointerCast;
1602    } else if (ivarRef.getType()->isPointerType()) {
1603      argCK = CK_BitCast;
1604    } else if (argLoad.getType()->isAtomicType() &&
1605               !ivarRef.getType()->isAtomicType()) {
1606      argCK = CK_AtomicToNonAtomic;
1607    } else if (!argLoad.getType()->isAtomicType() &&
1608               ivarRef.getType()->isAtomicType()) {
1609      argCK = CK_NonAtomicToAtomic;
1610    }
1611    ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK,
1612                             &argLoad, VK_PRValue, FPOptionsOverride());
1613    Expr *finalArg = &argLoad;
1614    if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1615                                             argLoad.getType()))
1616      finalArg = &argCast;
1617  
1618    BinaryOperator *assign = BinaryOperator::Create(
1619        getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(),
1620        VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride());
1621    EmitStmt(assign);
1622  }
1623  
1624  /// Generate an Objective-C property setter function.
1625  ///
1626  /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1627  /// is illegal within a category.
GenerateObjCSetter(ObjCImplementationDecl * IMP,const ObjCPropertyImplDecl * PID)1628  void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1629                                           const ObjCPropertyImplDecl *PID) {
1630    llvm::Constant *AtomicHelperFn =
1631        CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1632    ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1633    assert(OMD && "Invalid call to generate setter (empty method)");
1634    StartObjCMethod(OMD, IMP->getClassInterface());
1635  
1636    generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1637  
1638    FinishFunction(OMD->getEndLoc());
1639  }
1640  
1641  namespace {
1642    struct DestroyIvar final : EHScopeStack::Cleanup {
1643    private:
1644      llvm::Value *addr;
1645      const ObjCIvarDecl *ivar;
1646      CodeGenFunction::Destroyer *destroyer;
1647      bool useEHCleanupForArray;
1648    public:
DestroyIvar__anon4d4041c60311::DestroyIvar1649      DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1650                  CodeGenFunction::Destroyer *destroyer,
1651                  bool useEHCleanupForArray)
1652        : addr(addr), ivar(ivar), destroyer(destroyer),
1653          useEHCleanupForArray(useEHCleanupForArray) {}
1654  
Emit__anon4d4041c60311::DestroyIvar1655      void Emit(CodeGenFunction &CGF, Flags flags) override {
1656        LValue lvalue
1657          = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1658        CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1659                        flags.isForNormalCleanup() && useEHCleanupForArray);
1660      }
1661    };
1662  }
1663  
1664  /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
destroyARCStrongWithStore(CodeGenFunction & CGF,Address addr,QualType type)1665  static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1666                                        Address addr,
1667                                        QualType type) {
1668    llvm::Value *null = getNullForVariable(addr);
1669    CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1670  }
1671  
emitCXXDestructMethod(CodeGenFunction & CGF,ObjCImplementationDecl * impl)1672  static void emitCXXDestructMethod(CodeGenFunction &CGF,
1673                                    ObjCImplementationDecl *impl) {
1674    CodeGenFunction::RunCleanupsScope scope(CGF);
1675  
1676    llvm::Value *self = CGF.LoadObjCSelf();
1677  
1678    const ObjCInterfaceDecl *iface = impl->getClassInterface();
1679    for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1680         ivar; ivar = ivar->getNextIvar()) {
1681      QualType type = ivar->getType();
1682  
1683      // Check whether the ivar is a destructible type.
1684      QualType::DestructionKind dtorKind = type.isDestructedType();
1685      if (!dtorKind) continue;
1686  
1687      CodeGenFunction::Destroyer *destroyer = nullptr;
1688  
1689      // Use a call to objc_storeStrong to destroy strong ivars, for the
1690      // general benefit of the tools.
1691      if (dtorKind == QualType::DK_objc_strong_lifetime) {
1692        destroyer = destroyARCStrongWithStore;
1693  
1694      // Otherwise use the default for the destruction kind.
1695      } else {
1696        destroyer = CGF.getDestroyer(dtorKind);
1697      }
1698  
1699      CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1700  
1701      CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1702                                           cleanupKind & EHCleanup);
1703    }
1704  
1705    assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1706  }
1707  
GenerateObjCCtorDtorMethod(ObjCImplementationDecl * IMP,ObjCMethodDecl * MD,bool ctor)1708  void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1709                                                   ObjCMethodDecl *MD,
1710                                                   bool ctor) {
1711    MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1712    StartObjCMethod(MD, IMP->getClassInterface());
1713  
1714    // Emit .cxx_construct.
1715    if (ctor) {
1716      // Suppress the final autorelease in ARC.
1717      AutoreleaseResult = false;
1718  
1719      for (const auto *IvarInit : IMP->inits()) {
1720        FieldDecl *Field = IvarInit->getAnyMember();
1721        ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1722        LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1723                                      LoadObjCSelf(), Ivar, 0);
1724        EmitAggExpr(IvarInit->getInit(),
1725                    AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1726                                            AggValueSlot::DoesNotNeedGCBarriers,
1727                                            AggValueSlot::IsNotAliased,
1728                                            AggValueSlot::DoesNotOverlap));
1729      }
1730      // constructor returns 'self'.
1731      CodeGenTypes &Types = CGM.getTypes();
1732      QualType IdTy(CGM.getContext().getObjCIdType());
1733      llvm::Value *SelfAsId =
1734        Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1735      EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1736  
1737    // Emit .cxx_destruct.
1738    } else {
1739      emitCXXDestructMethod(*this, IMP);
1740    }
1741    FinishFunction();
1742  }
1743  
LoadObjCSelf()1744  llvm::Value *CodeGenFunction::LoadObjCSelf() {
1745    VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1746    DeclRefExpr DRE(getContext(), Self,
1747                    /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1748                    Self->getType(), VK_LValue, SourceLocation());
1749    return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1750  }
1751  
TypeOfSelfObject()1752  QualType CodeGenFunction::TypeOfSelfObject() {
1753    const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1754    ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1755    const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1756      getContext().getCanonicalType(selfDecl->getType()));
1757    return PTy->getPointeeType();
1758  }
1759  
EmitObjCForCollectionStmt(const ObjCForCollectionStmt & S)1760  void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1761    llvm::FunctionCallee EnumerationMutationFnPtr =
1762        CGM.getObjCRuntime().EnumerationMutationFunction();
1763    if (!EnumerationMutationFnPtr) {
1764      CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1765      return;
1766    }
1767    CGCallee EnumerationMutationFn =
1768      CGCallee::forDirect(EnumerationMutationFnPtr);
1769  
1770    CGDebugInfo *DI = getDebugInfo();
1771    if (DI)
1772      DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1773  
1774    RunCleanupsScope ForScope(*this);
1775  
1776    // The local variable comes into scope immediately.
1777    AutoVarEmission variable = AutoVarEmission::invalid();
1778    if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1779      variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1780  
1781    JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1782  
1783    // Fast enumeration state.
1784    QualType StateTy = CGM.getObjCFastEnumerationStateType();
1785    Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1786    EmitNullInitialization(StatePtr, StateTy);
1787  
1788    // Number of elements in the items array.
1789    static const unsigned NumItems = 16;
1790  
1791    // Fetch the countByEnumeratingWithState:objects:count: selector.
1792    const IdentifierInfo *II[] = {
1793        &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1794        &CGM.getContext().Idents.get("objects"),
1795        &CGM.getContext().Idents.get("count")};
1796    Selector FastEnumSel =
1797        CGM.getContext().Selectors.getSelector(std::size(II), &II[0]);
1798  
1799    QualType ItemsTy = getContext().getConstantArrayType(
1800        getContext().getObjCIdType(), llvm::APInt(32, NumItems), nullptr,
1801        ArraySizeModifier::Normal, 0);
1802    Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1803  
1804    // Emit the collection pointer.  In ARC, we do a retain.
1805    llvm::Value *Collection;
1806    if (getLangOpts().ObjCAutoRefCount) {
1807      Collection = EmitARCRetainScalarExpr(S.getCollection());
1808  
1809      // Enter a cleanup to do the release.
1810      EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1811    } else {
1812      Collection = EmitScalarExpr(S.getCollection());
1813    }
1814  
1815    // The 'continue' label needs to appear within the cleanup for the
1816    // collection object.
1817    JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1818  
1819    // Send it our message:
1820    CallArgList Args;
1821  
1822    // The first argument is a temporary of the enumeration-state type.
1823    Args.add(RValue::get(StatePtr, *this), getContext().getPointerType(StateTy));
1824  
1825    // The second argument is a temporary array with space for NumItems
1826    // pointers.  We'll actually be loading elements from the array
1827    // pointer written into the control state; this buffer is so that
1828    // collections that *aren't* backed by arrays can still queue up
1829    // batches of elements.
1830    Args.add(RValue::get(ItemsPtr, *this), getContext().getPointerType(ItemsTy));
1831  
1832    // The third argument is the capacity of that temporary array.
1833    llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1834    llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1835    Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1836  
1837    // Start the enumeration.
1838    RValue CountRV =
1839        CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1840                                                 getContext().getNSUIntegerType(),
1841                                                 FastEnumSel, Collection, Args);
1842  
1843    // The initial number of objects that were returned in the buffer.
1844    llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1845  
1846    llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1847    llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1848  
1849    llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1850  
1851    // If the limit pointer was zero to begin with, the collection is
1852    // empty; skip all this. Set the branch weight assuming this has the same
1853    // probability of exiting the loop as any other loop exit.
1854    uint64_t EntryCount = getCurrentProfileCount();
1855    Builder.CreateCondBr(
1856        Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1857        LoopInitBB,
1858        createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1859  
1860    // Otherwise, initialize the loop.
1861    EmitBlock(LoopInitBB);
1862  
1863    // Save the initial mutations value.  This is the value at an
1864    // address that was written into the state object by
1865    // countByEnumeratingWithState:objects:count:.
1866    Address StateMutationsPtrPtr =
1867        Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1868    llvm::Value *StateMutationsPtr
1869      = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1870  
1871    llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy);
1872    llvm::Value *initialMutations =
1873      Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1874                                getPointerAlign(), "forcoll.initial-mutations");
1875  
1876    // Start looping.  This is the point we return to whenever we have a
1877    // fresh, non-empty batch of objects.
1878    llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1879    EmitBlock(LoopBodyBB);
1880  
1881    // The current index into the buffer.
1882    llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1883    index->addIncoming(zero, LoopInitBB);
1884  
1885    // The current buffer size.
1886    llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1887    count->addIncoming(initialBufferLimit, LoopInitBB);
1888  
1889    incrementProfileCounter(&S);
1890  
1891    // Check whether the mutations value has changed from where it was
1892    // at start.  StateMutationsPtr should actually be invariant between
1893    // refreshes.
1894    StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1895    llvm::Value *currentMutations
1896      = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr,
1897                                  getPointerAlign(), "statemutations");
1898  
1899    llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1900    llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1901  
1902    Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1903                         WasNotMutatedBB, WasMutatedBB);
1904  
1905    // If so, call the enumeration-mutation function.
1906    EmitBlock(WasMutatedBB);
1907    llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType());
1908    llvm::Value *V =
1909      Builder.CreateBitCast(Collection, ObjCIdType);
1910    CallArgList Args2;
1911    Args2.add(RValue::get(V), getContext().getObjCIdType());
1912    // FIXME: We shouldn't need to get the function info here, the runtime already
1913    // should have computed it to build the function.
1914    EmitCall(
1915            CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1916             EnumerationMutationFn, ReturnValueSlot(), Args2);
1917  
1918    // Otherwise, or if the mutation function returns, just continue.
1919    EmitBlock(WasNotMutatedBB);
1920  
1921    // Initialize the element variable.
1922    RunCleanupsScope elementVariableScope(*this);
1923    bool elementIsVariable;
1924    LValue elementLValue;
1925    QualType elementType;
1926    if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1927      // Initialize the variable, in case it's a __block variable or something.
1928      EmitAutoVarInit(variable);
1929  
1930      const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1931      DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1932                          D->getType(), VK_LValue, SourceLocation());
1933      elementLValue = EmitLValue(&tempDRE);
1934      elementType = D->getType();
1935      elementIsVariable = true;
1936  
1937      if (D->isARCPseudoStrong())
1938        elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1939    } else {
1940      elementLValue = LValue(); // suppress warning
1941      elementType = cast<Expr>(S.getElement())->getType();
1942      elementIsVariable = false;
1943    }
1944    llvm::Type *convertedElementType = ConvertType(elementType);
1945  
1946    // Fetch the buffer out of the enumeration state.
1947    // TODO: this pointer should actually be invariant between
1948    // refreshes, which would help us do certain loop optimizations.
1949    Address StateItemsPtr =
1950        Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1951    llvm::Value *EnumStateItems =
1952      Builder.CreateLoad(StateItemsPtr, "stateitems");
1953  
1954    // Fetch the value at the current index from the buffer.
1955    llvm::Value *CurrentItemPtr = Builder.CreateInBoundsGEP(
1956        ObjCIdType, EnumStateItems, index, "currentitem.ptr");
1957    llvm::Value *CurrentItem =
1958      Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign());
1959  
1960    if (SanOpts.has(SanitizerKind::ObjCCast)) {
1961      // Before using an item from the collection, check that the implicit cast
1962      // from id to the element type is valid. This is done with instrumentation
1963      // roughly corresponding to:
1964      //
1965      //   if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1966      const ObjCObjectPointerType *ObjPtrTy =
1967          elementType->getAsObjCInterfacePointerType();
1968      const ObjCInterfaceType *InterfaceTy =
1969          ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr;
1970      if (InterfaceTy) {
1971        SanitizerScope SanScope(this);
1972        auto &C = CGM.getContext();
1973        assert(InterfaceTy->getDecl() && "No decl for ObjC interface type");
1974        Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C);
1975        CallArgList IsKindOfClassArgs;
1976        llvm::Value *Cls =
1977            CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl());
1978        IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType());
1979        llvm::Value *IsClass =
1980            CGM.getObjCRuntime()
1981                .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy,
1982                                     IsKindOfClassSel, CurrentItem,
1983                                     IsKindOfClassArgs)
1984                .getScalarVal();
1985        llvm::Constant *StaticData[] = {
1986            EmitCheckSourceLocation(S.getBeginLoc()),
1987            EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))};
1988        EmitCheck({{IsClass, SanitizerKind::ObjCCast}},
1989                  SanitizerHandler::InvalidObjCCast,
1990                  ArrayRef<llvm::Constant *>(StaticData), CurrentItem);
1991      }
1992    }
1993  
1994    // Cast that value to the right type.
1995    CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1996                                        "currentitem");
1997  
1998    // Make sure we have an l-value.  Yes, this gets evaluated every
1999    // time through the loop.
2000    if (!elementIsVariable) {
2001      elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2002      EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
2003    } else {
2004      EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
2005                             /*isInit*/ true);
2006    }
2007  
2008    // If we do have an element variable, this assignment is the end of
2009    // its initialization.
2010    if (elementIsVariable)
2011      EmitAutoVarCleanups(variable);
2012  
2013    // Perform the loop body, setting up break and continue labels.
2014    BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
2015    {
2016      RunCleanupsScope Scope(*this);
2017      EmitStmt(S.getBody());
2018    }
2019    BreakContinueStack.pop_back();
2020  
2021    // Destroy the element variable now.
2022    elementVariableScope.ForceCleanup();
2023  
2024    // Check whether there are more elements.
2025    EmitBlock(AfterBody.getBlock());
2026  
2027    llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
2028  
2029    // First we check in the local buffer.
2030    llvm::Value *indexPlusOne =
2031        Builder.CreateNUWAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
2032  
2033    // If we haven't overrun the buffer yet, we can continue.
2034    // Set the branch weights based on the simplifying assumption that this is
2035    // like a while-loop, i.e., ignoring that the false branch fetches more
2036    // elements and then returns to the loop.
2037    Builder.CreateCondBr(
2038        Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
2039        createProfileWeights(getProfileCount(S.getBody()), EntryCount));
2040  
2041    index->addIncoming(indexPlusOne, AfterBody.getBlock());
2042    count->addIncoming(count, AfterBody.getBlock());
2043  
2044    // Otherwise, we have to fetch more elements.
2045    EmitBlock(FetchMoreBB);
2046  
2047    CountRV =
2048        CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2049                                                 getContext().getNSUIntegerType(),
2050                                                 FastEnumSel, Collection, Args);
2051  
2052    // If we got a zero count, we're done.
2053    llvm::Value *refetchCount = CountRV.getScalarVal();
2054  
2055    // (note that the message send might split FetchMoreBB)
2056    index->addIncoming(zero, Builder.GetInsertBlock());
2057    count->addIncoming(refetchCount, Builder.GetInsertBlock());
2058  
2059    Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
2060                         EmptyBB, LoopBodyBB);
2061  
2062    // No more elements.
2063    EmitBlock(EmptyBB);
2064  
2065    if (!elementIsVariable) {
2066      // If the element was not a declaration, set it to be null.
2067  
2068      llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
2069      elementLValue = EmitLValue(cast<Expr>(S.getElement()));
2070      EmitStoreThroughLValue(RValue::get(null), elementLValue);
2071    }
2072  
2073    if (DI)
2074      DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
2075  
2076    ForScope.ForceCleanup();
2077    EmitBlock(LoopEnd.getBlock());
2078  }
2079  
EmitObjCAtTryStmt(const ObjCAtTryStmt & S)2080  void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
2081    CGM.getObjCRuntime().EmitTryStmt(*this, S);
2082  }
2083  
EmitObjCAtThrowStmt(const ObjCAtThrowStmt & S)2084  void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
2085    CGM.getObjCRuntime().EmitThrowStmt(*this, S);
2086  }
2087  
EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt & S)2088  void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2089                                                const ObjCAtSynchronizedStmt &S) {
2090    CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
2091  }
2092  
2093  namespace {
2094    struct CallObjCRelease final : EHScopeStack::Cleanup {
CallObjCRelease__anon4d4041c60411::CallObjCRelease2095      CallObjCRelease(llvm::Value *object) : object(object) {}
2096      llvm::Value *object;
2097  
Emit__anon4d4041c60411::CallObjCRelease2098      void Emit(CodeGenFunction &CGF, Flags flags) override {
2099        // Releases at the end of the full-expression are imprecise.
2100        CGF.EmitARCRelease(object, ARCImpreciseLifetime);
2101      }
2102    };
2103  }
2104  
2105  /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
2106  /// release at the end of the full-expression.
EmitObjCConsumeObject(QualType type,llvm::Value * object)2107  llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
2108                                                      llvm::Value *object) {
2109    // If we're in a conditional branch, we need to make the cleanup
2110    // conditional.
2111    pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
2112    return object;
2113  }
2114  
EmitObjCExtendObjectLifetime(QualType type,llvm::Value * value)2115  llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
2116                                                             llvm::Value *value) {
2117    return EmitARCRetainAutorelease(type, value);
2118  }
2119  
2120  /// Given a number of pointers, inform the optimizer that they're
2121  /// being intrinsically used up until this point in the program.
EmitARCIntrinsicUse(ArrayRef<llvm::Value * > values)2122  void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
2123    llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
2124    if (!fn)
2125      fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
2126  
2127    // This isn't really a "runtime" function, but as an intrinsic it
2128    // doesn't really matter as long as we align things up.
2129    EmitNounwindRuntimeCall(fn, values);
2130  }
2131  
2132  /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2133  /// that has operand bundle "clang.arc.attachedcall".
EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value * > values)2134  void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) {
2135    llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use;
2136    if (!fn)
2137      fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use);
2138    EmitNounwindRuntimeCall(fn, values);
2139  }
2140  
setARCRuntimeFunctionLinkage(CodeGenModule & CGM,llvm::Value * RTF)2141  static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
2142    if (auto *F = dyn_cast<llvm::Function>(RTF)) {
2143      // If the target runtime doesn't naturally support ARC, emit weak
2144      // references to the runtime support library.  We don't really
2145      // permit this to fail, but we need a particular relocation style.
2146      if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
2147          !CGM.getTriple().isOSBinFormatCOFF()) {
2148        F->setLinkage(llvm::Function::ExternalWeakLinkage);
2149      }
2150    }
2151  }
2152  
setARCRuntimeFunctionLinkage(CodeGenModule & CGM,llvm::FunctionCallee RTF)2153  static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
2154                                           llvm::FunctionCallee RTF) {
2155    setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
2156  }
2157  
getARCIntrinsic(llvm::Intrinsic::ID IntID,CodeGenModule & CGM)2158  static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID,
2159                                         CodeGenModule &CGM) {
2160    llvm::Function *fn = CGM.getIntrinsic(IntID);
2161    setARCRuntimeFunctionLinkage(CGM, fn);
2162    return fn;
2163  }
2164  
2165  /// Perform an operation having the signature
2166  ///   i8* (i8*)
2167  /// where a null input causes a no-op and returns null.
emitARCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Type * returnType,llvm::Function * & fn,llvm::Intrinsic::ID IntID,llvm::CallInst::TailCallKind tailKind=llvm::CallInst::TCK_None)2168  static llvm::Value *emitARCValueOperation(
2169      CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2170      llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2171      llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2172    if (isa<llvm::ConstantPointerNull>(value))
2173      return value;
2174  
2175    if (!fn)
2176      fn = getARCIntrinsic(IntID, CGF.CGM);
2177  
2178    // Cast the argument to 'id'.
2179    llvm::Type *origType = returnType ? returnType : value->getType();
2180    value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2181  
2182    // Call the function.
2183    llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2184    call->setTailCallKind(tailKind);
2185  
2186    // Cast the result back to the original type.
2187    return CGF.Builder.CreateBitCast(call, origType);
2188  }
2189  
2190  /// Perform an operation having the following signature:
2191  ///   i8* (i8**)
emitARCLoadOperation(CodeGenFunction & CGF,Address addr,llvm::Function * & fn,llvm::Intrinsic::ID IntID)2192  static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2193                                           llvm::Function *&fn,
2194                                           llvm::Intrinsic::ID IntID) {
2195    if (!fn)
2196      fn = getARCIntrinsic(IntID, CGF.CGM);
2197  
2198    return CGF.EmitNounwindRuntimeCall(fn, addr.emitRawPointer(CGF));
2199  }
2200  
2201  /// Perform an operation having the following signature:
2202  ///   i8* (i8**, i8*)
emitARCStoreOperation(CodeGenFunction & CGF,Address addr,llvm::Value * value,llvm::Function * & fn,llvm::Intrinsic::ID IntID,bool ignored)2203  static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2204                                            llvm::Value *value,
2205                                            llvm::Function *&fn,
2206                                            llvm::Intrinsic::ID IntID,
2207                                            bool ignored) {
2208    assert(addr.getElementType() == value->getType());
2209  
2210    if (!fn)
2211      fn = getARCIntrinsic(IntID, CGF.CGM);
2212  
2213    llvm::Type *origType = value->getType();
2214  
2215    llvm::Value *args[] = {
2216        CGF.Builder.CreateBitCast(addr.emitRawPointer(CGF), CGF.Int8PtrPtrTy),
2217        CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)};
2218    llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2219  
2220    if (ignored) return nullptr;
2221  
2222    return CGF.Builder.CreateBitCast(result, origType);
2223  }
2224  
2225  /// Perform an operation having the following signature:
2226  ///   void (i8**, i8**)
emitARCCopyOperation(CodeGenFunction & CGF,Address dst,Address src,llvm::Function * & fn,llvm::Intrinsic::ID IntID)2227  static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2228                                   llvm::Function *&fn,
2229                                   llvm::Intrinsic::ID IntID) {
2230    assert(dst.getType() == src.getType());
2231  
2232    if (!fn)
2233      fn = getARCIntrinsic(IntID, CGF.CGM);
2234  
2235    llvm::Value *args[] = {
2236        CGF.Builder.CreateBitCast(dst.emitRawPointer(CGF), CGF.Int8PtrPtrTy),
2237        CGF.Builder.CreateBitCast(src.emitRawPointer(CGF), CGF.Int8PtrPtrTy)};
2238    CGF.EmitNounwindRuntimeCall(fn, args);
2239  }
2240  
2241  /// Perform an operation having the signature
2242  ///   i8* (i8*)
2243  /// where a null input causes a no-op and returns null.
emitObjCValueOperation(CodeGenFunction & CGF,llvm::Value * value,llvm::Type * returnType,llvm::FunctionCallee & fn,StringRef fnName)2244  static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2245                                             llvm::Value *value,
2246                                             llvm::Type *returnType,
2247                                             llvm::FunctionCallee &fn,
2248                                             StringRef fnName) {
2249    if (isa<llvm::ConstantPointerNull>(value))
2250      return value;
2251  
2252    if (!fn) {
2253      llvm::FunctionType *fnType =
2254        llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2255      fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2256  
2257      // We have Native ARC, so set nonlazybind attribute for performance
2258      if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2259        if (fnName == "objc_retain")
2260          f->addFnAttr(llvm::Attribute::NonLazyBind);
2261    }
2262  
2263    // Cast the argument to 'id'.
2264    llvm::Type *origType = returnType ? returnType : value->getType();
2265    value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2266  
2267    // Call the function.
2268    llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2269  
2270    // Mark calls to objc_autorelease as tail on the assumption that methods
2271    // overriding autorelease do not touch anything on the stack.
2272    if (fnName == "objc_autorelease")
2273      if (auto *Call = dyn_cast<llvm::CallInst>(Inst))
2274        Call->setTailCall();
2275  
2276    // Cast the result back to the original type.
2277    return CGF.Builder.CreateBitCast(Inst, origType);
2278  }
2279  
2280  /// Produce the code to do a retain.  Based on the type, calls one of:
2281  ///   call i8* \@objc_retain(i8* %value)
2282  ///   call i8* \@objc_retainBlock(i8* %value)
EmitARCRetain(QualType type,llvm::Value * value)2283  llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2284    if (type->isBlockPointerType())
2285      return EmitARCRetainBlock(value, /*mandatory*/ false);
2286    else
2287      return EmitARCRetainNonBlock(value);
2288  }
2289  
2290  /// Retain the given object, with normal retain semantics.
2291  ///   call i8* \@objc_retain(i8* %value)
EmitARCRetainNonBlock(llvm::Value * value)2292  llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2293    return emitARCValueOperation(*this, value, nullptr,
2294                                 CGM.getObjCEntrypoints().objc_retain,
2295                                 llvm::Intrinsic::objc_retain);
2296  }
2297  
2298  /// Retain the given block, with _Block_copy semantics.
2299  ///   call i8* \@objc_retainBlock(i8* %value)
2300  ///
2301  /// \param mandatory - If false, emit the call with metadata
2302  /// indicating that it's okay for the optimizer to eliminate this call
2303  /// if it can prove that the block never escapes except down the stack.
EmitARCRetainBlock(llvm::Value * value,bool mandatory)2304  llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2305                                                   bool mandatory) {
2306    llvm::Value *result
2307      = emitARCValueOperation(*this, value, nullptr,
2308                              CGM.getObjCEntrypoints().objc_retainBlock,
2309                              llvm::Intrinsic::objc_retainBlock);
2310  
2311    // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2312    // tell the optimizer that it doesn't need to do this copy if the
2313    // block doesn't escape, where being passed as an argument doesn't
2314    // count as escaping.
2315    if (!mandatory && isa<llvm::Instruction>(result)) {
2316      llvm::CallInst *call
2317        = cast<llvm::CallInst>(result->stripPointerCasts());
2318      assert(call->getCalledOperand() ==
2319             CGM.getObjCEntrypoints().objc_retainBlock);
2320  
2321      call->setMetadata("clang.arc.copy_on_escape",
2322                        llvm::MDNode::get(Builder.getContext(), std::nullopt));
2323    }
2324  
2325    return result;
2326  }
2327  
emitAutoreleasedReturnValueMarker(CodeGenFunction & CGF)2328  static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2329    // Fetch the void(void) inline asm which marks that we're going to
2330    // do something with the autoreleased return value.
2331    llvm::InlineAsm *&marker
2332      = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2333    if (!marker) {
2334      StringRef assembly
2335        = CGF.CGM.getTargetCodeGenInfo()
2336             .getARCRetainAutoreleasedReturnValueMarker();
2337  
2338      // If we have an empty assembly string, there's nothing to do.
2339      if (assembly.empty()) {
2340  
2341      // Otherwise, at -O0, build an inline asm that we're going to call
2342      // in a moment.
2343      } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2344        llvm::FunctionType *type =
2345          llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2346  
2347        marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2348  
2349      // If we're at -O1 and above, we don't want to litter the code
2350      // with this marker yet, so leave a breadcrumb for the ARC
2351      // optimizer to pick up.
2352      } else {
2353        const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr();
2354        if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) {
2355          auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2356          CGF.CGM.getModule().addModuleFlag(llvm::Module::Error,
2357                                            retainRVMarkerKey, str);
2358        }
2359      }
2360    }
2361  
2362    // Call the marker asm if we made one, which we do only at -O0.
2363    if (marker)
2364      CGF.Builder.CreateCall(marker, std::nullopt,
2365                             CGF.getBundlesForFunclet(marker));
2366  }
2367  
emitOptimizedARCReturnCall(llvm::Value * value,bool IsRetainRV,CodeGenFunction & CGF)2368  static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value,
2369                                                 bool IsRetainRV,
2370                                                 CodeGenFunction &CGF) {
2371    emitAutoreleasedReturnValueMarker(CGF);
2372  
2373    // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2374    // retainRV or claimRV calls in the IR. We currently do this only when the
2375    // optimization level isn't -O0 since global-isel, which is currently run at
2376    // -O0, doesn't know about the operand bundle.
2377    ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints();
2378    llvm::Function *&EP = IsRetainRV
2379                              ? EPs.objc_retainAutoreleasedReturnValue
2380                              : EPs.objc_unsafeClaimAutoreleasedReturnValue;
2381    llvm::Intrinsic::ID IID =
2382        IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2383                   : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue;
2384    EP = getARCIntrinsic(IID, CGF.CGM);
2385  
2386    llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch();
2387  
2388    // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2389    // the target backend knows how to handle the operand bundle.
2390    if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2391        (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) {
2392      llvm::Value *bundleArgs[] = {EP};
2393      llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs);
2394      auto *oldCall = cast<llvm::CallBase>(value);
2395      llvm::CallBase *newCall = llvm::CallBase::addOperandBundle(
2396          oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall);
2397      newCall->copyMetadata(*oldCall);
2398      oldCall->replaceAllUsesWith(newCall);
2399      oldCall->eraseFromParent();
2400      CGF.EmitARCNoopIntrinsicUse(newCall);
2401      return newCall;
2402    }
2403  
2404    bool isNoTail =
2405        CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2406    llvm::CallInst::TailCallKind tailKind =
2407        isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None;
2408    return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind);
2409  }
2410  
2411  /// Retain the given object which is the result of a function call.
2412  ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2413  ///
2414  /// Yes, this function name is one character away from a different
2415  /// call with completely different semantics.
2416  llvm::Value *
EmitARCRetainAutoreleasedReturnValue(llvm::Value * value)2417  CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2418    return emitOptimizedARCReturnCall(value, true, *this);
2419  }
2420  
2421  /// Claim a possibly-autoreleased return value at +0.  This is only
2422  /// valid to do in contexts which do not rely on the retain to keep
2423  /// the object valid for all of its uses; for example, when
2424  /// the value is ignored, or when it is being assigned to an
2425  /// __unsafe_unretained variable.
2426  ///
2427  ///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2428  llvm::Value *
EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value * value)2429  CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2430    return emitOptimizedARCReturnCall(value, false, *this);
2431  }
2432  
2433  /// Release the given object.
2434  ///   call void \@objc_release(i8* %value)
EmitARCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)2435  void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2436                                       ARCPreciseLifetime_t precise) {
2437    if (isa<llvm::ConstantPointerNull>(value)) return;
2438  
2439    llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2440    if (!fn)
2441      fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM);
2442  
2443    // Cast the argument to 'id'.
2444    value = Builder.CreateBitCast(value, Int8PtrTy);
2445  
2446    // Call objc_release.
2447    llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2448  
2449    if (precise == ARCImpreciseLifetime) {
2450      call->setMetadata("clang.imprecise_release",
2451                        llvm::MDNode::get(Builder.getContext(), std::nullopt));
2452    }
2453  }
2454  
2455  /// Destroy a __strong variable.
2456  ///
2457  /// At -O0, emit a call to store 'null' into the address;
2458  /// instrumenting tools prefer this because the address is exposed,
2459  /// but it's relatively cumbersome to optimize.
2460  ///
2461  /// At -O1 and above, just load and call objc_release.
2462  ///
2463  ///   call void \@objc_storeStrong(i8** %addr, i8* null)
EmitARCDestroyStrong(Address addr,ARCPreciseLifetime_t precise)2464  void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2465                                             ARCPreciseLifetime_t precise) {
2466    if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2467      llvm::Value *null = getNullForVariable(addr);
2468      EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2469      return;
2470    }
2471  
2472    llvm::Value *value = Builder.CreateLoad(addr);
2473    EmitARCRelease(value, precise);
2474  }
2475  
2476  /// Store into a strong object.  Always calls this:
2477  ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
EmitARCStoreStrongCall(Address addr,llvm::Value * value,bool ignored)2478  llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2479                                                       llvm::Value *value,
2480                                                       bool ignored) {
2481    assert(addr.getElementType() == value->getType());
2482  
2483    llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2484    if (!fn)
2485      fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM);
2486  
2487    llvm::Value *args[] = {
2488        Builder.CreateBitCast(addr.emitRawPointer(*this), Int8PtrPtrTy),
2489        Builder.CreateBitCast(value, Int8PtrTy)};
2490    EmitNounwindRuntimeCall(fn, args);
2491  
2492    if (ignored) return nullptr;
2493    return value;
2494  }
2495  
2496  /// Store into a strong object.  Sometimes calls this:
2497  ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2498  /// Other times, breaks it down into components.
EmitARCStoreStrong(LValue dst,llvm::Value * newValue,bool ignored)2499  llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2500                                                   llvm::Value *newValue,
2501                                                   bool ignored) {
2502    QualType type = dst.getType();
2503    bool isBlock = type->isBlockPointerType();
2504  
2505    // Use a store barrier at -O0 unless this is a block type or the
2506    // lvalue is inadequately aligned.
2507    if (shouldUseFusedARCCalls() &&
2508        !isBlock &&
2509        (dst.getAlignment().isZero() ||
2510         dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2511      return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2512    }
2513  
2514    // Otherwise, split it out.
2515  
2516    // Retain the new value.
2517    newValue = EmitARCRetain(type, newValue);
2518  
2519    // Read the old value.
2520    llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2521  
2522    // Store.  We do this before the release so that any deallocs won't
2523    // see the old value.
2524    EmitStoreOfScalar(newValue, dst);
2525  
2526    // Finally, release the old value.
2527    EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2528  
2529    return newValue;
2530  }
2531  
2532  /// Autorelease the given object.
2533  ///   call i8* \@objc_autorelease(i8* %value)
EmitARCAutorelease(llvm::Value * value)2534  llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2535    return emitARCValueOperation(*this, value, nullptr,
2536                                 CGM.getObjCEntrypoints().objc_autorelease,
2537                                 llvm::Intrinsic::objc_autorelease);
2538  }
2539  
2540  /// Autorelease the given object.
2541  ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2542  llvm::Value *
EmitARCAutoreleaseReturnValue(llvm::Value * value)2543  CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2544    return emitARCValueOperation(*this, value, nullptr,
2545                              CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2546                                 llvm::Intrinsic::objc_autoreleaseReturnValue,
2547                                 llvm::CallInst::TCK_Tail);
2548  }
2549  
2550  /// Do a fused retain/autorelease of the given object.
2551  ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2552  llvm::Value *
EmitARCRetainAutoreleaseReturnValue(llvm::Value * value)2553  CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2554    return emitARCValueOperation(*this, value, nullptr,
2555                       CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2556                               llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2557                                 llvm::CallInst::TCK_Tail);
2558  }
2559  
2560  /// Do a fused retain/autorelease of the given object.
2561  ///   call i8* \@objc_retainAutorelease(i8* %value)
2562  /// or
2563  ///   %retain = call i8* \@objc_retainBlock(i8* %value)
2564  ///   call i8* \@objc_autorelease(i8* %retain)
EmitARCRetainAutorelease(QualType type,llvm::Value * value)2565  llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2566                                                         llvm::Value *value) {
2567    if (!type->isBlockPointerType())
2568      return EmitARCRetainAutoreleaseNonBlock(value);
2569  
2570    if (isa<llvm::ConstantPointerNull>(value)) return value;
2571  
2572    llvm::Type *origType = value->getType();
2573    value = Builder.CreateBitCast(value, Int8PtrTy);
2574    value = EmitARCRetainBlock(value, /*mandatory*/ true);
2575    value = EmitARCAutorelease(value);
2576    return Builder.CreateBitCast(value, origType);
2577  }
2578  
2579  /// Do a fused retain/autorelease of the given object.
2580  ///   call i8* \@objc_retainAutorelease(i8* %value)
2581  llvm::Value *
EmitARCRetainAutoreleaseNonBlock(llvm::Value * value)2582  CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2583    return emitARCValueOperation(*this, value, nullptr,
2584                                 CGM.getObjCEntrypoints().objc_retainAutorelease,
2585                                 llvm::Intrinsic::objc_retainAutorelease);
2586  }
2587  
2588  /// i8* \@objc_loadWeak(i8** %addr)
2589  /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
EmitARCLoadWeak(Address addr)2590  llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2591    return emitARCLoadOperation(*this, addr,
2592                                CGM.getObjCEntrypoints().objc_loadWeak,
2593                                llvm::Intrinsic::objc_loadWeak);
2594  }
2595  
2596  /// i8* \@objc_loadWeakRetained(i8** %addr)
EmitARCLoadWeakRetained(Address addr)2597  llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2598    return emitARCLoadOperation(*this, addr,
2599                                CGM.getObjCEntrypoints().objc_loadWeakRetained,
2600                                llvm::Intrinsic::objc_loadWeakRetained);
2601  }
2602  
2603  /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2604  /// Returns %value.
EmitARCStoreWeak(Address addr,llvm::Value * value,bool ignored)2605  llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2606                                                 llvm::Value *value,
2607                                                 bool ignored) {
2608    return emitARCStoreOperation(*this, addr, value,
2609                                 CGM.getObjCEntrypoints().objc_storeWeak,
2610                                 llvm::Intrinsic::objc_storeWeak, ignored);
2611  }
2612  
2613  /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2614  /// Returns %value.  %addr is known to not have a current weak entry.
2615  /// Essentially equivalent to:
2616  ///   *addr = nil; objc_storeWeak(addr, value);
EmitARCInitWeak(Address addr,llvm::Value * value)2617  void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2618    // If we're initializing to null, just write null to memory; no need
2619    // to get the runtime involved.  But don't do this if optimization
2620    // is enabled, because accounting for this would make the optimizer
2621    // much more complicated.
2622    if (isa<llvm::ConstantPointerNull>(value) &&
2623        CGM.getCodeGenOpts().OptimizationLevel == 0) {
2624      Builder.CreateStore(value, addr);
2625      return;
2626    }
2627  
2628    emitARCStoreOperation(*this, addr, value,
2629                          CGM.getObjCEntrypoints().objc_initWeak,
2630                          llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2631  }
2632  
2633  /// void \@objc_destroyWeak(i8** %addr)
2634  /// Essentially objc_storeWeak(addr, nil).
EmitARCDestroyWeak(Address addr)2635  void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2636    llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2637    if (!fn)
2638      fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM);
2639  
2640    EmitNounwindRuntimeCall(fn, addr.emitRawPointer(*this));
2641  }
2642  
2643  /// void \@objc_moveWeak(i8** %dest, i8** %src)
2644  /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2645  /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
EmitARCMoveWeak(Address dst,Address src)2646  void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2647    emitARCCopyOperation(*this, dst, src,
2648                         CGM.getObjCEntrypoints().objc_moveWeak,
2649                         llvm::Intrinsic::objc_moveWeak);
2650  }
2651  
2652  /// void \@objc_copyWeak(i8** %dest, i8** %src)
2653  /// Disregards the current value in %dest.  Essentially
2654  ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
EmitARCCopyWeak(Address dst,Address src)2655  void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2656    emitARCCopyOperation(*this, dst, src,
2657                         CGM.getObjCEntrypoints().objc_copyWeak,
2658                         llvm::Intrinsic::objc_copyWeak);
2659  }
2660  
emitARCCopyAssignWeak(QualType Ty,Address DstAddr,Address SrcAddr)2661  void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2662                                              Address SrcAddr) {
2663    llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2664    Object = EmitObjCConsumeObject(Ty, Object);
2665    EmitARCStoreWeak(DstAddr, Object, false);
2666  }
2667  
emitARCMoveAssignWeak(QualType Ty,Address DstAddr,Address SrcAddr)2668  void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2669                                              Address SrcAddr) {
2670    llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2671    Object = EmitObjCConsumeObject(Ty, Object);
2672    EmitARCStoreWeak(DstAddr, Object, false);
2673    EmitARCDestroyWeak(SrcAddr);
2674  }
2675  
2676  /// Produce the code to do a objc_autoreleasepool_push.
2677  ///   call i8* \@objc_autoreleasePoolPush(void)
EmitObjCAutoreleasePoolPush()2678  llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2679    llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2680    if (!fn)
2681      fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM);
2682  
2683    return EmitNounwindRuntimeCall(fn);
2684  }
2685  
2686  /// Produce the code to do a primitive release.
2687  ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
EmitObjCAutoreleasePoolPop(llvm::Value * value)2688  void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2689    assert(value->getType() == Int8PtrTy);
2690  
2691    if (getInvokeDest()) {
2692      // Call the runtime method not the intrinsic if we are handling exceptions
2693      llvm::FunctionCallee &fn =
2694          CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2695      if (!fn) {
2696        llvm::FunctionType *fnType =
2697          llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2698        fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2699        setARCRuntimeFunctionLinkage(CGM, fn);
2700      }
2701  
2702      // objc_autoreleasePoolPop can throw.
2703      EmitRuntimeCallOrInvoke(fn, value);
2704    } else {
2705      llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2706      if (!fn)
2707        fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM);
2708  
2709      EmitRuntimeCall(fn, value);
2710    }
2711  }
2712  
2713  /// Produce the code to do an MRR version objc_autoreleasepool_push.
2714  /// Which is: [[NSAutoreleasePool alloc] init];
2715  /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2716  /// init is declared as: - (id) init; in its NSObject super class.
2717  ///
EmitObjCMRRAutoreleasePoolPush()2718  llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2719    CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2720    llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2721    // [NSAutoreleasePool alloc]
2722    const IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2723    Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2724    CallArgList Args;
2725    RValue AllocRV =
2726      Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2727                                  getContext().getObjCIdType(),
2728                                  AllocSel, Receiver, Args);
2729  
2730    // [Receiver init]
2731    Receiver = AllocRV.getScalarVal();
2732    II = &CGM.getContext().Idents.get("init");
2733    Selector InitSel = getContext().Selectors.getSelector(0, &II);
2734    RValue InitRV =
2735      Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2736                                  getContext().getObjCIdType(),
2737                                  InitSel, Receiver, Args);
2738    return InitRV.getScalarVal();
2739  }
2740  
2741  /// Allocate the given objc object.
2742  ///   call i8* \@objc_alloc(i8* %value)
EmitObjCAlloc(llvm::Value * value,llvm::Type * resultType)2743  llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2744                                              llvm::Type *resultType) {
2745    return emitObjCValueOperation(*this, value, resultType,
2746                                  CGM.getObjCEntrypoints().objc_alloc,
2747                                  "objc_alloc");
2748  }
2749  
2750  /// Allocate the given objc object.
2751  ///   call i8* \@objc_allocWithZone(i8* %value)
EmitObjCAllocWithZone(llvm::Value * value,llvm::Type * resultType)2752  llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2753                                                      llvm::Type *resultType) {
2754    return emitObjCValueOperation(*this, value, resultType,
2755                                  CGM.getObjCEntrypoints().objc_allocWithZone,
2756                                  "objc_allocWithZone");
2757  }
2758  
EmitObjCAllocInit(llvm::Value * value,llvm::Type * resultType)2759  llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2760                                                  llvm::Type *resultType) {
2761    return emitObjCValueOperation(*this, value, resultType,
2762                                  CGM.getObjCEntrypoints().objc_alloc_init,
2763                                  "objc_alloc_init");
2764  }
2765  
2766  /// Produce the code to do a primitive release.
2767  /// [tmp drain];
EmitObjCMRRAutoreleasePoolPop(llvm::Value * Arg)2768  void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2769    const IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2770    Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2771    CallArgList Args;
2772    CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2773                                getContext().VoidTy, DrainSel, Arg, Args);
2774  }
2775  
destroyARCStrongPrecise(CodeGenFunction & CGF,Address addr,QualType type)2776  void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2777                                                Address addr,
2778                                                QualType type) {
2779    CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2780  }
2781  
destroyARCStrongImprecise(CodeGenFunction & CGF,Address addr,QualType type)2782  void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2783                                                  Address addr,
2784                                                  QualType type) {
2785    CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2786  }
2787  
destroyARCWeak(CodeGenFunction & CGF,Address addr,QualType type)2788  void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2789                                       Address addr,
2790                                       QualType type) {
2791    CGF.EmitARCDestroyWeak(addr);
2792  }
2793  
emitARCIntrinsicUse(CodeGenFunction & CGF,Address addr,QualType type)2794  void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2795                                            QualType type) {
2796    llvm::Value *value = CGF.Builder.CreateLoad(addr);
2797    CGF.EmitARCIntrinsicUse(value);
2798  }
2799  
2800  /// Autorelease the given object.
2801  ///   call i8* \@objc_autorelease(i8* %value)
EmitObjCAutorelease(llvm::Value * value,llvm::Type * returnType)2802  llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2803                                                    llvm::Type *returnType) {
2804    return emitObjCValueOperation(
2805        *this, value, returnType,
2806        CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2807        "objc_autorelease");
2808  }
2809  
2810  /// Retain the given object, with normal retain semantics.
2811  ///   call i8* \@objc_retain(i8* %value)
EmitObjCRetainNonBlock(llvm::Value * value,llvm::Type * returnType)2812  llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2813                                                       llvm::Type *returnType) {
2814    return emitObjCValueOperation(
2815        *this, value, returnType,
2816        CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2817  }
2818  
2819  /// Release the given object.
2820  ///   call void \@objc_release(i8* %value)
EmitObjCRelease(llvm::Value * value,ARCPreciseLifetime_t precise)2821  void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2822                                        ARCPreciseLifetime_t precise) {
2823    if (isa<llvm::ConstantPointerNull>(value)) return;
2824  
2825    llvm::FunctionCallee &fn =
2826        CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2827    if (!fn) {
2828      llvm::FunctionType *fnType =
2829          llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2830      fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2831      setARCRuntimeFunctionLinkage(CGM, fn);
2832      // We have Native ARC, so set nonlazybind attribute for performance
2833      if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2834        f->addFnAttr(llvm::Attribute::NonLazyBind);
2835    }
2836  
2837    // Cast the argument to 'id'.
2838    value = Builder.CreateBitCast(value, Int8PtrTy);
2839  
2840    // Call objc_release.
2841    llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2842  
2843    if (precise == ARCImpreciseLifetime) {
2844      call->setMetadata("clang.imprecise_release",
2845                        llvm::MDNode::get(Builder.getContext(), std::nullopt));
2846    }
2847  }
2848  
2849  namespace {
2850    struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2851      llvm::Value *Token;
2852  
CallObjCAutoreleasePoolObject__anon4d4041c60511::CallObjCAutoreleasePoolObject2853      CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2854  
Emit__anon4d4041c60511::CallObjCAutoreleasePoolObject2855      void Emit(CodeGenFunction &CGF, Flags flags) override {
2856        CGF.EmitObjCAutoreleasePoolPop(Token);
2857      }
2858    };
2859    struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2860      llvm::Value *Token;
2861  
CallObjCMRRAutoreleasePoolObject__anon4d4041c60511::CallObjCMRRAutoreleasePoolObject2862      CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2863  
Emit__anon4d4041c60511::CallObjCMRRAutoreleasePoolObject2864      void Emit(CodeGenFunction &CGF, Flags flags) override {
2865        CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2866      }
2867    };
2868  }
2869  
EmitObjCAutoreleasePoolCleanup(llvm::Value * Ptr)2870  void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2871    if (CGM.getLangOpts().ObjCAutoRefCount)
2872      EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2873    else
2874      EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2875  }
2876  
shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime)2877  static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2878    switch (lifetime) {
2879    case Qualifiers::OCL_None:
2880    case Qualifiers::OCL_ExplicitNone:
2881    case Qualifiers::OCL_Strong:
2882    case Qualifiers::OCL_Autoreleasing:
2883      return true;
2884  
2885    case Qualifiers::OCL_Weak:
2886      return false;
2887    }
2888  
2889    llvm_unreachable("impossible lifetime!");
2890  }
2891  
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)2892  static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2893                                                    LValue lvalue,
2894                                                    QualType type) {
2895    llvm::Value *result;
2896    bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2897    if (shouldRetain) {
2898      result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2899    } else {
2900      assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2901      result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress());
2902    }
2903    return TryEmitResult(result, !shouldRetain);
2904  }
2905  
tryEmitARCRetainLoadOfScalar(CodeGenFunction & CGF,const Expr * e)2906  static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2907                                                    const Expr *e) {
2908    e = e->IgnoreParens();
2909    QualType type = e->getType();
2910  
2911    // If we're loading retained from a __strong xvalue, we can avoid
2912    // an extra retain/release pair by zeroing out the source of this
2913    // "move" operation.
2914    if (e->isXValue() &&
2915        !type.isConstQualified() &&
2916        type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2917      // Emit the lvalue.
2918      LValue lv = CGF.EmitLValue(e);
2919  
2920      // Load the object pointer.
2921      llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2922                                                 SourceLocation()).getScalarVal();
2923  
2924      // Set the source pointer to NULL.
2925      CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2926  
2927      return TryEmitResult(result, true);
2928    }
2929  
2930    // As a very special optimization, in ARC++, if the l-value is the
2931    // result of a non-volatile assignment, do a simple retain of the
2932    // result of the call to objc_storeWeak instead of reloading.
2933    if (CGF.getLangOpts().CPlusPlus &&
2934        !type.isVolatileQualified() &&
2935        type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2936        isa<BinaryOperator>(e) &&
2937        cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2938      return TryEmitResult(CGF.EmitScalarExpr(e), false);
2939  
2940    // Try to emit code for scalar constant instead of emitting LValue and
2941    // loading it because we are not guaranteed to have an l-value. One of such
2942    // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2943    if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2944      auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2945      if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2946        return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2947                             !shouldRetainObjCLifetime(type.getObjCLifetime()));
2948    }
2949  
2950    return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2951  }
2952  
2953  typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2954                                           llvm::Value *value)>
2955    ValueTransform;
2956  
2957  /// Insert code immediately after a call.
2958  
2959  // FIXME: We should find a way to emit the runtime call immediately
2960  // after the call is emitted to eliminate the need for this function.
emitARCOperationAfterCall(CodeGenFunction & CGF,llvm::Value * value,ValueTransform doAfterCall,ValueTransform doFallback)2961  static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2962                                                llvm::Value *value,
2963                                                ValueTransform doAfterCall,
2964                                                ValueTransform doFallback) {
2965    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2966    auto *callBase = dyn_cast<llvm::CallBase>(value);
2967  
2968    if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) {
2969      // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2970      value = doFallback(CGF, value);
2971    } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2972      // Place the retain immediately following the call.
2973      CGF.Builder.SetInsertPoint(call->getParent(),
2974                                 ++llvm::BasicBlock::iterator(call));
2975      value = doAfterCall(CGF, value);
2976    } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2977      // Place the retain at the beginning of the normal destination block.
2978      llvm::BasicBlock *BB = invoke->getNormalDest();
2979      CGF.Builder.SetInsertPoint(BB, BB->begin());
2980      value = doAfterCall(CGF, value);
2981  
2982    // Bitcasts can arise because of related-result returns.  Rewrite
2983    // the operand.
2984    } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2985      // Change the insert point to avoid emitting the fall-back call after the
2986      // bitcast.
2987      CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator());
2988      llvm::Value *operand = bitcast->getOperand(0);
2989      operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2990      bitcast->setOperand(0, operand);
2991      value = bitcast;
2992    } else {
2993      auto *phi = dyn_cast<llvm::PHINode>(value);
2994      if (phi && phi->getNumIncomingValues() == 2 &&
2995          isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) &&
2996          isa<llvm::CallBase>(phi->getIncomingValue(0))) {
2997        // Handle phi instructions that are generated when it's necessary to check
2998        // whether the receiver of a message is null.
2999        llvm::Value *inVal = phi->getIncomingValue(0);
3000        inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback);
3001        phi->setIncomingValue(0, inVal);
3002        value = phi;
3003      } else {
3004        // Generic fall-back case.
3005        // Retain using the non-block variant: we never need to do a copy
3006        // of a block that's been returned to us.
3007        value = doFallback(CGF, value);
3008      }
3009    }
3010  
3011    CGF.Builder.restoreIP(ip);
3012    return value;
3013  }
3014  
3015  /// Given that the given expression is some sort of call (which does
3016  /// not return retained), emit a retain following it.
emitARCRetainCallResult(CodeGenFunction & CGF,const Expr * e)3017  static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
3018                                              const Expr *e) {
3019    llvm::Value *value = CGF.EmitScalarExpr(e);
3020    return emitARCOperationAfterCall(CGF, value,
3021             [](CodeGenFunction &CGF, llvm::Value *value) {
3022               return CGF.EmitARCRetainAutoreleasedReturnValue(value);
3023             },
3024             [](CodeGenFunction &CGF, llvm::Value *value) {
3025               return CGF.EmitARCRetainNonBlock(value);
3026             });
3027  }
3028  
3029  /// Given that the given expression is some sort of call (which does
3030  /// not return retained), perform an unsafeClaim following it.
emitARCUnsafeClaimCallResult(CodeGenFunction & CGF,const Expr * e)3031  static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
3032                                                   const Expr *e) {
3033    llvm::Value *value = CGF.EmitScalarExpr(e);
3034    return emitARCOperationAfterCall(CGF, value,
3035             [](CodeGenFunction &CGF, llvm::Value *value) {
3036               return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
3037             },
3038             [](CodeGenFunction &CGF, llvm::Value *value) {
3039               return value;
3040             });
3041  }
3042  
EmitARCReclaimReturnedObject(const Expr * E,bool allowUnsafeClaim)3043  llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
3044                                                        bool allowUnsafeClaim) {
3045    if (allowUnsafeClaim &&
3046        CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3047      return emitARCUnsafeClaimCallResult(*this, E);
3048    } else {
3049      llvm::Value *value = emitARCRetainCallResult(*this, E);
3050      return EmitObjCConsumeObject(E->getType(), value);
3051    }
3052  }
3053  
3054  /// Determine whether it might be important to emit a separate
3055  /// objc_retain_block on the result of the given expression, or
3056  /// whether it's okay to just emit it in a +1 context.
shouldEmitSeparateBlockRetain(const Expr * e)3057  static bool shouldEmitSeparateBlockRetain(const Expr *e) {
3058    assert(e->getType()->isBlockPointerType());
3059    e = e->IgnoreParens();
3060  
3061    // For future goodness, emit block expressions directly in +1
3062    // contexts if we can.
3063    if (isa<BlockExpr>(e))
3064      return false;
3065  
3066    if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
3067      switch (cast->getCastKind()) {
3068      // Emitting these operations in +1 contexts is goodness.
3069      case CK_LValueToRValue:
3070      case CK_ARCReclaimReturnedObject:
3071      case CK_ARCConsumeObject:
3072      case CK_ARCProduceObject:
3073        return false;
3074  
3075      // These operations preserve a block type.
3076      case CK_NoOp:
3077      case CK_BitCast:
3078        return shouldEmitSeparateBlockRetain(cast->getSubExpr());
3079  
3080      // These operations are known to be bad (or haven't been considered).
3081      case CK_AnyPointerToBlockPointerCast:
3082      default:
3083        return true;
3084      }
3085    }
3086  
3087    return true;
3088  }
3089  
3090  namespace {
3091  /// A CRTP base class for emitting expressions of retainable object
3092  /// pointer type in ARC.
3093  template <typename Impl, typename Result> class ARCExprEmitter {
3094  protected:
3095    CodeGenFunction &CGF;
asImpl()3096    Impl &asImpl() { return *static_cast<Impl*>(this); }
3097  
ARCExprEmitter(CodeGenFunction & CGF)3098    ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
3099  
3100  public:
3101    Result visit(const Expr *e);
3102    Result visitCastExpr(const CastExpr *e);
3103    Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
3104    Result visitBlockExpr(const BlockExpr *e);
3105    Result visitBinaryOperator(const BinaryOperator *e);
3106    Result visitBinAssign(const BinaryOperator *e);
3107    Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
3108    Result visitBinAssignAutoreleasing(const BinaryOperator *e);
3109    Result visitBinAssignWeak(const BinaryOperator *e);
3110    Result visitBinAssignStrong(const BinaryOperator *e);
3111  
3112    // Minimal implementation:
3113    //   Result visitLValueToRValue(const Expr *e)
3114    //   Result visitConsumeObject(const Expr *e)
3115    //   Result visitExtendBlockObject(const Expr *e)
3116    //   Result visitReclaimReturnedObject(const Expr *e)
3117    //   Result visitCall(const Expr *e)
3118    //   Result visitExpr(const Expr *e)
3119    //
3120    //   Result emitBitCast(Result result, llvm::Type *resultType)
3121    //   llvm::Value *getValueOfResult(Result result)
3122  };
3123  }
3124  
3125  /// Try to emit a PseudoObjectExpr under special ARC rules.
3126  ///
3127  /// This massively duplicates emitPseudoObjectRValue.
3128  template <typename Impl, typename Result>
3129  Result
visitPseudoObjectExpr(const PseudoObjectExpr * E)3130  ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
3131    SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3132  
3133    // Find the result expression.
3134    const Expr *resultExpr = E->getResultExpr();
3135    assert(resultExpr);
3136    Result result;
3137  
3138    for (PseudoObjectExpr::const_semantics_iterator
3139           i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3140      const Expr *semantic = *i;
3141  
3142      // If this semantic expression is an opaque value, bind it
3143      // to the result of its source expression.
3144      if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3145        typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3146        OVMA opaqueData;
3147  
3148        // If this semantic is the result of the pseudo-object
3149        // expression, try to evaluate the source as +1.
3150        if (ov == resultExpr) {
3151          assert(!OVMA::shouldBindAsLValue(ov));
3152          result = asImpl().visit(ov->getSourceExpr());
3153          opaqueData = OVMA::bind(CGF, ov,
3154                              RValue::get(asImpl().getValueOfResult(result)));
3155  
3156        // Otherwise, just bind it.
3157        } else {
3158          opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3159        }
3160        opaques.push_back(opaqueData);
3161  
3162      // Otherwise, if the expression is the result, evaluate it
3163      // and remember the result.
3164      } else if (semantic == resultExpr) {
3165        result = asImpl().visit(semantic);
3166  
3167      // Otherwise, evaluate the expression in an ignored context.
3168      } else {
3169        CGF.EmitIgnoredExpr(semantic);
3170      }
3171    }
3172  
3173    // Unbind all the opaques now.
3174    for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3175      opaques[i].unbind(CGF);
3176  
3177    return result;
3178  }
3179  
3180  template <typename Impl, typename Result>
visitBlockExpr(const BlockExpr * e)3181  Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
3182    // The default implementation just forwards the expression to visitExpr.
3183    return asImpl().visitExpr(e);
3184  }
3185  
3186  template <typename Impl, typename Result>
visitCastExpr(const CastExpr * e)3187  Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3188    switch (e->getCastKind()) {
3189  
3190    // No-op casts don't change the type, so we just ignore them.
3191    case CK_NoOp:
3192      return asImpl().visit(e->getSubExpr());
3193  
3194    // These casts can change the type.
3195    case CK_CPointerToObjCPointerCast:
3196    case CK_BlockPointerToObjCPointerCast:
3197    case CK_AnyPointerToBlockPointerCast:
3198    case CK_BitCast: {
3199      llvm::Type *resultType = CGF.ConvertType(e->getType());
3200      assert(e->getSubExpr()->getType()->hasPointerRepresentation());
3201      Result result = asImpl().visit(e->getSubExpr());
3202      return asImpl().emitBitCast(result, resultType);
3203    }
3204  
3205    // Handle some casts specially.
3206    case CK_LValueToRValue:
3207      return asImpl().visitLValueToRValue(e->getSubExpr());
3208    case CK_ARCConsumeObject:
3209      return asImpl().visitConsumeObject(e->getSubExpr());
3210    case CK_ARCExtendBlockObject:
3211      return asImpl().visitExtendBlockObject(e->getSubExpr());
3212    case CK_ARCReclaimReturnedObject:
3213      return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3214  
3215    // Otherwise, use the default logic.
3216    default:
3217      return asImpl().visitExpr(e);
3218    }
3219  }
3220  
3221  template <typename Impl, typename Result>
3222  Result
visitBinaryOperator(const BinaryOperator * e)3223  ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3224    switch (e->getOpcode()) {
3225    case BO_Comma:
3226      CGF.EmitIgnoredExpr(e->getLHS());
3227      CGF.EnsureInsertPoint();
3228      return asImpl().visit(e->getRHS());
3229  
3230    case BO_Assign:
3231      return asImpl().visitBinAssign(e);
3232  
3233    default:
3234      return asImpl().visitExpr(e);
3235    }
3236  }
3237  
3238  template <typename Impl, typename Result>
visitBinAssign(const BinaryOperator * e)3239  Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3240    switch (e->getLHS()->getType().getObjCLifetime()) {
3241    case Qualifiers::OCL_ExplicitNone:
3242      return asImpl().visitBinAssignUnsafeUnretained(e);
3243  
3244    case Qualifiers::OCL_Weak:
3245      return asImpl().visitBinAssignWeak(e);
3246  
3247    case Qualifiers::OCL_Autoreleasing:
3248      return asImpl().visitBinAssignAutoreleasing(e);
3249  
3250    case Qualifiers::OCL_Strong:
3251      return asImpl().visitBinAssignStrong(e);
3252  
3253    case Qualifiers::OCL_None:
3254      return asImpl().visitExpr(e);
3255    }
3256    llvm_unreachable("bad ObjC ownership qualifier");
3257  }
3258  
3259  /// The default rule for __unsafe_unretained emits the RHS recursively,
3260  /// stores into the unsafe variable, and propagates the result outward.
3261  template <typename Impl, typename Result>
3262  Result ARCExprEmitter<Impl,Result>::
visitBinAssignUnsafeUnretained(const BinaryOperator * e)3263                      visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3264    // Recursively emit the RHS.
3265    // For __block safety, do this before emitting the LHS.
3266    Result result = asImpl().visit(e->getRHS());
3267  
3268    // Perform the store.
3269    LValue lvalue =
3270      CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3271    CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3272                               lvalue);
3273  
3274    return result;
3275  }
3276  
3277  template <typename Impl, typename Result>
3278  Result
visitBinAssignAutoreleasing(const BinaryOperator * e)3279  ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3280    return asImpl().visitExpr(e);
3281  }
3282  
3283  template <typename Impl, typename Result>
3284  Result
visitBinAssignWeak(const BinaryOperator * e)3285  ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3286    return asImpl().visitExpr(e);
3287  }
3288  
3289  template <typename Impl, typename Result>
3290  Result
visitBinAssignStrong(const BinaryOperator * e)3291  ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3292    return asImpl().visitExpr(e);
3293  }
3294  
3295  /// The general expression-emission logic.
3296  template <typename Impl, typename Result>
visit(const Expr * e)3297  Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3298    // We should *never* see a nested full-expression here, because if
3299    // we fail to emit at +1, our caller must not retain after we close
3300    // out the full-expression.  This isn't as important in the unsafe
3301    // emitter.
3302    assert(!isa<ExprWithCleanups>(e));
3303  
3304    // Look through parens, __extension__, generic selection, etc.
3305    e = e->IgnoreParens();
3306  
3307    // Handle certain kinds of casts.
3308    if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3309      return asImpl().visitCastExpr(ce);
3310  
3311    // Handle the comma operator.
3312    } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3313      return asImpl().visitBinaryOperator(op);
3314  
3315    // TODO: handle conditional operators here
3316  
3317    // For calls and message sends, use the retained-call logic.
3318    // Delegate inits are a special case in that they're the only
3319    // returns-retained expression that *isn't* surrounded by
3320    // a consume.
3321    } else if (isa<CallExpr>(e) ||
3322               (isa<ObjCMessageExpr>(e) &&
3323                !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3324      return asImpl().visitCall(e);
3325  
3326    // Look through pseudo-object expressions.
3327    } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3328      return asImpl().visitPseudoObjectExpr(pseudo);
3329    } else if (auto *be = dyn_cast<BlockExpr>(e))
3330      return asImpl().visitBlockExpr(be);
3331  
3332    return asImpl().visitExpr(e);
3333  }
3334  
3335  namespace {
3336  
3337  /// An emitter for +1 results.
3338  struct ARCRetainExprEmitter :
3339    public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3340  
ARCRetainExprEmitter__anon4d4041c60b11::ARCRetainExprEmitter3341    ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3342  
getValueOfResult__anon4d4041c60b11::ARCRetainExprEmitter3343    llvm::Value *getValueOfResult(TryEmitResult result) {
3344      return result.getPointer();
3345    }
3346  
emitBitCast__anon4d4041c60b11::ARCRetainExprEmitter3347    TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3348      llvm::Value *value = result.getPointer();
3349      value = CGF.Builder.CreateBitCast(value, resultType);
3350      result.setPointer(value);
3351      return result;
3352    }
3353  
visitLValueToRValue__anon4d4041c60b11::ARCRetainExprEmitter3354    TryEmitResult visitLValueToRValue(const Expr *e) {
3355      return tryEmitARCRetainLoadOfScalar(CGF, e);
3356    }
3357  
3358    /// For consumptions, just emit the subexpression and thus elide
3359    /// the retain/release pair.
visitConsumeObject__anon4d4041c60b11::ARCRetainExprEmitter3360    TryEmitResult visitConsumeObject(const Expr *e) {
3361      llvm::Value *result = CGF.EmitScalarExpr(e);
3362      return TryEmitResult(result, true);
3363    }
3364  
visitBlockExpr__anon4d4041c60b11::ARCRetainExprEmitter3365    TryEmitResult visitBlockExpr(const BlockExpr *e) {
3366      TryEmitResult result = visitExpr(e);
3367      // Avoid the block-retain if this is a block literal that doesn't need to be
3368      // copied to the heap.
3369      if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks &&
3370          e->getBlockDecl()->canAvoidCopyToHeap())
3371        result.setInt(true);
3372      return result;
3373    }
3374  
3375    /// Block extends are net +0.  Naively, we could just recurse on
3376    /// the subexpression, but actually we need to ensure that the
3377    /// value is copied as a block, so there's a little filter here.
visitExtendBlockObject__anon4d4041c60b11::ARCRetainExprEmitter3378    TryEmitResult visitExtendBlockObject(const Expr *e) {
3379      llvm::Value *result; // will be a +0 value
3380  
3381      // If we can't safely assume the sub-expression will produce a
3382      // block-copied value, emit the sub-expression at +0.
3383      if (shouldEmitSeparateBlockRetain(e)) {
3384        result = CGF.EmitScalarExpr(e);
3385  
3386      // Otherwise, try to emit the sub-expression at +1 recursively.
3387      } else {
3388        TryEmitResult subresult = asImpl().visit(e);
3389  
3390        // If that produced a retained value, just use that.
3391        if (subresult.getInt()) {
3392          return subresult;
3393        }
3394  
3395        // Otherwise it's +0.
3396        result = subresult.getPointer();
3397      }
3398  
3399      // Retain the object as a block.
3400      result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3401      return TryEmitResult(result, true);
3402    }
3403  
3404    /// For reclaims, emit the subexpression as a retained call and
3405    /// skip the consumption.
visitReclaimReturnedObject__anon4d4041c60b11::ARCRetainExprEmitter3406    TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3407      llvm::Value *result = emitARCRetainCallResult(CGF, e);
3408      return TryEmitResult(result, true);
3409    }
3410  
3411    /// When we have an undecorated call, retroactively do a claim.
visitCall__anon4d4041c60b11::ARCRetainExprEmitter3412    TryEmitResult visitCall(const Expr *e) {
3413      llvm::Value *result = emitARCRetainCallResult(CGF, e);
3414      return TryEmitResult(result, true);
3415    }
3416  
3417    // TODO: maybe special-case visitBinAssignWeak?
3418  
visitExpr__anon4d4041c60b11::ARCRetainExprEmitter3419    TryEmitResult visitExpr(const Expr *e) {
3420      // We didn't find an obvious production, so emit what we've got and
3421      // tell the caller that we didn't manage to retain.
3422      llvm::Value *result = CGF.EmitScalarExpr(e);
3423      return TryEmitResult(result, false);
3424    }
3425  };
3426  }
3427  
3428  static TryEmitResult
tryEmitARCRetainScalarExpr(CodeGenFunction & CGF,const Expr * e)3429  tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3430    return ARCRetainExprEmitter(CGF).visit(e);
3431  }
3432  
emitARCRetainLoadOfScalar(CodeGenFunction & CGF,LValue lvalue,QualType type)3433  static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3434                                                  LValue lvalue,
3435                                                  QualType type) {
3436    TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3437    llvm::Value *value = result.getPointer();
3438    if (!result.getInt())
3439      value = CGF.EmitARCRetain(type, value);
3440    return value;
3441  }
3442  
3443  /// EmitARCRetainScalarExpr - Semantically equivalent to
3444  /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3445  /// best-effort attempt to peephole expressions that naturally produce
3446  /// retained objects.
EmitARCRetainScalarExpr(const Expr * e)3447  llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3448    // The retain needs to happen within the full-expression.
3449    if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3450      RunCleanupsScope scope(*this);
3451      return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3452    }
3453  
3454    TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3455    llvm::Value *value = result.getPointer();
3456    if (!result.getInt())
3457      value = EmitARCRetain(e->getType(), value);
3458    return value;
3459  }
3460  
3461  llvm::Value *
EmitARCRetainAutoreleaseScalarExpr(const Expr * e)3462  CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3463    // The retain needs to happen within the full-expression.
3464    if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3465      RunCleanupsScope scope(*this);
3466      return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3467    }
3468  
3469    TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3470    llvm::Value *value = result.getPointer();
3471    if (result.getInt())
3472      value = EmitARCAutorelease(value);
3473    else
3474      value = EmitARCRetainAutorelease(e->getType(), value);
3475    return value;
3476  }
3477  
EmitARCExtendBlockObject(const Expr * e)3478  llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3479    llvm::Value *result;
3480    bool doRetain;
3481  
3482    if (shouldEmitSeparateBlockRetain(e)) {
3483      result = EmitScalarExpr(e);
3484      doRetain = true;
3485    } else {
3486      TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3487      result = subresult.getPointer();
3488      doRetain = !subresult.getInt();
3489    }
3490  
3491    if (doRetain)
3492      result = EmitARCRetainBlock(result, /*mandatory*/ true);
3493    return EmitObjCConsumeObject(e->getType(), result);
3494  }
3495  
EmitObjCThrowOperand(const Expr * expr)3496  llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3497    // In ARC, retain and autorelease the expression.
3498    if (getLangOpts().ObjCAutoRefCount) {
3499      // Do so before running any cleanups for the full-expression.
3500      // EmitARCRetainAutoreleaseScalarExpr does this for us.
3501      return EmitARCRetainAutoreleaseScalarExpr(expr);
3502    }
3503  
3504    // Otherwise, use the normal scalar-expression emission.  The
3505    // exception machinery doesn't do anything special with the
3506    // exception like retaining it, so there's no safety associated with
3507    // only running cleanups after the throw has started, and when it
3508    // matters it tends to be substantially inferior code.
3509    return EmitScalarExpr(expr);
3510  }
3511  
3512  namespace {
3513  
3514  /// An emitter for assigning into an __unsafe_unretained context.
3515  struct ARCUnsafeUnretainedExprEmitter :
3516    public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3517  
ARCUnsafeUnretainedExprEmitter__anon4d4041c60c11::ARCUnsafeUnretainedExprEmitter3518    ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3519  
getValueOfResult__anon4d4041c60c11::ARCUnsafeUnretainedExprEmitter3520    llvm::Value *getValueOfResult(llvm::Value *value) {
3521      return value;
3522    }
3523  
emitBitCast__anon4d4041c60c11::ARCUnsafeUnretainedExprEmitter3524    llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3525      return CGF.Builder.CreateBitCast(value, resultType);
3526    }
3527  
visitLValueToRValue__anon4d4041c60c11::ARCUnsafeUnretainedExprEmitter3528    llvm::Value *visitLValueToRValue(const Expr *e) {
3529      return CGF.EmitScalarExpr(e);
3530    }
3531  
3532    /// For consumptions, just emit the subexpression and perform the
3533    /// consumption like normal.
visitConsumeObject__anon4d4041c60c11::ARCUnsafeUnretainedExprEmitter3534    llvm::Value *visitConsumeObject(const Expr *e) {
3535      llvm::Value *value = CGF.EmitScalarExpr(e);
3536      return CGF.EmitObjCConsumeObject(e->getType(), value);
3537    }
3538  
3539    /// No special logic for block extensions.  (This probably can't
3540    /// actually happen in this emitter, though.)
visitExtendBlockObject__anon4d4041c60c11::ARCUnsafeUnretainedExprEmitter3541    llvm::Value *visitExtendBlockObject(const Expr *e) {
3542      return CGF.EmitARCExtendBlockObject(e);
3543    }
3544  
3545    /// For reclaims, perform an unsafeClaim if that's enabled.
visitReclaimReturnedObject__anon4d4041c60c11::ARCUnsafeUnretainedExprEmitter3546    llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3547      return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3548    }
3549  
3550    /// When we have an undecorated call, just emit it without adding
3551    /// the unsafeClaim.
visitCall__anon4d4041c60c11::ARCUnsafeUnretainedExprEmitter3552    llvm::Value *visitCall(const Expr *e) {
3553      return CGF.EmitScalarExpr(e);
3554    }
3555  
3556    /// Just do normal scalar emission in the default case.
visitExpr__anon4d4041c60c11::ARCUnsafeUnretainedExprEmitter3557    llvm::Value *visitExpr(const Expr *e) {
3558      return CGF.EmitScalarExpr(e);
3559    }
3560  };
3561  }
3562  
emitARCUnsafeUnretainedScalarExpr(CodeGenFunction & CGF,const Expr * e)3563  static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3564                                                        const Expr *e) {
3565    return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3566  }
3567  
3568  /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3569  /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3570  /// avoiding any spurious retains, including by performing reclaims
3571  /// with objc_unsafeClaimAutoreleasedReturnValue.
EmitARCUnsafeUnretainedScalarExpr(const Expr * e)3572  llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3573    // Look through full-expressions.
3574    if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3575      RunCleanupsScope scope(*this);
3576      return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3577    }
3578  
3579    return emitARCUnsafeUnretainedScalarExpr(*this, e);
3580  }
3581  
3582  std::pair<LValue,llvm::Value*>
EmitARCStoreUnsafeUnretained(const BinaryOperator * e,bool ignored)3583  CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3584                                                bool ignored) {
3585    // Evaluate the RHS first.  If we're ignoring the result, assume
3586    // that we can emit at an unsafe +0.
3587    llvm::Value *value;
3588    if (ignored) {
3589      value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3590    } else {
3591      value = EmitScalarExpr(e->getRHS());
3592    }
3593  
3594    // Emit the LHS and perform the store.
3595    LValue lvalue = EmitLValue(e->getLHS());
3596    EmitStoreOfScalar(value, lvalue);
3597  
3598    return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3599  }
3600  
3601  std::pair<LValue,llvm::Value*>
EmitARCStoreStrong(const BinaryOperator * e,bool ignored)3602  CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3603                                      bool ignored) {
3604    // Evaluate the RHS first.
3605    TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3606    llvm::Value *value = result.getPointer();
3607  
3608    bool hasImmediateRetain = result.getInt();
3609  
3610    // If we didn't emit a retained object, and the l-value is of block
3611    // type, then we need to emit the block-retain immediately in case
3612    // it invalidates the l-value.
3613    if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3614      value = EmitARCRetainBlock(value, /*mandatory*/ false);
3615      hasImmediateRetain = true;
3616    }
3617  
3618    LValue lvalue = EmitLValue(e->getLHS());
3619  
3620    // If the RHS was emitted retained, expand this.
3621    if (hasImmediateRetain) {
3622      llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3623      EmitStoreOfScalar(value, lvalue);
3624      EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3625    } else {
3626      value = EmitARCStoreStrong(lvalue, value, ignored);
3627    }
3628  
3629    return std::pair<LValue,llvm::Value*>(lvalue, value);
3630  }
3631  
3632  std::pair<LValue,llvm::Value*>
EmitARCStoreAutoreleasing(const BinaryOperator * e)3633  CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3634    llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3635    LValue lvalue = EmitLValue(e->getLHS());
3636  
3637    EmitStoreOfScalar(value, lvalue);
3638  
3639    return std::pair<LValue,llvm::Value*>(lvalue, value);
3640  }
3641  
EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt & ARPS)3642  void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3643                                            const ObjCAutoreleasePoolStmt &ARPS) {
3644    const Stmt *subStmt = ARPS.getSubStmt();
3645    const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3646  
3647    CGDebugInfo *DI = getDebugInfo();
3648    if (DI)
3649      DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3650  
3651    // Keep track of the current cleanup stack depth.
3652    RunCleanupsScope Scope(*this);
3653    if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3654      llvm::Value *token = EmitObjCAutoreleasePoolPush();
3655      EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3656    } else {
3657      llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3658      EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3659    }
3660  
3661    for (const auto *I : S.body())
3662      EmitStmt(I);
3663  
3664    if (DI)
3665      DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3666  }
3667  
3668  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3669  /// make sure it survives garbage collection until this point.
EmitExtendGCLifetime(llvm::Value * object)3670  void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3671    // We just use an inline assembly.
3672    llvm::FunctionType *extenderType
3673      = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3674    llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3675                                                     /* assembly */ "",
3676                                                     /* constraints */ "r",
3677                                                     /* side effects */ true);
3678  
3679    EmitNounwindRuntimeCall(extender, object);
3680  }
3681  
3682  /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3683  /// non-trivial copy assignment function, produce following helper function.
3684  /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3685  ///
3686  llvm::Constant *
GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)3687  CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3688                                          const ObjCPropertyImplDecl *PID) {
3689    const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3690    if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3691      return nullptr;
3692  
3693    QualType Ty = PID->getPropertyIvarDecl()->getType();
3694    ASTContext &C = getContext();
3695  
3696    if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3697      // Call the move assignment operator instead of calling the copy assignment
3698      // operator and destructor.
3699      CharUnits Alignment = C.getTypeAlignInChars(Ty);
3700      llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator(
3701          CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3702      return Fn;
3703    }
3704  
3705    if (!getLangOpts().CPlusPlus ||
3706        !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3707      return nullptr;
3708    if (!Ty->isRecordType())
3709      return nullptr;
3710    llvm::Constant *HelperFn = nullptr;
3711    if (hasTrivialSetExpr(PID))
3712      return nullptr;
3713    assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3714    if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3715      return HelperFn;
3716  
3717    const IdentifierInfo *II =
3718        &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3719  
3720    QualType ReturnTy = C.VoidTy;
3721    QualType DestTy = C.getPointerType(Ty);
3722    QualType SrcTy = Ty;
3723    SrcTy.addConst();
3724    SrcTy = C.getPointerType(SrcTy);
3725  
3726    SmallVector<QualType, 2> ArgTys;
3727    ArgTys.push_back(DestTy);
3728    ArgTys.push_back(SrcTy);
3729    QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3730  
3731    FunctionDecl *FD = FunctionDecl::Create(
3732        C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3733        FunctionTy, nullptr, SC_Static, false, false, false);
3734  
3735    FunctionArgList args;
3736    ParmVarDecl *Params[2];
3737    ParmVarDecl *DstDecl = ParmVarDecl::Create(
3738        C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3739        C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3740        /*DefArg=*/nullptr);
3741    args.push_back(Params[0] = DstDecl);
3742    ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3743        C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3744        C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3745        /*DefArg=*/nullptr);
3746    args.push_back(Params[1] = SrcDecl);
3747    FD->setParams(Params);
3748  
3749    const CGFunctionInfo &FI =
3750        CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3751  
3752    llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3753  
3754    llvm::Function *Fn =
3755      llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3756                             "__assign_helper_atomic_property_",
3757                             &CGM.getModule());
3758  
3759    CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3760  
3761    StartFunction(FD, ReturnTy, Fn, FI, args);
3762  
3763    DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation());
3764    UnaryOperator *DST = UnaryOperator::Create(
3765        C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary,
3766        SourceLocation(), false, FPOptionsOverride());
3767  
3768    DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation());
3769    UnaryOperator *SRC = UnaryOperator::Create(
3770        C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3771        SourceLocation(), false, FPOptionsOverride());
3772  
3773    Expr *Args[2] = {DST, SRC};
3774    CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3775    CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3776        C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3777        VK_LValue, SourceLocation(), FPOptionsOverride());
3778  
3779    EmitStmt(TheCall);
3780  
3781    FinishFunction();
3782    HelperFn = Fn;
3783    CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3784    return HelperFn;
3785  }
3786  
GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl * PID)3787  llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3788      const ObjCPropertyImplDecl *PID) {
3789    const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3790    if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic)))
3791      return nullptr;
3792  
3793    QualType Ty = PD->getType();
3794    ASTContext &C = getContext();
3795  
3796    if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
3797      CharUnits Alignment = C.getTypeAlignInChars(Ty);
3798      llvm::Constant *Fn = getNonTrivialCStructCopyConstructor(
3799          CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty);
3800      return Fn;
3801    }
3802  
3803    if (!getLangOpts().CPlusPlus ||
3804        !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3805      return nullptr;
3806    if (!Ty->isRecordType())
3807      return nullptr;
3808    llvm::Constant *HelperFn = nullptr;
3809    if (hasTrivialGetExpr(PID))
3810      return nullptr;
3811    assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3812    if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3813      return HelperFn;
3814  
3815    const IdentifierInfo *II =
3816        &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3817  
3818    QualType ReturnTy = C.VoidTy;
3819    QualType DestTy = C.getPointerType(Ty);
3820    QualType SrcTy = Ty;
3821    SrcTy.addConst();
3822    SrcTy = C.getPointerType(SrcTy);
3823  
3824    SmallVector<QualType, 2> ArgTys;
3825    ArgTys.push_back(DestTy);
3826    ArgTys.push_back(SrcTy);
3827    QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3828  
3829    FunctionDecl *FD = FunctionDecl::Create(
3830        C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3831        FunctionTy, nullptr, SC_Static, false, false, false);
3832  
3833    FunctionArgList args;
3834    ParmVarDecl *Params[2];
3835    ParmVarDecl *DstDecl = ParmVarDecl::Create(
3836        C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy,
3837        C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None,
3838        /*DefArg=*/nullptr);
3839    args.push_back(Params[0] = DstDecl);
3840    ParmVarDecl *SrcDecl = ParmVarDecl::Create(
3841        C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy,
3842        C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None,
3843        /*DefArg=*/nullptr);
3844    args.push_back(Params[1] = SrcDecl);
3845    FD->setParams(Params);
3846  
3847    const CGFunctionInfo &FI =
3848        CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3849  
3850    llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3851  
3852    llvm::Function *Fn = llvm::Function::Create(
3853        LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3854        &CGM.getModule());
3855  
3856    CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3857  
3858    StartFunction(FD, ReturnTy, Fn, FI, args);
3859  
3860    DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue,
3861                        SourceLocation());
3862  
3863    UnaryOperator *SRC = UnaryOperator::Create(
3864        C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary,
3865        SourceLocation(), false, FPOptionsOverride());
3866  
3867    CXXConstructExpr *CXXConstExpr =
3868      cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3869  
3870    SmallVector<Expr*, 4> ConstructorArgs;
3871    ConstructorArgs.push_back(SRC);
3872    ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3873                           CXXConstExpr->arg_end());
3874  
3875    CXXConstructExpr *TheCXXConstructExpr =
3876      CXXConstructExpr::Create(C, Ty, SourceLocation(),
3877                               CXXConstExpr->getConstructor(),
3878                               CXXConstExpr->isElidable(),
3879                               ConstructorArgs,
3880                               CXXConstExpr->hadMultipleCandidates(),
3881                               CXXConstExpr->isListInitialization(),
3882                               CXXConstExpr->isStdInitListInitialization(),
3883                               CXXConstExpr->requiresZeroInitialization(),
3884                               CXXConstExpr->getConstructionKind(),
3885                               SourceRange());
3886  
3887    DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue,
3888                        SourceLocation());
3889  
3890    RValue DV = EmitAnyExpr(&DstExpr);
3891    CharUnits Alignment =
3892        getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3893    EmitAggExpr(TheCXXConstructExpr,
3894                AggValueSlot::forAddr(
3895                    Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment),
3896                    Qualifiers(), AggValueSlot::IsDestructed,
3897                    AggValueSlot::DoesNotNeedGCBarriers,
3898                    AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
3899  
3900    FinishFunction();
3901    HelperFn = Fn;
3902    CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3903    return HelperFn;
3904  }
3905  
3906  llvm::Value *
EmitBlockCopyAndAutorelease(llvm::Value * Block,QualType Ty)3907  CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3908    // Get selectors for retain/autorelease.
3909    const IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3910    Selector CopySelector =
3911        getContext().Selectors.getNullarySelector(CopyID);
3912    const IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3913    Selector AutoreleaseSelector =
3914        getContext().Selectors.getNullarySelector(AutoreleaseID);
3915  
3916    // Emit calls to retain/autorelease.
3917    CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3918    llvm::Value *Val = Block;
3919    RValue Result;
3920    Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3921                                         Ty, CopySelector,
3922                                         Val, CallArgList(), nullptr, nullptr);
3923    Val = Result.getScalarVal();
3924    Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3925                                         Ty, AutoreleaseSelector,
3926                                         Val, CallArgList(), nullptr, nullptr);
3927    Val = Result.getScalarVal();
3928    return Val;
3929  }
3930  
getBaseMachOPlatformID(const llvm::Triple & TT)3931  static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) {
3932    switch (TT.getOS()) {
3933    case llvm::Triple::Darwin:
3934    case llvm::Triple::MacOSX:
3935      return llvm::MachO::PLATFORM_MACOS;
3936    case llvm::Triple::IOS:
3937      return llvm::MachO::PLATFORM_IOS;
3938    case llvm::Triple::TvOS:
3939      return llvm::MachO::PLATFORM_TVOS;
3940    case llvm::Triple::WatchOS:
3941      return llvm::MachO::PLATFORM_WATCHOS;
3942    case llvm::Triple::XROS:
3943      return llvm::MachO::PLATFORM_XROS;
3944    case llvm::Triple::DriverKit:
3945      return llvm::MachO::PLATFORM_DRIVERKIT;
3946    default:
3947      return llvm::MachO::PLATFORM_UNKNOWN;
3948    }
3949  }
3950  
emitIsPlatformVersionAtLeast(CodeGenFunction & CGF,const VersionTuple & Version)3951  static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF,
3952                                                   const VersionTuple &Version) {
3953    CodeGenModule &CGM = CGF.CGM;
3954    // Note: we intend to support multi-platform version checks, so reserve
3955    // the room for a dual platform checking invocation that will be
3956    // implemented in the future.
3957    llvm::SmallVector<llvm::Value *, 8> Args;
3958  
3959    auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) {
3960      std::optional<unsigned> Min = Version.getMinor(),
3961                              SMin = Version.getSubminor();
3962      Args.push_back(
3963          llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT)));
3964      Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()));
3965      Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)));
3966      Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0)));
3967    };
3968  
3969    assert(!Version.empty() && "unexpected empty version");
3970    EmitArgs(Version, CGM.getTarget().getTriple());
3971  
3972    if (!CGM.IsPlatformVersionAtLeastFn) {
3973      llvm::FunctionType *FTy = llvm::FunctionType::get(
3974          CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty},
3975          false);
3976      CGM.IsPlatformVersionAtLeastFn =
3977          CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast");
3978    }
3979  
3980    llvm::Value *Check =
3981        CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args);
3982    return CGF.Builder.CreateICmpNE(Check,
3983                                    llvm::Constant::getNullValue(CGM.Int32Ty));
3984  }
3985  
3986  llvm::Value *
EmitBuiltinAvailable(const VersionTuple & Version)3987  CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) {
3988    // Darwin uses the new __isPlatformVersionAtLeast family of routines.
3989    if (CGM.getTarget().getTriple().isOSDarwin())
3990      return emitIsPlatformVersionAtLeast(*this, Version);
3991  
3992    if (!CGM.IsOSVersionAtLeastFn) {
3993      llvm::FunctionType *FTy =
3994          llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3995      CGM.IsOSVersionAtLeastFn =
3996          CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3997    }
3998  
3999    std::optional<unsigned> Min = Version.getMinor(),
4000                            SMin = Version.getSubminor();
4001    llvm::Value *Args[] = {
4002        llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()),
4003        llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)),
4004        llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))};
4005  
4006    llvm::Value *CallRes =
4007        EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
4008  
4009    return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
4010  }
4011  
isFoundationNeededForDarwinAvailabilityCheck(const llvm::Triple & TT,const VersionTuple & TargetVersion)4012  static bool isFoundationNeededForDarwinAvailabilityCheck(
4013      const llvm::Triple &TT, const VersionTuple &TargetVersion) {
4014    VersionTuple FoundationDroppedInVersion;
4015    switch (TT.getOS()) {
4016    case llvm::Triple::IOS:
4017    case llvm::Triple::TvOS:
4018      FoundationDroppedInVersion = VersionTuple(/*Major=*/13);
4019      break;
4020    case llvm::Triple::WatchOS:
4021      FoundationDroppedInVersion = VersionTuple(/*Major=*/6);
4022      break;
4023    case llvm::Triple::Darwin:
4024    case llvm::Triple::MacOSX:
4025      FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15);
4026      break;
4027    case llvm::Triple::XROS:
4028      // XROS doesn't need Foundation.
4029      return false;
4030    case llvm::Triple::DriverKit:
4031      // DriverKit doesn't need Foundation.
4032      return false;
4033    default:
4034      llvm_unreachable("Unexpected OS");
4035    }
4036    return TargetVersion < FoundationDroppedInVersion;
4037  }
4038  
emitAtAvailableLinkGuard()4039  void CodeGenModule::emitAtAvailableLinkGuard() {
4040    if (!IsPlatformVersionAtLeastFn)
4041      return;
4042    // @available requires CoreFoundation only on Darwin.
4043    if (!Target.getTriple().isOSDarwin())
4044      return;
4045    // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4046    // watchOS 6+.
4047    if (!isFoundationNeededForDarwinAvailabilityCheck(
4048            Target.getTriple(), Target.getPlatformMinVersion()))
4049      return;
4050    // Add -framework CoreFoundation to the linker commands. We still want to
4051    // emit the core foundation reference down below because otherwise if
4052    // CoreFoundation is not used in the code, the linker won't link the
4053    // framework.
4054    auto &Context = getLLVMContext();
4055    llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
4056                               llvm::MDString::get(Context, "CoreFoundation")};
4057    LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
4058    // Emit a reference to a symbol from CoreFoundation to ensure that
4059    // CoreFoundation is linked into the final binary.
4060    llvm::FunctionType *FTy =
4061        llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
4062    llvm::FunctionCallee CFFunc =
4063        CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
4064  
4065    llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
4066    llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
4067        CheckFTy, "__clang_at_available_requires_core_foundation_framework",
4068        llvm::AttributeList(), /*Local=*/true);
4069    llvm::Function *CFLinkCheckFunc =
4070        cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
4071    if (CFLinkCheckFunc->empty()) {
4072      CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
4073      CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
4074      CodeGenFunction CGF(*this);
4075      CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
4076      CGF.EmitNounwindRuntimeCall(CFFunc,
4077                                  llvm::Constant::getNullValue(VoidPtrTy));
4078      CGF.Builder.CreateUnreachable();
4079      addCompilerUsedGlobal(CFLinkCheckFunc);
4080    }
4081  }
4082  
~CGObjCRuntime()4083  CGObjCRuntime::~CGObjCRuntime() {}
4084