1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend. This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLFunctionalExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstSimplifyFolder.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/CodeGen/AtomicExpand.h"
23 #include "llvm/CodeGen/AtomicExpandUtils.h"
24 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstIterator.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/AtomicOrdering.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Transforms/Utils/LowerAtomic.h"
55 #include <cassert>
56 #include <cstdint>
57 #include <iterator>
58
59 using namespace llvm;
60
61 #define DEBUG_TYPE "atomic-expand"
62
63 namespace {
64
65 class AtomicExpandImpl {
66 const TargetLowering *TLI = nullptr;
67 const DataLayout *DL = nullptr;
68
69 private:
70 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
71 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
72 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
73 bool tryExpandAtomicLoad(LoadInst *LI);
74 bool expandAtomicLoadToLL(LoadInst *LI);
75 bool expandAtomicLoadToCmpXchg(LoadInst *LI);
76 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
77 bool tryExpandAtomicStore(StoreInst *SI);
78 void expandAtomicStore(StoreInst *SI);
79 bool tryExpandAtomicRMW(AtomicRMWInst *AI);
80 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI);
81 Value *
82 insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr,
83 Align AddrAlign, AtomicOrdering MemOpOrder,
84 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp);
85 void expandAtomicOpToLLSC(
86 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign,
87 AtomicOrdering MemOpOrder,
88 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp);
89 void expandPartwordAtomicRMW(
90 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind);
91 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
92 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
93 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
94 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
95
96 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
97 static Value *insertRMWCmpXchgLoop(
98 IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign,
99 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
100 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp,
101 CreateCmpXchgInstFun CreateCmpXchg);
102 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
103
104 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
105 bool isIdempotentRMW(AtomicRMWInst *RMWI);
106 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
107
108 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
109 Value *PointerOperand, Value *ValueOperand,
110 Value *CASExpected, AtomicOrdering Ordering,
111 AtomicOrdering Ordering2,
112 ArrayRef<RTLIB::Libcall> Libcalls);
113 void expandAtomicLoadToLibcall(LoadInst *LI);
114 void expandAtomicStoreToLibcall(StoreInst *LI);
115 void expandAtomicRMWToLibcall(AtomicRMWInst *I);
116 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
117
118 friend bool
119 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
120 CreateCmpXchgInstFun CreateCmpXchg);
121
122 public:
123 bool run(Function &F, const TargetMachine *TM);
124 };
125
126 class AtomicExpandLegacy : public FunctionPass {
127 public:
128 static char ID; // Pass identification, replacement for typeid
129
AtomicExpandLegacy()130 AtomicExpandLegacy() : FunctionPass(ID) {
131 initializeAtomicExpandLegacyPass(*PassRegistry::getPassRegistry());
132 }
133
134 bool runOnFunction(Function &F) override;
135 };
136
137 // IRBuilder to be used for replacement atomic instructions.
138 struct ReplacementIRBuilder
139 : IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> {
140 MDNode *MMRAMD = nullptr;
141
142 // Preserves the DebugLoc from I, and preserves still valid metadata.
143 // Enable StrictFP builder mode when appropriate.
ReplacementIRBuilder__anond0ba67280111::ReplacementIRBuilder144 explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL)
145 : IRBuilder(I->getContext(), DL,
146 IRBuilderCallbackInserter(
147 [this](Instruction *I) { addMMRAMD(I); })) {
148 SetInsertPoint(I);
149 this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections});
150 if (BB->getParent()->getAttributes().hasFnAttr(Attribute::StrictFP))
151 this->setIsFPConstrained(true);
152
153 MMRAMD = I->getMetadata(LLVMContext::MD_mmra);
154 }
155
addMMRAMD__anond0ba67280111::ReplacementIRBuilder156 void addMMRAMD(Instruction *I) {
157 if (canInstructionHaveMMRAs(*I))
158 I->setMetadata(LLVMContext::MD_mmra, MMRAMD);
159 }
160 };
161
162 } // end anonymous namespace
163
164 char AtomicExpandLegacy::ID = 0;
165
166 char &llvm::AtomicExpandID = AtomicExpandLegacy::ID;
167
168 INITIALIZE_PASS_BEGIN(AtomicExpandLegacy, DEBUG_TYPE,
169 "Expand Atomic instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)170 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
171 INITIALIZE_PASS_END(AtomicExpandLegacy, DEBUG_TYPE,
172 "Expand Atomic instructions", false, false)
173
174 // Helper functions to retrieve the size of atomic instructions.
175 static unsigned getAtomicOpSize(LoadInst *LI) {
176 const DataLayout &DL = LI->getDataLayout();
177 return DL.getTypeStoreSize(LI->getType());
178 }
179
getAtomicOpSize(StoreInst * SI)180 static unsigned getAtomicOpSize(StoreInst *SI) {
181 const DataLayout &DL = SI->getDataLayout();
182 return DL.getTypeStoreSize(SI->getValueOperand()->getType());
183 }
184
getAtomicOpSize(AtomicRMWInst * RMWI)185 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
186 const DataLayout &DL = RMWI->getDataLayout();
187 return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
188 }
189
getAtomicOpSize(AtomicCmpXchgInst * CASI)190 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
191 const DataLayout &DL = CASI->getDataLayout();
192 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
193 }
194
195 // Determine if a particular atomic operation has a supported size,
196 // and is of appropriate alignment, to be passed through for target
197 // lowering. (Versus turning into a __atomic libcall)
198 template <typename Inst>
atomicSizeSupported(const TargetLowering * TLI,Inst * I)199 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
200 unsigned Size = getAtomicOpSize(I);
201 Align Alignment = I->getAlign();
202 return Alignment >= Size &&
203 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
204 }
205
run(Function & F,const TargetMachine * TM)206 bool AtomicExpandImpl::run(Function &F, const TargetMachine *TM) {
207 const auto *Subtarget = TM->getSubtargetImpl(F);
208 if (!Subtarget->enableAtomicExpand())
209 return false;
210 TLI = Subtarget->getTargetLowering();
211 DL = &F.getDataLayout();
212
213 SmallVector<Instruction *, 1> AtomicInsts;
214
215 // Changing control-flow while iterating through it is a bad idea, so gather a
216 // list of all atomic instructions before we start.
217 for (Instruction &I : instructions(F))
218 if (I.isAtomic() && !isa<FenceInst>(&I))
219 AtomicInsts.push_back(&I);
220
221 bool MadeChange = false;
222 for (auto *I : AtomicInsts) {
223 auto LI = dyn_cast<LoadInst>(I);
224 auto SI = dyn_cast<StoreInst>(I);
225 auto RMWI = dyn_cast<AtomicRMWInst>(I);
226 auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
227 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
228
229 // If the Size/Alignment is not supported, replace with a libcall.
230 if (LI) {
231 if (!atomicSizeSupported(TLI, LI)) {
232 expandAtomicLoadToLibcall(LI);
233 MadeChange = true;
234 continue;
235 }
236 } else if (SI) {
237 if (!atomicSizeSupported(TLI, SI)) {
238 expandAtomicStoreToLibcall(SI);
239 MadeChange = true;
240 continue;
241 }
242 } else if (RMWI) {
243 if (!atomicSizeSupported(TLI, RMWI)) {
244 expandAtomicRMWToLibcall(RMWI);
245 MadeChange = true;
246 continue;
247 }
248 } else if (CASI) {
249 if (!atomicSizeSupported(TLI, CASI)) {
250 expandAtomicCASToLibcall(CASI);
251 MadeChange = true;
252 continue;
253 }
254 }
255
256 if (LI && TLI->shouldCastAtomicLoadInIR(LI) ==
257 TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
258 I = LI = convertAtomicLoadToIntegerType(LI);
259 MadeChange = true;
260 } else if (SI &&
261 TLI->shouldCastAtomicStoreInIR(SI) ==
262 TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
263 I = SI = convertAtomicStoreToIntegerType(SI);
264 MadeChange = true;
265 } else if (RMWI &&
266 TLI->shouldCastAtomicRMWIInIR(RMWI) ==
267 TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
268 I = RMWI = convertAtomicXchgToIntegerType(RMWI);
269 MadeChange = true;
270 } else if (CASI) {
271 // TODO: when we're ready to make the change at the IR level, we can
272 // extend convertCmpXchgToInteger for floating point too.
273 if (CASI->getCompareOperand()->getType()->isPointerTy()) {
274 // TODO: add a TLI hook to control this so that each target can
275 // convert to lowering the original type one at a time.
276 I = CASI = convertCmpXchgToIntegerType(CASI);
277 MadeChange = true;
278 }
279 }
280
281 if (TLI->shouldInsertFencesForAtomic(I)) {
282 auto FenceOrdering = AtomicOrdering::Monotonic;
283 if (LI && isAcquireOrStronger(LI->getOrdering())) {
284 FenceOrdering = LI->getOrdering();
285 LI->setOrdering(AtomicOrdering::Monotonic);
286 } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
287 FenceOrdering = SI->getOrdering();
288 SI->setOrdering(AtomicOrdering::Monotonic);
289 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
290 isAcquireOrStronger(RMWI->getOrdering()))) {
291 FenceOrdering = RMWI->getOrdering();
292 RMWI->setOrdering(AtomicOrdering::Monotonic);
293 } else if (CASI &&
294 TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
295 TargetLoweringBase::AtomicExpansionKind::None &&
296 (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
297 isAcquireOrStronger(CASI->getSuccessOrdering()) ||
298 isAcquireOrStronger(CASI->getFailureOrdering()))) {
299 // If a compare and swap is lowered to LL/SC, we can do smarter fence
300 // insertion, with a stronger one on the success path than on the
301 // failure path. As a result, fence insertion is directly done by
302 // expandAtomicCmpXchg in that case.
303 FenceOrdering = CASI->getMergedOrdering();
304 CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
305 CASI->setFailureOrdering(AtomicOrdering::Monotonic);
306 }
307
308 if (FenceOrdering != AtomicOrdering::Monotonic) {
309 MadeChange |= bracketInstWithFences(I, FenceOrdering);
310 }
311 } else if (I->hasAtomicStore() &&
312 TLI->shouldInsertTrailingFenceForAtomicStore(I)) {
313 auto FenceOrdering = AtomicOrdering::Monotonic;
314 if (SI)
315 FenceOrdering = SI->getOrdering();
316 else if (RMWI)
317 FenceOrdering = RMWI->getOrdering();
318 else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) !=
319 TargetLoweringBase::AtomicExpansionKind::LLSC)
320 // LLSC is handled in expandAtomicCmpXchg().
321 FenceOrdering = CASI->getSuccessOrdering();
322
323 IRBuilder Builder(I);
324 if (auto TrailingFence =
325 TLI->emitTrailingFence(Builder, I, FenceOrdering)) {
326 TrailingFence->moveAfter(I);
327 MadeChange = true;
328 }
329 }
330
331 if (LI)
332 MadeChange |= tryExpandAtomicLoad(LI);
333 else if (SI)
334 MadeChange |= tryExpandAtomicStore(SI);
335 else if (RMWI) {
336 // There are two different ways of expanding RMW instructions:
337 // - into a load if it is idempotent
338 // - into a Cmpxchg/LL-SC loop otherwise
339 // we try them in that order.
340
341 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
342 MadeChange = true;
343 } else {
344 MadeChange |= tryExpandAtomicRMW(RMWI);
345 }
346 } else if (CASI)
347 MadeChange |= tryExpandAtomicCmpXchg(CASI);
348 }
349 return MadeChange;
350 }
351
runOnFunction(Function & F)352 bool AtomicExpandLegacy::runOnFunction(Function &F) {
353
354 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
355 if (!TPC)
356 return false;
357 auto *TM = &TPC->getTM<TargetMachine>();
358 AtomicExpandImpl AE;
359 return AE.run(F, TM);
360 }
361
createAtomicExpandLegacyPass()362 FunctionPass *llvm::createAtomicExpandLegacyPass() {
363 return new AtomicExpandLegacy();
364 }
365
run(Function & F,FunctionAnalysisManager & AM)366 PreservedAnalyses AtomicExpandPass::run(Function &F,
367 FunctionAnalysisManager &AM) {
368 AtomicExpandImpl AE;
369
370 bool Changed = AE.run(F, TM);
371 if (!Changed)
372 return PreservedAnalyses::all();
373
374 return PreservedAnalyses::none();
375 }
376
bracketInstWithFences(Instruction * I,AtomicOrdering Order)377 bool AtomicExpandImpl::bracketInstWithFences(Instruction *I,
378 AtomicOrdering Order) {
379 ReplacementIRBuilder Builder(I, *DL);
380
381 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
382
383 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
384 // We have a guard here because not every atomic operation generates a
385 // trailing fence.
386 if (TrailingFence)
387 TrailingFence->moveAfter(I);
388
389 return (LeadingFence || TrailingFence);
390 }
391
392 /// Get the iX type with the same bitwidth as T.
393 IntegerType *
getCorrespondingIntegerType(Type * T,const DataLayout & DL)394 AtomicExpandImpl::getCorrespondingIntegerType(Type *T, const DataLayout &DL) {
395 EVT VT = TLI->getMemValueType(DL, T);
396 unsigned BitWidth = VT.getStoreSizeInBits();
397 assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
398 return IntegerType::get(T->getContext(), BitWidth);
399 }
400
401 /// Convert an atomic load of a non-integral type to an integer load of the
402 /// equivalent bitwidth. See the function comment on
403 /// convertAtomicStoreToIntegerType for background.
convertAtomicLoadToIntegerType(LoadInst * LI)404 LoadInst *AtomicExpandImpl::convertAtomicLoadToIntegerType(LoadInst *LI) {
405 auto *M = LI->getModule();
406 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout());
407
408 ReplacementIRBuilder Builder(LI, *DL);
409
410 Value *Addr = LI->getPointerOperand();
411
412 auto *NewLI = Builder.CreateLoad(NewTy, Addr);
413 NewLI->setAlignment(LI->getAlign());
414 NewLI->setVolatile(LI->isVolatile());
415 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
416 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
417
418 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
419 LI->replaceAllUsesWith(NewVal);
420 LI->eraseFromParent();
421 return NewLI;
422 }
423
424 AtomicRMWInst *
convertAtomicXchgToIntegerType(AtomicRMWInst * RMWI)425 AtomicExpandImpl::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) {
426 auto *M = RMWI->getModule();
427 Type *NewTy =
428 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout());
429
430 ReplacementIRBuilder Builder(RMWI, *DL);
431
432 Value *Addr = RMWI->getPointerOperand();
433 Value *Val = RMWI->getValOperand();
434 Value *NewVal = Val->getType()->isPointerTy()
435 ? Builder.CreatePtrToInt(Val, NewTy)
436 : Builder.CreateBitCast(Val, NewTy);
437
438 auto *NewRMWI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, Addr, NewVal,
439 RMWI->getAlign(), RMWI->getOrdering(),
440 RMWI->getSyncScopeID());
441 NewRMWI->setVolatile(RMWI->isVolatile());
442 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n");
443
444 Value *NewRVal = RMWI->getType()->isPointerTy()
445 ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType())
446 : Builder.CreateBitCast(NewRMWI, RMWI->getType());
447 RMWI->replaceAllUsesWith(NewRVal);
448 RMWI->eraseFromParent();
449 return NewRMWI;
450 }
451
tryExpandAtomicLoad(LoadInst * LI)452 bool AtomicExpandImpl::tryExpandAtomicLoad(LoadInst *LI) {
453 switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
454 case TargetLoweringBase::AtomicExpansionKind::None:
455 return false;
456 case TargetLoweringBase::AtomicExpansionKind::LLSC:
457 expandAtomicOpToLLSC(
458 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
459 LI->getOrdering(),
460 [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; });
461 return true;
462 case TargetLoweringBase::AtomicExpansionKind::LLOnly:
463 return expandAtomicLoadToLL(LI);
464 case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
465 return expandAtomicLoadToCmpXchg(LI);
466 case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
467 LI->setAtomic(AtomicOrdering::NotAtomic);
468 return true;
469 default:
470 llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
471 }
472 }
473
tryExpandAtomicStore(StoreInst * SI)474 bool AtomicExpandImpl::tryExpandAtomicStore(StoreInst *SI) {
475 switch (TLI->shouldExpandAtomicStoreInIR(SI)) {
476 case TargetLoweringBase::AtomicExpansionKind::None:
477 return false;
478 case TargetLoweringBase::AtomicExpansionKind::Expand:
479 expandAtomicStore(SI);
480 return true;
481 case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
482 SI->setAtomic(AtomicOrdering::NotAtomic);
483 return true;
484 default:
485 llvm_unreachable("Unhandled case in tryExpandAtomicStore");
486 }
487 }
488
expandAtomicLoadToLL(LoadInst * LI)489 bool AtomicExpandImpl::expandAtomicLoadToLL(LoadInst *LI) {
490 ReplacementIRBuilder Builder(LI, *DL);
491
492 // On some architectures, load-linked instructions are atomic for larger
493 // sizes than normal loads. For example, the only 64-bit load guaranteed
494 // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
495 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(),
496 LI->getPointerOperand(), LI->getOrdering());
497 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
498
499 LI->replaceAllUsesWith(Val);
500 LI->eraseFromParent();
501
502 return true;
503 }
504
expandAtomicLoadToCmpXchg(LoadInst * LI)505 bool AtomicExpandImpl::expandAtomicLoadToCmpXchg(LoadInst *LI) {
506 ReplacementIRBuilder Builder(LI, *DL);
507 AtomicOrdering Order = LI->getOrdering();
508 if (Order == AtomicOrdering::Unordered)
509 Order = AtomicOrdering::Monotonic;
510
511 Value *Addr = LI->getPointerOperand();
512 Type *Ty = LI->getType();
513 Constant *DummyVal = Constant::getNullValue(Ty);
514
515 Value *Pair = Builder.CreateAtomicCmpXchg(
516 Addr, DummyVal, DummyVal, LI->getAlign(), Order,
517 AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
518 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
519
520 LI->replaceAllUsesWith(Loaded);
521 LI->eraseFromParent();
522
523 return true;
524 }
525
526 /// Convert an atomic store of a non-integral type to an integer store of the
527 /// equivalent bitwidth. We used to not support floating point or vector
528 /// atomics in the IR at all. The backends learned to deal with the bitcast
529 /// idiom because that was the only way of expressing the notion of a atomic
530 /// float or vector store. The long term plan is to teach each backend to
531 /// instruction select from the original atomic store, but as a migration
532 /// mechanism, we convert back to the old format which the backends understand.
533 /// Each backend will need individual work to recognize the new format.
convertAtomicStoreToIntegerType(StoreInst * SI)534 StoreInst *AtomicExpandImpl::convertAtomicStoreToIntegerType(StoreInst *SI) {
535 ReplacementIRBuilder Builder(SI, *DL);
536 auto *M = SI->getModule();
537 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
538 M->getDataLayout());
539 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
540
541 Value *Addr = SI->getPointerOperand();
542
543 StoreInst *NewSI = Builder.CreateStore(NewVal, Addr);
544 NewSI->setAlignment(SI->getAlign());
545 NewSI->setVolatile(SI->isVolatile());
546 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
547 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
548 SI->eraseFromParent();
549 return NewSI;
550 }
551
expandAtomicStore(StoreInst * SI)552 void AtomicExpandImpl::expandAtomicStore(StoreInst *SI) {
553 // This function is only called on atomic stores that are too large to be
554 // atomic if implemented as a native store. So we replace them by an
555 // atomic swap, that can be implemented for example as a ldrex/strex on ARM
556 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
557 // It is the responsibility of the target to only signal expansion via
558 // shouldExpandAtomicRMW in cases where this is required and possible.
559 ReplacementIRBuilder Builder(SI, *DL);
560 AtomicOrdering Ordering = SI->getOrdering();
561 assert(Ordering != AtomicOrdering::NotAtomic);
562 AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered
563 ? AtomicOrdering::Monotonic
564 : Ordering;
565 AtomicRMWInst *AI = Builder.CreateAtomicRMW(
566 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
567 SI->getAlign(), RMWOrdering);
568 SI->eraseFromParent();
569
570 // Now we have an appropriate swap instruction, lower it as usual.
571 tryExpandAtomicRMW(AI);
572 }
573
createCmpXchgInstFun(IRBuilderBase & Builder,Value * Addr,Value * Loaded,Value * NewVal,Align AddrAlign,AtomicOrdering MemOpOrder,SyncScope::ID SSID,Value * & Success,Value * & NewLoaded)574 static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr,
575 Value *Loaded, Value *NewVal, Align AddrAlign,
576 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
577 Value *&Success, Value *&NewLoaded) {
578 Type *OrigTy = NewVal->getType();
579
580 // This code can go away when cmpxchg supports FP and vector types.
581 assert(!OrigTy->isPointerTy());
582 bool NeedBitcast = OrigTy->isFloatingPointTy() || OrigTy->isVectorTy();
583 if (NeedBitcast) {
584 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
585 NewVal = Builder.CreateBitCast(NewVal, IntTy);
586 Loaded = Builder.CreateBitCast(Loaded, IntTy);
587 }
588
589 Value *Pair = Builder.CreateAtomicCmpXchg(
590 Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
591 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
592 Success = Builder.CreateExtractValue(Pair, 1, "success");
593 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
594
595 if (NeedBitcast)
596 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
597 }
598
tryExpandAtomicRMW(AtomicRMWInst * AI)599 bool AtomicExpandImpl::tryExpandAtomicRMW(AtomicRMWInst *AI) {
600 LLVMContext &Ctx = AI->getModule()->getContext();
601 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI);
602 switch (Kind) {
603 case TargetLoweringBase::AtomicExpansionKind::None:
604 return false;
605 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
606 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
607 unsigned ValueSize = getAtomicOpSize(AI);
608 if (ValueSize < MinCASSize) {
609 expandPartwordAtomicRMW(AI,
610 TargetLoweringBase::AtomicExpansionKind::LLSC);
611 } else {
612 auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) {
613 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
614 AI->getValOperand());
615 };
616 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
617 AI->getAlign(), AI->getOrdering(), PerformOp);
618 }
619 return true;
620 }
621 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
622 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
623 unsigned ValueSize = getAtomicOpSize(AI);
624 if (ValueSize < MinCASSize) {
625 expandPartwordAtomicRMW(AI,
626 TargetLoweringBase::AtomicExpansionKind::CmpXChg);
627 } else {
628 SmallVector<StringRef> SSNs;
629 Ctx.getSyncScopeNames(SSNs);
630 auto MemScope = SSNs[AI->getSyncScopeID()].empty()
631 ? "system"
632 : SSNs[AI->getSyncScopeID()];
633 OptimizationRemarkEmitter ORE(AI->getFunction());
634 ORE.emit([&]() {
635 return OptimizationRemark(DEBUG_TYPE, "Passed", AI)
636 << "A compare and swap loop was generated for an atomic "
637 << AI->getOperationName(AI->getOperation()) << " operation at "
638 << MemScope << " memory scope";
639 });
640 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
641 }
642 return true;
643 }
644 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
645 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
646 unsigned ValueSize = getAtomicOpSize(AI);
647 if (ValueSize < MinCASSize) {
648 AtomicRMWInst::BinOp Op = AI->getOperation();
649 // Widen And/Or/Xor and give the target another chance at expanding it.
650 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
651 Op == AtomicRMWInst::And) {
652 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI));
653 return true;
654 }
655 }
656 expandAtomicRMWToMaskedIntrinsic(AI);
657 return true;
658 }
659 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: {
660 TLI->emitBitTestAtomicRMWIntrinsic(AI);
661 return true;
662 }
663 case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: {
664 TLI->emitCmpArithAtomicRMWIntrinsic(AI);
665 return true;
666 }
667 case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
668 return lowerAtomicRMWInst(AI);
669 case TargetLoweringBase::AtomicExpansionKind::Expand:
670 TLI->emitExpandAtomicRMW(AI);
671 return true;
672 default:
673 llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
674 }
675 }
676
677 namespace {
678
679 struct PartwordMaskValues {
680 // These three fields are guaranteed to be set by createMaskInstrs.
681 Type *WordType = nullptr;
682 Type *ValueType = nullptr;
683 Type *IntValueType = nullptr;
684 Value *AlignedAddr = nullptr;
685 Align AlignedAddrAlignment;
686 // The remaining fields can be null.
687 Value *ShiftAmt = nullptr;
688 Value *Mask = nullptr;
689 Value *Inv_Mask = nullptr;
690 };
691
692 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & O,const PartwordMaskValues & PMV)693 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
694 auto PrintObj = [&O](auto *V) {
695 if (V)
696 O << *V;
697 else
698 O << "nullptr";
699 O << '\n';
700 };
701 O << "PartwordMaskValues {\n";
702 O << " WordType: ";
703 PrintObj(PMV.WordType);
704 O << " ValueType: ";
705 PrintObj(PMV.ValueType);
706 O << " AlignedAddr: ";
707 PrintObj(PMV.AlignedAddr);
708 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
709 O << " ShiftAmt: ";
710 PrintObj(PMV.ShiftAmt);
711 O << " Mask: ";
712 PrintObj(PMV.Mask);
713 O << " Inv_Mask: ";
714 PrintObj(PMV.Inv_Mask);
715 O << "}\n";
716 return O;
717 }
718
719 } // end anonymous namespace
720
721 /// This is a helper function which builds instructions to provide
722 /// values necessary for partword atomic operations. It takes an
723 /// incoming address, Addr, and ValueType, and constructs the address,
724 /// shift-amounts and masks needed to work with a larger value of size
725 /// WordSize.
726 ///
727 /// AlignedAddr: Addr rounded down to a multiple of WordSize
728 ///
729 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
730 /// from AlignAddr for it to have the same value as if
731 /// ValueType was loaded from Addr.
732 ///
733 /// Mask: Value to mask with the value loaded from AlignAddr to
734 /// include only the part that would've been loaded from Addr.
735 ///
736 /// Inv_Mask: The inverse of Mask.
createMaskInstrs(IRBuilderBase & Builder,Instruction * I,Type * ValueType,Value * Addr,Align AddrAlign,unsigned MinWordSize)737 static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder,
738 Instruction *I, Type *ValueType,
739 Value *Addr, Align AddrAlign,
740 unsigned MinWordSize) {
741 PartwordMaskValues PMV;
742
743 Module *M = I->getModule();
744 LLVMContext &Ctx = M->getContext();
745 const DataLayout &DL = M->getDataLayout();
746 unsigned ValueSize = DL.getTypeStoreSize(ValueType);
747
748 PMV.ValueType = PMV.IntValueType = ValueType;
749 if (PMV.ValueType->isFloatingPointTy() || PMV.ValueType->isVectorTy())
750 PMV.IntValueType =
751 Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits());
752
753 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
754 : ValueType;
755 if (PMV.ValueType == PMV.WordType) {
756 PMV.AlignedAddr = Addr;
757 PMV.AlignedAddrAlignment = AddrAlign;
758 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0);
759 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true);
760 return PMV;
761 }
762
763 PMV.AlignedAddrAlignment = Align(MinWordSize);
764
765 assert(ValueSize < MinWordSize);
766
767 PointerType *PtrTy = cast<PointerType>(Addr->getType());
768 IntegerType *IntTy = DL.getIndexType(Ctx, PtrTy->getAddressSpace());
769 Value *PtrLSB;
770
771 if (AddrAlign < MinWordSize) {
772 PMV.AlignedAddr = Builder.CreateIntrinsic(
773 Intrinsic::ptrmask, {PtrTy, IntTy},
774 {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr,
775 "AlignedAddr");
776
777 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy);
778 PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
779 } else {
780 // If the alignment is high enough, the LSB are known 0.
781 PMV.AlignedAddr = Addr;
782 PtrLSB = ConstantInt::getNullValue(IntTy);
783 }
784
785 if (DL.isLittleEndian()) {
786 // turn bytes into bits
787 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
788 } else {
789 // turn bytes into bits, and count from the other side.
790 PMV.ShiftAmt = Builder.CreateShl(
791 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
792 }
793
794 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
795 PMV.Mask = Builder.CreateShl(
796 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
797 "Mask");
798
799 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
800
801 return PMV;
802 }
803
extractMaskedValue(IRBuilderBase & Builder,Value * WideWord,const PartwordMaskValues & PMV)804 static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord,
805 const PartwordMaskValues &PMV) {
806 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
807 if (PMV.WordType == PMV.ValueType)
808 return WideWord;
809
810 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
811 Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted");
812 return Builder.CreateBitCast(Trunc, PMV.ValueType);
813 }
814
insertMaskedValue(IRBuilderBase & Builder,Value * WideWord,Value * Updated,const PartwordMaskValues & PMV)815 static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord,
816 Value *Updated, const PartwordMaskValues &PMV) {
817 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
818 assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
819 if (PMV.WordType == PMV.ValueType)
820 return Updated;
821
822 Updated = Builder.CreateBitCast(Updated, PMV.IntValueType);
823
824 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
825 Value *Shift =
826 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
827 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
828 Value *Or = Builder.CreateOr(And, Shift, "inserted");
829 return Or;
830 }
831
832 /// Emit IR to implement a masked version of a given atomicrmw
833 /// operation. (That is, only the bits under the Mask should be
834 /// affected by the operation)
performMaskedAtomicOp(AtomicRMWInst::BinOp Op,IRBuilderBase & Builder,Value * Loaded,Value * Shifted_Inc,Value * Inc,const PartwordMaskValues & PMV)835 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
836 IRBuilderBase &Builder, Value *Loaded,
837 Value *Shifted_Inc, Value *Inc,
838 const PartwordMaskValues &PMV) {
839 // TODO: update to use
840 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
841 // to merge bits from two values without requiring PMV.Inv_Mask.
842 switch (Op) {
843 case AtomicRMWInst::Xchg: {
844 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
845 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
846 return FinalVal;
847 }
848 case AtomicRMWInst::Or:
849 case AtomicRMWInst::Xor:
850 case AtomicRMWInst::And:
851 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
852 case AtomicRMWInst::Add:
853 case AtomicRMWInst::Sub:
854 case AtomicRMWInst::Nand: {
855 // The other arithmetic ops need to be masked into place.
856 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc);
857 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
858 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
859 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
860 return FinalVal;
861 }
862 case AtomicRMWInst::Max:
863 case AtomicRMWInst::Min:
864 case AtomicRMWInst::UMax:
865 case AtomicRMWInst::UMin:
866 case AtomicRMWInst::FAdd:
867 case AtomicRMWInst::FSub:
868 case AtomicRMWInst::FMin:
869 case AtomicRMWInst::FMax:
870 case AtomicRMWInst::UIncWrap:
871 case AtomicRMWInst::UDecWrap: {
872 // Finally, other ops will operate on the full value, so truncate down to
873 // the original size, and expand out again after doing the
874 // operation. Bitcasts will be inserted for FP values.
875 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
876 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc);
877 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
878 return FinalVal;
879 }
880 default:
881 llvm_unreachable("Unknown atomic op");
882 }
883 }
884
885 /// Expand a sub-word atomicrmw operation into an appropriate
886 /// word-sized operation.
887 ///
888 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
889 /// way as a typical atomicrmw expansion. The only difference here is
890 /// that the operation inside of the loop may operate upon only a
891 /// part of the value.
expandPartwordAtomicRMW(AtomicRMWInst * AI,TargetLoweringBase::AtomicExpansionKind ExpansionKind)892 void AtomicExpandImpl::expandPartwordAtomicRMW(
893 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
894 // Widen And/Or/Xor and give the target another chance at expanding it.
895 AtomicRMWInst::BinOp Op = AI->getOperation();
896 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
897 Op == AtomicRMWInst::And) {
898 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI));
899 return;
900 }
901 AtomicOrdering MemOpOrder = AI->getOrdering();
902 SyncScope::ID SSID = AI->getSyncScopeID();
903
904 ReplacementIRBuilder Builder(AI, *DL);
905
906 PartwordMaskValues PMV =
907 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
908 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
909
910 Value *ValOperand_Shifted = nullptr;
911 if (Op == AtomicRMWInst::Xchg || Op == AtomicRMWInst::Add ||
912 Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Nand) {
913 Value *ValOp = Builder.CreateBitCast(AI->getValOperand(), PMV.IntValueType);
914 ValOperand_Shifted =
915 Builder.CreateShl(Builder.CreateZExt(ValOp, PMV.WordType), PMV.ShiftAmt,
916 "ValOperand_Shifted");
917 }
918
919 auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) {
920 return performMaskedAtomicOp(Op, Builder, Loaded, ValOperand_Shifted,
921 AI->getValOperand(), PMV);
922 };
923
924 Value *OldResult;
925 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
926 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
927 PMV.AlignedAddrAlignment, MemOpOrder, SSID,
928 PerformPartwordOp, createCmpXchgInstFun);
929 } else {
930 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
931 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
932 PMV.AlignedAddrAlignment, MemOpOrder,
933 PerformPartwordOp);
934 }
935
936 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
937 AI->replaceAllUsesWith(FinalOldResult);
938 AI->eraseFromParent();
939 }
940
941 /// Copy metadata that's safe to preserve when widening atomics.
copyMetadataForAtomic(Instruction & Dest,const Instruction & Source)942 static void copyMetadataForAtomic(Instruction &Dest,
943 const Instruction &Source) {
944 SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
945 Source.getAllMetadata(MD);
946 LLVMContext &Ctx = Dest.getContext();
947 MDBuilder MDB(Ctx);
948
949 for (auto [ID, N] : MD) {
950 switch (ID) {
951 case LLVMContext::MD_dbg:
952 case LLVMContext::MD_tbaa:
953 case LLVMContext::MD_tbaa_struct:
954 case LLVMContext::MD_alias_scope:
955 case LLVMContext::MD_noalias:
956 case LLVMContext::MD_access_group:
957 case LLVMContext::MD_mmra:
958 Dest.setMetadata(ID, N);
959 break;
960 default:
961 if (ID == Ctx.getMDKindID("amdgpu.no.remote.memory"))
962 Dest.setMetadata(ID, N);
963 else if (ID == Ctx.getMDKindID("amdgpu.no.fine.grained.memory"))
964 Dest.setMetadata(ID, N);
965
966 break;
967 }
968 }
969 }
970
971 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
widenPartwordAtomicRMW(AtomicRMWInst * AI)972 AtomicRMWInst *AtomicExpandImpl::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
973 ReplacementIRBuilder Builder(AI, *DL);
974 AtomicRMWInst::BinOp Op = AI->getOperation();
975
976 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
977 Op == AtomicRMWInst::And) &&
978 "Unable to widen operation");
979
980 PartwordMaskValues PMV =
981 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
982 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
983
984 Value *ValOperand_Shifted =
985 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
986 PMV.ShiftAmt, "ValOperand_Shifted");
987
988 Value *NewOperand;
989
990 if (Op == AtomicRMWInst::And)
991 NewOperand =
992 Builder.CreateOr(ValOperand_Shifted, PMV.Inv_Mask, "AndOperand");
993 else
994 NewOperand = ValOperand_Shifted;
995
996 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(
997 Op, PMV.AlignedAddr, NewOperand, PMV.AlignedAddrAlignment,
998 AI->getOrdering(), AI->getSyncScopeID());
999
1000 copyMetadataForAtomic(*NewAI, *AI);
1001
1002 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
1003 AI->replaceAllUsesWith(FinalOldResult);
1004 AI->eraseFromParent();
1005 return NewAI;
1006 }
1007
expandPartwordCmpXchg(AtomicCmpXchgInst * CI)1008 bool AtomicExpandImpl::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
1009 // The basic idea here is that we're expanding a cmpxchg of a
1010 // smaller memory size up to a word-sized cmpxchg. To do this, we
1011 // need to add a retry-loop for strong cmpxchg, so that
1012 // modifications to other parts of the word don't cause a spurious
1013 // failure.
1014
1015 // This generates code like the following:
1016 // [[Setup mask values PMV.*]]
1017 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
1018 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
1019 // %InitLoaded = load i32* %addr
1020 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
1021 // br partword.cmpxchg.loop
1022 // partword.cmpxchg.loop:
1023 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
1024 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
1025 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
1026 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
1027 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
1028 // i32 %FullWord_NewVal success_ordering failure_ordering
1029 // %OldVal = extractvalue { i32, i1 } %NewCI, 0
1030 // %Success = extractvalue { i32, i1 } %NewCI, 1
1031 // br i1 %Success, label %partword.cmpxchg.end,
1032 // label %partword.cmpxchg.failure
1033 // partword.cmpxchg.failure:
1034 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
1035 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
1036 // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
1037 // label %partword.cmpxchg.end
1038 // partword.cmpxchg.end:
1039 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
1040 // %FinalOldVal = trunc i32 %tmp1 to i8
1041 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
1042 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
1043
1044 Value *Addr = CI->getPointerOperand();
1045 Value *Cmp = CI->getCompareOperand();
1046 Value *NewVal = CI->getNewValOperand();
1047
1048 BasicBlock *BB = CI->getParent();
1049 Function *F = BB->getParent();
1050 ReplacementIRBuilder Builder(CI, *DL);
1051 LLVMContext &Ctx = Builder.getContext();
1052
1053 BasicBlock *EndBB =
1054 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
1055 auto FailureBB =
1056 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
1057 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
1058
1059 // The split call above "helpfully" added a branch at the end of BB
1060 // (to the wrong place).
1061 std::prev(BB->end())->eraseFromParent();
1062 Builder.SetInsertPoint(BB);
1063
1064 PartwordMaskValues PMV =
1065 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1066 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1067
1068 // Shift the incoming values over, into the right location in the word.
1069 Value *NewVal_Shifted =
1070 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
1071 Value *Cmp_Shifted =
1072 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
1073
1074 // Load the entire current word, and mask into place the expected and new
1075 // values
1076 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
1077 InitLoaded->setVolatile(CI->isVolatile());
1078 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
1079 Builder.CreateBr(LoopBB);
1080
1081 // partword.cmpxchg.loop:
1082 Builder.SetInsertPoint(LoopBB);
1083 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
1084 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
1085
1086 // Mask/Or the expected and new values into place in the loaded word.
1087 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
1088 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
1089 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
1090 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
1091 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
1092 NewCI->setVolatile(CI->isVolatile());
1093 // When we're building a strong cmpxchg, we need a loop, so you
1094 // might think we could use a weak cmpxchg inside. But, using strong
1095 // allows the below comparison for ShouldContinue, and we're
1096 // expecting the underlying cmpxchg to be a machine instruction,
1097 // which is strong anyways.
1098 NewCI->setWeak(CI->isWeak());
1099
1100 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1101 Value *Success = Builder.CreateExtractValue(NewCI, 1);
1102
1103 if (CI->isWeak())
1104 Builder.CreateBr(EndBB);
1105 else
1106 Builder.CreateCondBr(Success, EndBB, FailureBB);
1107
1108 // partword.cmpxchg.failure:
1109 Builder.SetInsertPoint(FailureBB);
1110 // Upon failure, verify that the masked-out part of the loaded value
1111 // has been modified. If it didn't, abort the cmpxchg, since the
1112 // masked-in part must've.
1113 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
1114 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
1115 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
1116
1117 // Add the second value to the phi from above
1118 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
1119
1120 // partword.cmpxchg.end:
1121 Builder.SetInsertPoint(CI);
1122
1123 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1124 Value *Res = PoisonValue::get(CI->getType());
1125 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1126 Res = Builder.CreateInsertValue(Res, Success, 1);
1127
1128 CI->replaceAllUsesWith(Res);
1129 CI->eraseFromParent();
1130 return true;
1131 }
1132
expandAtomicOpToLLSC(Instruction * I,Type * ResultType,Value * Addr,Align AddrAlign,AtomicOrdering MemOpOrder,function_ref<Value * (IRBuilderBase &,Value *)> PerformOp)1133 void AtomicExpandImpl::expandAtomicOpToLLSC(
1134 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
1135 AtomicOrdering MemOpOrder,
1136 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) {
1137 ReplacementIRBuilder Builder(I, *DL);
1138 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
1139 MemOpOrder, PerformOp);
1140
1141 I->replaceAllUsesWith(Loaded);
1142 I->eraseFromParent();
1143 }
1144
expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst * AI)1145 void AtomicExpandImpl::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
1146 ReplacementIRBuilder Builder(AI, *DL);
1147
1148 PartwordMaskValues PMV =
1149 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
1150 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1151
1152 // The value operand must be sign-extended for signed min/max so that the
1153 // target's signed comparison instructions can be used. Otherwise, just
1154 // zero-ext.
1155 Instruction::CastOps CastOp = Instruction::ZExt;
1156 AtomicRMWInst::BinOp RMWOp = AI->getOperation();
1157 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
1158 CastOp = Instruction::SExt;
1159
1160 Value *ValOperand_Shifted = Builder.CreateShl(
1161 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
1162 PMV.ShiftAmt, "ValOperand_Shifted");
1163 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
1164 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
1165 AI->getOrdering());
1166 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
1167 AI->replaceAllUsesWith(FinalOldResult);
1168 AI->eraseFromParent();
1169 }
1170
expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst * CI)1171 void AtomicExpandImpl::expandAtomicCmpXchgToMaskedIntrinsic(
1172 AtomicCmpXchgInst *CI) {
1173 ReplacementIRBuilder Builder(CI, *DL);
1174
1175 PartwordMaskValues PMV = createMaskInstrs(
1176 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
1177 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1178
1179 Value *CmpVal_Shifted = Builder.CreateShl(
1180 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1181 "CmpVal_Shifted");
1182 Value *NewVal_Shifted = Builder.CreateShl(
1183 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1184 "NewVal_Shifted");
1185 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1186 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1187 CI->getMergedOrdering());
1188 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1189 Value *Res = PoisonValue::get(CI->getType());
1190 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1191 Value *Success = Builder.CreateICmpEQ(
1192 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1193 Res = Builder.CreateInsertValue(Res, Success, 1);
1194
1195 CI->replaceAllUsesWith(Res);
1196 CI->eraseFromParent();
1197 }
1198
insertRMWLLSCLoop(IRBuilderBase & Builder,Type * ResultTy,Value * Addr,Align AddrAlign,AtomicOrdering MemOpOrder,function_ref<Value * (IRBuilderBase &,Value *)> PerformOp)1199 Value *AtomicExpandImpl::insertRMWLLSCLoop(
1200 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1201 AtomicOrdering MemOpOrder,
1202 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) {
1203 LLVMContext &Ctx = Builder.getContext();
1204 BasicBlock *BB = Builder.GetInsertBlock();
1205 Function *F = BB->getParent();
1206
1207 assert(AddrAlign >=
1208 F->getDataLayout().getTypeStoreSize(ResultTy) &&
1209 "Expected at least natural alignment at this point.");
1210
1211 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1212 //
1213 // The standard expansion we produce is:
1214 // [...]
1215 // atomicrmw.start:
1216 // %loaded = @load.linked(%addr)
1217 // %new = some_op iN %loaded, %incr
1218 // %stored = @store_conditional(%new, %addr)
1219 // %try_again = icmp i32 ne %stored, 0
1220 // br i1 %try_again, label %loop, label %atomicrmw.end
1221 // atomicrmw.end:
1222 // [...]
1223 BasicBlock *ExitBB =
1224 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1225 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1226
1227 // The split call above "helpfully" added a branch at the end of BB (to the
1228 // wrong place).
1229 std::prev(BB->end())->eraseFromParent();
1230 Builder.SetInsertPoint(BB);
1231 Builder.CreateBr(LoopBB);
1232
1233 // Start the main loop block now that we've taken care of the preliminaries.
1234 Builder.SetInsertPoint(LoopBB);
1235 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder);
1236
1237 Value *NewVal = PerformOp(Builder, Loaded);
1238
1239 Value *StoreSuccess =
1240 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1241 Value *TryAgain = Builder.CreateICmpNE(
1242 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1243 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1244
1245 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1246 return Loaded;
1247 }
1248
1249 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1250 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the
1251 /// IR. As a migration step, we convert back to what use to be the standard
1252 /// way to represent a pointer cmpxchg so that we can update backends one by
1253 /// one.
1254 AtomicCmpXchgInst *
convertCmpXchgToIntegerType(AtomicCmpXchgInst * CI)1255 AtomicExpandImpl::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1256 auto *M = CI->getModule();
1257 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1258 M->getDataLayout());
1259
1260 ReplacementIRBuilder Builder(CI, *DL);
1261
1262 Value *Addr = CI->getPointerOperand();
1263
1264 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1265 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1266
1267 auto *NewCI = Builder.CreateAtomicCmpXchg(
1268 Addr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
1269 CI->getFailureOrdering(), CI->getSyncScopeID());
1270 NewCI->setVolatile(CI->isVolatile());
1271 NewCI->setWeak(CI->isWeak());
1272 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1273
1274 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1275 Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1276
1277 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1278
1279 Value *Res = PoisonValue::get(CI->getType());
1280 Res = Builder.CreateInsertValue(Res, OldVal, 0);
1281 Res = Builder.CreateInsertValue(Res, Succ, 1);
1282
1283 CI->replaceAllUsesWith(Res);
1284 CI->eraseFromParent();
1285 return NewCI;
1286 }
1287
expandAtomicCmpXchg(AtomicCmpXchgInst * CI)1288 bool AtomicExpandImpl::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1289 AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1290 AtomicOrdering FailureOrder = CI->getFailureOrdering();
1291 Value *Addr = CI->getPointerOperand();
1292 BasicBlock *BB = CI->getParent();
1293 Function *F = BB->getParent();
1294 LLVMContext &Ctx = F->getContext();
1295 // If shouldInsertFencesForAtomic() returns true, then the target does not
1296 // want to deal with memory orders, and emitLeading/TrailingFence should take
1297 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1298 // should preserve the ordering.
1299 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1300 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic
1301 ? AtomicOrdering::Monotonic
1302 : CI->getMergedOrdering();
1303
1304 // In implementations which use a barrier to achieve release semantics, we can
1305 // delay emitting this barrier until we know a store is actually going to be
1306 // attempted. The cost of this delay is that we need 2 copies of the block
1307 // emitting the load-linked, affecting code size.
1308 //
1309 // Ideally, this logic would be unconditional except for the minsize check
1310 // since in other cases the extra blocks naturally collapse down to the
1311 // minimal loop. Unfortunately, this puts too much stress on later
1312 // optimisations so we avoid emitting the extra logic in those cases too.
1313 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1314 SuccessOrder != AtomicOrdering::Monotonic &&
1315 SuccessOrder != AtomicOrdering::Acquire &&
1316 !F->hasMinSize();
1317
1318 // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1319 // do it even on minsize.
1320 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1321
1322 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1323 //
1324 // The full expansion we produce is:
1325 // [...]
1326 // %aligned.addr = ...
1327 // cmpxchg.start:
1328 // %unreleasedload = @load.linked(%aligned.addr)
1329 // %unreleasedload.extract = extract value from %unreleasedload
1330 // %should_store = icmp eq %unreleasedload.extract, %desired
1331 // br i1 %should_store, label %cmpxchg.releasingstore,
1332 // label %cmpxchg.nostore
1333 // cmpxchg.releasingstore:
1334 // fence?
1335 // br label cmpxchg.trystore
1336 // cmpxchg.trystore:
1337 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1338 // [%releasedload, %cmpxchg.releasedload]
1339 // %updated.new = insert %new into %loaded.trystore
1340 // %stored = @store_conditional(%updated.new, %aligned.addr)
1341 // %success = icmp eq i32 %stored, 0
1342 // br i1 %success, label %cmpxchg.success,
1343 // label %cmpxchg.releasedload/%cmpxchg.failure
1344 // cmpxchg.releasedload:
1345 // %releasedload = @load.linked(%aligned.addr)
1346 // %releasedload.extract = extract value from %releasedload
1347 // %should_store = icmp eq %releasedload.extract, %desired
1348 // br i1 %should_store, label %cmpxchg.trystore,
1349 // label %cmpxchg.failure
1350 // cmpxchg.success:
1351 // fence?
1352 // br label %cmpxchg.end
1353 // cmpxchg.nostore:
1354 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1355 // [%releasedload,
1356 // %cmpxchg.releasedload/%cmpxchg.trystore]
1357 // @load_linked_fail_balance()?
1358 // br label %cmpxchg.failure
1359 // cmpxchg.failure:
1360 // fence?
1361 // br label %cmpxchg.end
1362 // cmpxchg.end:
1363 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1364 // [%loaded.trystore, %cmpxchg.trystore]
1365 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1366 // %loaded = extract value from %loaded.exit
1367 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1368 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1369 // [...]
1370 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1371 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1372 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1373 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1374 auto ReleasedLoadBB =
1375 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1376 auto TryStoreBB =
1377 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1378 auto ReleasingStoreBB =
1379 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1380 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1381
1382 ReplacementIRBuilder Builder(CI, *DL);
1383
1384 // The split call above "helpfully" added a branch at the end of BB (to the
1385 // wrong place), but we might want a fence too. It's easiest to just remove
1386 // the branch entirely.
1387 std::prev(BB->end())->eraseFromParent();
1388 Builder.SetInsertPoint(BB);
1389 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1390 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1391
1392 PartwordMaskValues PMV =
1393 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1394 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1395 Builder.CreateBr(StartBB);
1396
1397 // Start the main loop block now that we've taken care of the preliminaries.
1398 Builder.SetInsertPoint(StartBB);
1399 Value *UnreleasedLoad =
1400 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1401 Value *UnreleasedLoadExtract =
1402 extractMaskedValue(Builder, UnreleasedLoad, PMV);
1403 Value *ShouldStore = Builder.CreateICmpEQ(
1404 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1405
1406 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1407 // jump straight past that fence instruction (if it exists).
1408 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1409
1410 Builder.SetInsertPoint(ReleasingStoreBB);
1411 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1412 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1413 Builder.CreateBr(TryStoreBB);
1414
1415 Builder.SetInsertPoint(TryStoreBB);
1416 PHINode *LoadedTryStore =
1417 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1418 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1419 Value *NewValueInsert =
1420 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1421 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert,
1422 PMV.AlignedAddr, MemOpOrder);
1423 StoreSuccess = Builder.CreateICmpEQ(
1424 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1425 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1426 Builder.CreateCondBr(StoreSuccess, SuccessBB,
1427 CI->isWeak() ? FailureBB : RetryBB);
1428
1429 Builder.SetInsertPoint(ReleasedLoadBB);
1430 Value *SecondLoad;
1431 if (HasReleasedLoadBB) {
1432 SecondLoad =
1433 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1434 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1435 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1436 CI->getCompareOperand(), "should_store");
1437
1438 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1439 // jump straight past that fence instruction (if it exists).
1440 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1441 // Update PHI node in TryStoreBB.
1442 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1443 } else
1444 Builder.CreateUnreachable();
1445
1446 // Make sure later instructions don't get reordered with a fence if
1447 // necessary.
1448 Builder.SetInsertPoint(SuccessBB);
1449 if (ShouldInsertFencesForAtomic ||
1450 TLI->shouldInsertTrailingFenceForAtomicStore(CI))
1451 TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1452 Builder.CreateBr(ExitBB);
1453
1454 Builder.SetInsertPoint(NoStoreBB);
1455 PHINode *LoadedNoStore =
1456 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1457 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1458 if (HasReleasedLoadBB)
1459 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1460
1461 // In the failing case, where we don't execute the store-conditional, the
1462 // target might want to balance out the load-linked with a dedicated
1463 // instruction (e.g., on ARM, clearing the exclusive monitor).
1464 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1465 Builder.CreateBr(FailureBB);
1466
1467 Builder.SetInsertPoint(FailureBB);
1468 PHINode *LoadedFailure =
1469 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1470 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1471 if (CI->isWeak())
1472 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1473 if (ShouldInsertFencesForAtomic)
1474 TLI->emitTrailingFence(Builder, CI, FailureOrder);
1475 Builder.CreateBr(ExitBB);
1476
1477 // Finally, we have control-flow based knowledge of whether the cmpxchg
1478 // succeeded or not. We expose this to later passes by converting any
1479 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1480 // PHI.
1481 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1482 PHINode *LoadedExit =
1483 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1484 LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1485 LoadedExit->addIncoming(LoadedFailure, FailureBB);
1486 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1487 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1488 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1489
1490 // This is the "exit value" from the cmpxchg expansion. It may be of
1491 // a type wider than the one in the cmpxchg instruction.
1492 Value *LoadedFull = LoadedExit;
1493
1494 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1495 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1496
1497 // Look for any users of the cmpxchg that are just comparing the loaded value
1498 // against the desired one, and replace them with the CFG-derived version.
1499 SmallVector<ExtractValueInst *, 2> PrunedInsts;
1500 for (auto *User : CI->users()) {
1501 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1502 if (!EV)
1503 continue;
1504
1505 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1506 "weird extraction from { iN, i1 }");
1507
1508 if (EV->getIndices()[0] == 0)
1509 EV->replaceAllUsesWith(Loaded);
1510 else
1511 EV->replaceAllUsesWith(Success);
1512
1513 PrunedInsts.push_back(EV);
1514 }
1515
1516 // We can remove the instructions now we're no longer iterating through them.
1517 for (auto *EV : PrunedInsts)
1518 EV->eraseFromParent();
1519
1520 if (!CI->use_empty()) {
1521 // Some use of the full struct return that we don't understand has happened,
1522 // so we've got to reconstruct it properly.
1523 Value *Res;
1524 Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0);
1525 Res = Builder.CreateInsertValue(Res, Success, 1);
1526
1527 CI->replaceAllUsesWith(Res);
1528 }
1529
1530 CI->eraseFromParent();
1531 return true;
1532 }
1533
isIdempotentRMW(AtomicRMWInst * RMWI)1534 bool AtomicExpandImpl::isIdempotentRMW(AtomicRMWInst *RMWI) {
1535 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1536 if (!C)
1537 return false;
1538
1539 AtomicRMWInst::BinOp Op = RMWI->getOperation();
1540 switch (Op) {
1541 case AtomicRMWInst::Add:
1542 case AtomicRMWInst::Sub:
1543 case AtomicRMWInst::Or:
1544 case AtomicRMWInst::Xor:
1545 return C->isZero();
1546 case AtomicRMWInst::And:
1547 return C->isMinusOne();
1548 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1549 default:
1550 return false;
1551 }
1552 }
1553
simplifyIdempotentRMW(AtomicRMWInst * RMWI)1554 bool AtomicExpandImpl::simplifyIdempotentRMW(AtomicRMWInst *RMWI) {
1555 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1556 tryExpandAtomicLoad(ResultingLoad);
1557 return true;
1558 }
1559 return false;
1560 }
1561
insertRMWCmpXchgLoop(IRBuilderBase & Builder,Type * ResultTy,Value * Addr,Align AddrAlign,AtomicOrdering MemOpOrder,SyncScope::ID SSID,function_ref<Value * (IRBuilderBase &,Value *)> PerformOp,CreateCmpXchgInstFun CreateCmpXchg)1562 Value *AtomicExpandImpl::insertRMWCmpXchgLoop(
1563 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1564 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
1565 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp,
1566 CreateCmpXchgInstFun CreateCmpXchg) {
1567 LLVMContext &Ctx = Builder.getContext();
1568 BasicBlock *BB = Builder.GetInsertBlock();
1569 Function *F = BB->getParent();
1570
1571 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1572 //
1573 // The standard expansion we produce is:
1574 // [...]
1575 // %init_loaded = load atomic iN* %addr
1576 // br label %loop
1577 // loop:
1578 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1579 // %new = some_op iN %loaded, %incr
1580 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1581 // %new_loaded = extractvalue { iN, i1 } %pair, 0
1582 // %success = extractvalue { iN, i1 } %pair, 1
1583 // br i1 %success, label %atomicrmw.end, label %loop
1584 // atomicrmw.end:
1585 // [...]
1586 BasicBlock *ExitBB =
1587 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1588 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1589
1590 // The split call above "helpfully" added a branch at the end of BB (to the
1591 // wrong place), but we want a load. It's easiest to just remove
1592 // the branch entirely.
1593 std::prev(BB->end())->eraseFromParent();
1594 Builder.SetInsertPoint(BB);
1595 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
1596 Builder.CreateBr(LoopBB);
1597
1598 // Start the main loop block now that we've taken care of the preliminaries.
1599 Builder.SetInsertPoint(LoopBB);
1600 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1601 Loaded->addIncoming(InitLoaded, BB);
1602
1603 Value *NewVal = PerformOp(Builder, Loaded);
1604
1605 Value *NewLoaded = nullptr;
1606 Value *Success = nullptr;
1607
1608 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
1609 MemOpOrder == AtomicOrdering::Unordered
1610 ? AtomicOrdering::Monotonic
1611 : MemOpOrder,
1612 SSID, Success, NewLoaded);
1613 assert(Success && NewLoaded);
1614
1615 Loaded->addIncoming(NewLoaded, LoopBB);
1616
1617 Builder.CreateCondBr(Success, ExitBB, LoopBB);
1618
1619 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1620 return NewLoaded;
1621 }
1622
tryExpandAtomicCmpXchg(AtomicCmpXchgInst * CI)1623 bool AtomicExpandImpl::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1624 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1625 unsigned ValueSize = getAtomicOpSize(CI);
1626
1627 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1628 default:
1629 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1630 case TargetLoweringBase::AtomicExpansionKind::None:
1631 if (ValueSize < MinCASSize)
1632 return expandPartwordCmpXchg(CI);
1633 return false;
1634 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1635 return expandAtomicCmpXchg(CI);
1636 }
1637 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1638 expandAtomicCmpXchgToMaskedIntrinsic(CI);
1639 return true;
1640 case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
1641 return lowerAtomicCmpXchgInst(CI);
1642 }
1643 }
1644
1645 // Note: This function is exposed externally by AtomicExpandUtils.h
expandAtomicRMWToCmpXchg(AtomicRMWInst * AI,CreateCmpXchgInstFun CreateCmpXchg)1646 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1647 CreateCmpXchgInstFun CreateCmpXchg) {
1648 ReplacementIRBuilder Builder(AI, AI->getDataLayout());
1649 Builder.setIsFPConstrained(
1650 AI->getFunction()->hasFnAttribute(Attribute::StrictFP));
1651
1652 // FIXME: If FP exceptions are observable, we should force them off for the
1653 // loop for the FP atomics.
1654 Value *Loaded = AtomicExpandImpl::insertRMWCmpXchgLoop(
1655 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
1656 AI->getOrdering(), AI->getSyncScopeID(),
1657 [&](IRBuilderBase &Builder, Value *Loaded) {
1658 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
1659 AI->getValOperand());
1660 },
1661 CreateCmpXchg);
1662
1663 AI->replaceAllUsesWith(Loaded);
1664 AI->eraseFromParent();
1665 return true;
1666 }
1667
1668 // In order to use one of the sized library calls such as
1669 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1670 // must be one of the potentially-specialized sizes, and the value
1671 // type must actually exist in C on the target (otherwise, the
1672 // function wouldn't actually be defined.)
canUseSizedAtomicCall(unsigned Size,Align Alignment,const DataLayout & DL)1673 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1674 const DataLayout &DL) {
1675 // TODO: "LargestSize" is an approximation for "largest type that
1676 // you can express in C". It seems to be the case that int128 is
1677 // supported on all 64-bit platforms, otherwise only up to 64-bit
1678 // integers are supported. If we get this wrong, then we'll try to
1679 // call a sized libcall that doesn't actually exist. There should
1680 // really be some more reliable way in LLVM of determining integer
1681 // sizes which are valid in the target's C ABI...
1682 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1683 return Alignment >= Size &&
1684 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1685 Size <= LargestSize;
1686 }
1687
expandAtomicLoadToLibcall(LoadInst * I)1688 void AtomicExpandImpl::expandAtomicLoadToLibcall(LoadInst *I) {
1689 static const RTLIB::Libcall Libcalls[6] = {
1690 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1691 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1692 unsigned Size = getAtomicOpSize(I);
1693
1694 bool expanded = expandAtomicOpToLibcall(
1695 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1696 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1697 if (!expanded)
1698 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1699 }
1700
expandAtomicStoreToLibcall(StoreInst * I)1701 void AtomicExpandImpl::expandAtomicStoreToLibcall(StoreInst *I) {
1702 static const RTLIB::Libcall Libcalls[6] = {
1703 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1704 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1705 unsigned Size = getAtomicOpSize(I);
1706
1707 bool expanded = expandAtomicOpToLibcall(
1708 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1709 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1710 if (!expanded)
1711 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1712 }
1713
expandAtomicCASToLibcall(AtomicCmpXchgInst * I)1714 void AtomicExpandImpl::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1715 static const RTLIB::Libcall Libcalls[6] = {
1716 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1717 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1718 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1719 unsigned Size = getAtomicOpSize(I);
1720
1721 bool expanded = expandAtomicOpToLibcall(
1722 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1723 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1724 Libcalls);
1725 if (!expanded)
1726 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1727 }
1728
GetRMWLibcall(AtomicRMWInst::BinOp Op)1729 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1730 static const RTLIB::Libcall LibcallsXchg[6] = {
1731 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1,
1732 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1733 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1734 static const RTLIB::Libcall LibcallsAdd[6] = {
1735 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1,
1736 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1737 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1738 static const RTLIB::Libcall LibcallsSub[6] = {
1739 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1,
1740 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1741 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1742 static const RTLIB::Libcall LibcallsAnd[6] = {
1743 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1,
1744 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1745 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1746 static const RTLIB::Libcall LibcallsOr[6] = {
1747 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1,
1748 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1749 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1750 static const RTLIB::Libcall LibcallsXor[6] = {
1751 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1,
1752 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1753 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1754 static const RTLIB::Libcall LibcallsNand[6] = {
1755 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1,
1756 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1757 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1758
1759 switch (Op) {
1760 case AtomicRMWInst::BAD_BINOP:
1761 llvm_unreachable("Should not have BAD_BINOP.");
1762 case AtomicRMWInst::Xchg:
1763 return ArrayRef(LibcallsXchg);
1764 case AtomicRMWInst::Add:
1765 return ArrayRef(LibcallsAdd);
1766 case AtomicRMWInst::Sub:
1767 return ArrayRef(LibcallsSub);
1768 case AtomicRMWInst::And:
1769 return ArrayRef(LibcallsAnd);
1770 case AtomicRMWInst::Or:
1771 return ArrayRef(LibcallsOr);
1772 case AtomicRMWInst::Xor:
1773 return ArrayRef(LibcallsXor);
1774 case AtomicRMWInst::Nand:
1775 return ArrayRef(LibcallsNand);
1776 case AtomicRMWInst::Max:
1777 case AtomicRMWInst::Min:
1778 case AtomicRMWInst::UMax:
1779 case AtomicRMWInst::UMin:
1780 case AtomicRMWInst::FMax:
1781 case AtomicRMWInst::FMin:
1782 case AtomicRMWInst::FAdd:
1783 case AtomicRMWInst::FSub:
1784 case AtomicRMWInst::UIncWrap:
1785 case AtomicRMWInst::UDecWrap:
1786 // No atomic libcalls are available for max/min/umax/umin.
1787 return {};
1788 }
1789 llvm_unreachable("Unexpected AtomicRMW operation.");
1790 }
1791
expandAtomicRMWToLibcall(AtomicRMWInst * I)1792 void AtomicExpandImpl::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1793 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1794
1795 unsigned Size = getAtomicOpSize(I);
1796
1797 bool Success = false;
1798 if (!Libcalls.empty())
1799 Success = expandAtomicOpToLibcall(
1800 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1801 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1802
1803 // The expansion failed: either there were no libcalls at all for
1804 // the operation (min/max), or there were only size-specialized
1805 // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1806 // CAS libcall, via a CAS loop, instead.
1807 if (!Success) {
1808 expandAtomicRMWToCmpXchg(
1809 I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded,
1810 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
1811 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
1812 // Create the CAS instruction normally...
1813 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1814 Addr, Loaded, NewVal, Alignment, MemOpOrder,
1815 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
1816 Success = Builder.CreateExtractValue(Pair, 1, "success");
1817 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1818
1819 // ...and then expand the CAS into a libcall.
1820 expandAtomicCASToLibcall(Pair);
1821 });
1822 }
1823 }
1824
1825 // A helper routine for the above expandAtomic*ToLibcall functions.
1826 //
1827 // 'Libcalls' contains an array of enum values for the particular
1828 // ATOMIC libcalls to be emitted. All of the other arguments besides
1829 // 'I' are extracted from the Instruction subclass by the
1830 // caller. Depending on the particular call, some will be null.
expandAtomicOpToLibcall(Instruction * I,unsigned Size,Align Alignment,Value * PointerOperand,Value * ValueOperand,Value * CASExpected,AtomicOrdering Ordering,AtomicOrdering Ordering2,ArrayRef<RTLIB::Libcall> Libcalls)1831 bool AtomicExpandImpl::expandAtomicOpToLibcall(
1832 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1833 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1834 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1835 assert(Libcalls.size() == 6);
1836
1837 LLVMContext &Ctx = I->getContext();
1838 Module *M = I->getModule();
1839 const DataLayout &DL = M->getDataLayout();
1840 IRBuilder<> Builder(I);
1841 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1842
1843 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1844 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1845
1846 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1847
1848 // TODO: the "order" argument type is "int", not int32. So
1849 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1850 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1851 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1852 Constant *OrderingVal =
1853 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1854 Constant *Ordering2Val = nullptr;
1855 if (CASExpected) {
1856 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1857 Ordering2Val =
1858 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1859 }
1860 bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1861
1862 RTLIB::Libcall RTLibType;
1863 if (UseSizedLibcall) {
1864 switch (Size) {
1865 case 1:
1866 RTLibType = Libcalls[1];
1867 break;
1868 case 2:
1869 RTLibType = Libcalls[2];
1870 break;
1871 case 4:
1872 RTLibType = Libcalls[3];
1873 break;
1874 case 8:
1875 RTLibType = Libcalls[4];
1876 break;
1877 case 16:
1878 RTLibType = Libcalls[5];
1879 break;
1880 }
1881 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1882 RTLibType = Libcalls[0];
1883 } else {
1884 // Can't use sized function, and there's no generic for this
1885 // operation, so give up.
1886 return false;
1887 }
1888
1889 if (!TLI->getLibcallName(RTLibType)) {
1890 // This target does not implement the requested atomic libcall so give up.
1891 return false;
1892 }
1893
1894 // Build up the function call. There's two kinds. First, the sized
1895 // variants. These calls are going to be one of the following (with
1896 // N=1,2,4,8,16):
1897 // iN __atomic_load_N(iN *ptr, int ordering)
1898 // void __atomic_store_N(iN *ptr, iN val, int ordering)
1899 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1900 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1901 // int success_order, int failure_order)
1902 //
1903 // Note that these functions can be used for non-integer atomic
1904 // operations, the values just need to be bitcast to integers on the
1905 // way in and out.
1906 //
1907 // And, then, the generic variants. They look like the following:
1908 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1909 // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
1910 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1911 // int ordering)
1912 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1913 // void *desired, int success_order,
1914 // int failure_order)
1915 //
1916 // The different signatures are built up depending on the
1917 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1918 // variables.
1919
1920 AllocaInst *AllocaCASExpected = nullptr;
1921 AllocaInst *AllocaValue = nullptr;
1922 AllocaInst *AllocaResult = nullptr;
1923
1924 Type *ResultTy;
1925 SmallVector<Value *, 6> Args;
1926 AttributeList Attr;
1927
1928 // 'size' argument.
1929 if (!UseSizedLibcall) {
1930 // Note, getIntPtrType is assumed equivalent to size_t.
1931 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1932 }
1933
1934 // 'ptr' argument.
1935 // note: This assumes all address spaces share a common libfunc
1936 // implementation and that addresses are convertable. For systems without
1937 // that property, we'd need to extend this mechanism to support AS-specific
1938 // families of atomic intrinsics.
1939 Value *PtrVal = PointerOperand;
1940 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, PointerType::getUnqual(Ctx));
1941 Args.push_back(PtrVal);
1942
1943 // 'expected' argument, if present.
1944 if (CASExpected) {
1945 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1946 AllocaCASExpected->setAlignment(AllocaAlignment);
1947 Builder.CreateLifetimeStart(AllocaCASExpected, SizeVal64);
1948 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1949 Args.push_back(AllocaCASExpected);
1950 }
1951
1952 // 'val' argument ('desired' for cas), if present.
1953 if (ValueOperand) {
1954 if (UseSizedLibcall) {
1955 Value *IntValue =
1956 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1957 Args.push_back(IntValue);
1958 } else {
1959 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1960 AllocaValue->setAlignment(AllocaAlignment);
1961 Builder.CreateLifetimeStart(AllocaValue, SizeVal64);
1962 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1963 Args.push_back(AllocaValue);
1964 }
1965 }
1966
1967 // 'ret' argument.
1968 if (!CASExpected && HasResult && !UseSizedLibcall) {
1969 AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1970 AllocaResult->setAlignment(AllocaAlignment);
1971 Builder.CreateLifetimeStart(AllocaResult, SizeVal64);
1972 Args.push_back(AllocaResult);
1973 }
1974
1975 // 'ordering' ('success_order' for cas) argument.
1976 Args.push_back(OrderingVal);
1977
1978 // 'failure_order' argument, if present.
1979 if (Ordering2Val)
1980 Args.push_back(Ordering2Val);
1981
1982 // Now, the return type.
1983 if (CASExpected) {
1984 ResultTy = Type::getInt1Ty(Ctx);
1985 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt);
1986 } else if (HasResult && UseSizedLibcall)
1987 ResultTy = SizedIntTy;
1988 else
1989 ResultTy = Type::getVoidTy(Ctx);
1990
1991 // Done with setting up arguments and return types, create the call:
1992 SmallVector<Type *, 6> ArgTys;
1993 for (Value *Arg : Args)
1994 ArgTys.push_back(Arg->getType());
1995 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1996 FunctionCallee LibcallFn =
1997 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1998 CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1999 Call->setAttributes(Attr);
2000 Value *Result = Call;
2001
2002 // And then, extract the results...
2003 if (ValueOperand && !UseSizedLibcall)
2004 Builder.CreateLifetimeEnd(AllocaValue, SizeVal64);
2005
2006 if (CASExpected) {
2007 // The final result from the CAS is {load of 'expected' alloca, bool result
2008 // from call}
2009 Type *FinalResultTy = I->getType();
2010 Value *V = PoisonValue::get(FinalResultTy);
2011 Value *ExpectedOut = Builder.CreateAlignedLoad(
2012 CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
2013 Builder.CreateLifetimeEnd(AllocaCASExpected, SizeVal64);
2014 V = Builder.CreateInsertValue(V, ExpectedOut, 0);
2015 V = Builder.CreateInsertValue(V, Result, 1);
2016 I->replaceAllUsesWith(V);
2017 } else if (HasResult) {
2018 Value *V;
2019 if (UseSizedLibcall)
2020 V = Builder.CreateBitOrPointerCast(Result, I->getType());
2021 else {
2022 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
2023 AllocaAlignment);
2024 Builder.CreateLifetimeEnd(AllocaResult, SizeVal64);
2025 }
2026 I->replaceAllUsesWith(V);
2027 }
2028 I->eraseFromParent();
2029 return true;
2030 }
2031