1 //===------ CGGPUBuiltin.cpp - Codegen for GPU builtins -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Generates code for built-in GPU calls which are not runtime-specific.
10 // (Runtime-specific codegen lives in programming model specific files.)
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "clang/Basic/Builtins.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/Instruction.h"
18 #include "llvm/Support/MathExtras.h"
19 #include "llvm/Transforms/Utils/AMDGPUEmitPrintf.h"
20
21 using namespace clang;
22 using namespace CodeGen;
23
24 namespace {
GetVprintfDeclaration(llvm::Module & M)25 llvm::Function *GetVprintfDeclaration(llvm::Module &M) {
26 llvm::Type *ArgTypes[] = {llvm::PointerType::getUnqual(M.getContext()),
27 llvm::PointerType::getUnqual(M.getContext())};
28 llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get(
29 llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false);
30
31 if (auto *F = M.getFunction("vprintf")) {
32 // Our CUDA system header declares vprintf with the right signature, so
33 // nobody else should have been able to declare vprintf with a bogus
34 // signature.
35 assert(F->getFunctionType() == VprintfFuncType);
36 return F;
37 }
38
39 // vprintf doesn't already exist; create a declaration and insert it into the
40 // module.
41 return llvm::Function::Create(
42 VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, "vprintf", &M);
43 }
44
GetOpenMPVprintfDeclaration(CodeGenModule & CGM)45 llvm::Function *GetOpenMPVprintfDeclaration(CodeGenModule &CGM) {
46 const char *Name = "__llvm_omp_vprintf";
47 llvm::Module &M = CGM.getModule();
48 llvm::Type *ArgTypes[] = {llvm::PointerType::getUnqual(M.getContext()),
49 llvm::PointerType::getUnqual(M.getContext()),
50 llvm::Type::getInt32Ty(M.getContext())};
51 llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get(
52 llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false);
53
54 if (auto *F = M.getFunction(Name)) {
55 if (F->getFunctionType() != VprintfFuncType) {
56 CGM.Error(SourceLocation(),
57 "Invalid type declaration for __llvm_omp_vprintf");
58 return nullptr;
59 }
60 return F;
61 }
62
63 return llvm::Function::Create(
64 VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, Name, &M);
65 }
66
67 // Transforms a call to printf into a call to the NVPTX vprintf syscall (which
68 // isn't particularly special; it's invoked just like a regular function).
69 // vprintf takes two args: A format string, and a pointer to a buffer containing
70 // the varargs.
71 //
72 // For example, the call
73 //
74 // printf("format string", arg1, arg2, arg3);
75 //
76 // is converted into something resembling
77 //
78 // struct Tmp {
79 // Arg1 a1;
80 // Arg2 a2;
81 // Arg3 a3;
82 // };
83 // char* buf = alloca(sizeof(Tmp));
84 // *(Tmp*)buf = {a1, a2, a3};
85 // vprintf("format string", buf);
86 //
87 // buf is aligned to the max of {alignof(Arg1), ...}. Furthermore, each of the
88 // args is itself aligned to its preferred alignment.
89 //
90 // Note that by the time this function runs, E's args have already undergone the
91 // standard C vararg promotion (short -> int, float -> double, etc.).
92
93 std::pair<llvm::Value *, llvm::TypeSize>
packArgsIntoNVPTXFormatBuffer(CodeGenFunction * CGF,const CallArgList & Args)94 packArgsIntoNVPTXFormatBuffer(CodeGenFunction *CGF, const CallArgList &Args) {
95 const llvm::DataLayout &DL = CGF->CGM.getDataLayout();
96 llvm::LLVMContext &Ctx = CGF->CGM.getLLVMContext();
97 CGBuilderTy &Builder = CGF->Builder;
98
99 // Construct and fill the args buffer that we'll pass to vprintf.
100 if (Args.size() <= 1) {
101 // If there are no args, pass a null pointer and size 0
102 llvm::Value *BufferPtr =
103 llvm::ConstantPointerNull::get(llvm::PointerType::getUnqual(Ctx));
104 return {BufferPtr, llvm::TypeSize::getFixed(0)};
105 } else {
106 llvm::SmallVector<llvm::Type *, 8> ArgTypes;
107 for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I)
108 ArgTypes.push_back(Args[I].getRValue(*CGF).getScalarVal()->getType());
109
110 // Using llvm::StructType is correct only because printf doesn't accept
111 // aggregates. If we had to handle aggregates here, we'd have to manually
112 // compute the offsets within the alloca -- we wouldn't be able to assume
113 // that the alignment of the llvm type was the same as the alignment of the
114 // clang type.
115 llvm::Type *AllocaTy = llvm::StructType::create(ArgTypes, "printf_args");
116 llvm::Value *Alloca = CGF->CreateTempAlloca(AllocaTy);
117
118 for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) {
119 llvm::Value *P = Builder.CreateStructGEP(AllocaTy, Alloca, I - 1);
120 llvm::Value *Arg = Args[I].getRValue(*CGF).getScalarVal();
121 Builder.CreateAlignedStore(Arg, P, DL.getPrefTypeAlign(Arg->getType()));
122 }
123 llvm::Value *BufferPtr =
124 Builder.CreatePointerCast(Alloca, llvm::PointerType::getUnqual(Ctx));
125 return {BufferPtr, DL.getTypeAllocSize(AllocaTy)};
126 }
127 }
128
containsNonScalarVarargs(CodeGenFunction * CGF,const CallArgList & Args)129 bool containsNonScalarVarargs(CodeGenFunction *CGF, const CallArgList &Args) {
130 return llvm::any_of(llvm::drop_begin(Args), [&](const CallArg &A) {
131 return !A.getRValue(*CGF).isScalar();
132 });
133 }
134
EmitDevicePrintfCallExpr(const CallExpr * E,CodeGenFunction * CGF,llvm::Function * Decl,bool WithSizeArg)135 RValue EmitDevicePrintfCallExpr(const CallExpr *E, CodeGenFunction *CGF,
136 llvm::Function *Decl, bool WithSizeArg) {
137 CodeGenModule &CGM = CGF->CGM;
138 CGBuilderTy &Builder = CGF->Builder;
139 assert(E->getBuiltinCallee() == Builtin::BIprintf ||
140 E->getBuiltinCallee() == Builtin::BI__builtin_printf);
141 assert(E->getNumArgs() >= 1); // printf always has at least one arg.
142
143 // Uses the same format as nvptx for the argument packing, but also passes
144 // an i32 for the total size of the passed pointer
145 CallArgList Args;
146 CGF->EmitCallArgs(Args,
147 E->getDirectCallee()->getType()->getAs<FunctionProtoType>(),
148 E->arguments(), E->getDirectCallee(),
149 /* ParamsToSkip = */ 0);
150
151 // We don't know how to emit non-scalar varargs.
152 if (containsNonScalarVarargs(CGF, Args)) {
153 CGM.ErrorUnsupported(E, "non-scalar arg to printf");
154 return RValue::get(llvm::ConstantInt::get(CGF->IntTy, 0));
155 }
156
157 auto r = packArgsIntoNVPTXFormatBuffer(CGF, Args);
158 llvm::Value *BufferPtr = r.first;
159
160 llvm::SmallVector<llvm::Value *, 3> Vec = {
161 Args[0].getRValue(*CGF).getScalarVal(), BufferPtr};
162 if (WithSizeArg) {
163 // Passing > 32bit of data as a local alloca doesn't work for nvptx or
164 // amdgpu
165 llvm::Constant *Size =
166 llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGM.getLLVMContext()),
167 static_cast<uint32_t>(r.second.getFixedValue()));
168
169 Vec.push_back(Size);
170 }
171 return RValue::get(Builder.CreateCall(Decl, Vec));
172 }
173 } // namespace
174
EmitNVPTXDevicePrintfCallExpr(const CallExpr * E)175 RValue CodeGenFunction::EmitNVPTXDevicePrintfCallExpr(const CallExpr *E) {
176 assert(getTarget().getTriple().isNVPTX());
177 return EmitDevicePrintfCallExpr(
178 E, this, GetVprintfDeclaration(CGM.getModule()), false);
179 }
180
EmitAMDGPUDevicePrintfCallExpr(const CallExpr * E)181 RValue CodeGenFunction::EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E) {
182 assert(getTarget().getTriple().isAMDGCN() ||
183 (getTarget().getTriple().isSPIRV() &&
184 getTarget().getTriple().getVendor() == llvm::Triple::AMD));
185 assert(E->getBuiltinCallee() == Builtin::BIprintf ||
186 E->getBuiltinCallee() == Builtin::BI__builtin_printf);
187 assert(E->getNumArgs() >= 1); // printf always has at least one arg.
188
189 CallArgList CallArgs;
190 EmitCallArgs(CallArgs,
191 E->getDirectCallee()->getType()->getAs<FunctionProtoType>(),
192 E->arguments(), E->getDirectCallee(),
193 /* ParamsToSkip = */ 0);
194
195 SmallVector<llvm::Value *, 8> Args;
196 for (const auto &A : CallArgs) {
197 // We don't know how to emit non-scalar varargs.
198 if (!A.getRValue(*this).isScalar()) {
199 CGM.ErrorUnsupported(E, "non-scalar arg to printf");
200 return RValue::get(llvm::ConstantInt::get(IntTy, -1));
201 }
202
203 llvm::Value *Arg = A.getRValue(*this).getScalarVal();
204 Args.push_back(Arg);
205 }
206
207 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
208 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
209
210 bool isBuffered = (CGM.getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
211 clang::TargetOptions::AMDGPUPrintfKind::Buffered);
212 auto Printf = llvm::emitAMDGPUPrintfCall(IRB, Args, isBuffered);
213 Builder.SetInsertPoint(IRB.GetInsertBlock(), IRB.GetInsertPoint());
214 return RValue::get(Printf);
215 }
216
EmitOpenMPDevicePrintfCallExpr(const CallExpr * E)217 RValue CodeGenFunction::EmitOpenMPDevicePrintfCallExpr(const CallExpr *E) {
218 assert(getTarget().getTriple().isNVPTX() ||
219 getTarget().getTriple().isAMDGCN());
220 return EmitDevicePrintfCallExpr(E, this, GetOpenMPVprintfDeclaration(CGM),
221 true);
222 }
223