xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/TypeBasedAliasAnalysis.cpp (revision 62987288060ff68c817b7056815aa9fb8ba8ecd7)
1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TypeBasedAliasAnalysis pass, which implements
10 // metadata-based TBAA.
11 //
12 // In LLVM IR, memory does not have types, so LLVM's own type system is not
13 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
14 // a type system of a higher level language. This can be used to implement
15 // typical C/C++ TBAA, but it can also be used to implement custom alias
16 // analysis behavior for other languages.
17 //
18 // We now support two types of metadata format: scalar TBAA and struct-path
19 // aware TBAA. After all testing cases are upgraded to use struct-path aware
20 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
21 // can be dropped.
22 //
23 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
24 // three fields, e.g.:
25 //   !0 = !{ !"an example type tree" }
26 //   !1 = !{ !"int", !0 }
27 //   !2 = !{ !"float", !0 }
28 //   !3 = !{ !"const float", !2, i64 1 }
29 //
30 // The first field is an identity field. It can be any value, usually
31 // an MDString, which uniquely identifies the type. The most important
32 // name in the tree is the name of the root node. Two trees with
33 // different root node names are entirely disjoint, even if they
34 // have leaves with common names.
35 //
36 // The second field identifies the type's parent node in the tree, or
37 // is null or omitted for a root node. A type is considered to alias
38 // all of its descendants and all of its ancestors in the tree. Also,
39 // a type is considered to alias all types in other trees, so that
40 // bitcode produced from multiple front-ends is handled conservatively.
41 //
42 // If the third field is present, it's an integer which if equal to 1
43 // indicates that the type is "constant" (meaning pointsToConstantMemory
44 // should return true; see
45 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
46 //
47 // With struct-path aware TBAA, the MDNodes attached to an instruction using
48 // "!tbaa" are called path tag nodes.
49 //
50 // The path tag node has 4 fields with the last field being optional.
51 //
52 // The first field is the base type node, it can be a struct type node
53 // or a scalar type node. The second field is the access type node, it
54 // must be a scalar type node. The third field is the offset into the base type.
55 // The last field has the same meaning as the last field of our scalar TBAA:
56 // it's an integer which if equal to 1 indicates that the access is "constant".
57 //
58 // The struct type node has a name and a list of pairs, one pair for each member
59 // of the struct. The first element of each pair is a type node (a struct type
60 // node or a scalar type node), specifying the type of the member, the second
61 // element of each pair is the offset of the member.
62 //
63 // Given an example
64 // typedef struct {
65 //   short s;
66 // } A;
67 // typedef struct {
68 //   uint16_t s;
69 //   A a;
70 // } B;
71 //
72 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
73 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
74 // type short) and the offset is 4.
75 //
76 // !0 = !{!"Simple C/C++ TBAA"}
77 // !1 = !{!"omnipotent char", !0} // Scalar type node
78 // !2 = !{!"short", !1}           // Scalar type node
79 // !3 = !{!"A", !2, i64 0}        // Struct type node
80 // !4 = !{!"B", !2, i64 0, !3, i64 4}
81 //                                                           // Struct type node
82 // !5 = !{!4, !2, i64 4}          // Path tag node
83 //
84 // The struct type nodes and the scalar type nodes form a type DAG.
85 //         Root (!0)
86 //         char (!1)  -- edge to Root
87 //         short (!2) -- edge to char
88 //         A (!3) -- edge with offset 0 to short
89 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
90 //
91 // To check if two tags (tagX and tagY) can alias, we start from the base type
92 // of tagX, follow the edge with the correct offset in the type DAG and adjust
93 // the offset until we reach the base type of tagY or until we reach the Root
94 // node.
95 // If we reach the base type of tagY, compare the adjusted offset with
96 // offset of tagY, return Alias if the offsets are the same, return NoAlias
97 // otherwise.
98 // If we reach the Root node, perform the above starting from base type of tagY
99 // to see if we reach base type of tagX.
100 //
101 // If they have different roots, they're part of different potentially
102 // unrelated type systems, so we return Alias to be conservative.
103 // If neither node is an ancestor of the other and they have the same root,
104 // then we say NoAlias.
105 //
106 //===----------------------------------------------------------------------===//
107 
108 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
109 #include "llvm/ADT/SetVector.h"
110 #include "llvm/Analysis/AliasAnalysis.h"
111 #include "llvm/Analysis/MemoryLocation.h"
112 #include "llvm/IR/Constants.h"
113 #include "llvm/IR/DataLayout.h"
114 #include "llvm/IR/DerivedTypes.h"
115 #include "llvm/IR/InstrTypes.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/InitializePasses.h"
119 #include "llvm/Pass.h"
120 #include "llvm/Support/Casting.h"
121 #include "llvm/Support/CommandLine.h"
122 #include "llvm/Support/ErrorHandling.h"
123 #include <cassert>
124 #include <cstdint>
125 
126 using namespace llvm;
127 
128 // A handy option for disabling TBAA functionality. The same effect can also be
129 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
130 // more convenient.
131 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);
132 
133 namespace {
134 
135 /// isNewFormatTypeNode - Return true iff the given type node is in the new
136 /// size-aware format.
isNewFormatTypeNode(const MDNode * N)137 static bool isNewFormatTypeNode(const MDNode *N) {
138   if (N->getNumOperands() < 3)
139     return false;
140   // In the old format the first operand is a string.
141   if (!isa<MDNode>(N->getOperand(0)))
142     return false;
143   return true;
144 }
145 
146 /// This is a simple wrapper around an MDNode which provides a higher-level
147 /// interface by hiding the details of how alias analysis information is encoded
148 /// in its operands.
149 template<typename MDNodeTy>
150 class TBAANodeImpl {
151   MDNodeTy *Node = nullptr;
152 
153 public:
154   TBAANodeImpl() = default;
TBAANodeImpl(MDNodeTy * N)155   explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
156 
157   /// getNode - Get the MDNode for this TBAANode.
getNode() const158   MDNodeTy *getNode() const { return Node; }
159 
160   /// isNewFormat - Return true iff the wrapped type node is in the new
161   /// size-aware format.
isNewFormat() const162   bool isNewFormat() const { return isNewFormatTypeNode(Node); }
163 
164   /// getParent - Get this TBAANode's Alias tree parent.
getParent() const165   TBAANodeImpl<MDNodeTy> getParent() const {
166     if (isNewFormat())
167       return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));
168 
169     if (Node->getNumOperands() < 2)
170       return TBAANodeImpl<MDNodeTy>();
171     MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
172     if (!P)
173       return TBAANodeImpl<MDNodeTy>();
174     // Ok, this node has a valid parent. Return it.
175     return TBAANodeImpl<MDNodeTy>(P);
176   }
177 
178   /// Test if this TBAANode represents a type for objects which are
179   /// not modified (by any means) in the context where this
180   /// AliasAnalysis is relevant.
isTypeImmutable() const181   bool isTypeImmutable() const {
182     if (Node->getNumOperands() < 3)
183       return false;
184     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
185     if (!CI)
186       return false;
187     return CI->getValue()[0];
188   }
189 };
190 
191 /// \name Specializations of \c TBAANodeImpl for const and non const qualified
192 /// \c MDNode.
193 /// @{
194 using TBAANode = TBAANodeImpl<const MDNode>;
195 using MutableTBAANode = TBAANodeImpl<MDNode>;
196 /// @}
197 
198 /// This is a simple wrapper around an MDNode which provides a
199 /// higher-level interface by hiding the details of how alias analysis
200 /// information is encoded in its operands.
201 template<typename MDNodeTy>
202 class TBAAStructTagNodeImpl {
203   /// This node should be created with createTBAAAccessTag().
204   MDNodeTy *Node;
205 
206 public:
TBAAStructTagNodeImpl(MDNodeTy * N)207   explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
208 
209   /// Get the MDNode for this TBAAStructTagNode.
getNode() const210   MDNodeTy *getNode() const { return Node; }
211 
212   /// isNewFormat - Return true iff the wrapped access tag is in the new
213   /// size-aware format.
isNewFormat() const214   bool isNewFormat() const {
215     if (Node->getNumOperands() < 4)
216       return false;
217     if (MDNodeTy *AccessType = getAccessType())
218       if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
219         return false;
220     return true;
221   }
222 
getBaseType() const223   MDNodeTy *getBaseType() const {
224     return dyn_cast_or_null<MDNode>(Node->getOperand(0));
225   }
226 
getAccessType() const227   MDNodeTy *getAccessType() const {
228     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
229   }
230 
getOffset() const231   uint64_t getOffset() const {
232     return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
233   }
234 
getSize() const235   uint64_t getSize() const {
236     if (!isNewFormat())
237       return UINT64_MAX;
238     return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
239   }
240 
241   /// Test if this TBAAStructTagNode represents a type for objects
242   /// which are not modified (by any means) in the context where this
243   /// AliasAnalysis is relevant.
isTypeImmutable() const244   bool isTypeImmutable() const {
245     unsigned OpNo = isNewFormat() ? 4 : 3;
246     if (Node->getNumOperands() < OpNo + 1)
247       return false;
248     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
249     if (!CI)
250       return false;
251     return CI->getValue()[0];
252   }
253 };
254 
255 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
256 /// qualified \c MDNods.
257 /// @{
258 using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
259 using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
260 /// @}
261 
262 /// This is a simple wrapper around an MDNode which provides a
263 /// higher-level interface by hiding the details of how alias analysis
264 /// information is encoded in its operands.
265 class TBAAStructTypeNode {
266   /// This node should be created with createTBAATypeNode().
267   const MDNode *Node = nullptr;
268 
269 public:
270   TBAAStructTypeNode() = default;
TBAAStructTypeNode(const MDNode * N)271   explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
272 
273   /// Get the MDNode for this TBAAStructTypeNode.
getNode() const274   const MDNode *getNode() const { return Node; }
275 
276   /// isNewFormat - Return true iff the wrapped type node is in the new
277   /// size-aware format.
isNewFormat() const278   bool isNewFormat() const { return isNewFormatTypeNode(Node); }
279 
operator ==(const TBAAStructTypeNode & Other) const280   bool operator==(const TBAAStructTypeNode &Other) const {
281     return getNode() == Other.getNode();
282   }
283 
284   /// getId - Return type identifier.
getId() const285   Metadata *getId() const {
286     return Node->getOperand(isNewFormat() ? 2 : 0);
287   }
288 
getNumFields() const289   unsigned getNumFields() const {
290     unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
291     unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
292     return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
293   }
294 
getFieldType(unsigned FieldIndex) const295   TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
296     unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
297     unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
298     unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
299     auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
300     return TBAAStructTypeNode(TypeNode);
301   }
302 
303   /// Get this TBAAStructTypeNode's field in the type DAG with
304   /// given offset. Update the offset to be relative to the field type.
getField(uint64_t & Offset) const305   TBAAStructTypeNode getField(uint64_t &Offset) const {
306     bool NewFormat = isNewFormat();
307     const ArrayRef<MDOperand> Operands = Node->operands();
308     const unsigned NumOperands = Operands.size();
309 
310     if (NewFormat) {
311       // New-format root and scalar type nodes have no fields.
312       if (NumOperands < 6)
313         return TBAAStructTypeNode();
314     } else {
315       // Parent can be omitted for the root node.
316       if (NumOperands < 2)
317         return TBAAStructTypeNode();
318 
319       // Fast path for a scalar type node and a struct type node with a single
320       // field.
321       if (NumOperands <= 3) {
322         uint64_t Cur =
323             NumOperands == 2
324                 ? 0
325                 : mdconst::extract<ConstantInt>(Operands[2])->getZExtValue();
326         Offset -= Cur;
327         MDNode *P = dyn_cast_or_null<MDNode>(Operands[1]);
328         if (!P)
329           return TBAAStructTypeNode();
330         return TBAAStructTypeNode(P);
331       }
332     }
333 
334     // Assume the offsets are in order. We return the previous field if
335     // the current offset is bigger than the given offset.
336     unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
337     unsigned NumOpsPerField = NewFormat ? 3 : 2;
338     unsigned TheIdx = 0;
339 
340     for (unsigned Idx = FirstFieldOpNo; Idx < NumOperands;
341          Idx += NumOpsPerField) {
342       uint64_t Cur =
343           mdconst::extract<ConstantInt>(Operands[Idx + 1])->getZExtValue();
344       if (Cur > Offset) {
345         assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
346                "TBAAStructTypeNode::getField should have an offset match!");
347         TheIdx = Idx - NumOpsPerField;
348         break;
349       }
350     }
351     // Move along the last field.
352     if (TheIdx == 0)
353       TheIdx = NumOperands - NumOpsPerField;
354     uint64_t Cur =
355         mdconst::extract<ConstantInt>(Operands[TheIdx + 1])->getZExtValue();
356     Offset -= Cur;
357     MDNode *P = dyn_cast_or_null<MDNode>(Operands[TheIdx]);
358     if (!P)
359       return TBAAStructTypeNode();
360     return TBAAStructTypeNode(P);
361   }
362 };
363 
364 } // end anonymous namespace
365 
366 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
367 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
368 /// format.
isStructPathTBAA(const MDNode * MD)369 static bool isStructPathTBAA(const MDNode *MD) {
370   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
371   // a TBAA tag.
372   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
373 }
374 
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI,const Instruction *)375 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
376                                      const MemoryLocation &LocB,
377                                      AAQueryInfo &AAQI, const Instruction *) {
378   if (!EnableTBAA)
379     return AliasResult::MayAlias;
380 
381   if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
382     return AliasResult::MayAlias;
383 
384   // Otherwise return a definitive result.
385   return AliasResult::NoAlias;
386 }
387 
getModRefInfoMask(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool IgnoreLocals)388 ModRefInfo TypeBasedAAResult::getModRefInfoMask(const MemoryLocation &Loc,
389                                                 AAQueryInfo &AAQI,
390                                                 bool IgnoreLocals) {
391   if (!EnableTBAA)
392     return ModRefInfo::ModRef;
393 
394   const MDNode *M = Loc.AATags.TBAA;
395   if (!M)
396     return ModRefInfo::ModRef;
397 
398   // If this is an "immutable" type, we can assume the pointer is pointing
399   // to constant memory.
400   if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
401       (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
402     return ModRefInfo::NoModRef;
403 
404   return ModRefInfo::ModRef;
405 }
406 
getMemoryEffects(const CallBase * Call,AAQueryInfo & AAQI)407 MemoryEffects TypeBasedAAResult::getMemoryEffects(const CallBase *Call,
408                                                   AAQueryInfo &AAQI) {
409   if (!EnableTBAA)
410     return MemoryEffects::unknown();
411 
412   // If this is an "immutable" type, the access is not observable.
413   if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
414     if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
415         (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
416       return MemoryEffects::none();
417 
418   return MemoryEffects::unknown();
419 }
420 
getMemoryEffects(const Function * F)421 MemoryEffects TypeBasedAAResult::getMemoryEffects(const Function *F) {
422   // Functions don't have metadata.
423   return MemoryEffects::unknown();
424 }
425 
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)426 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call,
427                                             const MemoryLocation &Loc,
428                                             AAQueryInfo &AAQI) {
429   if (!EnableTBAA)
430     return ModRefInfo::ModRef;
431 
432   if (const MDNode *L = Loc.AATags.TBAA)
433     if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
434       if (!Aliases(L, M))
435         return ModRefInfo::NoModRef;
436 
437   return ModRefInfo::ModRef;
438 }
439 
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)440 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call1,
441                                             const CallBase *Call2,
442                                             AAQueryInfo &AAQI) {
443   if (!EnableTBAA)
444     return ModRefInfo::ModRef;
445 
446   if (const MDNode *M1 = Call1->getMetadata(LLVMContext::MD_tbaa))
447     if (const MDNode *M2 = Call2->getMetadata(LLVMContext::MD_tbaa))
448       if (!Aliases(M1, M2))
449         return ModRefInfo::NoModRef;
450 
451   return ModRefInfo::ModRef;
452 }
453 
isTBAAVtableAccess() const454 bool MDNode::isTBAAVtableAccess() const {
455   if (!isStructPathTBAA(this)) {
456     if (getNumOperands() < 1)
457       return false;
458     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
459       if (Tag1->getString() == "vtable pointer")
460         return true;
461     }
462     return false;
463   }
464 
465   // For struct-path aware TBAA, we use the access type of the tag.
466   TBAAStructTagNode Tag(this);
467   TBAAStructTypeNode AccessType(Tag.getAccessType());
468   if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
469     if (Id->getString() == "vtable pointer")
470       return true;
471   return false;
472 }
473 
474 static bool matchAccessTags(const MDNode *A, const MDNode *B,
475                             const MDNode **GenericTag = nullptr);
476 
getMostGenericTBAA(MDNode * A,MDNode * B)477 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
478   const MDNode *GenericTag;
479   matchAccessTags(A, B, &GenericTag);
480   return const_cast<MDNode*>(GenericTag);
481 }
482 
getLeastCommonType(const MDNode * A,const MDNode * B)483 static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
484   if (!A || !B)
485     return nullptr;
486 
487   if (A == B)
488     return A;
489 
490   SmallSetVector<const MDNode *, 4> PathA;
491   TBAANode TA(A);
492   while (TA.getNode()) {
493     if (!PathA.insert(TA.getNode()))
494       report_fatal_error("Cycle found in TBAA metadata.");
495     TA = TA.getParent();
496   }
497 
498   SmallSetVector<const MDNode *, 4> PathB;
499   TBAANode TB(B);
500   while (TB.getNode()) {
501     if (!PathB.insert(TB.getNode()))
502       report_fatal_error("Cycle found in TBAA metadata.");
503     TB = TB.getParent();
504   }
505 
506   int IA = PathA.size() - 1;
507   int IB = PathB.size() - 1;
508 
509   const MDNode *Ret = nullptr;
510   while (IA >= 0 && IB >= 0) {
511     if (PathA[IA] == PathB[IB])
512       Ret = PathA[IA];
513     else
514       break;
515     --IA;
516     --IB;
517   }
518 
519   return Ret;
520 }
521 
merge(const AAMDNodes & Other) const522 AAMDNodes AAMDNodes::merge(const AAMDNodes &Other) const {
523   AAMDNodes Result;
524   Result.TBAA = MDNode::getMostGenericTBAA(TBAA, Other.TBAA);
525   Result.TBAAStruct = nullptr;
526   Result.Scope = MDNode::getMostGenericAliasScope(Scope, Other.Scope);
527   Result.NoAlias = MDNode::intersect(NoAlias, Other.NoAlias);
528   return Result;
529 }
530 
concat(const AAMDNodes & Other) const531 AAMDNodes AAMDNodes::concat(const AAMDNodes &Other) const {
532   AAMDNodes Result;
533   Result.TBAA = Result.TBAAStruct = nullptr;
534   Result.Scope = MDNode::getMostGenericAliasScope(Scope, Other.Scope);
535   Result.NoAlias = MDNode::intersect(NoAlias, Other.NoAlias);
536   return Result;
537 }
538 
createAccessTag(const MDNode * AccessType)539 static const MDNode *createAccessTag(const MDNode *AccessType) {
540   // If there is no access type or the access type is the root node, then
541   // we don't have any useful access tag to return.
542   if (!AccessType || AccessType->getNumOperands() < 2)
543     return nullptr;
544 
545   Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
546   auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
547 
548   if (TBAAStructTypeNode(AccessType).isNewFormat()) {
549     // TODO: Take access ranges into account when matching access tags and
550     // fix this code to generate actual access sizes for generic tags.
551     uint64_t AccessSize = UINT64_MAX;
552     auto *SizeNode =
553         ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
554     Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
555                        const_cast<MDNode*>(AccessType),
556                        OffsetNode, SizeNode};
557     return MDNode::get(AccessType->getContext(), Ops);
558   }
559 
560   Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
561                      const_cast<MDNode*>(AccessType),
562                      OffsetNode};
563   return MDNode::get(AccessType->getContext(), Ops);
564 }
565 
hasField(TBAAStructTypeNode BaseType,TBAAStructTypeNode FieldType)566 static bool hasField(TBAAStructTypeNode BaseType,
567                      TBAAStructTypeNode FieldType) {
568   for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
569     TBAAStructTypeNode T = BaseType.getFieldType(I);
570     if (T == FieldType || hasField(T, FieldType))
571       return true;
572   }
573   return false;
574 }
575 
576 /// Return true if for two given accesses, one of the accessed objects may be a
577 /// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
578 /// describe the accesses to the base object and the subobject respectively.
579 /// \p CommonType must be the metadata node describing the common type of the
580 /// accessed objects. On return, \p MayAlias is set to true iff these accesses
581 /// may alias and \p Generic, if not null, points to the most generic access
582 /// tag for the given two.
mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,TBAAStructTagNode SubobjectTag,const MDNode * CommonType,const MDNode ** GenericTag,bool & MayAlias)583 static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
584                                      TBAAStructTagNode SubobjectTag,
585                                      const MDNode *CommonType,
586                                      const MDNode **GenericTag,
587                                      bool &MayAlias) {
588   // If the base object is of the least common type, then this may be an access
589   // to its subobject.
590   if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
591       BaseTag.getAccessType() == CommonType) {
592     if (GenericTag)
593       *GenericTag = createAccessTag(CommonType);
594     MayAlias = true;
595     return true;
596   }
597 
598   // If the access to the base object is through a field of the subobject's
599   // type, then this may be an access to that field. To check for that we start
600   // from the base type, follow the edge with the correct offset in the type DAG
601   // and adjust the offset until we reach the field type or until we reach the
602   // access type.
603   bool NewFormat = BaseTag.isNewFormat();
604   TBAAStructTypeNode BaseType(BaseTag.getBaseType());
605   uint64_t OffsetInBase = BaseTag.getOffset();
606 
607   for (;;) {
608     // In the old format there is no distinction between fields and parent
609     // types, so in this case we consider all nodes up to the root.
610     if (!BaseType.getNode()) {
611       assert(!NewFormat && "Did not see access type in access path!");
612       break;
613     }
614 
615     if (BaseType.getNode() == SubobjectTag.getBaseType()) {
616       bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
617       if (GenericTag) {
618         *GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
619                                          createAccessTag(CommonType);
620       }
621       MayAlias = SameMemberAccess;
622       return true;
623     }
624 
625     // With new-format nodes we stop at the access type.
626     if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
627       break;
628 
629     // Follow the edge with the correct offset. Offset will be adjusted to
630     // be relative to the field type.
631     BaseType = BaseType.getField(OffsetInBase);
632   }
633 
634   // If the base object has a direct or indirect field of the subobject's type,
635   // then this may be an access to that field. We need this to check now that
636   // we support aggregates as access types.
637   if (NewFormat) {
638     // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
639     TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
640     if (hasField(BaseType, FieldType)) {
641       if (GenericTag)
642         *GenericTag = createAccessTag(CommonType);
643       MayAlias = true;
644       return true;
645     }
646   }
647 
648   return false;
649 }
650 
651 /// matchTags - Return true if the given couple of accesses are allowed to
652 /// overlap. If \arg GenericTag is not null, then on return it points to the
653 /// most generic access descriptor for the given two.
matchAccessTags(const MDNode * A,const MDNode * B,const MDNode ** GenericTag)654 static bool matchAccessTags(const MDNode *A, const MDNode *B,
655                             const MDNode **GenericTag) {
656   if (A == B) {
657     if (GenericTag)
658       *GenericTag = A;
659     return true;
660   }
661 
662   // Accesses with no TBAA information may alias with any other accesses.
663   if (!A || !B) {
664     if (GenericTag)
665       *GenericTag = nullptr;
666     return true;
667   }
668 
669   // Verify that both input nodes are struct-path aware.  Auto-upgrade should
670   // have taken care of this.
671   assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
672   assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
673 
674   TBAAStructTagNode TagA(A), TagB(B);
675   const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
676                                                 TagB.getAccessType());
677 
678   // If the final access types have different roots, they're part of different
679   // potentially unrelated type systems, so we must be conservative.
680   if (!CommonType) {
681     if (GenericTag)
682       *GenericTag = nullptr;
683     return true;
684   }
685 
686   // If one of the accessed objects may be a subobject of the other, then such
687   // accesses may alias.
688   bool MayAlias;
689   if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
690                                CommonType, GenericTag, MayAlias) ||
691       mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
692                                CommonType, GenericTag, MayAlias))
693     return MayAlias;
694 
695   // Otherwise, we've proved there's no alias.
696   if (GenericTag)
697     *GenericTag = createAccessTag(CommonType);
698   return false;
699 }
700 
701 /// Aliases - Test whether the access represented by tag A may alias the
702 /// access represented by tag B.
Aliases(const MDNode * A,const MDNode * B) const703 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
704   return matchAccessTags(A, B);
705 }
706 
707 AnalysisKey TypeBasedAA::Key;
708 
run(Function & F,FunctionAnalysisManager & AM)709 TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
710   return TypeBasedAAResult();
711 }
712 
713 char TypeBasedAAWrapperPass::ID = 0;
714 INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
715                 false, true)
716 
createTypeBasedAAWrapperPass()717 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
718   return new TypeBasedAAWrapperPass();
719 }
720 
TypeBasedAAWrapperPass()721 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
722   initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
723 }
724 
doInitialization(Module & M)725 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
726   Result.reset(new TypeBasedAAResult());
727   return false;
728 }
729 
doFinalization(Module & M)730 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
731   Result.reset();
732   return false;
733 }
734 
getAnalysisUsage(AnalysisUsage & AU) const735 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
736   AU.setPreservesAll();
737 }
738 
shiftTBAA(MDNode * MD,size_t Offset)739 MDNode *AAMDNodes::shiftTBAA(MDNode *MD, size_t Offset) {
740   // Fast path if there's no offset
741   if (Offset == 0)
742     return MD;
743   // Fast path if there's no path tbaa node (and thus scalar)
744   if (!isStructPathTBAA(MD))
745     return MD;
746 
747   // The correct behavior here is to add the offset into the TBAA
748   // struct node offset. The base type, however may not have defined
749   // a type at this additional offset, resulting in errors. Since
750   // this method is only used within a given load/store access
751   // the offset provided is only used to subdivide the previous load
752   // maintaining the validity of the previous TBAA.
753   //
754   // This, however, should be revisited in the future.
755   return MD;
756 }
757 
shiftTBAAStruct(MDNode * MD,size_t Offset)758 MDNode *AAMDNodes::shiftTBAAStruct(MDNode *MD, size_t Offset) {
759   // Fast path if there's no offset
760   if (Offset == 0)
761     return MD;
762   SmallVector<Metadata *, 3> Sub;
763   for (size_t i = 0, size = MD->getNumOperands(); i < size; i += 3) {
764     ConstantInt *InnerOffset = mdconst::extract<ConstantInt>(MD->getOperand(i));
765     ConstantInt *InnerSize =
766         mdconst::extract<ConstantInt>(MD->getOperand(i + 1));
767     // Don't include any triples that aren't in bounds
768     if (InnerOffset->getZExtValue() + InnerSize->getZExtValue() <= Offset)
769       continue;
770 
771     uint64_t NewSize = InnerSize->getZExtValue();
772     uint64_t NewOffset = InnerOffset->getZExtValue() - Offset;
773     if (InnerOffset->getZExtValue() < Offset) {
774       NewOffset = 0;
775       NewSize -= Offset - InnerOffset->getZExtValue();
776     }
777 
778     // Shift the offset of the triple
779     Sub.push_back(ConstantAsMetadata::get(
780         ConstantInt::get(InnerOffset->getType(), NewOffset)));
781     Sub.push_back(ConstantAsMetadata::get(
782         ConstantInt::get(InnerSize->getType(), NewSize)));
783     Sub.push_back(MD->getOperand(i + 2));
784   }
785   return MDNode::get(MD->getContext(), Sub);
786 }
787 
extendToTBAA(MDNode * MD,ssize_t Len)788 MDNode *AAMDNodes::extendToTBAA(MDNode *MD, ssize_t Len) {
789   // Fast path if 0-length
790   if (Len == 0)
791     return nullptr;
792 
793   // Regular TBAA is invariant of length, so we only need to consider
794   // struct-path TBAA.
795   if (!isStructPathTBAA(MD))
796     return MD;
797 
798   TBAAStructTagNode Tag(MD);
799 
800   // Only new format TBAA has a size
801   if (!Tag.isNewFormat())
802     return MD;
803 
804   // If unknown size, drop the TBAA.
805   if (Len == -1)
806     return nullptr;
807 
808   // Otherwise, create TBAA with the new Len
809   ArrayRef<MDOperand> MDOperands = MD->operands();
810   SmallVector<Metadata *, 4> NextNodes(MDOperands.begin(), MDOperands.end());
811   ConstantInt *PreviousSize = mdconst::extract<ConstantInt>(NextNodes[3]);
812 
813   // Don't create a new MDNode if it is the same length.
814   if (PreviousSize->equalsInt(Len))
815     return MD;
816 
817   NextNodes[3] =
818       ConstantAsMetadata::get(ConstantInt::get(PreviousSize->getType(), Len));
819   return MDNode::get(MD->getContext(), NextNodes);
820 }
821 
adjustForAccess(unsigned AccessSize)822 AAMDNodes AAMDNodes::adjustForAccess(unsigned AccessSize) {
823   AAMDNodes New = *this;
824   MDNode *M = New.TBAAStruct;
825   if (!New.TBAA && M && M->getNumOperands() >= 3 && M->getOperand(0) &&
826       mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
827       mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
828       M->getOperand(1) && mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
829       mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
830           AccessSize &&
831       M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
832     New.TBAA = cast<MDNode>(M->getOperand(2));
833 
834   New.TBAAStruct = nullptr;
835   return New;
836 }
837 
adjustForAccess(size_t Offset,Type * AccessTy,const DataLayout & DL)838 AAMDNodes AAMDNodes::adjustForAccess(size_t Offset, Type *AccessTy,
839                                      const DataLayout &DL) {
840   AAMDNodes New = shift(Offset);
841   if (!DL.typeSizeEqualsStoreSize(AccessTy))
842     return New;
843   TypeSize Size = DL.getTypeStoreSize(AccessTy);
844   if (Size.isScalable())
845     return New;
846 
847   return New.adjustForAccess(Size.getKnownMinValue());
848 }
849 
adjustForAccess(size_t Offset,unsigned AccessSize)850 AAMDNodes AAMDNodes::adjustForAccess(size_t Offset, unsigned AccessSize) {
851   AAMDNodes New = shift(Offset);
852   return New.adjustForAccess(AccessSize);
853 }
854