xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemoryProfileInfo.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- MemoryProfileInfo.cpp - memory profile info ------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains utilities to analyze memory profile information.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/MemoryProfileInfo.h"
14 #include "llvm/Support/CommandLine.h"
15 
16 using namespace llvm;
17 using namespace llvm::memprof;
18 
19 #define DEBUG_TYPE "memory-profile-info"
20 
21 // Upper bound on lifetime access density (accesses per byte per lifetime sec)
22 // for marking an allocation cold.
23 cl::opt<float> MemProfLifetimeAccessDensityColdThreshold(
24     "memprof-lifetime-access-density-cold-threshold", cl::init(0.05),
25     cl::Hidden,
26     cl::desc("The threshold the lifetime access density (accesses per byte per "
27              "lifetime sec) must be under to consider an allocation cold"));
28 
29 // Lower bound on lifetime to mark an allocation cold (in addition to accesses
30 // per byte per sec above). This is to avoid pessimizing short lived objects.
31 cl::opt<unsigned> MemProfAveLifetimeColdThreshold(
32     "memprof-ave-lifetime-cold-threshold", cl::init(200), cl::Hidden,
33     cl::desc("The average lifetime (s) for an allocation to be considered "
34              "cold"));
35 
36 // Lower bound on average lifetime accesses density (total life time access
37 // density / alloc count) for marking an allocation hot.
38 cl::opt<unsigned> MemProfMinAveLifetimeAccessDensityHotThreshold(
39     "memprof-min-ave-lifetime-access-density-hot-threshold", cl::init(1000),
40     cl::Hidden,
41     cl::desc("The minimum TotalLifetimeAccessDensity / AllocCount for an "
42              "allocation to be considered hot"));
43 
44 cl::opt<bool> MemProfReportHintedSizes(
45     "memprof-report-hinted-sizes", cl::init(false), cl::Hidden,
46     cl::desc("Report total allocation sizes of hinted allocations"));
47 
getAllocType(uint64_t TotalLifetimeAccessDensity,uint64_t AllocCount,uint64_t TotalLifetime)48 AllocationType llvm::memprof::getAllocType(uint64_t TotalLifetimeAccessDensity,
49                                            uint64_t AllocCount,
50                                            uint64_t TotalLifetime) {
51   // The access densities are multiplied by 100 to hold 2 decimal places of
52   // precision, so need to divide by 100.
53   if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 <
54           MemProfLifetimeAccessDensityColdThreshold
55       // Lifetime is expected to be in ms, so convert the threshold to ms.
56       && ((float)TotalLifetime) / AllocCount >=
57              MemProfAveLifetimeColdThreshold * 1000)
58     return AllocationType::Cold;
59 
60   // The access densities are multiplied by 100 to hold 2 decimal places of
61   // precision, so need to divide by 100.
62   if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 >
63       MemProfMinAveLifetimeAccessDensityHotThreshold)
64     return AllocationType::Hot;
65 
66   return AllocationType::NotCold;
67 }
68 
buildCallstackMetadata(ArrayRef<uint64_t> CallStack,LLVMContext & Ctx)69 MDNode *llvm::memprof::buildCallstackMetadata(ArrayRef<uint64_t> CallStack,
70                                               LLVMContext &Ctx) {
71   std::vector<Metadata *> StackVals;
72   for (auto Id : CallStack) {
73     auto *StackValMD =
74         ValueAsMetadata::get(ConstantInt::get(Type::getInt64Ty(Ctx), Id));
75     StackVals.push_back(StackValMD);
76   }
77   return MDNode::get(Ctx, StackVals);
78 }
79 
getMIBStackNode(const MDNode * MIB)80 MDNode *llvm::memprof::getMIBStackNode(const MDNode *MIB) {
81   assert(MIB->getNumOperands() >= 2);
82   // The stack metadata is the first operand of each memprof MIB metadata.
83   return cast<MDNode>(MIB->getOperand(0));
84 }
85 
getMIBAllocType(const MDNode * MIB)86 AllocationType llvm::memprof::getMIBAllocType(const MDNode *MIB) {
87   assert(MIB->getNumOperands() >= 2);
88   // The allocation type is currently the second operand of each memprof
89   // MIB metadata. This will need to change as we add additional allocation
90   // types that can be applied based on the allocation profile data.
91   auto *MDS = dyn_cast<MDString>(MIB->getOperand(1));
92   assert(MDS);
93   if (MDS->getString() == "cold") {
94     return AllocationType::Cold;
95   } else if (MDS->getString() == "hot") {
96     return AllocationType::Hot;
97   }
98   return AllocationType::NotCold;
99 }
100 
getMIBTotalSize(const MDNode * MIB)101 uint64_t llvm::memprof::getMIBTotalSize(const MDNode *MIB) {
102   if (MIB->getNumOperands() < 3)
103     return 0;
104   return mdconst::dyn_extract<ConstantInt>(MIB->getOperand(2))->getZExtValue();
105 }
106 
getAllocTypeAttributeString(AllocationType Type)107 std::string llvm::memprof::getAllocTypeAttributeString(AllocationType Type) {
108   switch (Type) {
109   case AllocationType::NotCold:
110     return "notcold";
111     break;
112   case AllocationType::Cold:
113     return "cold";
114     break;
115   case AllocationType::Hot:
116     return "hot";
117     break;
118   default:
119     assert(false && "Unexpected alloc type");
120   }
121   llvm_unreachable("invalid alloc type");
122 }
123 
addAllocTypeAttribute(LLVMContext & Ctx,CallBase * CI,AllocationType AllocType)124 static void addAllocTypeAttribute(LLVMContext &Ctx, CallBase *CI,
125                                   AllocationType AllocType) {
126   auto AllocTypeString = getAllocTypeAttributeString(AllocType);
127   auto A = llvm::Attribute::get(Ctx, "memprof", AllocTypeString);
128   CI->addFnAttr(A);
129 }
130 
hasSingleAllocType(uint8_t AllocTypes)131 bool llvm::memprof::hasSingleAllocType(uint8_t AllocTypes) {
132   const unsigned NumAllocTypes = llvm::popcount(AllocTypes);
133   assert(NumAllocTypes != 0);
134   return NumAllocTypes == 1;
135 }
136 
addCallStack(AllocationType AllocType,ArrayRef<uint64_t> StackIds,uint64_t TotalSize)137 void CallStackTrie::addCallStack(AllocationType AllocType,
138                                  ArrayRef<uint64_t> StackIds,
139                                  uint64_t TotalSize) {
140   bool First = true;
141   CallStackTrieNode *Curr = nullptr;
142   for (auto StackId : StackIds) {
143     // If this is the first stack frame, add or update alloc node.
144     if (First) {
145       First = false;
146       if (Alloc) {
147         assert(AllocStackId == StackId);
148         Alloc->AllocTypes |= static_cast<uint8_t>(AllocType);
149         Alloc->TotalSize += TotalSize;
150       } else {
151         AllocStackId = StackId;
152         Alloc = new CallStackTrieNode(AllocType, TotalSize);
153       }
154       Curr = Alloc;
155       continue;
156     }
157     // Update existing caller node if it exists.
158     auto Next = Curr->Callers.find(StackId);
159     if (Next != Curr->Callers.end()) {
160       Curr = Next->second;
161       Curr->AllocTypes |= static_cast<uint8_t>(AllocType);
162       Curr->TotalSize += TotalSize;
163       continue;
164     }
165     // Otherwise add a new caller node.
166     auto *New = new CallStackTrieNode(AllocType, TotalSize);
167     Curr->Callers[StackId] = New;
168     Curr = New;
169   }
170   assert(Curr);
171 }
172 
addCallStack(MDNode * MIB)173 void CallStackTrie::addCallStack(MDNode *MIB) {
174   MDNode *StackMD = getMIBStackNode(MIB);
175   assert(StackMD);
176   std::vector<uint64_t> CallStack;
177   CallStack.reserve(StackMD->getNumOperands());
178   for (const auto &MIBStackIter : StackMD->operands()) {
179     auto *StackId = mdconst::dyn_extract<ConstantInt>(MIBStackIter);
180     assert(StackId);
181     CallStack.push_back(StackId->getZExtValue());
182   }
183   addCallStack(getMIBAllocType(MIB), CallStack, getMIBTotalSize(MIB));
184 }
185 
createMIBNode(LLVMContext & Ctx,std::vector<uint64_t> & MIBCallStack,AllocationType AllocType,uint64_t TotalSize)186 static MDNode *createMIBNode(LLVMContext &Ctx,
187                              std::vector<uint64_t> &MIBCallStack,
188                              AllocationType AllocType, uint64_t TotalSize) {
189   std::vector<Metadata *> MIBPayload(
190       {buildCallstackMetadata(MIBCallStack, Ctx)});
191   MIBPayload.push_back(
192       MDString::get(Ctx, getAllocTypeAttributeString(AllocType)));
193   if (TotalSize)
194     MIBPayload.push_back(ValueAsMetadata::get(
195         ConstantInt::get(Type::getInt64Ty(Ctx), TotalSize)));
196   return MDNode::get(Ctx, MIBPayload);
197 }
198 
199 // Recursive helper to trim contexts and create metadata nodes.
200 // Caller should have pushed Node's loc to MIBCallStack. Doing this in the
201 // caller makes it simpler to handle the many early returns in this method.
buildMIBNodes(CallStackTrieNode * Node,LLVMContext & Ctx,std::vector<uint64_t> & MIBCallStack,std::vector<Metadata * > & MIBNodes,bool CalleeHasAmbiguousCallerContext)202 bool CallStackTrie::buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx,
203                                   std::vector<uint64_t> &MIBCallStack,
204                                   std::vector<Metadata *> &MIBNodes,
205                                   bool CalleeHasAmbiguousCallerContext) {
206   // Trim context below the first node in a prefix with a single alloc type.
207   // Add an MIB record for the current call stack prefix.
208   if (hasSingleAllocType(Node->AllocTypes)) {
209     MIBNodes.push_back(createMIBNode(
210         Ctx, MIBCallStack, (AllocationType)Node->AllocTypes, Node->TotalSize));
211     return true;
212   }
213 
214   // We don't have a single allocation for all the contexts sharing this prefix,
215   // so recursively descend into callers in trie.
216   if (!Node->Callers.empty()) {
217     bool NodeHasAmbiguousCallerContext = Node->Callers.size() > 1;
218     bool AddedMIBNodesForAllCallerContexts = true;
219     for (auto &Caller : Node->Callers) {
220       MIBCallStack.push_back(Caller.first);
221       AddedMIBNodesForAllCallerContexts &=
222           buildMIBNodes(Caller.second, Ctx, MIBCallStack, MIBNodes,
223                         NodeHasAmbiguousCallerContext);
224       // Remove Caller.
225       MIBCallStack.pop_back();
226     }
227     if (AddedMIBNodesForAllCallerContexts)
228       return true;
229     // We expect that the callers should be forced to add MIBs to disambiguate
230     // the context in this case (see below).
231     assert(!NodeHasAmbiguousCallerContext);
232   }
233 
234   // If we reached here, then this node does not have a single allocation type,
235   // and we didn't add metadata for a longer call stack prefix including any of
236   // Node's callers. That means we never hit a single allocation type along all
237   // call stacks with this prefix. This can happen due to recursion collapsing
238   // or the stack being deeper than tracked by the profiler runtime, leading to
239   // contexts with different allocation types being merged. In that case, we
240   // trim the context just below the deepest context split, which is this
241   // node if the callee has an ambiguous caller context (multiple callers),
242   // since the recursive calls above returned false. Conservatively give it
243   // non-cold allocation type.
244   if (!CalleeHasAmbiguousCallerContext)
245     return false;
246   MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack, AllocationType::NotCold,
247                                    Node->TotalSize));
248   return true;
249 }
250 
251 // Build and attach the minimal necessary MIB metadata. If the alloc has a
252 // single allocation type, add a function attribute instead. Returns true if
253 // memprof metadata attached, false if not (attribute added).
buildAndAttachMIBMetadata(CallBase * CI)254 bool CallStackTrie::buildAndAttachMIBMetadata(CallBase *CI) {
255   auto &Ctx = CI->getContext();
256   if (hasSingleAllocType(Alloc->AllocTypes)) {
257     addAllocTypeAttribute(Ctx, CI, (AllocationType)Alloc->AllocTypes);
258     if (MemProfReportHintedSizes) {
259       assert(Alloc->TotalSize);
260       errs() << "Total size for allocation with location hash " << AllocStackId
261              << " and single alloc type "
262              << getAllocTypeAttributeString((AllocationType)Alloc->AllocTypes)
263              << ": " << Alloc->TotalSize << "\n";
264     }
265     return false;
266   }
267   std::vector<uint64_t> MIBCallStack;
268   MIBCallStack.push_back(AllocStackId);
269   std::vector<Metadata *> MIBNodes;
270   assert(!Alloc->Callers.empty() && "addCallStack has not been called yet");
271   // The last parameter is meant to say whether the callee of the given node
272   // has more than one caller. Here the node being passed in is the alloc
273   // and it has no callees. So it's false.
274   if (buildMIBNodes(Alloc, Ctx, MIBCallStack, MIBNodes, false)) {
275     assert(MIBCallStack.size() == 1 &&
276            "Should only be left with Alloc's location in stack");
277     CI->setMetadata(LLVMContext::MD_memprof, MDNode::get(Ctx, MIBNodes));
278     return true;
279   }
280   // If there exists corner case that CallStackTrie has one chain to leaf
281   // and all node in the chain have multi alloc type, conservatively give
282   // it non-cold allocation type.
283   // FIXME: Avoid this case before memory profile created.
284   addAllocTypeAttribute(Ctx, CI, AllocationType::NotCold);
285   return false;
286 }
287 
288 template <>
CallStackIterator(const MDNode * N,bool End)289 CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::CallStackIterator(
290     const MDNode *N, bool End)
291     : N(N) {
292   if (!N)
293     return;
294   Iter = End ? N->op_end() : N->op_begin();
295 }
296 
297 template <>
298 uint64_t
operator *()299 CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::operator*() {
300   assert(Iter != N->op_end());
301   ConstantInt *StackIdCInt = mdconst::dyn_extract<ConstantInt>(*Iter);
302   assert(StackIdCInt);
303   return StackIdCInt->getZExtValue();
304 }
305 
back() const306 template <> uint64_t CallStack<MDNode, MDNode::op_iterator>::back() const {
307   assert(N);
308   return mdconst::dyn_extract<ConstantInt>(N->operands().back())
309       ->getZExtValue();
310 }
311