1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Randstruct.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/Redeclarable.h"
36 #include "clang/AST/Stmt.h"
37 #include "clang/AST/TemplateBase.h"
38 #include "clang/AST/Type.h"
39 #include "clang/AST/TypeLoc.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/IdentifierTable.h"
42 #include "clang/Basic/LLVM.h"
43 #include "clang/Basic/LangOptions.h"
44 #include "clang/Basic/Linkage.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/NoSanitizeList.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/Sanitizers.h"
49 #include "clang/Basic/SourceLocation.h"
50 #include "clang/Basic/SourceManager.h"
51 #include "clang/Basic/Specifiers.h"
52 #include "clang/Basic/TargetCXXABI.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "clang/Basic/Visibility.h"
55 #include "llvm/ADT/APSInt.h"
56 #include "llvm/ADT/ArrayRef.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/TargetParser/Triple.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <optional>
71 #include <string>
72 #include <tuple>
73 #include <type_traits>
74
75 using namespace clang;
76
getPrimaryMergedDecl(Decl * D)77 Decl *clang::getPrimaryMergedDecl(Decl *D) {
78 return D->getASTContext().getPrimaryMergedDecl(D);
79 }
80
print(raw_ostream & OS) const81 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
82 SourceLocation Loc = this->Loc;
83 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
84 if (Loc.isValid()) {
85 Loc.print(OS, Context.getSourceManager());
86 OS << ": ";
87 }
88 OS << Message;
89
90 if (auto *ND = dyn_cast_if_present<NamedDecl>(TheDecl)) {
91 OS << " '";
92 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
93 OS << "'";
94 }
95
96 OS << '\n';
97 }
98
99 // Defined here so that it can be inlined into its direct callers.
isOutOfLine() const100 bool Decl::isOutOfLine() const {
101 return !getLexicalDeclContext()->Equals(getDeclContext());
102 }
103
TranslationUnitDecl(ASTContext & ctx)104 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
105 : Decl(TranslationUnit, nullptr, SourceLocation()),
106 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
107
108 //===----------------------------------------------------------------------===//
109 // NamedDecl Implementation
110 //===----------------------------------------------------------------------===//
111
112 // Visibility rules aren't rigorously externally specified, but here
113 // are the basic principles behind what we implement:
114 //
115 // 1. An explicit visibility attribute is generally a direct expression
116 // of the user's intent and should be honored. Only the innermost
117 // visibility attribute applies. If no visibility attribute applies,
118 // global visibility settings are considered.
119 //
120 // 2. There is one caveat to the above: on or in a template pattern,
121 // an explicit visibility attribute is just a default rule, and
122 // visibility can be decreased by the visibility of template
123 // arguments. But this, too, has an exception: an attribute on an
124 // explicit specialization or instantiation causes all the visibility
125 // restrictions of the template arguments to be ignored.
126 //
127 // 3. A variable that does not otherwise have explicit visibility can
128 // be restricted by the visibility of its type.
129 //
130 // 4. A visibility restriction is explicit if it comes from an
131 // attribute (or something like it), not a global visibility setting.
132 // When emitting a reference to an external symbol, visibility
133 // restrictions are ignored unless they are explicit.
134 //
135 // 5. When computing the visibility of a non-type, including a
136 // non-type member of a class, only non-type visibility restrictions
137 // are considered: the 'visibility' attribute, global value-visibility
138 // settings, and a few special cases like __private_extern.
139 //
140 // 6. When computing the visibility of a type, including a type member
141 // of a class, only type visibility restrictions are considered:
142 // the 'type_visibility' attribute and global type-visibility settings.
143 // However, a 'visibility' attribute counts as a 'type_visibility'
144 // attribute on any declaration that only has the former.
145 //
146 // The visibility of a "secondary" entity, like a template argument,
147 // is computed using the kind of that entity, not the kind of the
148 // primary entity for which we are computing visibility. For example,
149 // the visibility of a specialization of either of these templates:
150 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
151 // template <class T, bool (&compare)(T, X)> class matcher;
152 // is restricted according to the type visibility of the argument 'T',
153 // the type visibility of 'bool(&)(T,X)', and the value visibility of
154 // the argument function 'compare'. That 'has_match' is a value
155 // and 'matcher' is a type only matters when looking for attributes
156 // and settings from the immediate context.
157
158 /// Does this computation kind permit us to consider additional
159 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)160 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
161 return computation.IgnoreExplicitVisibility;
162 }
163
164 /// Given an LVComputationKind, return one of the same type/value sort
165 /// that records that it already has explicit visibility.
166 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind Kind)167 withExplicitVisibilityAlready(LVComputationKind Kind) {
168 Kind.IgnoreExplicitVisibility = true;
169 return Kind;
170 }
171
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)172 static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D,
173 LVComputationKind kind) {
174 assert(!kind.IgnoreExplicitVisibility &&
175 "asking for explicit visibility when we shouldn't be");
176 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
177 }
178
179 /// Is the given declaration a "type" or a "value" for the purposes of
180 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)181 static bool usesTypeVisibility(const NamedDecl *D) {
182 return isa<TypeDecl>(D) ||
183 isa<ClassTemplateDecl>(D) ||
184 isa<ObjCInterfaceDecl>(D);
185 }
186
187 /// Does the given declaration have member specialization information,
188 /// and if so, is it an explicit specialization?
189 template <class T>
190 static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool>
isExplicitMemberSpecialization(const T * D)191 isExplicitMemberSpecialization(const T *D) {
192 if (const MemberSpecializationInfo *member =
193 D->getMemberSpecializationInfo()) {
194 return member->isExplicitSpecialization();
195 }
196 return false;
197 }
198
199 /// For templates, this question is easier: a member template can't be
200 /// explicitly instantiated, so there's a single bit indicating whether
201 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)202 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
203 return D->isMemberSpecialization();
204 }
205
206 /// Given a visibility attribute, return the explicit visibility
207 /// associated with it.
208 template <class T>
getVisibilityFromAttr(const T * attr)209 static Visibility getVisibilityFromAttr(const T *attr) {
210 switch (attr->getVisibility()) {
211 case T::Default:
212 return DefaultVisibility;
213 case T::Hidden:
214 return HiddenVisibility;
215 case T::Protected:
216 return ProtectedVisibility;
217 }
218 llvm_unreachable("bad visibility kind");
219 }
220
221 /// Return the explicit visibility of the given declaration.
222 static std::optional<Visibility>
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)223 getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) {
224 // If we're ultimately computing the visibility of a type, look for
225 // a 'type_visibility' attribute before looking for 'visibility'.
226 if (kind == NamedDecl::VisibilityForType) {
227 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
228 return getVisibilityFromAttr(A);
229 }
230 }
231
232 // If this declaration has an explicit visibility attribute, use it.
233 if (const auto *A = D->getAttr<VisibilityAttr>()) {
234 return getVisibilityFromAttr(A);
235 }
236
237 return std::nullopt;
238 }
239
getLVForType(const Type & T,LVComputationKind computation)240 LinkageInfo LinkageComputer::getLVForType(const Type &T,
241 LVComputationKind computation) {
242 if (computation.IgnoreAllVisibility)
243 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
244 return getTypeLinkageAndVisibility(&T);
245 }
246
247 /// Get the most restrictive linkage for the types in the given
248 /// template parameter list. For visibility purposes, template
249 /// parameters are part of the signature of a template.
getLVForTemplateParameterList(const TemplateParameterList * Params,LVComputationKind computation)250 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
251 const TemplateParameterList *Params, LVComputationKind computation) {
252 LinkageInfo LV;
253 for (const NamedDecl *P : *Params) {
254 // Template type parameters are the most common and never
255 // contribute to visibility, pack or not.
256 if (isa<TemplateTypeParmDecl>(P))
257 continue;
258
259 // Non-type template parameters can be restricted by the value type, e.g.
260 // template <enum X> class A { ... };
261 // We have to be careful here, though, because we can be dealing with
262 // dependent types.
263 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
264 // Handle the non-pack case first.
265 if (!NTTP->isExpandedParameterPack()) {
266 if (!NTTP->getType()->isDependentType()) {
267 LV.merge(getLVForType(*NTTP->getType(), computation));
268 }
269 continue;
270 }
271
272 // Look at all the types in an expanded pack.
273 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
274 QualType type = NTTP->getExpansionType(i);
275 if (!type->isDependentType())
276 LV.merge(getTypeLinkageAndVisibility(type));
277 }
278 continue;
279 }
280
281 // Template template parameters can be restricted by their
282 // template parameters, recursively.
283 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
284
285 // Handle the non-pack case first.
286 if (!TTP->isExpandedParameterPack()) {
287 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
288 computation));
289 continue;
290 }
291
292 // Look at all expansions in an expanded pack.
293 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
294 i != n; ++i) {
295 LV.merge(getLVForTemplateParameterList(
296 TTP->getExpansionTemplateParameters(i), computation));
297 }
298 }
299
300 return LV;
301 }
302
getOutermostFuncOrBlockContext(const Decl * D)303 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
304 const Decl *Ret = nullptr;
305 const DeclContext *DC = D->getDeclContext();
306 while (DC->getDeclKind() != Decl::TranslationUnit) {
307 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
308 Ret = cast<Decl>(DC);
309 DC = DC->getParent();
310 }
311 return Ret;
312 }
313
314 /// Get the most restrictive linkage for the types and
315 /// declarations in the given template argument list.
316 ///
317 /// Note that we don't take an LVComputationKind because we always
318 /// want to honor the visibility of template arguments in the same way.
319 LinkageInfo
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,LVComputationKind computation)320 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
321 LVComputationKind computation) {
322 LinkageInfo LV;
323
324 for (const TemplateArgument &Arg : Args) {
325 switch (Arg.getKind()) {
326 case TemplateArgument::Null:
327 case TemplateArgument::Integral:
328 case TemplateArgument::Expression:
329 continue;
330
331 case TemplateArgument::Type:
332 LV.merge(getLVForType(*Arg.getAsType(), computation));
333 continue;
334
335 case TemplateArgument::Declaration: {
336 const NamedDecl *ND = Arg.getAsDecl();
337 assert(!usesTypeVisibility(ND));
338 LV.merge(getLVForDecl(ND, computation));
339 continue;
340 }
341
342 case TemplateArgument::NullPtr:
343 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
344 continue;
345
346 case TemplateArgument::StructuralValue:
347 LV.merge(getLVForValue(Arg.getAsStructuralValue(), computation));
348 continue;
349
350 case TemplateArgument::Template:
351 case TemplateArgument::TemplateExpansion:
352 if (TemplateDecl *Template =
353 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
354 LV.merge(getLVForDecl(Template, computation));
355 continue;
356
357 case TemplateArgument::Pack:
358 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
359 continue;
360 }
361 llvm_unreachable("bad template argument kind");
362 }
363
364 return LV;
365 }
366
367 LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs,LVComputationKind computation)368 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
369 LVComputationKind computation) {
370 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
371 }
372
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)373 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
374 const FunctionTemplateSpecializationInfo *specInfo) {
375 // Include visibility from the template parameters and arguments
376 // only if this is not an explicit instantiation or specialization
377 // with direct explicit visibility. (Implicit instantiations won't
378 // have a direct attribute.)
379 if (!specInfo->isExplicitInstantiationOrSpecialization())
380 return true;
381
382 return !fn->hasAttr<VisibilityAttr>();
383 }
384
385 /// Merge in template-related linkage and visibility for the given
386 /// function template specialization.
387 ///
388 /// We don't need a computation kind here because we can assume
389 /// LVForValue.
390 ///
391 /// \param[out] LV the computation to use for the parent
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo,LVComputationKind computation)392 void LinkageComputer::mergeTemplateLV(
393 LinkageInfo &LV, const FunctionDecl *fn,
394 const FunctionTemplateSpecializationInfo *specInfo,
395 LVComputationKind computation) {
396 bool considerVisibility =
397 shouldConsiderTemplateVisibility(fn, specInfo);
398
399 FunctionTemplateDecl *temp = specInfo->getTemplate();
400 // Merge information from the template declaration.
401 LinkageInfo tempLV = getLVForDecl(temp, computation);
402 // The linkage of the specialization should be consistent with the
403 // template declaration.
404 LV.setLinkage(tempLV.getLinkage());
405
406 // Merge information from the template parameters.
407 LinkageInfo paramsLV =
408 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
409 LV.mergeMaybeWithVisibility(paramsLV, considerVisibility);
410
411 // Merge information from the template arguments.
412 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
413 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
414 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
415 }
416
417 /// Does the given declaration have a direct visibility attribute
418 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)419 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
420 LVComputationKind computation) {
421 if (computation.IgnoreAllVisibility)
422 return false;
423
424 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
425 D->hasAttr<VisibilityAttr>();
426 }
427
428 /// Should we consider visibility associated with the template
429 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)430 static bool shouldConsiderTemplateVisibility(
431 const ClassTemplateSpecializationDecl *spec,
432 LVComputationKind computation) {
433 // Include visibility from the template parameters and arguments
434 // only if this is not an explicit instantiation or specialization
435 // with direct explicit visibility (and note that implicit
436 // instantiations won't have a direct attribute).
437 //
438 // Furthermore, we want to ignore template parameters and arguments
439 // for an explicit specialization when computing the visibility of a
440 // member thereof with explicit visibility.
441 //
442 // This is a bit complex; let's unpack it.
443 //
444 // An explicit class specialization is an independent, top-level
445 // declaration. As such, if it or any of its members has an
446 // explicit visibility attribute, that must directly express the
447 // user's intent, and we should honor it. The same logic applies to
448 // an explicit instantiation of a member of such a thing.
449
450 // Fast path: if this is not an explicit instantiation or
451 // specialization, we always want to consider template-related
452 // visibility restrictions.
453 if (!spec->isExplicitInstantiationOrSpecialization())
454 return true;
455
456 // This is the 'member thereof' check.
457 if (spec->isExplicitSpecialization() &&
458 hasExplicitVisibilityAlready(computation))
459 return false;
460
461 return !hasDirectVisibilityAttribute(spec, computation);
462 }
463
464 /// Merge in template-related linkage and visibility for the given
465 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)466 void LinkageComputer::mergeTemplateLV(
467 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
468 LVComputationKind computation) {
469 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
470
471 // Merge information from the template parameters, but ignore
472 // visibility if we're only considering template arguments.
473 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
474 // Merge information from the template declaration.
475 LinkageInfo tempLV = getLVForDecl(temp, computation);
476 // The linkage of the specialization should be consistent with the
477 // template declaration.
478 LV.setLinkage(tempLV.getLinkage());
479
480 LinkageInfo paramsLV =
481 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
482 LV.mergeMaybeWithVisibility(paramsLV,
483 considerVisibility && !hasExplicitVisibilityAlready(computation));
484
485 // Merge information from the template arguments. We ignore
486 // template-argument visibility if we've got an explicit
487 // instantiation with a visibility attribute.
488 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
489 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
490 if (considerVisibility)
491 LV.mergeVisibility(argsLV);
492 LV.mergeExternalVisibility(argsLV);
493 }
494
495 /// Should we consider visibility associated with the template
496 /// arguments and parameters of the given variable template
497 /// specialization? As usual, follow class template specialization
498 /// logic up to initialization.
shouldConsiderTemplateVisibility(const VarTemplateSpecializationDecl * spec,LVComputationKind computation)499 static bool shouldConsiderTemplateVisibility(
500 const VarTemplateSpecializationDecl *spec,
501 LVComputationKind computation) {
502 // Include visibility from the template parameters and arguments
503 // only if this is not an explicit instantiation or specialization
504 // with direct explicit visibility (and note that implicit
505 // instantiations won't have a direct attribute).
506 if (!spec->isExplicitInstantiationOrSpecialization())
507 return true;
508
509 // An explicit variable specialization is an independent, top-level
510 // declaration. As such, if it has an explicit visibility attribute,
511 // that must directly express the user's intent, and we should honor
512 // it.
513 if (spec->isExplicitSpecialization() &&
514 hasExplicitVisibilityAlready(computation))
515 return false;
516
517 return !hasDirectVisibilityAttribute(spec, computation);
518 }
519
520 /// Merge in template-related linkage and visibility for the given
521 /// variable template specialization. As usual, follow class template
522 /// specialization logic up to initialization.
mergeTemplateLV(LinkageInfo & LV,const VarTemplateSpecializationDecl * spec,LVComputationKind computation)523 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
524 const VarTemplateSpecializationDecl *spec,
525 LVComputationKind computation) {
526 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
527
528 // Merge information from the template parameters, but ignore
529 // visibility if we're only considering template arguments.
530 VarTemplateDecl *temp = spec->getSpecializedTemplate();
531 LinkageInfo tempLV =
532 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
533 LV.mergeMaybeWithVisibility(tempLV,
534 considerVisibility && !hasExplicitVisibilityAlready(computation));
535
536 // Merge information from the template arguments. We ignore
537 // template-argument visibility if we've got an explicit
538 // instantiation with a visibility attribute.
539 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
540 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
541 if (considerVisibility)
542 LV.mergeVisibility(argsLV);
543 LV.mergeExternalVisibility(argsLV);
544 }
545
useInlineVisibilityHidden(const NamedDecl * D)546 static bool useInlineVisibilityHidden(const NamedDecl *D) {
547 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
548 const LangOptions &Opts = D->getASTContext().getLangOpts();
549 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
550 return false;
551
552 const auto *FD = dyn_cast<FunctionDecl>(D);
553 if (!FD)
554 return false;
555
556 TemplateSpecializationKind TSK = TSK_Undeclared;
557 if (FunctionTemplateSpecializationInfo *spec
558 = FD->getTemplateSpecializationInfo()) {
559 TSK = spec->getTemplateSpecializationKind();
560 } else if (MemberSpecializationInfo *MSI =
561 FD->getMemberSpecializationInfo()) {
562 TSK = MSI->getTemplateSpecializationKind();
563 }
564
565 const FunctionDecl *Def = nullptr;
566 // InlineVisibilityHidden only applies to definitions, and
567 // isInlined() only gives meaningful answers on definitions
568 // anyway.
569 return TSK != TSK_ExplicitInstantiationDeclaration &&
570 TSK != TSK_ExplicitInstantiationDefinition &&
571 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
572 }
573
isFirstInExternCContext(T * D)574 template <typename T> static bool isFirstInExternCContext(T *D) {
575 const T *First = D->getFirstDecl();
576 return First->isInExternCContext();
577 }
578
isSingleLineLanguageLinkage(const Decl & D)579 static bool isSingleLineLanguageLinkage(const Decl &D) {
580 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
581 if (!SD->hasBraces())
582 return true;
583 return false;
584 }
585
isDeclaredInModuleInterfaceOrPartition(const NamedDecl * D)586 static bool isDeclaredInModuleInterfaceOrPartition(const NamedDecl *D) {
587 if (auto *M = D->getOwningModule())
588 return M->isInterfaceOrPartition();
589 return false;
590 }
591
getExternalLinkageFor(const NamedDecl * D)592 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
593 return LinkageInfo::external();
594 }
595
getStorageClass(const Decl * D)596 static StorageClass getStorageClass(const Decl *D) {
597 if (auto *TD = dyn_cast<TemplateDecl>(D))
598 D = TD->getTemplatedDecl();
599 if (D) {
600 if (auto *VD = dyn_cast<VarDecl>(D))
601 return VD->getStorageClass();
602 if (auto *FD = dyn_cast<FunctionDecl>(D))
603 return FD->getStorageClass();
604 }
605 return SC_None;
606 }
607
608 LinkageInfo
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation,bool IgnoreVarTypeLinkage)609 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
610 LVComputationKind computation,
611 bool IgnoreVarTypeLinkage) {
612 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
613 "Not a name having namespace scope");
614 ASTContext &Context = D->getASTContext();
615 const auto *Var = dyn_cast<VarDecl>(D);
616
617 // C++ [basic.link]p3:
618 // A name having namespace scope (3.3.6) has internal linkage if it
619 // is the name of
620
621 if ((getStorageClass(D->getCanonicalDecl()) == SC_Static) ||
622 (Context.getLangOpts().C23 && Var && Var->isConstexpr())) {
623 // - a variable, variable template, function, or function template
624 // that is explicitly declared static; or
625 // (This bullet corresponds to C99 6.2.2p3.)
626
627 // C23 6.2.2p3
628 // If the declaration of a file scope identifier for
629 // an object contains any of the storage-class specifiers static or
630 // constexpr then the identifier has internal linkage.
631 return LinkageInfo::internal();
632 }
633
634 if (Var) {
635 // - a non-template variable of non-volatile const-qualified type, unless
636 // - it is explicitly declared extern, or
637 // - it is declared in the purview of a module interface unit
638 // (outside the private-module-fragment, if any) or module partition, or
639 // - it is inline, or
640 // - it was previously declared and the prior declaration did not have
641 // internal linkage
642 // (There is no equivalent in C99.)
643 if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() &&
644 !Var->getType().isVolatileQualified() && !Var->isInline() &&
645 !isDeclaredInModuleInterfaceOrPartition(Var) &&
646 !isa<VarTemplateSpecializationDecl>(Var) &&
647 !Var->getDescribedVarTemplate()) {
648 const VarDecl *PrevVar = Var->getPreviousDecl();
649 if (PrevVar)
650 return getLVForDecl(PrevVar, computation);
651
652 if (Var->getStorageClass() != SC_Extern &&
653 Var->getStorageClass() != SC_PrivateExtern &&
654 !isSingleLineLanguageLinkage(*Var))
655 return LinkageInfo::internal();
656 }
657
658 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
659 PrevVar = PrevVar->getPreviousDecl()) {
660 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
661 Var->getStorageClass() == SC_None)
662 return getDeclLinkageAndVisibility(PrevVar);
663 // Explicitly declared static.
664 if (PrevVar->getStorageClass() == SC_Static)
665 return LinkageInfo::internal();
666 }
667 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
668 // - a data member of an anonymous union.
669 const VarDecl *VD = IFD->getVarDecl();
670 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
671 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
672 }
673 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
674
675 // FIXME: This gives internal linkage to names that should have no linkage
676 // (those not covered by [basic.link]p6).
677 if (D->isInAnonymousNamespace()) {
678 const auto *Var = dyn_cast<VarDecl>(D);
679 const auto *Func = dyn_cast<FunctionDecl>(D);
680 // FIXME: The check for extern "C" here is not justified by the standard
681 // wording, but we retain it from the pre-DR1113 model to avoid breaking
682 // code.
683 //
684 // C++11 [basic.link]p4:
685 // An unnamed namespace or a namespace declared directly or indirectly
686 // within an unnamed namespace has internal linkage.
687 if ((!Var || !isFirstInExternCContext(Var)) &&
688 (!Func || !isFirstInExternCContext(Func)))
689 return LinkageInfo::internal();
690 }
691
692 // Set up the defaults.
693
694 // C99 6.2.2p5:
695 // If the declaration of an identifier for an object has file
696 // scope and no storage-class specifier, its linkage is
697 // external.
698 LinkageInfo LV = getExternalLinkageFor(D);
699
700 if (!hasExplicitVisibilityAlready(computation)) {
701 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
702 LV.mergeVisibility(*Vis, true);
703 } else {
704 // If we're declared in a namespace with a visibility attribute,
705 // use that namespace's visibility, and it still counts as explicit.
706 for (const DeclContext *DC = D->getDeclContext();
707 !isa<TranslationUnitDecl>(DC);
708 DC = DC->getParent()) {
709 const auto *ND = dyn_cast<NamespaceDecl>(DC);
710 if (!ND) continue;
711 if (std::optional<Visibility> Vis =
712 getExplicitVisibility(ND, computation)) {
713 LV.mergeVisibility(*Vis, true);
714 break;
715 }
716 }
717 }
718
719 // Add in global settings if the above didn't give us direct visibility.
720 if (!LV.isVisibilityExplicit()) {
721 // Use global type/value visibility as appropriate.
722 Visibility globalVisibility =
723 computation.isValueVisibility()
724 ? Context.getLangOpts().getValueVisibilityMode()
725 : Context.getLangOpts().getTypeVisibilityMode();
726 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
727
728 // If we're paying attention to global visibility, apply
729 // -finline-visibility-hidden if this is an inline method.
730 if (useInlineVisibilityHidden(D))
731 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
732 }
733 }
734
735 // C++ [basic.link]p4:
736
737 // A name having namespace scope that has not been given internal linkage
738 // above and that is the name of
739 // [...bullets...]
740 // has its linkage determined as follows:
741 // - if the enclosing namespace has internal linkage, the name has
742 // internal linkage; [handled above]
743 // - otherwise, if the declaration of the name is attached to a named
744 // module and is not exported, the name has module linkage;
745 // - otherwise, the name has external linkage.
746 // LV is currently set up to handle the last two bullets.
747 //
748 // The bullets are:
749
750 // - a variable; or
751 if (const auto *Var = dyn_cast<VarDecl>(D)) {
752 // GCC applies the following optimization to variables and static
753 // data members, but not to functions:
754 //
755 // Modify the variable's LV by the LV of its type unless this is
756 // C or extern "C". This follows from [basic.link]p9:
757 // A type without linkage shall not be used as the type of a
758 // variable or function with external linkage unless
759 // - the entity has C language linkage, or
760 // - the entity is declared within an unnamed namespace, or
761 // - the entity is not used or is defined in the same
762 // translation unit.
763 // and [basic.link]p10:
764 // ...the types specified by all declarations referring to a
765 // given variable or function shall be identical...
766 // C does not have an equivalent rule.
767 //
768 // Ignore this if we've got an explicit attribute; the user
769 // probably knows what they're doing.
770 //
771 // Note that we don't want to make the variable non-external
772 // because of this, but unique-external linkage suits us.
773
774 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
775 !IgnoreVarTypeLinkage) {
776 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
777 if (!isExternallyVisible(TypeLV.getLinkage()))
778 return LinkageInfo::uniqueExternal();
779 if (!LV.isVisibilityExplicit())
780 LV.mergeVisibility(TypeLV);
781 }
782
783 if (Var->getStorageClass() == SC_PrivateExtern)
784 LV.mergeVisibility(HiddenVisibility, true);
785
786 // Note that Sema::MergeVarDecl already takes care of implementing
787 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
788 // to do it here.
789
790 // As per function and class template specializations (below),
791 // consider LV for the template and template arguments. We're at file
792 // scope, so we do not need to worry about nested specializations.
793 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
794 mergeTemplateLV(LV, spec, computation);
795 }
796
797 // - a function; or
798 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
799 // In theory, we can modify the function's LV by the LV of its
800 // type unless it has C linkage (see comment above about variables
801 // for justification). In practice, GCC doesn't do this, so it's
802 // just too painful to make work.
803
804 if (Function->getStorageClass() == SC_PrivateExtern)
805 LV.mergeVisibility(HiddenVisibility, true);
806
807 // OpenMP target declare device functions are not callable from the host so
808 // they should not be exported from the device image. This applies to all
809 // functions as the host-callable kernel functions are emitted at codegen.
810 if (Context.getLangOpts().OpenMP &&
811 Context.getLangOpts().OpenMPIsTargetDevice &&
812 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
813 Context.getTargetInfo().getTriple().isNVPTX()) ||
814 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Function)))
815 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
816
817 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
818 // merging storage classes and visibility attributes, so we don't have to
819 // look at previous decls in here.
820
821 // In C++, then if the type of the function uses a type with
822 // unique-external linkage, it's not legally usable from outside
823 // this translation unit. However, we should use the C linkage
824 // rules instead for extern "C" declarations.
825 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
826 // Only look at the type-as-written. Otherwise, deducing the return type
827 // of a function could change its linkage.
828 QualType TypeAsWritten = Function->getType();
829 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
830 TypeAsWritten = TSI->getType();
831 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
832 return LinkageInfo::uniqueExternal();
833 }
834
835 // Consider LV from the template and the template arguments.
836 // We're at file scope, so we do not need to worry about nested
837 // specializations.
838 if (FunctionTemplateSpecializationInfo *specInfo
839 = Function->getTemplateSpecializationInfo()) {
840 mergeTemplateLV(LV, Function, specInfo, computation);
841 }
842
843 // - a named class (Clause 9), or an unnamed class defined in a
844 // typedef declaration in which the class has the typedef name
845 // for linkage purposes (7.1.3); or
846 // - a named enumeration (7.2), or an unnamed enumeration
847 // defined in a typedef declaration in which the enumeration
848 // has the typedef name for linkage purposes (7.1.3); or
849 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
850 // Unnamed tags have no linkage.
851 if (!Tag->hasNameForLinkage())
852 return LinkageInfo::none();
853
854 // If this is a class template specialization, consider the
855 // linkage of the template and template arguments. We're at file
856 // scope, so we do not need to worry about nested specializations.
857 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
858 mergeTemplateLV(LV, spec, computation);
859 }
860
861 // FIXME: This is not part of the C++ standard any more.
862 // - an enumerator belonging to an enumeration with external linkage; or
863 } else if (isa<EnumConstantDecl>(D)) {
864 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
865 computation);
866 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
867 return LinkageInfo::none();
868 LV.merge(EnumLV);
869
870 // - a template
871 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
872 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
873 LinkageInfo tempLV =
874 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
875 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
876
877 // An unnamed namespace or a namespace declared directly or indirectly
878 // within an unnamed namespace has internal linkage. All other namespaces
879 // have external linkage.
880 //
881 // We handled names in anonymous namespaces above.
882 } else if (isa<NamespaceDecl>(D)) {
883 return LV;
884
885 // By extension, we assign external linkage to Objective-C
886 // interfaces.
887 } else if (isa<ObjCInterfaceDecl>(D)) {
888 // fallout
889
890 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
891 // A typedef declaration has linkage if it gives a type a name for
892 // linkage purposes.
893 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
894 return LinkageInfo::none();
895
896 } else if (isa<MSGuidDecl>(D)) {
897 // A GUID behaves like an inline variable with external linkage. Fall
898 // through.
899
900 // Everything not covered here has no linkage.
901 } else {
902 return LinkageInfo::none();
903 }
904
905 // If we ended up with non-externally-visible linkage, visibility should
906 // always be default.
907 if (!isExternallyVisible(LV.getLinkage()))
908 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
909
910 return LV;
911 }
912
913 LinkageInfo
getLVForClassMember(const NamedDecl * D,LVComputationKind computation,bool IgnoreVarTypeLinkage)914 LinkageComputer::getLVForClassMember(const NamedDecl *D,
915 LVComputationKind computation,
916 bool IgnoreVarTypeLinkage) {
917 // Only certain class members have linkage. Note that fields don't
918 // really have linkage, but it's convenient to say they do for the
919 // purposes of calculating linkage of pointer-to-data-member
920 // template arguments.
921 //
922 // Templates also don't officially have linkage, but since we ignore
923 // the C++ standard and look at template arguments when determining
924 // linkage and visibility of a template specialization, we might hit
925 // a template template argument that way. If we do, we need to
926 // consider its linkage.
927 if (!(isa<CXXMethodDecl>(D) ||
928 isa<VarDecl>(D) ||
929 isa<FieldDecl>(D) ||
930 isa<IndirectFieldDecl>(D) ||
931 isa<TagDecl>(D) ||
932 isa<TemplateDecl>(D)))
933 return LinkageInfo::none();
934
935 LinkageInfo LV;
936
937 // If we have an explicit visibility attribute, merge that in.
938 if (!hasExplicitVisibilityAlready(computation)) {
939 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation))
940 LV.mergeVisibility(*Vis, true);
941 // If we're paying attention to global visibility, apply
942 // -finline-visibility-hidden if this is an inline method.
943 //
944 // Note that we do this before merging information about
945 // the class visibility.
946 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
947 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
948 }
949
950 // If this class member has an explicit visibility attribute, the only
951 // thing that can change its visibility is the template arguments, so
952 // only look for them when processing the class.
953 LVComputationKind classComputation = computation;
954 if (LV.isVisibilityExplicit())
955 classComputation = withExplicitVisibilityAlready(computation);
956
957 LinkageInfo classLV =
958 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
959 // The member has the same linkage as the class. If that's not externally
960 // visible, we don't need to compute anything about the linkage.
961 // FIXME: If we're only computing linkage, can we bail out here?
962 if (!isExternallyVisible(classLV.getLinkage()))
963 return classLV;
964
965
966 // Otherwise, don't merge in classLV yet, because in certain cases
967 // we need to completely ignore the visibility from it.
968
969 // Specifically, if this decl exists and has an explicit attribute.
970 const NamedDecl *explicitSpecSuppressor = nullptr;
971
972 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
973 // Only look at the type-as-written. Otherwise, deducing the return type
974 // of a function could change its linkage.
975 QualType TypeAsWritten = MD->getType();
976 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
977 TypeAsWritten = TSI->getType();
978 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
979 return LinkageInfo::uniqueExternal();
980
981 // If this is a method template specialization, use the linkage for
982 // the template parameters and arguments.
983 if (FunctionTemplateSpecializationInfo *spec
984 = MD->getTemplateSpecializationInfo()) {
985 mergeTemplateLV(LV, MD, spec, computation);
986 if (spec->isExplicitSpecialization()) {
987 explicitSpecSuppressor = MD;
988 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
989 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
990 }
991 } else if (isExplicitMemberSpecialization(MD)) {
992 explicitSpecSuppressor = MD;
993 }
994
995 // OpenMP target declare device functions are not callable from the host so
996 // they should not be exported from the device image. This applies to all
997 // functions as the host-callable kernel functions are emitted at codegen.
998 ASTContext &Context = D->getASTContext();
999 if (Context.getLangOpts().OpenMP &&
1000 Context.getLangOpts().OpenMPIsTargetDevice &&
1001 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
1002 Context.getTargetInfo().getTriple().isNVPTX()) ||
1003 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(MD)))
1004 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
1005
1006 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1007 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1008 mergeTemplateLV(LV, spec, computation);
1009 if (spec->isExplicitSpecialization()) {
1010 explicitSpecSuppressor = spec;
1011 } else {
1012 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1013 if (isExplicitMemberSpecialization(temp)) {
1014 explicitSpecSuppressor = temp->getTemplatedDecl();
1015 }
1016 }
1017 } else if (isExplicitMemberSpecialization(RD)) {
1018 explicitSpecSuppressor = RD;
1019 }
1020
1021 // Static data members.
1022 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1023 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1024 mergeTemplateLV(LV, spec, computation);
1025
1026 // Modify the variable's linkage by its type, but ignore the
1027 // type's visibility unless it's a definition.
1028 if (!IgnoreVarTypeLinkage) {
1029 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1030 // FIXME: If the type's linkage is not externally visible, we can
1031 // give this static data member UniqueExternalLinkage.
1032 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1033 LV.mergeVisibility(typeLV);
1034 LV.mergeExternalVisibility(typeLV);
1035 }
1036
1037 if (isExplicitMemberSpecialization(VD)) {
1038 explicitSpecSuppressor = VD;
1039 }
1040
1041 // Template members.
1042 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1043 bool considerVisibility =
1044 (!LV.isVisibilityExplicit() &&
1045 !classLV.isVisibilityExplicit() &&
1046 !hasExplicitVisibilityAlready(computation));
1047 LinkageInfo tempLV =
1048 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1049 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1050
1051 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1052 if (isExplicitMemberSpecialization(redeclTemp)) {
1053 explicitSpecSuppressor = temp->getTemplatedDecl();
1054 }
1055 }
1056 }
1057
1058 // We should never be looking for an attribute directly on a template.
1059 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1060
1061 // If this member is an explicit member specialization, and it has
1062 // an explicit attribute, ignore visibility from the parent.
1063 bool considerClassVisibility = true;
1064 if (explicitSpecSuppressor &&
1065 // optimization: hasDVA() is true only with explicit visibility.
1066 LV.isVisibilityExplicit() &&
1067 classLV.getVisibility() != DefaultVisibility &&
1068 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1069 considerClassVisibility = false;
1070 }
1071
1072 // Finally, merge in information from the class.
1073 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1074 return LV;
1075 }
1076
anchor()1077 void NamedDecl::anchor() {}
1078
isLinkageValid() const1079 bool NamedDecl::isLinkageValid() const {
1080 if (!hasCachedLinkage())
1081 return true;
1082
1083 Linkage L = LinkageComputer{}
1084 .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1085 .getLinkage();
1086 return L == getCachedLinkage();
1087 }
1088
isPlaceholderVar(const LangOptions & LangOpts) const1089 bool NamedDecl::isPlaceholderVar(const LangOptions &LangOpts) const {
1090 // [C++2c] [basic.scope.scope]/p5
1091 // A declaration is name-independent if its name is _ and it declares
1092 // - a variable with automatic storage duration,
1093 // - a structured binding not inhabiting a namespace scope,
1094 // - the variable introduced by an init-capture
1095 // - or a non-static data member.
1096
1097 if (!LangOpts.CPlusPlus || !getIdentifier() ||
1098 !getIdentifier()->isPlaceholder())
1099 return false;
1100 if (isa<FieldDecl>(this))
1101 return true;
1102 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(this)) {
1103 if (!getDeclContext()->isFunctionOrMethod() &&
1104 !getDeclContext()->isRecord())
1105 return false;
1106 const VarDecl *VD = IFD->getVarDecl();
1107 return !VD || VD->getStorageDuration() == SD_Automatic;
1108 }
1109 // and it declares a variable with automatic storage duration
1110 if (const auto *VD = dyn_cast<VarDecl>(this)) {
1111 if (isa<ParmVarDecl>(VD))
1112 return false;
1113 if (VD->isInitCapture())
1114 return true;
1115 return VD->getStorageDuration() == StorageDuration::SD_Automatic;
1116 }
1117 if (const auto *BD = dyn_cast<BindingDecl>(this);
1118 BD && getDeclContext()->isFunctionOrMethod()) {
1119 const VarDecl *VD = BD->getHoldingVar();
1120 return !VD || VD->getStorageDuration() == StorageDuration::SD_Automatic;
1121 }
1122 return false;
1123 }
1124
1125 ReservedIdentifierStatus
isReserved(const LangOptions & LangOpts) const1126 NamedDecl::isReserved(const LangOptions &LangOpts) const {
1127 const IdentifierInfo *II = getIdentifier();
1128
1129 // This triggers at least for CXXLiteralIdentifiers, which we already checked
1130 // at lexing time.
1131 if (!II)
1132 return ReservedIdentifierStatus::NotReserved;
1133
1134 ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1135 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1136 // This name is only reserved at global scope. Check if this declaration
1137 // conflicts with a global scope declaration.
1138 if (isa<ParmVarDecl>(this) || isTemplateParameter())
1139 return ReservedIdentifierStatus::NotReserved;
1140
1141 // C++ [dcl.link]/7:
1142 // Two declarations [conflict] if [...] one declares a function or
1143 // variable with C language linkage, and the other declares [...] a
1144 // variable that belongs to the global scope.
1145 //
1146 // Therefore names that are reserved at global scope are also reserved as
1147 // names of variables and functions with C language linkage.
1148 const DeclContext *DC = getDeclContext()->getRedeclContext();
1149 if (DC->isTranslationUnit())
1150 return Status;
1151 if (auto *VD = dyn_cast<VarDecl>(this))
1152 if (VD->isExternC())
1153 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1154 if (auto *FD = dyn_cast<FunctionDecl>(this))
1155 if (FD->isExternC())
1156 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1157 return ReservedIdentifierStatus::NotReserved;
1158 }
1159
1160 return Status;
1161 }
1162
getObjCFStringFormattingFamily() const1163 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1164 StringRef name = getName();
1165 if (name.empty()) return SFF_None;
1166
1167 if (name.front() == 'C')
1168 if (name == "CFStringCreateWithFormat" ||
1169 name == "CFStringCreateWithFormatAndArguments" ||
1170 name == "CFStringAppendFormat" ||
1171 name == "CFStringAppendFormatAndArguments")
1172 return SFF_CFString;
1173 return SFF_None;
1174 }
1175
getLinkageInternal() const1176 Linkage NamedDecl::getLinkageInternal() const {
1177 // We don't care about visibility here, so ask for the cheapest
1178 // possible visibility analysis.
1179 return LinkageComputer{}
1180 .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1181 .getLinkage();
1182 }
1183
isExportedFromModuleInterfaceUnit(const NamedDecl * D)1184 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
1185 // FIXME: Handle isModulePrivate.
1186 switch (D->getModuleOwnershipKind()) {
1187 case Decl::ModuleOwnershipKind::Unowned:
1188 case Decl::ModuleOwnershipKind::ReachableWhenImported:
1189 case Decl::ModuleOwnershipKind::ModulePrivate:
1190 return false;
1191 case Decl::ModuleOwnershipKind::Visible:
1192 case Decl::ModuleOwnershipKind::VisibleWhenImported:
1193 return D->isInNamedModule();
1194 }
1195 llvm_unreachable("unexpected module ownership kind");
1196 }
1197
1198 /// Get the linkage from a semantic point of view. Entities in
1199 /// anonymous namespaces are external (in c++98).
getFormalLinkage() const1200 Linkage NamedDecl::getFormalLinkage() const {
1201 Linkage InternalLinkage = getLinkageInternal();
1202
1203 // C++ [basic.link]p4.8:
1204 // - if the declaration of the name is attached to a named module and is not
1205 // exported
1206 // the name has module linkage;
1207 //
1208 // [basic.namespace.general]/p2
1209 // A namespace is never attached to a named module and never has a name with
1210 // module linkage.
1211 if (isInNamedModule() && InternalLinkage == Linkage::External &&
1212 !isExportedFromModuleInterfaceUnit(
1213 cast<NamedDecl>(this->getCanonicalDecl())) &&
1214 !isa<NamespaceDecl>(this))
1215 InternalLinkage = Linkage::Module;
1216
1217 return clang::getFormalLinkage(InternalLinkage);
1218 }
1219
getLinkageAndVisibility() const1220 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1221 return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1222 }
1223
1224 static std::optional<Visibility>
getExplicitVisibilityAux(const NamedDecl * ND,NamedDecl::ExplicitVisibilityKind kind,bool IsMostRecent)1225 getExplicitVisibilityAux(const NamedDecl *ND,
1226 NamedDecl::ExplicitVisibilityKind kind,
1227 bool IsMostRecent) {
1228 assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1229
1230 // Check the declaration itself first.
1231 if (std::optional<Visibility> V = getVisibilityOf(ND, kind))
1232 return V;
1233
1234 // If this is a member class of a specialization of a class template
1235 // and the corresponding decl has explicit visibility, use that.
1236 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1237 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1238 if (InstantiatedFrom)
1239 return getVisibilityOf(InstantiatedFrom, kind);
1240 }
1241
1242 // If there wasn't explicit visibility there, and this is a
1243 // specialization of a class template, check for visibility
1244 // on the pattern.
1245 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1246 // Walk all the template decl till this point to see if there are
1247 // explicit visibility attributes.
1248 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1249 while (TD != nullptr) {
1250 auto Vis = getVisibilityOf(TD, kind);
1251 if (Vis != std::nullopt)
1252 return Vis;
1253 TD = TD->getPreviousDecl();
1254 }
1255 return std::nullopt;
1256 }
1257
1258 // Use the most recent declaration.
1259 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1260 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1261 if (MostRecent != ND)
1262 return getExplicitVisibilityAux(MostRecent, kind, true);
1263 }
1264
1265 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1266 if (Var->isStaticDataMember()) {
1267 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1268 if (InstantiatedFrom)
1269 return getVisibilityOf(InstantiatedFrom, kind);
1270 }
1271
1272 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1273 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1274 kind);
1275
1276 return std::nullopt;
1277 }
1278 // Also handle function template specializations.
1279 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1280 // If the function is a specialization of a template with an
1281 // explicit visibility attribute, use that.
1282 if (FunctionTemplateSpecializationInfo *templateInfo
1283 = fn->getTemplateSpecializationInfo())
1284 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1285 kind);
1286
1287 // If the function is a member of a specialization of a class template
1288 // and the corresponding decl has explicit visibility, use that.
1289 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1290 if (InstantiatedFrom)
1291 return getVisibilityOf(InstantiatedFrom, kind);
1292
1293 return std::nullopt;
1294 }
1295
1296 // The visibility of a template is stored in the templated decl.
1297 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1298 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1299
1300 return std::nullopt;
1301 }
1302
1303 std::optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const1304 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1305 return getExplicitVisibilityAux(this, kind, false);
1306 }
1307
getLVForClosure(const DeclContext * DC,Decl * ContextDecl,LVComputationKind computation)1308 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1309 Decl *ContextDecl,
1310 LVComputationKind computation) {
1311 // This lambda has its linkage/visibility determined by its owner.
1312 const NamedDecl *Owner;
1313 if (!ContextDecl)
1314 Owner = dyn_cast<NamedDecl>(DC);
1315 else if (isa<ParmVarDecl>(ContextDecl))
1316 Owner =
1317 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1318 else if (isa<ImplicitConceptSpecializationDecl>(ContextDecl)) {
1319 // Replace with the concept's owning decl, which is either a namespace or a
1320 // TU, so this needs a dyn_cast.
1321 Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext());
1322 } else {
1323 Owner = cast<NamedDecl>(ContextDecl);
1324 }
1325
1326 if (!Owner)
1327 return LinkageInfo::none();
1328
1329 // If the owner has a deduced type, we need to skip querying the linkage and
1330 // visibility of that type, because it might involve this closure type. The
1331 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1332 // than NoLinkage when we don't strictly need to, which is benign.
1333 auto *VD = dyn_cast<VarDecl>(Owner);
1334 LinkageInfo OwnerLV =
1335 VD && VD->getType()->getContainedDeducedType()
1336 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1337 : getLVForDecl(Owner, computation);
1338
1339 // A lambda never formally has linkage. But if the owner is externally
1340 // visible, then the lambda is too. We apply the same rules to blocks.
1341 if (!isExternallyVisible(OwnerLV.getLinkage()))
1342 return LinkageInfo::none();
1343 return LinkageInfo(Linkage::VisibleNone, OwnerLV.getVisibility(),
1344 OwnerLV.isVisibilityExplicit());
1345 }
1346
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)1347 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1348 LVComputationKind computation) {
1349 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1350 if (Function->isInAnonymousNamespace() &&
1351 !isFirstInExternCContext(Function))
1352 return LinkageInfo::internal();
1353
1354 // This is a "void f();" which got merged with a file static.
1355 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1356 return LinkageInfo::internal();
1357
1358 LinkageInfo LV;
1359 if (!hasExplicitVisibilityAlready(computation)) {
1360 if (std::optional<Visibility> Vis =
1361 getExplicitVisibility(Function, computation))
1362 LV.mergeVisibility(*Vis, true);
1363 }
1364
1365 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1366 // merging storage classes and visibility attributes, so we don't have to
1367 // look at previous decls in here.
1368
1369 return LV;
1370 }
1371
1372 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1373 if (Var->hasExternalStorage()) {
1374 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1375 return LinkageInfo::internal();
1376
1377 LinkageInfo LV;
1378 if (Var->getStorageClass() == SC_PrivateExtern)
1379 LV.mergeVisibility(HiddenVisibility, true);
1380 else if (!hasExplicitVisibilityAlready(computation)) {
1381 if (std::optional<Visibility> Vis =
1382 getExplicitVisibility(Var, computation))
1383 LV.mergeVisibility(*Vis, true);
1384 }
1385
1386 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1387 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1388 if (PrevLV.getLinkage() != Linkage::Invalid)
1389 LV.setLinkage(PrevLV.getLinkage());
1390 LV.mergeVisibility(PrevLV);
1391 }
1392
1393 return LV;
1394 }
1395
1396 if (!Var->isStaticLocal())
1397 return LinkageInfo::none();
1398 }
1399
1400 ASTContext &Context = D->getASTContext();
1401 if (!Context.getLangOpts().CPlusPlus)
1402 return LinkageInfo::none();
1403
1404 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1405 if (!OuterD || OuterD->isInvalidDecl())
1406 return LinkageInfo::none();
1407
1408 LinkageInfo LV;
1409 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1410 if (!BD->getBlockManglingNumber())
1411 return LinkageInfo::none();
1412
1413 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1414 BD->getBlockManglingContextDecl(), computation);
1415 } else {
1416 const auto *FD = cast<FunctionDecl>(OuterD);
1417 if (!FD->isInlined() &&
1418 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1419 return LinkageInfo::none();
1420
1421 // If a function is hidden by -fvisibility-inlines-hidden option and
1422 // is not explicitly attributed as a hidden function,
1423 // we should not make static local variables in the function hidden.
1424 LV = getLVForDecl(FD, computation);
1425 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1426 !LV.isVisibilityExplicit() &&
1427 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1428 assert(cast<VarDecl>(D)->isStaticLocal());
1429 // If this was an implicitly hidden inline method, check again for
1430 // explicit visibility on the parent class, and use that for static locals
1431 // if present.
1432 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1433 LV = getLVForDecl(MD->getParent(), computation);
1434 if (!LV.isVisibilityExplicit()) {
1435 Visibility globalVisibility =
1436 computation.isValueVisibility()
1437 ? Context.getLangOpts().getValueVisibilityMode()
1438 : Context.getLangOpts().getTypeVisibilityMode();
1439 return LinkageInfo(Linkage::VisibleNone, globalVisibility,
1440 /*visibilityExplicit=*/false);
1441 }
1442 }
1443 }
1444 if (!isExternallyVisible(LV.getLinkage()))
1445 return LinkageInfo::none();
1446 return LinkageInfo(Linkage::VisibleNone, LV.getVisibility(),
1447 LV.isVisibilityExplicit());
1448 }
1449
computeLVForDecl(const NamedDecl * D,LVComputationKind computation,bool IgnoreVarTypeLinkage)1450 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1451 LVComputationKind computation,
1452 bool IgnoreVarTypeLinkage) {
1453 // Internal_linkage attribute overrides other considerations.
1454 if (D->hasAttr<InternalLinkageAttr>())
1455 return LinkageInfo::internal();
1456
1457 // Objective-C: treat all Objective-C declarations as having external
1458 // linkage.
1459 switch (D->getKind()) {
1460 default:
1461 break;
1462
1463 // Per C++ [basic.link]p2, only the names of objects, references,
1464 // functions, types, templates, namespaces, and values ever have linkage.
1465 //
1466 // Note that the name of a typedef, namespace alias, using declaration,
1467 // and so on are not the name of the corresponding type, namespace, or
1468 // declaration, so they do *not* have linkage.
1469 case Decl::ImplicitParam:
1470 case Decl::Label:
1471 case Decl::NamespaceAlias:
1472 case Decl::ParmVar:
1473 case Decl::Using:
1474 case Decl::UsingEnum:
1475 case Decl::UsingShadow:
1476 case Decl::UsingDirective:
1477 return LinkageInfo::none();
1478
1479 case Decl::EnumConstant:
1480 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1481 if (D->getASTContext().getLangOpts().CPlusPlus)
1482 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1483 return LinkageInfo::visible_none();
1484
1485 case Decl::Typedef:
1486 case Decl::TypeAlias:
1487 // A typedef declaration has linkage if it gives a type a name for
1488 // linkage purposes.
1489 if (!cast<TypedefNameDecl>(D)
1490 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1491 return LinkageInfo::none();
1492 break;
1493
1494 case Decl::TemplateTemplateParm: // count these as external
1495 case Decl::NonTypeTemplateParm:
1496 case Decl::ObjCAtDefsField:
1497 case Decl::ObjCCategory:
1498 case Decl::ObjCCategoryImpl:
1499 case Decl::ObjCCompatibleAlias:
1500 case Decl::ObjCImplementation:
1501 case Decl::ObjCMethod:
1502 case Decl::ObjCProperty:
1503 case Decl::ObjCPropertyImpl:
1504 case Decl::ObjCProtocol:
1505 return getExternalLinkageFor(D);
1506
1507 case Decl::CXXRecord: {
1508 const auto *Record = cast<CXXRecordDecl>(D);
1509 if (Record->isLambda()) {
1510 if (Record->hasKnownLambdaInternalLinkage() ||
1511 !Record->getLambdaManglingNumber()) {
1512 // This lambda has no mangling number, so it's internal.
1513 return LinkageInfo::internal();
1514 }
1515
1516 return getLVForClosure(
1517 Record->getDeclContext()->getRedeclContext(),
1518 Record->getLambdaContextDecl(), computation);
1519 }
1520
1521 break;
1522 }
1523
1524 case Decl::TemplateParamObject: {
1525 // The template parameter object can be referenced from anywhere its type
1526 // and value can be referenced.
1527 auto *TPO = cast<TemplateParamObjectDecl>(D);
1528 LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1529 LV.merge(getLVForValue(TPO->getValue(), computation));
1530 return LV;
1531 }
1532 }
1533
1534 // Handle linkage for namespace-scope names.
1535 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1536 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1537
1538 // C++ [basic.link]p5:
1539 // In addition, a member function, static data member, a named
1540 // class or enumeration of class scope, or an unnamed class or
1541 // enumeration defined in a class-scope typedef declaration such
1542 // that the class or enumeration has the typedef name for linkage
1543 // purposes (7.1.3), has external linkage if the name of the class
1544 // has external linkage.
1545 if (D->getDeclContext()->isRecord())
1546 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1547
1548 // C++ [basic.link]p6:
1549 // The name of a function declared in block scope and the name of
1550 // an object declared by a block scope extern declaration have
1551 // linkage. If there is a visible declaration of an entity with
1552 // linkage having the same name and type, ignoring entities
1553 // declared outside the innermost enclosing namespace scope, the
1554 // block scope declaration declares that same entity and receives
1555 // the linkage of the previous declaration. If there is more than
1556 // one such matching entity, the program is ill-formed. Otherwise,
1557 // if no matching entity is found, the block scope entity receives
1558 // external linkage.
1559 if (D->getDeclContext()->isFunctionOrMethod())
1560 return getLVForLocalDecl(D, computation);
1561
1562 // C++ [basic.link]p6:
1563 // Names not covered by these rules have no linkage.
1564 return LinkageInfo::none();
1565 }
1566
1567 /// getLVForDecl - Get the linkage and visibility for the given declaration.
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1568 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1569 LVComputationKind computation) {
1570 // Internal_linkage attribute overrides other considerations.
1571 if (D->hasAttr<InternalLinkageAttr>())
1572 return LinkageInfo::internal();
1573
1574 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1575 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1576
1577 if (std::optional<LinkageInfo> LI = lookup(D, computation))
1578 return *LI;
1579
1580 LinkageInfo LV = computeLVForDecl(D, computation);
1581 if (D->hasCachedLinkage())
1582 assert(D->getCachedLinkage() == LV.getLinkage());
1583
1584 D->setCachedLinkage(LV.getLinkage());
1585 cache(D, computation, LV);
1586
1587 #ifndef NDEBUG
1588 // In C (because of gnu inline) and in c++ with microsoft extensions an
1589 // static can follow an extern, so we can have two decls with different
1590 // linkages.
1591 const LangOptions &Opts = D->getASTContext().getLangOpts();
1592 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1593 return LV;
1594
1595 // We have just computed the linkage for this decl. By induction we know
1596 // that all other computed linkages match, check that the one we just
1597 // computed also does.
1598 NamedDecl *Old = nullptr;
1599 for (auto *I : D->redecls()) {
1600 auto *T = cast<NamedDecl>(I);
1601 if (T == D)
1602 continue;
1603 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1604 Old = T;
1605 break;
1606 }
1607 }
1608 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1609 #endif
1610
1611 return LV;
1612 }
1613
getDeclLinkageAndVisibility(const NamedDecl * D)1614 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1615 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1616 ? NamedDecl::VisibilityForType
1617 : NamedDecl::VisibilityForValue;
1618 LVComputationKind CK(EK);
1619 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1620 ? CK.forLinkageOnly()
1621 : CK);
1622 }
1623
getOwningModuleForLinkage() const1624 Module *Decl::getOwningModuleForLinkage() const {
1625 if (isa<NamespaceDecl>(this))
1626 // Namespaces never have module linkage. It is the entities within them
1627 // that [may] do.
1628 return nullptr;
1629
1630 Module *M = getOwningModule();
1631 if (!M)
1632 return nullptr;
1633
1634 switch (M->Kind) {
1635 case Module::ModuleMapModule:
1636 // Module map modules have no special linkage semantics.
1637 return nullptr;
1638
1639 case Module::ModuleInterfaceUnit:
1640 case Module::ModuleImplementationUnit:
1641 case Module::ModulePartitionInterface:
1642 case Module::ModulePartitionImplementation:
1643 return M;
1644
1645 case Module::ModuleHeaderUnit:
1646 case Module::ExplicitGlobalModuleFragment:
1647 case Module::ImplicitGlobalModuleFragment:
1648 // The global module shouldn't change the linkage.
1649 return nullptr;
1650
1651 case Module::PrivateModuleFragment:
1652 // The private module fragment is part of its containing module for linkage
1653 // purposes.
1654 return M->Parent;
1655 }
1656
1657 llvm_unreachable("unknown module kind");
1658 }
1659
printName(raw_ostream & OS,const PrintingPolicy & Policy) const1660 void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
1661 Name.print(OS, Policy);
1662 }
1663
printName(raw_ostream & OS) const1664 void NamedDecl::printName(raw_ostream &OS) const {
1665 printName(OS, getASTContext().getPrintingPolicy());
1666 }
1667
getQualifiedNameAsString() const1668 std::string NamedDecl::getQualifiedNameAsString() const {
1669 std::string QualName;
1670 llvm::raw_string_ostream OS(QualName);
1671 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1672 return QualName;
1673 }
1674
printQualifiedName(raw_ostream & OS) const1675 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1676 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1677 }
1678
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1679 void NamedDecl::printQualifiedName(raw_ostream &OS,
1680 const PrintingPolicy &P) const {
1681 if (getDeclContext()->isFunctionOrMethod()) {
1682 // We do not print '(anonymous)' for function parameters without name.
1683 printName(OS, P);
1684 return;
1685 }
1686 printNestedNameSpecifier(OS, P);
1687 if (getDeclName())
1688 OS << *this;
1689 else {
1690 // Give the printName override a chance to pick a different name before we
1691 // fall back to "(anonymous)".
1692 SmallString<64> NameBuffer;
1693 llvm::raw_svector_ostream NameOS(NameBuffer);
1694 printName(NameOS, P);
1695 if (NameBuffer.empty())
1696 OS << "(anonymous)";
1697 else
1698 OS << NameBuffer;
1699 }
1700 }
1701
printNestedNameSpecifier(raw_ostream & OS) const1702 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1703 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1704 }
1705
printNestedNameSpecifier(raw_ostream & OS,const PrintingPolicy & P) const1706 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1707 const PrintingPolicy &P) const {
1708 const DeclContext *Ctx = getDeclContext();
1709
1710 // For ObjC methods and properties, look through categories and use the
1711 // interface as context.
1712 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1713 if (auto *ID = MD->getClassInterface())
1714 Ctx = ID;
1715 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1716 if (auto *MD = PD->getGetterMethodDecl())
1717 if (auto *ID = MD->getClassInterface())
1718 Ctx = ID;
1719 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1720 if (auto *CI = ID->getContainingInterface())
1721 Ctx = CI;
1722 }
1723
1724 if (Ctx->isFunctionOrMethod())
1725 return;
1726
1727 using ContextsTy = SmallVector<const DeclContext *, 8>;
1728 ContextsTy Contexts;
1729
1730 // Collect named contexts.
1731 DeclarationName NameInScope = getDeclName();
1732 for (; Ctx; Ctx = Ctx->getParent()) {
1733 // Suppress anonymous namespace if requested.
1734 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1735 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1736 continue;
1737
1738 // Suppress inline namespace if it doesn't make the result ambiguous.
1739 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1740 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1741 continue;
1742
1743 // Skip non-named contexts such as linkage specifications and ExportDecls.
1744 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1745 if (!ND)
1746 continue;
1747
1748 Contexts.push_back(Ctx);
1749 NameInScope = ND->getDeclName();
1750 }
1751
1752 for (const DeclContext *DC : llvm::reverse(Contexts)) {
1753 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1754 OS << Spec->getName();
1755 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1756 printTemplateArgumentList(
1757 OS, TemplateArgs.asArray(), P,
1758 Spec->getSpecializedTemplate()->getTemplateParameters());
1759 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1760 if (ND->isAnonymousNamespace()) {
1761 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1762 : "(anonymous namespace)");
1763 }
1764 else
1765 OS << *ND;
1766 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1767 if (!RD->getIdentifier())
1768 OS << "(anonymous " << RD->getKindName() << ')';
1769 else
1770 OS << *RD;
1771 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1772 const FunctionProtoType *FT = nullptr;
1773 if (FD->hasWrittenPrototype())
1774 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1775
1776 OS << *FD << '(';
1777 if (FT) {
1778 unsigned NumParams = FD->getNumParams();
1779 for (unsigned i = 0; i < NumParams; ++i) {
1780 if (i)
1781 OS << ", ";
1782 OS << FD->getParamDecl(i)->getType().stream(P);
1783 }
1784
1785 if (FT->isVariadic()) {
1786 if (NumParams > 0)
1787 OS << ", ";
1788 OS << "...";
1789 }
1790 }
1791 OS << ')';
1792 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1793 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1794 // enumerator is declared in the scope that immediately contains
1795 // the enum-specifier. Each scoped enumerator is declared in the
1796 // scope of the enumeration.
1797 // For the case of unscoped enumerator, do not include in the qualified
1798 // name any information about its enum enclosing scope, as its visibility
1799 // is global.
1800 if (ED->isScoped())
1801 OS << *ED;
1802 else
1803 continue;
1804 } else {
1805 OS << *cast<NamedDecl>(DC);
1806 }
1807 OS << "::";
1808 }
1809 }
1810
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1811 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1812 const PrintingPolicy &Policy,
1813 bool Qualified) const {
1814 if (Qualified)
1815 printQualifiedName(OS, Policy);
1816 else
1817 printName(OS, Policy);
1818 }
1819
isRedeclarableImpl(Redeclarable<T> *)1820 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1821 return true;
1822 }
isRedeclarableImpl(...)1823 static bool isRedeclarableImpl(...) { return false; }
isRedeclarable(Decl::Kind K)1824 static bool isRedeclarable(Decl::Kind K) {
1825 switch (K) {
1826 #define DECL(Type, Base) \
1827 case Decl::Type: \
1828 return isRedeclarableImpl((Type##Decl *)nullptr);
1829 #define ABSTRACT_DECL(DECL)
1830 #include "clang/AST/DeclNodes.inc"
1831 }
1832 llvm_unreachable("unknown decl kind");
1833 }
1834
declarationReplaces(const NamedDecl * OldD,bool IsKnownNewer) const1835 bool NamedDecl::declarationReplaces(const NamedDecl *OldD,
1836 bool IsKnownNewer) const {
1837 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1838
1839 // Never replace one imported declaration with another; we need both results
1840 // when re-exporting.
1841 if (OldD->isFromASTFile() && isFromASTFile())
1842 return false;
1843
1844 // A kind mismatch implies that the declaration is not replaced.
1845 if (OldD->getKind() != getKind())
1846 return false;
1847
1848 // For method declarations, we never replace. (Why?)
1849 if (isa<ObjCMethodDecl>(this))
1850 return false;
1851
1852 // For parameters, pick the newer one. This is either an error or (in
1853 // Objective-C) permitted as an extension.
1854 if (isa<ParmVarDecl>(this))
1855 return true;
1856
1857 // Inline namespaces can give us two declarations with the same
1858 // name and kind in the same scope but different contexts; we should
1859 // keep both declarations in this case.
1860 if (!this->getDeclContext()->getRedeclContext()->Equals(
1861 OldD->getDeclContext()->getRedeclContext()))
1862 return false;
1863
1864 // Using declarations can be replaced if they import the same name from the
1865 // same context.
1866 if (const auto *UD = dyn_cast<UsingDecl>(this)) {
1867 ASTContext &Context = getASTContext();
1868 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1869 Context.getCanonicalNestedNameSpecifier(
1870 cast<UsingDecl>(OldD)->getQualifier());
1871 }
1872 if (const auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1873 ASTContext &Context = getASTContext();
1874 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1875 Context.getCanonicalNestedNameSpecifier(
1876 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1877 }
1878
1879 if (isRedeclarable(getKind())) {
1880 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1881 return false;
1882
1883 if (IsKnownNewer)
1884 return true;
1885
1886 // Check whether this is actually newer than OldD. We want to keep the
1887 // newer declaration. This loop will usually only iterate once, because
1888 // OldD is usually the previous declaration.
1889 for (const auto *D : redecls()) {
1890 if (D == OldD)
1891 break;
1892
1893 // If we reach the canonical declaration, then OldD is not actually older
1894 // than this one.
1895 //
1896 // FIXME: In this case, we should not add this decl to the lookup table.
1897 if (D->isCanonicalDecl())
1898 return false;
1899 }
1900
1901 // It's a newer declaration of the same kind of declaration in the same
1902 // scope: we want this decl instead of the existing one.
1903 return true;
1904 }
1905
1906 // In all other cases, we need to keep both declarations in case they have
1907 // different visibility. Any attempt to use the name will result in an
1908 // ambiguity if more than one is visible.
1909 return false;
1910 }
1911
hasLinkage() const1912 bool NamedDecl::hasLinkage() const {
1913 switch (getFormalLinkage()) {
1914 case Linkage::Invalid:
1915 llvm_unreachable("Linkage hasn't been computed!");
1916 case Linkage::None:
1917 return false;
1918 case Linkage::Internal:
1919 return true;
1920 case Linkage::UniqueExternal:
1921 case Linkage::VisibleNone:
1922 llvm_unreachable("Non-formal linkage is not allowed here!");
1923 case Linkage::Module:
1924 case Linkage::External:
1925 return true;
1926 }
1927 llvm_unreachable("Unhandled Linkage enum");
1928 }
1929
getUnderlyingDeclImpl()1930 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1931 NamedDecl *ND = this;
1932 if (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1933 ND = UD->getTargetDecl();
1934
1935 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1936 return AD->getClassInterface();
1937
1938 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1939 return AD->getNamespace();
1940
1941 return ND;
1942 }
1943
isCXXInstanceMember() const1944 bool NamedDecl::isCXXInstanceMember() const {
1945 if (!isCXXClassMember())
1946 return false;
1947
1948 const NamedDecl *D = this;
1949 if (isa<UsingShadowDecl>(D))
1950 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1951
1952 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1953 return true;
1954 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(D->getAsFunction()))
1955 return MD->isInstance();
1956 return false;
1957 }
1958
1959 //===----------------------------------------------------------------------===//
1960 // DeclaratorDecl Implementation
1961 //===----------------------------------------------------------------------===//
1962
1963 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1964 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1965 if (decl->getNumTemplateParameterLists() > 0)
1966 return decl->getTemplateParameterList(0)->getTemplateLoc();
1967 return decl->getInnerLocStart();
1968 }
1969
getTypeSpecStartLoc() const1970 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1971 TypeSourceInfo *TSI = getTypeSourceInfo();
1972 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1973 return SourceLocation();
1974 }
1975
getTypeSpecEndLoc() const1976 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1977 TypeSourceInfo *TSI = getTypeSourceInfo();
1978 if (TSI) return TSI->getTypeLoc().getEndLoc();
1979 return SourceLocation();
1980 }
1981
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1982 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1983 if (QualifierLoc) {
1984 // Make sure the extended decl info is allocated.
1985 if (!hasExtInfo()) {
1986 // Save (non-extended) type source info pointer.
1987 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1988 // Allocate external info struct.
1989 DeclInfo = new (getASTContext()) ExtInfo;
1990 // Restore savedTInfo into (extended) decl info.
1991 getExtInfo()->TInfo = savedTInfo;
1992 }
1993 // Set qualifier info.
1994 getExtInfo()->QualifierLoc = QualifierLoc;
1995 } else if (hasExtInfo()) {
1996 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1997 getExtInfo()->QualifierLoc = QualifierLoc;
1998 }
1999 }
2000
setTrailingRequiresClause(Expr * TrailingRequiresClause)2001 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
2002 assert(TrailingRequiresClause);
2003 // Make sure the extended decl info is allocated.
2004 if (!hasExtInfo()) {
2005 // Save (non-extended) type source info pointer.
2006 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
2007 // Allocate external info struct.
2008 DeclInfo = new (getASTContext()) ExtInfo;
2009 // Restore savedTInfo into (extended) decl info.
2010 getExtInfo()->TInfo = savedTInfo;
2011 }
2012 // Set requires clause info.
2013 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
2014 }
2015
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)2016 void DeclaratorDecl::setTemplateParameterListsInfo(
2017 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2018 assert(!TPLists.empty());
2019 // Make sure the extended decl info is allocated.
2020 if (!hasExtInfo()) {
2021 // Save (non-extended) type source info pointer.
2022 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
2023 // Allocate external info struct.
2024 DeclInfo = new (getASTContext()) ExtInfo;
2025 // Restore savedTInfo into (extended) decl info.
2026 getExtInfo()->TInfo = savedTInfo;
2027 }
2028 // Set the template parameter lists info.
2029 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
2030 }
2031
getOuterLocStart() const2032 SourceLocation DeclaratorDecl::getOuterLocStart() const {
2033 return getTemplateOrInnerLocStart(this);
2034 }
2035
2036 // Helper function: returns true if QT is or contains a type
2037 // having a postfix component.
typeIsPostfix(QualType QT)2038 static bool typeIsPostfix(QualType QT) {
2039 while (true) {
2040 const Type* T = QT.getTypePtr();
2041 switch (T->getTypeClass()) {
2042 default:
2043 return false;
2044 case Type::Pointer:
2045 QT = cast<PointerType>(T)->getPointeeType();
2046 break;
2047 case Type::BlockPointer:
2048 QT = cast<BlockPointerType>(T)->getPointeeType();
2049 break;
2050 case Type::MemberPointer:
2051 QT = cast<MemberPointerType>(T)->getPointeeType();
2052 break;
2053 case Type::LValueReference:
2054 case Type::RValueReference:
2055 QT = cast<ReferenceType>(T)->getPointeeType();
2056 break;
2057 case Type::PackExpansion:
2058 QT = cast<PackExpansionType>(T)->getPattern();
2059 break;
2060 case Type::Paren:
2061 case Type::ConstantArray:
2062 case Type::DependentSizedArray:
2063 case Type::IncompleteArray:
2064 case Type::VariableArray:
2065 case Type::FunctionProto:
2066 case Type::FunctionNoProto:
2067 return true;
2068 }
2069 }
2070 }
2071
getSourceRange() const2072 SourceRange DeclaratorDecl::getSourceRange() const {
2073 SourceLocation RangeEnd = getLocation();
2074 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2075 // If the declaration has no name or the type extends past the name take the
2076 // end location of the type.
2077 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
2078 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2079 }
2080 return SourceRange(getOuterLocStart(), RangeEnd);
2081 }
2082
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)2083 void QualifierInfo::setTemplateParameterListsInfo(
2084 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2085 // Free previous template parameters (if any).
2086 if (NumTemplParamLists > 0) {
2087 Context.Deallocate(TemplParamLists);
2088 TemplParamLists = nullptr;
2089 NumTemplParamLists = 0;
2090 }
2091 // Set info on matched template parameter lists (if any).
2092 if (!TPLists.empty()) {
2093 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
2094 NumTemplParamLists = TPLists.size();
2095 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
2096 }
2097 }
2098
2099 //===----------------------------------------------------------------------===//
2100 // VarDecl Implementation
2101 //===----------------------------------------------------------------------===//
2102
getStorageClassSpecifierString(StorageClass SC)2103 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2104 switch (SC) {
2105 case SC_None: break;
2106 case SC_Auto: return "auto";
2107 case SC_Extern: return "extern";
2108 case SC_PrivateExtern: return "__private_extern__";
2109 case SC_Register: return "register";
2110 case SC_Static: return "static";
2111 }
2112
2113 llvm_unreachable("Invalid storage class");
2114 }
2115
VarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,const IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass SC)2116 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2117 SourceLocation StartLoc, SourceLocation IdLoc,
2118 const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2119 StorageClass SC)
2120 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2121 redeclarable_base(C) {
2122 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2123 "VarDeclBitfields too large!");
2124 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2125 "ParmVarDeclBitfields too large!");
2126 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2127 "NonParmVarDeclBitfields too large!");
2128 AllBits = 0;
2129 VarDeclBits.SClass = SC;
2130 // Everything else is implicitly initialized to false.
2131 }
2132
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,const IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S)2133 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL,
2134 SourceLocation IdL, const IdentifierInfo *Id,
2135 QualType T, TypeSourceInfo *TInfo, StorageClass S) {
2136 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2137 }
2138
CreateDeserialized(ASTContext & C,GlobalDeclID ID)2139 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
2140 return new (C, ID)
2141 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2142 QualType(), nullptr, SC_None);
2143 }
2144
setStorageClass(StorageClass SC)2145 void VarDecl::setStorageClass(StorageClass SC) {
2146 assert(isLegalForVariable(SC));
2147 VarDeclBits.SClass = SC;
2148 }
2149
getTLSKind() const2150 VarDecl::TLSKind VarDecl::getTLSKind() const {
2151 switch (VarDeclBits.TSCSpec) {
2152 case TSCS_unspecified:
2153 if (!hasAttr<ThreadAttr>() &&
2154 !(getASTContext().getLangOpts().OpenMPUseTLS &&
2155 getASTContext().getTargetInfo().isTLSSupported() &&
2156 hasAttr<OMPThreadPrivateDeclAttr>()))
2157 return TLS_None;
2158 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2159 LangOptions::MSVC2015)) ||
2160 hasAttr<OMPThreadPrivateDeclAttr>())
2161 ? TLS_Dynamic
2162 : TLS_Static;
2163 case TSCS___thread: // Fall through.
2164 case TSCS__Thread_local:
2165 return TLS_Static;
2166 case TSCS_thread_local:
2167 return TLS_Dynamic;
2168 }
2169 llvm_unreachable("Unknown thread storage class specifier!");
2170 }
2171
getSourceRange() const2172 SourceRange VarDecl::getSourceRange() const {
2173 if (const Expr *Init = getInit()) {
2174 SourceLocation InitEnd = Init->getEndLoc();
2175 // If Init is implicit, ignore its source range and fallback on
2176 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2177 if (InitEnd.isValid() && InitEnd != getLocation())
2178 return SourceRange(getOuterLocStart(), InitEnd);
2179 }
2180 return DeclaratorDecl::getSourceRange();
2181 }
2182
2183 template<typename T>
getDeclLanguageLinkage(const T & D)2184 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2185 // C++ [dcl.link]p1: All function types, function names with external linkage,
2186 // and variable names with external linkage have a language linkage.
2187 if (!D.hasExternalFormalLinkage())
2188 return NoLanguageLinkage;
2189
2190 // Language linkage is a C++ concept, but saying that everything else in C has
2191 // C language linkage fits the implementation nicely.
2192 if (!D.getASTContext().getLangOpts().CPlusPlus)
2193 return CLanguageLinkage;
2194
2195 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2196 // language linkage of the names of class members and the function type of
2197 // class member functions.
2198 const DeclContext *DC = D.getDeclContext();
2199 if (DC->isRecord())
2200 return CXXLanguageLinkage;
2201
2202 // If the first decl is in an extern "C" context, any other redeclaration
2203 // will have C language linkage. If the first one is not in an extern "C"
2204 // context, we would have reported an error for any other decl being in one.
2205 if (isFirstInExternCContext(&D))
2206 return CLanguageLinkage;
2207 return CXXLanguageLinkage;
2208 }
2209
2210 template<typename T>
isDeclExternC(const T & D)2211 static bool isDeclExternC(const T &D) {
2212 // Since the context is ignored for class members, they can only have C++
2213 // language linkage or no language linkage.
2214 const DeclContext *DC = D.getDeclContext();
2215 if (DC->isRecord()) {
2216 assert(D.getASTContext().getLangOpts().CPlusPlus);
2217 return false;
2218 }
2219
2220 return D.getLanguageLinkage() == CLanguageLinkage;
2221 }
2222
getLanguageLinkage() const2223 LanguageLinkage VarDecl::getLanguageLinkage() const {
2224 return getDeclLanguageLinkage(*this);
2225 }
2226
isExternC() const2227 bool VarDecl::isExternC() const {
2228 return isDeclExternC(*this);
2229 }
2230
isInExternCContext() const2231 bool VarDecl::isInExternCContext() const {
2232 return getLexicalDeclContext()->isExternCContext();
2233 }
2234
isInExternCXXContext() const2235 bool VarDecl::isInExternCXXContext() const {
2236 return getLexicalDeclContext()->isExternCXXContext();
2237 }
2238
getCanonicalDecl()2239 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2240
2241 VarDecl::DefinitionKind
isThisDeclarationADefinition(ASTContext & C) const2242 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2243 if (isThisDeclarationADemotedDefinition())
2244 return DeclarationOnly;
2245
2246 // C++ [basic.def]p2:
2247 // A declaration is a definition unless [...] it contains the 'extern'
2248 // specifier or a linkage-specification and neither an initializer [...],
2249 // it declares a non-inline static data member in a class declaration [...],
2250 // it declares a static data member outside a class definition and the variable
2251 // was defined within the class with the constexpr specifier [...],
2252 // C++1y [temp.expl.spec]p15:
2253 // An explicit specialization of a static data member or an explicit
2254 // specialization of a static data member template is a definition if the
2255 // declaration includes an initializer; otherwise, it is a declaration.
2256 //
2257 // FIXME: How do you declare (but not define) a partial specialization of
2258 // a static data member template outside the containing class?
2259 if (isStaticDataMember()) {
2260 if (isOutOfLine() &&
2261 !(getCanonicalDecl()->isInline() &&
2262 getCanonicalDecl()->isConstexpr()) &&
2263 (hasInit() ||
2264 // If the first declaration is out-of-line, this may be an
2265 // instantiation of an out-of-line partial specialization of a variable
2266 // template for which we have not yet instantiated the initializer.
2267 (getFirstDecl()->isOutOfLine()
2268 ? getTemplateSpecializationKind() == TSK_Undeclared
2269 : getTemplateSpecializationKind() !=
2270 TSK_ExplicitSpecialization) ||
2271 isa<VarTemplatePartialSpecializationDecl>(this)))
2272 return Definition;
2273 if (!isOutOfLine() && isInline())
2274 return Definition;
2275 return DeclarationOnly;
2276 }
2277 // C99 6.7p5:
2278 // A definition of an identifier is a declaration for that identifier that
2279 // [...] causes storage to be reserved for that object.
2280 // Note: that applies for all non-file-scope objects.
2281 // C99 6.9.2p1:
2282 // If the declaration of an identifier for an object has file scope and an
2283 // initializer, the declaration is an external definition for the identifier
2284 if (hasInit())
2285 return Definition;
2286
2287 if (hasDefiningAttr())
2288 return Definition;
2289
2290 if (const auto *SAA = getAttr<SelectAnyAttr>())
2291 if (!SAA->isInherited())
2292 return Definition;
2293
2294 // A variable template specialization (other than a static data member
2295 // template or an explicit specialization) is a declaration until we
2296 // instantiate its initializer.
2297 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2298 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2299 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2300 !VTSD->IsCompleteDefinition)
2301 return DeclarationOnly;
2302 }
2303
2304 if (hasExternalStorage())
2305 return DeclarationOnly;
2306
2307 // [dcl.link] p7:
2308 // A declaration directly contained in a linkage-specification is treated
2309 // as if it contains the extern specifier for the purpose of determining
2310 // the linkage of the declared name and whether it is a definition.
2311 if (isSingleLineLanguageLinkage(*this))
2312 return DeclarationOnly;
2313
2314 // C99 6.9.2p2:
2315 // A declaration of an object that has file scope without an initializer,
2316 // and without a storage class specifier or the scs 'static', constitutes
2317 // a tentative definition.
2318 // No such thing in C++.
2319 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2320 return TentativeDefinition;
2321
2322 // What's left is (in C, block-scope) declarations without initializers or
2323 // external storage. These are definitions.
2324 return Definition;
2325 }
2326
getActingDefinition()2327 VarDecl *VarDecl::getActingDefinition() {
2328 DefinitionKind Kind = isThisDeclarationADefinition();
2329 if (Kind != TentativeDefinition)
2330 return nullptr;
2331
2332 VarDecl *LastTentative = nullptr;
2333
2334 // Loop through the declaration chain, starting with the most recent.
2335 for (VarDecl *Decl = getMostRecentDecl(); Decl;
2336 Decl = Decl->getPreviousDecl()) {
2337 Kind = Decl->isThisDeclarationADefinition();
2338 if (Kind == Definition)
2339 return nullptr;
2340 // Record the first (most recent) TentativeDefinition that is encountered.
2341 if (Kind == TentativeDefinition && !LastTentative)
2342 LastTentative = Decl;
2343 }
2344
2345 return LastTentative;
2346 }
2347
getDefinition(ASTContext & C)2348 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2349 VarDecl *First = getFirstDecl();
2350 for (auto *I : First->redecls()) {
2351 if (I->isThisDeclarationADefinition(C) == Definition)
2352 return I;
2353 }
2354 return nullptr;
2355 }
2356
hasDefinition(ASTContext & C) const2357 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2358 DefinitionKind Kind = DeclarationOnly;
2359
2360 const VarDecl *First = getFirstDecl();
2361 for (auto *I : First->redecls()) {
2362 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2363 if (Kind == Definition)
2364 break;
2365 }
2366
2367 return Kind;
2368 }
2369
getAnyInitializer(const VarDecl * & D) const2370 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2371 for (auto *I : redecls()) {
2372 if (auto Expr = I->getInit()) {
2373 D = I;
2374 return Expr;
2375 }
2376 }
2377 return nullptr;
2378 }
2379
hasInit() const2380 bool VarDecl::hasInit() const {
2381 if (auto *P = dyn_cast<ParmVarDecl>(this))
2382 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2383 return false;
2384
2385 if (auto *Eval = getEvaluatedStmt())
2386 return Eval->Value.isValid();
2387
2388 return !Init.isNull();
2389 }
2390
getInit()2391 Expr *VarDecl::getInit() {
2392 if (!hasInit())
2393 return nullptr;
2394
2395 if (auto *S = Init.dyn_cast<Stmt *>())
2396 return cast<Expr>(S);
2397
2398 auto *Eval = getEvaluatedStmt();
2399
2400 return cast<Expr>(Eval->Value.get(
2401 Eval->Value.isOffset() ? getASTContext().getExternalSource() : nullptr));
2402 }
2403
getInitAddress()2404 Stmt **VarDecl::getInitAddress() {
2405 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2406 return ES->Value.getAddressOfPointer(getASTContext().getExternalSource());
2407
2408 return Init.getAddrOfPtr1();
2409 }
2410
getInitializingDeclaration()2411 VarDecl *VarDecl::getInitializingDeclaration() {
2412 VarDecl *Def = nullptr;
2413 for (auto *I : redecls()) {
2414 if (I->hasInit())
2415 return I;
2416
2417 if (I->isThisDeclarationADefinition()) {
2418 if (isStaticDataMember())
2419 return I;
2420 Def = I;
2421 }
2422 }
2423 return Def;
2424 }
2425
isOutOfLine() const2426 bool VarDecl::isOutOfLine() const {
2427 if (Decl::isOutOfLine())
2428 return true;
2429
2430 if (!isStaticDataMember())
2431 return false;
2432
2433 // If this static data member was instantiated from a static data member of
2434 // a class template, check whether that static data member was defined
2435 // out-of-line.
2436 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2437 return VD->isOutOfLine();
2438
2439 return false;
2440 }
2441
setInit(Expr * I)2442 void VarDecl::setInit(Expr *I) {
2443 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2444 Eval->~EvaluatedStmt();
2445 getASTContext().Deallocate(Eval);
2446 }
2447
2448 Init = I;
2449 }
2450
mightBeUsableInConstantExpressions(const ASTContext & C) const2451 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2452 const LangOptions &Lang = C.getLangOpts();
2453
2454 // OpenCL permits const integral variables to be used in constant
2455 // expressions, like in C++98.
2456 if (!Lang.CPlusPlus && !Lang.OpenCL && !Lang.C23)
2457 return false;
2458
2459 // Function parameters are never usable in constant expressions.
2460 if (isa<ParmVarDecl>(this))
2461 return false;
2462
2463 // The values of weak variables are never usable in constant expressions.
2464 if (isWeak())
2465 return false;
2466
2467 // In C++11, any variable of reference type can be used in a constant
2468 // expression if it is initialized by a constant expression.
2469 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2470 return true;
2471
2472 // Only const objects can be used in constant expressions in C++. C++98 does
2473 // not require the variable to be non-volatile, but we consider this to be a
2474 // defect.
2475 if (!getType().isConstant(C) || getType().isVolatileQualified())
2476 return false;
2477
2478 // In C++, but not in C, const, non-volatile variables of integral or
2479 // enumeration types can be used in constant expressions.
2480 if (getType()->isIntegralOrEnumerationType() && !Lang.C23)
2481 return true;
2482
2483 // C23 6.6p7: An identifier that is:
2484 // ...
2485 // - declared with storage-class specifier constexpr and has an object type,
2486 // is a named constant, ... such a named constant is a constant expression
2487 // with the type and value of the declared object.
2488 // Additionally, in C++11, non-volatile constexpr variables can be used in
2489 // constant expressions.
2490 return (Lang.CPlusPlus11 || Lang.C23) && isConstexpr();
2491 }
2492
isUsableInConstantExpressions(const ASTContext & Context) const2493 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2494 // C++2a [expr.const]p3:
2495 // A variable is usable in constant expressions after its initializing
2496 // declaration is encountered...
2497 const VarDecl *DefVD = nullptr;
2498 const Expr *Init = getAnyInitializer(DefVD);
2499 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2500 return false;
2501 // ... if it is a constexpr variable, or it is of reference type or of
2502 // const-qualified integral or enumeration type, ...
2503 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2504 return false;
2505 // ... and its initializer is a constant initializer.
2506 if ((Context.getLangOpts().CPlusPlus || getLangOpts().C23) &&
2507 !DefVD->hasConstantInitialization())
2508 return false;
2509 // C++98 [expr.const]p1:
2510 // An integral constant-expression can involve only [...] const variables
2511 // or static data members of integral or enumeration types initialized with
2512 // [integer] constant expressions (dcl.init)
2513 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2514 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2515 return false;
2516 return true;
2517 }
2518
2519 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2520 /// form, which contains extra information on the evaluated value of the
2521 /// initializer.
ensureEvaluatedStmt() const2522 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2523 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2524 if (!Eval) {
2525 // Note: EvaluatedStmt contains an APValue, which usually holds
2526 // resources not allocated from the ASTContext. We need to do some
2527 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2528 // where we can detect whether there's anything to clean up or not.
2529 Eval = new (getASTContext()) EvaluatedStmt;
2530 Eval->Value = Init.get<Stmt *>();
2531 Init = Eval;
2532 }
2533 return Eval;
2534 }
2535
getEvaluatedStmt() const2536 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2537 return Init.dyn_cast<EvaluatedStmt *>();
2538 }
2539
evaluateValue() const2540 APValue *VarDecl::evaluateValue() const {
2541 SmallVector<PartialDiagnosticAt, 8> Notes;
2542 return evaluateValueImpl(Notes, hasConstantInitialization());
2543 }
2544
evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> & Notes,bool IsConstantInitialization) const2545 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2546 bool IsConstantInitialization) const {
2547 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2548
2549 const auto *Init = getInit();
2550 assert(!Init->isValueDependent());
2551
2552 // We only produce notes indicating why an initializer is non-constant the
2553 // first time it is evaluated. FIXME: The notes won't always be emitted the
2554 // first time we try evaluation, so might not be produced at all.
2555 if (Eval->WasEvaluated)
2556 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2557
2558 if (Eval->IsEvaluating) {
2559 // FIXME: Produce a diagnostic for self-initialization.
2560 return nullptr;
2561 }
2562
2563 Eval->IsEvaluating = true;
2564
2565 ASTContext &Ctx = getASTContext();
2566 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2567 IsConstantInitialization);
2568
2569 // In C++, or in C23 if we're initialising a 'constexpr' variable, this isn't
2570 // a constant initializer if we produced notes. In that case, we can't keep
2571 // the result, because it may only be correct under the assumption that the
2572 // initializer is a constant context.
2573 if (IsConstantInitialization &&
2574 (Ctx.getLangOpts().CPlusPlus ||
2575 (isConstexpr() && Ctx.getLangOpts().C23)) &&
2576 !Notes.empty())
2577 Result = false;
2578
2579 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2580 // or that it's empty (so that there's nothing to clean up) if evaluation
2581 // failed.
2582 if (!Result)
2583 Eval->Evaluated = APValue();
2584 else if (Eval->Evaluated.needsCleanup())
2585 Ctx.addDestruction(&Eval->Evaluated);
2586
2587 Eval->IsEvaluating = false;
2588 Eval->WasEvaluated = true;
2589
2590 return Result ? &Eval->Evaluated : nullptr;
2591 }
2592
getEvaluatedValue() const2593 APValue *VarDecl::getEvaluatedValue() const {
2594 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2595 if (Eval->WasEvaluated)
2596 return &Eval->Evaluated;
2597
2598 return nullptr;
2599 }
2600
hasICEInitializer(const ASTContext & Context) const2601 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2602 const Expr *Init = getInit();
2603 assert(Init && "no initializer");
2604
2605 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2606 if (!Eval->CheckedForICEInit) {
2607 Eval->CheckedForICEInit = true;
2608 Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2609 }
2610 return Eval->HasICEInit;
2611 }
2612
hasConstantInitialization() const2613 bool VarDecl::hasConstantInitialization() const {
2614 // In C, all globals and constexpr variables should have constant
2615 // initialization. For constexpr variables in C check that initializer is a
2616 // constant initializer because they can be used in constant expressions.
2617 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus &&
2618 !isConstexpr())
2619 return true;
2620
2621 // In C++, it depends on whether the evaluation at the point of definition
2622 // was evaluatable as a constant initializer.
2623 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2624 return Eval->HasConstantInitialization;
2625
2626 return false;
2627 }
2628
checkForConstantInitialization(SmallVectorImpl<PartialDiagnosticAt> & Notes) const2629 bool VarDecl::checkForConstantInitialization(
2630 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2631 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2632 // If we ask for the value before we know whether we have a constant
2633 // initializer, we can compute the wrong value (for example, due to
2634 // std::is_constant_evaluated()).
2635 assert(!Eval->WasEvaluated &&
2636 "already evaluated var value before checking for constant init");
2637 assert((getASTContext().getLangOpts().CPlusPlus ||
2638 getASTContext().getLangOpts().C23) &&
2639 "only meaningful in C++/C23");
2640
2641 assert(!getInit()->isValueDependent());
2642
2643 // Evaluate the initializer to check whether it's a constant expression.
2644 Eval->HasConstantInitialization =
2645 evaluateValueImpl(Notes, true) && Notes.empty();
2646
2647 // If evaluation as a constant initializer failed, allow re-evaluation as a
2648 // non-constant initializer if we later find we want the value.
2649 if (!Eval->HasConstantInitialization)
2650 Eval->WasEvaluated = false;
2651
2652 return Eval->HasConstantInitialization;
2653 }
2654
isParameterPack() const2655 bool VarDecl::isParameterPack() const {
2656 return isa<PackExpansionType>(getType());
2657 }
2658
2659 template<typename DeclT>
getDefinitionOrSelf(DeclT * D)2660 static DeclT *getDefinitionOrSelf(DeclT *D) {
2661 assert(D);
2662 if (auto *Def = D->getDefinition())
2663 return Def;
2664 return D;
2665 }
2666
isEscapingByref() const2667 bool VarDecl::isEscapingByref() const {
2668 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2669 }
2670
isNonEscapingByref() const2671 bool VarDecl::isNonEscapingByref() const {
2672 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2673 }
2674
hasDependentAlignment() const2675 bool VarDecl::hasDependentAlignment() const {
2676 QualType T = getType();
2677 return T->isDependentType() || T->isUndeducedType() ||
2678 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2679 return AA->isAlignmentDependent();
2680 });
2681 }
2682
getTemplateInstantiationPattern() const2683 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2684 const VarDecl *VD = this;
2685
2686 // If this is an instantiated member, walk back to the template from which
2687 // it was instantiated.
2688 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2689 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2690 VD = VD->getInstantiatedFromStaticDataMember();
2691 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2692 VD = NewVD;
2693 }
2694 }
2695
2696 // If it's an instantiated variable template specialization, find the
2697 // template or partial specialization from which it was instantiated.
2698 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2699 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2700 auto From = VDTemplSpec->getInstantiatedFrom();
2701 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2702 while (!VTD->isMemberSpecialization()) {
2703 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2704 if (!NewVTD)
2705 break;
2706 VTD = NewVTD;
2707 }
2708 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2709 }
2710 if (auto *VTPSD =
2711 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2712 while (!VTPSD->isMemberSpecialization()) {
2713 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2714 if (!NewVTPSD)
2715 break;
2716 VTPSD = NewVTPSD;
2717 }
2718 return getDefinitionOrSelf<VarDecl>(VTPSD);
2719 }
2720 }
2721 }
2722
2723 // If this is the pattern of a variable template, find where it was
2724 // instantiated from. FIXME: Is this necessary?
2725 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2726 while (!VarTemplate->isMemberSpecialization()) {
2727 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2728 if (!NewVT)
2729 break;
2730 VarTemplate = NewVT;
2731 }
2732
2733 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2734 }
2735
2736 if (VD == this)
2737 return nullptr;
2738 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2739 }
2740
getInstantiatedFromStaticDataMember() const2741 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2742 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2743 return cast<VarDecl>(MSI->getInstantiatedFrom());
2744
2745 return nullptr;
2746 }
2747
getTemplateSpecializationKind() const2748 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2749 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2750 return Spec->getSpecializationKind();
2751
2752 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2753 return MSI->getTemplateSpecializationKind();
2754
2755 return TSK_Undeclared;
2756 }
2757
2758 TemplateSpecializationKind
getTemplateSpecializationKindForInstantiation() const2759 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2760 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2761 return MSI->getTemplateSpecializationKind();
2762
2763 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2764 return Spec->getSpecializationKind();
2765
2766 return TSK_Undeclared;
2767 }
2768
getPointOfInstantiation() const2769 SourceLocation VarDecl::getPointOfInstantiation() const {
2770 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2771 return Spec->getPointOfInstantiation();
2772
2773 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2774 return MSI->getPointOfInstantiation();
2775
2776 return SourceLocation();
2777 }
2778
getDescribedVarTemplate() const2779 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2780 return getASTContext().getTemplateOrSpecializationInfo(this)
2781 .dyn_cast<VarTemplateDecl *>();
2782 }
2783
setDescribedVarTemplate(VarTemplateDecl * Template)2784 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2785 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2786 }
2787
isKnownToBeDefined() const2788 bool VarDecl::isKnownToBeDefined() const {
2789 const auto &LangOpts = getASTContext().getLangOpts();
2790 // In CUDA mode without relocatable device code, variables of form 'extern
2791 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2792 // memory pool. These are never undefined variables, even if they appear
2793 // inside of an anon namespace or static function.
2794 //
2795 // With CUDA relocatable device code enabled, these variables don't get
2796 // special handling; they're treated like regular extern variables.
2797 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2798 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2799 isa<IncompleteArrayType>(getType()))
2800 return true;
2801
2802 return hasDefinition();
2803 }
2804
isNoDestroy(const ASTContext & Ctx) const2805 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2806 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2807 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2808 !hasAttr<AlwaysDestroyAttr>()));
2809 }
2810
2811 QualType::DestructionKind
needsDestruction(const ASTContext & Ctx) const2812 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2813 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2814 if (Eval->HasConstantDestruction)
2815 return QualType::DK_none;
2816
2817 if (isNoDestroy(Ctx))
2818 return QualType::DK_none;
2819
2820 return getType().isDestructedType();
2821 }
2822
hasFlexibleArrayInit(const ASTContext & Ctx) const2823 bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const {
2824 assert(hasInit() && "Expect initializer to check for flexible array init");
2825 auto *Ty = getType()->getAs<RecordType>();
2826 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2827 return false;
2828 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2829 if (!List)
2830 return false;
2831 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2832 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2833 if (!InitTy)
2834 return false;
2835 return !InitTy->isZeroSize();
2836 }
2837
getFlexibleArrayInitChars(const ASTContext & Ctx) const2838 CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const {
2839 assert(hasInit() && "Expect initializer to check for flexible array init");
2840 auto *Ty = getType()->getAs<RecordType>();
2841 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2842 return CharUnits::Zero();
2843 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2844 if (!List || List->getNumInits() == 0)
2845 return CharUnits::Zero();
2846 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2847 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2848 if (!InitTy)
2849 return CharUnits::Zero();
2850 CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy);
2851 const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl());
2852 CharUnits FlexibleArrayOffset =
2853 Ctx.toCharUnitsFromBits(RL.getFieldOffset(RL.getFieldCount() - 1));
2854 if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize())
2855 return CharUnits::Zero();
2856 return FlexibleArrayOffset + FlexibleArraySize - RL.getSize();
2857 }
2858
getMemberSpecializationInfo() const2859 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2860 if (isStaticDataMember())
2861 // FIXME: Remove ?
2862 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2863 return getASTContext().getTemplateOrSpecializationInfo(this)
2864 .dyn_cast<MemberSpecializationInfo *>();
2865 return nullptr;
2866 }
2867
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2868 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2869 SourceLocation PointOfInstantiation) {
2870 assert((isa<VarTemplateSpecializationDecl>(this) ||
2871 getMemberSpecializationInfo()) &&
2872 "not a variable or static data member template specialization");
2873
2874 if (VarTemplateSpecializationDecl *Spec =
2875 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2876 Spec->setSpecializationKind(TSK);
2877 if (TSK != TSK_ExplicitSpecialization &&
2878 PointOfInstantiation.isValid() &&
2879 Spec->getPointOfInstantiation().isInvalid()) {
2880 Spec->setPointOfInstantiation(PointOfInstantiation);
2881 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2882 L->InstantiationRequested(this);
2883 }
2884 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2885 MSI->setTemplateSpecializationKind(TSK);
2886 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2887 MSI->getPointOfInstantiation().isInvalid()) {
2888 MSI->setPointOfInstantiation(PointOfInstantiation);
2889 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2890 L->InstantiationRequested(this);
2891 }
2892 }
2893 }
2894
2895 void
setInstantiationOfStaticDataMember(VarDecl * VD,TemplateSpecializationKind TSK)2896 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2897 TemplateSpecializationKind TSK) {
2898 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2899 "Previous template or instantiation?");
2900 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2901 }
2902
2903 //===----------------------------------------------------------------------===//
2904 // ParmVarDecl Implementation
2905 //===----------------------------------------------------------------------===//
2906
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,const IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)2907 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2908 SourceLocation StartLoc, SourceLocation IdLoc,
2909 const IdentifierInfo *Id, QualType T,
2910 TypeSourceInfo *TInfo, StorageClass S,
2911 Expr *DefArg) {
2912 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2913 S, DefArg);
2914 }
2915
getOriginalType() const2916 QualType ParmVarDecl::getOriginalType() const {
2917 TypeSourceInfo *TSI = getTypeSourceInfo();
2918 QualType T = TSI ? TSI->getType() : getType();
2919 if (const auto *DT = dyn_cast<DecayedType>(T))
2920 return DT->getOriginalType();
2921 return T;
2922 }
2923
CreateDeserialized(ASTContext & C,GlobalDeclID ID)2924 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
2925 return new (C, ID)
2926 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2927 nullptr, QualType(), nullptr, SC_None, nullptr);
2928 }
2929
getSourceRange() const2930 SourceRange ParmVarDecl::getSourceRange() const {
2931 if (!hasInheritedDefaultArg()) {
2932 SourceRange ArgRange = getDefaultArgRange();
2933 if (ArgRange.isValid())
2934 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2935 }
2936
2937 // DeclaratorDecl considers the range of postfix types as overlapping with the
2938 // declaration name, but this is not the case with parameters in ObjC methods.
2939 if (isa<ObjCMethodDecl>(getDeclContext()))
2940 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2941
2942 return DeclaratorDecl::getSourceRange();
2943 }
2944
isDestroyedInCallee() const2945 bool ParmVarDecl::isDestroyedInCallee() const {
2946 // ns_consumed only affects code generation in ARC
2947 if (hasAttr<NSConsumedAttr>())
2948 return getASTContext().getLangOpts().ObjCAutoRefCount;
2949
2950 // FIXME: isParamDestroyedInCallee() should probably imply
2951 // isDestructedType()
2952 const auto *RT = getType()->getAs<RecordType>();
2953 if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2954 getType().isDestructedType())
2955 return true;
2956
2957 return false;
2958 }
2959
getDefaultArg()2960 Expr *ParmVarDecl::getDefaultArg() {
2961 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2962 assert(!hasUninstantiatedDefaultArg() &&
2963 "Default argument is not yet instantiated!");
2964
2965 Expr *Arg = getInit();
2966 if (auto *E = dyn_cast_if_present<FullExpr>(Arg))
2967 return E->getSubExpr();
2968
2969 return Arg;
2970 }
2971
setDefaultArg(Expr * defarg)2972 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2973 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2974 Init = defarg;
2975 }
2976
getDefaultArgRange() const2977 SourceRange ParmVarDecl::getDefaultArgRange() const {
2978 switch (ParmVarDeclBits.DefaultArgKind) {
2979 case DAK_None:
2980 case DAK_Unparsed:
2981 // Nothing we can do here.
2982 return SourceRange();
2983
2984 case DAK_Uninstantiated:
2985 return getUninstantiatedDefaultArg()->getSourceRange();
2986
2987 case DAK_Normal:
2988 if (const Expr *E = getInit())
2989 return E->getSourceRange();
2990
2991 // Missing an actual expression, may be invalid.
2992 return SourceRange();
2993 }
2994 llvm_unreachable("Invalid default argument kind.");
2995 }
2996
setUninstantiatedDefaultArg(Expr * arg)2997 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2998 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2999 Init = arg;
3000 }
3001
getUninstantiatedDefaultArg()3002 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
3003 assert(hasUninstantiatedDefaultArg() &&
3004 "Wrong kind of initialization expression!");
3005 return cast_if_present<Expr>(Init.get<Stmt *>());
3006 }
3007
hasDefaultArg() const3008 bool ParmVarDecl::hasDefaultArg() const {
3009 // FIXME: We should just return false for DAK_None here once callers are
3010 // prepared for the case that we encountered an invalid default argument and
3011 // were unable to even build an invalid expression.
3012 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
3013 !Init.isNull();
3014 }
3015
setParameterIndexLarge(unsigned parameterIndex)3016 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
3017 getASTContext().setParameterIndex(this, parameterIndex);
3018 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
3019 }
3020
getParameterIndexLarge() const3021 unsigned ParmVarDecl::getParameterIndexLarge() const {
3022 return getASTContext().getParameterIndex(this);
3023 }
3024
3025 //===----------------------------------------------------------------------===//
3026 // FunctionDecl Implementation
3027 //===----------------------------------------------------------------------===//
3028
FunctionDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass S,bool UsesFPIntrin,bool isInlineSpecified,ConstexprSpecKind ConstexprKind,Expr * TrailingRequiresClause)3029 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
3030 SourceLocation StartLoc,
3031 const DeclarationNameInfo &NameInfo, QualType T,
3032 TypeSourceInfo *TInfo, StorageClass S,
3033 bool UsesFPIntrin, bool isInlineSpecified,
3034 ConstexprSpecKind ConstexprKind,
3035 Expr *TrailingRequiresClause)
3036 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
3037 StartLoc),
3038 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
3039 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
3040 assert(T.isNull() || T->isFunctionType());
3041 FunctionDeclBits.SClass = S;
3042 FunctionDeclBits.IsInline = isInlineSpecified;
3043 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
3044 FunctionDeclBits.IsVirtualAsWritten = false;
3045 FunctionDeclBits.IsPureVirtual = false;
3046 FunctionDeclBits.HasInheritedPrototype = false;
3047 FunctionDeclBits.HasWrittenPrototype = true;
3048 FunctionDeclBits.IsDeleted = false;
3049 FunctionDeclBits.IsTrivial = false;
3050 FunctionDeclBits.IsTrivialForCall = false;
3051 FunctionDeclBits.IsDefaulted = false;
3052 FunctionDeclBits.IsExplicitlyDefaulted = false;
3053 FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
3054 FunctionDeclBits.IsIneligibleOrNotSelected = false;
3055 FunctionDeclBits.HasImplicitReturnZero = false;
3056 FunctionDeclBits.IsLateTemplateParsed = false;
3057 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
3058 FunctionDeclBits.BodyContainsImmediateEscalatingExpression = false;
3059 FunctionDeclBits.InstantiationIsPending = false;
3060 FunctionDeclBits.UsesSEHTry = false;
3061 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
3062 FunctionDeclBits.HasSkippedBody = false;
3063 FunctionDeclBits.WillHaveBody = false;
3064 FunctionDeclBits.IsMultiVersion = false;
3065 FunctionDeclBits.DeductionCandidateKind =
3066 static_cast<unsigned char>(DeductionCandidate::Normal);
3067 FunctionDeclBits.HasODRHash = false;
3068 FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false;
3069 if (TrailingRequiresClause)
3070 setTrailingRequiresClause(TrailingRequiresClause);
3071 }
3072
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const3073 void FunctionDecl::getNameForDiagnostic(
3074 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
3075 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
3076 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
3077 if (TemplateArgs)
3078 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
3079 }
3080
isVariadic() const3081 bool FunctionDecl::isVariadic() const {
3082 if (const auto *FT = getType()->getAs<FunctionProtoType>())
3083 return FT->isVariadic();
3084 return false;
3085 }
3086
3087 FunctionDecl::DefaultedOrDeletedFunctionInfo *
Create(ASTContext & Context,ArrayRef<DeclAccessPair> Lookups,StringLiteral * DeletedMessage)3088 FunctionDecl::DefaultedOrDeletedFunctionInfo::Create(
3089 ASTContext &Context, ArrayRef<DeclAccessPair> Lookups,
3090 StringLiteral *DeletedMessage) {
3091 static constexpr size_t Alignment =
3092 std::max({alignof(DefaultedOrDeletedFunctionInfo),
3093 alignof(DeclAccessPair), alignof(StringLiteral *)});
3094 size_t Size = totalSizeToAlloc<DeclAccessPair, StringLiteral *>(
3095 Lookups.size(), DeletedMessage != nullptr);
3096
3097 DefaultedOrDeletedFunctionInfo *Info =
3098 new (Context.Allocate(Size, Alignment)) DefaultedOrDeletedFunctionInfo;
3099 Info->NumLookups = Lookups.size();
3100 Info->HasDeletedMessage = DeletedMessage != nullptr;
3101
3102 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
3103 Info->getTrailingObjects<DeclAccessPair>());
3104 if (DeletedMessage)
3105 *Info->getTrailingObjects<StringLiteral *>() = DeletedMessage;
3106 return Info;
3107 }
3108
setDefaultedOrDeletedInfo(DefaultedOrDeletedFunctionInfo * Info)3109 void FunctionDecl::setDefaultedOrDeletedInfo(
3110 DefaultedOrDeletedFunctionInfo *Info) {
3111 assert(!FunctionDeclBits.HasDefaultedOrDeletedInfo && "already have this");
3112 assert(!Body && "can't replace function body with defaulted function info");
3113
3114 FunctionDeclBits.HasDefaultedOrDeletedInfo = true;
3115 DefaultedOrDeletedInfo = Info;
3116 }
3117
setDeletedAsWritten(bool D,StringLiteral * Message)3118 void FunctionDecl::setDeletedAsWritten(bool D, StringLiteral *Message) {
3119 FunctionDeclBits.IsDeleted = D;
3120
3121 if (Message) {
3122 assert(isDeletedAsWritten() && "Function must be deleted");
3123 if (FunctionDeclBits.HasDefaultedOrDeletedInfo)
3124 DefaultedOrDeletedInfo->setDeletedMessage(Message);
3125 else
3126 setDefaultedOrDeletedInfo(DefaultedOrDeletedFunctionInfo::Create(
3127 getASTContext(), /*Lookups=*/{}, Message));
3128 }
3129 }
3130
setDeletedMessage(StringLiteral * Message)3131 void FunctionDecl::DefaultedOrDeletedFunctionInfo::setDeletedMessage(
3132 StringLiteral *Message) {
3133 // We should never get here with the DefaultedOrDeletedInfo populated, but
3134 // no space allocated for the deleted message, since that would require
3135 // recreating this, but setDefaultedOrDeletedInfo() disallows overwriting
3136 // an already existing DefaultedOrDeletedFunctionInfo.
3137 assert(HasDeletedMessage &&
3138 "No space to store a delete message in this DefaultedOrDeletedInfo");
3139 *getTrailingObjects<StringLiteral *>() = Message;
3140 }
3141
3142 FunctionDecl::DefaultedOrDeletedFunctionInfo *
getDefalutedOrDeletedInfo() const3143 FunctionDecl::getDefalutedOrDeletedInfo() const {
3144 return FunctionDeclBits.HasDefaultedOrDeletedInfo ? DefaultedOrDeletedInfo
3145 : nullptr;
3146 }
3147
hasBody(const FunctionDecl * & Definition) const3148 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
3149 for (const auto *I : redecls()) {
3150 if (I->doesThisDeclarationHaveABody()) {
3151 Definition = I;
3152 return true;
3153 }
3154 }
3155
3156 return false;
3157 }
3158
hasTrivialBody() const3159 bool FunctionDecl::hasTrivialBody() const {
3160 const Stmt *S = getBody();
3161 if (!S) {
3162 // Since we don't have a body for this function, we don't know if it's
3163 // trivial or not.
3164 return false;
3165 }
3166
3167 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
3168 return true;
3169 return false;
3170 }
3171
isThisDeclarationInstantiatedFromAFriendDefinition() const3172 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
3173 if (!getFriendObjectKind())
3174 return false;
3175
3176 // Check for a friend function instantiated from a friend function
3177 // definition in a templated class.
3178 if (const FunctionDecl *InstantiatedFrom =
3179 getInstantiatedFromMemberFunction())
3180 return InstantiatedFrom->getFriendObjectKind() &&
3181 InstantiatedFrom->isThisDeclarationADefinition();
3182
3183 // Check for a friend function template instantiated from a friend
3184 // function template definition in a templated class.
3185 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
3186 if (const FunctionTemplateDecl *InstantiatedFrom =
3187 Template->getInstantiatedFromMemberTemplate())
3188 return InstantiatedFrom->getFriendObjectKind() &&
3189 InstantiatedFrom->isThisDeclarationADefinition();
3190 }
3191
3192 return false;
3193 }
3194
isDefined(const FunctionDecl * & Definition,bool CheckForPendingFriendDefinition) const3195 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
3196 bool CheckForPendingFriendDefinition) const {
3197 for (const FunctionDecl *FD : redecls()) {
3198 if (FD->isThisDeclarationADefinition()) {
3199 Definition = FD;
3200 return true;
3201 }
3202
3203 // If this is a friend function defined in a class template, it does not
3204 // have a body until it is used, nevertheless it is a definition, see
3205 // [temp.inst]p2:
3206 //
3207 // ... for the purpose of determining whether an instantiated redeclaration
3208 // is valid according to [basic.def.odr] and [class.mem], a declaration that
3209 // corresponds to a definition in the template is considered to be a
3210 // definition.
3211 //
3212 // The following code must produce redefinition error:
3213 //
3214 // template<typename T> struct C20 { friend void func_20() {} };
3215 // C20<int> c20i;
3216 // void func_20() {}
3217 //
3218 if (CheckForPendingFriendDefinition &&
3219 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3220 Definition = FD;
3221 return true;
3222 }
3223 }
3224
3225 return false;
3226 }
3227
getBody(const FunctionDecl * & Definition) const3228 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3229 if (!hasBody(Definition))
3230 return nullptr;
3231
3232 assert(!Definition->FunctionDeclBits.HasDefaultedOrDeletedInfo &&
3233 "definition should not have a body");
3234 if (Definition->Body)
3235 return Definition->Body.get(getASTContext().getExternalSource());
3236
3237 return nullptr;
3238 }
3239
setBody(Stmt * B)3240 void FunctionDecl::setBody(Stmt *B) {
3241 FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
3242 Body = LazyDeclStmtPtr(B);
3243 if (B)
3244 EndRangeLoc = B->getEndLoc();
3245 }
3246
setIsPureVirtual(bool P)3247 void FunctionDecl::setIsPureVirtual(bool P) {
3248 FunctionDeclBits.IsPureVirtual = P;
3249 if (P)
3250 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3251 Parent->markedVirtualFunctionPure();
3252 }
3253
3254 template<std::size_t Len>
isNamed(const NamedDecl * ND,const char (& Str)[Len])3255 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3256 const IdentifierInfo *II = ND->getIdentifier();
3257 return II && II->isStr(Str);
3258 }
3259
isImmediateEscalating() const3260 bool FunctionDecl::isImmediateEscalating() const {
3261 // C++23 [expr.const]/p17
3262 // An immediate-escalating function is
3263 // - the call operator of a lambda that is not declared with the consteval
3264 // specifier,
3265 if (isLambdaCallOperator(this) && !isConsteval())
3266 return true;
3267 // - a defaulted special member function that is not declared with the
3268 // consteval specifier,
3269 if (isDefaulted() && !isConsteval())
3270 return true;
3271 // - a function that results from the instantiation of a templated entity
3272 // defined with the constexpr specifier.
3273 TemplatedKind TK = getTemplatedKind();
3274 if (TK != TK_NonTemplate && TK != TK_DependentNonTemplate &&
3275 isConstexprSpecified())
3276 return true;
3277 return false;
3278 }
3279
isImmediateFunction() const3280 bool FunctionDecl::isImmediateFunction() const {
3281 // C++23 [expr.const]/p18
3282 // An immediate function is a function or constructor that is
3283 // - declared with the consteval specifier
3284 if (isConsteval())
3285 return true;
3286 // - an immediate-escalating function F whose function body contains an
3287 // immediate-escalating expression
3288 if (isImmediateEscalating() && BodyContainsImmediateEscalatingExpressions())
3289 return true;
3290
3291 if (const auto *MD = dyn_cast<CXXMethodDecl>(this);
3292 MD && MD->isLambdaStaticInvoker())
3293 return MD->getParent()->getLambdaCallOperator()->isImmediateFunction();
3294
3295 return false;
3296 }
3297
isMain() const3298 bool FunctionDecl::isMain() const {
3299 const TranslationUnitDecl *tunit =
3300 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3301 return tunit &&
3302 !tunit->getASTContext().getLangOpts().Freestanding &&
3303 isNamed(this, "main");
3304 }
3305
isMSVCRTEntryPoint() const3306 bool FunctionDecl::isMSVCRTEntryPoint() const {
3307 const TranslationUnitDecl *TUnit =
3308 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3309 if (!TUnit)
3310 return false;
3311
3312 // Even though we aren't really targeting MSVCRT if we are freestanding,
3313 // semantic analysis for these functions remains the same.
3314
3315 // MSVCRT entry points only exist on MSVCRT targets.
3316 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3317 return false;
3318
3319 // Nameless functions like constructors cannot be entry points.
3320 if (!getIdentifier())
3321 return false;
3322
3323 return llvm::StringSwitch<bool>(getName())
3324 .Cases("main", // an ANSI console app
3325 "wmain", // a Unicode console App
3326 "WinMain", // an ANSI GUI app
3327 "wWinMain", // a Unicode GUI app
3328 "DllMain", // a DLL
3329 true)
3330 .Default(false);
3331 }
3332
isReservedGlobalPlacementOperator() const3333 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3334 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3335 return false;
3336 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3337 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3338 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3339 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3340 return false;
3341
3342 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3343 return false;
3344
3345 const auto *proto = getType()->castAs<FunctionProtoType>();
3346 if (proto->getNumParams() != 2 || proto->isVariadic())
3347 return false;
3348
3349 const ASTContext &Context =
3350 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3351 ->getASTContext();
3352
3353 // The result type and first argument type are constant across all
3354 // these operators. The second argument must be exactly void*.
3355 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3356 }
3357
isReplaceableGlobalAllocationFunction(std::optional<unsigned> * AlignmentParam,bool * IsNothrow) const3358 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3359 std::optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3360 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3361 return false;
3362 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3363 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3364 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3365 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3366 return false;
3367
3368 if (isa<CXXRecordDecl>(getDeclContext()))
3369 return false;
3370
3371 // This can only fail for an invalid 'operator new' declaration.
3372 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3373 return false;
3374
3375 const auto *FPT = getType()->castAs<FunctionProtoType>();
3376 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 4 || FPT->isVariadic())
3377 return false;
3378
3379 // If this is a single-parameter function, it must be a replaceable global
3380 // allocation or deallocation function.
3381 if (FPT->getNumParams() == 1)
3382 return true;
3383
3384 unsigned Params = 1;
3385 QualType Ty = FPT->getParamType(Params);
3386 const ASTContext &Ctx = getASTContext();
3387
3388 auto Consume = [&] {
3389 ++Params;
3390 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3391 };
3392
3393 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3394 bool IsSizedDelete = false;
3395 if (Ctx.getLangOpts().SizedDeallocation &&
3396 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3397 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3398 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3399 IsSizedDelete = true;
3400 Consume();
3401 }
3402
3403 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3404 // new/delete.
3405 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3406 Consume();
3407 if (AlignmentParam)
3408 *AlignmentParam = Params;
3409 }
3410
3411 // If this is not a sized delete, the next parameter can be a
3412 // 'const std::nothrow_t&'.
3413 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3414 Ty = Ty->getPointeeType();
3415 if (Ty.getCVRQualifiers() != Qualifiers::Const)
3416 return false;
3417 if (Ty->isNothrowT()) {
3418 if (IsNothrow)
3419 *IsNothrow = true;
3420 Consume();
3421 }
3422 }
3423
3424 // Finally, recognize the not yet standard versions of new that take a
3425 // hot/cold allocation hint (__hot_cold_t). These are currently supported by
3426 // tcmalloc (see
3427 // https://github.com/google/tcmalloc/blob/220043886d4e2efff7a5702d5172cb8065253664/tcmalloc/malloc_extension.h#L53).
3428 if (!IsSizedDelete && !Ty.isNull() && Ty->isEnumeralType()) {
3429 QualType T = Ty;
3430 while (const auto *TD = T->getAs<TypedefType>())
3431 T = TD->getDecl()->getUnderlyingType();
3432 const IdentifierInfo *II =
3433 T->castAs<EnumType>()->getDecl()->getIdentifier();
3434 if (II && II->isStr("__hot_cold_t"))
3435 Consume();
3436 }
3437
3438 return Params == FPT->getNumParams();
3439 }
3440
isInlineBuiltinDeclaration() const3441 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3442 if (!getBuiltinID())
3443 return false;
3444
3445 const FunctionDecl *Definition;
3446 if (!hasBody(Definition))
3447 return false;
3448
3449 if (!Definition->isInlineSpecified() ||
3450 !Definition->hasAttr<AlwaysInlineAttr>())
3451 return false;
3452
3453 ASTContext &Context = getASTContext();
3454 switch (Context.GetGVALinkageForFunction(Definition)) {
3455 case GVA_Internal:
3456 case GVA_DiscardableODR:
3457 case GVA_StrongODR:
3458 return false;
3459 case GVA_AvailableExternally:
3460 case GVA_StrongExternal:
3461 return true;
3462 }
3463 llvm_unreachable("Unknown GVALinkage");
3464 }
3465
isDestroyingOperatorDelete() const3466 bool FunctionDecl::isDestroyingOperatorDelete() const {
3467 // C++ P0722:
3468 // Within a class C, a single object deallocation function with signature
3469 // (T, std::destroying_delete_t, <more params>)
3470 // is a destroying operator delete.
3471 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3472 getNumParams() < 2)
3473 return false;
3474
3475 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3476 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3477 RD->getIdentifier()->isStr("destroying_delete_t");
3478 }
3479
getLanguageLinkage() const3480 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3481 return getDeclLanguageLinkage(*this);
3482 }
3483
isExternC() const3484 bool FunctionDecl::isExternC() const {
3485 return isDeclExternC(*this);
3486 }
3487
isInExternCContext() const3488 bool FunctionDecl::isInExternCContext() const {
3489 if (hasAttr<OpenCLKernelAttr>())
3490 return true;
3491 return getLexicalDeclContext()->isExternCContext();
3492 }
3493
isInExternCXXContext() const3494 bool FunctionDecl::isInExternCXXContext() const {
3495 return getLexicalDeclContext()->isExternCXXContext();
3496 }
3497
isGlobal() const3498 bool FunctionDecl::isGlobal() const {
3499 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3500 return Method->isStatic();
3501
3502 if (getCanonicalDecl()->getStorageClass() == SC_Static)
3503 return false;
3504
3505 for (const DeclContext *DC = getDeclContext();
3506 DC->isNamespace();
3507 DC = DC->getParent()) {
3508 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3509 if (!Namespace->getDeclName())
3510 return false;
3511 }
3512 }
3513
3514 return true;
3515 }
3516
isNoReturn() const3517 bool FunctionDecl::isNoReturn() const {
3518 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3519 hasAttr<C11NoReturnAttr>())
3520 return true;
3521
3522 if (auto *FnTy = getType()->getAs<FunctionType>())
3523 return FnTy->getNoReturnAttr();
3524
3525 return false;
3526 }
3527
isMemberLikeConstrainedFriend() const3528 bool FunctionDecl::isMemberLikeConstrainedFriend() const {
3529 // C++20 [temp.friend]p9:
3530 // A non-template friend declaration with a requires-clause [or]
3531 // a friend function template with a constraint that depends on a template
3532 // parameter from an enclosing template [...] does not declare the same
3533 // function or function template as a declaration in any other scope.
3534
3535 // If this isn't a friend then it's not a member-like constrained friend.
3536 if (!getFriendObjectKind()) {
3537 return false;
3538 }
3539
3540 if (!getDescribedFunctionTemplate()) {
3541 // If these friends don't have constraints, they aren't constrained, and
3542 // thus don't fall under temp.friend p9. Else the simple presence of a
3543 // constraint makes them unique.
3544 return getTrailingRequiresClause();
3545 }
3546
3547 return FriendConstraintRefersToEnclosingTemplate();
3548 }
3549
getMultiVersionKind() const3550 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3551 if (hasAttr<TargetAttr>())
3552 return MultiVersionKind::Target;
3553 if (hasAttr<TargetVersionAttr>())
3554 return MultiVersionKind::TargetVersion;
3555 if (hasAttr<CPUDispatchAttr>())
3556 return MultiVersionKind::CPUDispatch;
3557 if (hasAttr<CPUSpecificAttr>())
3558 return MultiVersionKind::CPUSpecific;
3559 if (hasAttr<TargetClonesAttr>())
3560 return MultiVersionKind::TargetClones;
3561 return MultiVersionKind::None;
3562 }
3563
isCPUDispatchMultiVersion() const3564 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3565 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3566 }
3567
isCPUSpecificMultiVersion() const3568 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3569 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3570 }
3571
isTargetMultiVersion() const3572 bool FunctionDecl::isTargetMultiVersion() const {
3573 return isMultiVersion() &&
3574 (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>());
3575 }
3576
isTargetMultiVersionDefault() const3577 bool FunctionDecl::isTargetMultiVersionDefault() const {
3578 if (!isMultiVersion())
3579 return false;
3580 if (hasAttr<TargetAttr>())
3581 return getAttr<TargetAttr>()->isDefaultVersion();
3582 return hasAttr<TargetVersionAttr>() &&
3583 getAttr<TargetVersionAttr>()->isDefaultVersion();
3584 }
3585
isTargetClonesMultiVersion() const3586 bool FunctionDecl::isTargetClonesMultiVersion() const {
3587 return isMultiVersion() && hasAttr<TargetClonesAttr>();
3588 }
3589
isTargetVersionMultiVersion() const3590 bool FunctionDecl::isTargetVersionMultiVersion() const {
3591 return isMultiVersion() && hasAttr<TargetVersionAttr>();
3592 }
3593
3594 void
setPreviousDeclaration(FunctionDecl * PrevDecl)3595 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3596 redeclarable_base::setPreviousDecl(PrevDecl);
3597
3598 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3599 FunctionTemplateDecl *PrevFunTmpl
3600 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3601 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3602 FunTmpl->setPreviousDecl(PrevFunTmpl);
3603 }
3604
3605 if (PrevDecl && PrevDecl->isInlined())
3606 setImplicitlyInline(true);
3607 }
3608
getCanonicalDecl()3609 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3610
3611 /// Returns a value indicating whether this function corresponds to a builtin
3612 /// function.
3613 ///
3614 /// The function corresponds to a built-in function if it is declared at
3615 /// translation scope or within an extern "C" block and its name matches with
3616 /// the name of a builtin. The returned value will be 0 for functions that do
3617 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3618 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3619 /// value.
3620 ///
3621 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3622 /// functions as their wrapped builtins. This shouldn't be done in general, but
3623 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
getBuiltinID(bool ConsiderWrapperFunctions) const3624 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3625 unsigned BuiltinID = 0;
3626
3627 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3628 BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3629 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3630 BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3631 } else if (const auto *A = getAttr<BuiltinAttr>()) {
3632 BuiltinID = A->getID();
3633 }
3634
3635 if (!BuiltinID)
3636 return 0;
3637
3638 // If the function is marked "overloadable", it has a different mangled name
3639 // and is not the C library function.
3640 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3641 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3642 return 0;
3643
3644 const ASTContext &Context = getASTContext();
3645 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3646 return BuiltinID;
3647
3648 // This function has the name of a known C library
3649 // function. Determine whether it actually refers to the C library
3650 // function or whether it just has the same name.
3651
3652 // If this is a static function, it's not a builtin.
3653 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3654 return 0;
3655
3656 // OpenCL v1.2 s6.9.f - The library functions defined in
3657 // the C99 standard headers are not available.
3658 if (Context.getLangOpts().OpenCL &&
3659 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3660 return 0;
3661
3662 // CUDA does not have device-side standard library. printf and malloc are the
3663 // only special cases that are supported by device-side runtime.
3664 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3665 !hasAttr<CUDAHostAttr>() &&
3666 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3667 return 0;
3668
3669 // As AMDGCN implementation of OpenMP does not have a device-side standard
3670 // library, none of the predefined library functions except printf and malloc
3671 // should be treated as a builtin i.e. 0 should be returned for them.
3672 if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3673 Context.getLangOpts().OpenMPIsTargetDevice &&
3674 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3675 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3676 return 0;
3677
3678 return BuiltinID;
3679 }
3680
3681 /// getNumParams - Return the number of parameters this function must have
3682 /// based on its FunctionType. This is the length of the ParamInfo array
3683 /// after it has been created.
getNumParams() const3684 unsigned FunctionDecl::getNumParams() const {
3685 const auto *FPT = getType()->getAs<FunctionProtoType>();
3686 return FPT ? FPT->getNumParams() : 0;
3687 }
3688
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)3689 void FunctionDecl::setParams(ASTContext &C,
3690 ArrayRef<ParmVarDecl *> NewParamInfo) {
3691 assert(!ParamInfo && "Already has param info!");
3692 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3693
3694 // Zero params -> null pointer.
3695 if (!NewParamInfo.empty()) {
3696 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3697 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3698 }
3699 }
3700
3701 /// getMinRequiredArguments - Returns the minimum number of arguments
3702 /// needed to call this function. This may be fewer than the number of
3703 /// function parameters, if some of the parameters have default
3704 /// arguments (in C++) or are parameter packs (C++11).
getMinRequiredArguments() const3705 unsigned FunctionDecl::getMinRequiredArguments() const {
3706 if (!getASTContext().getLangOpts().CPlusPlus)
3707 return getNumParams();
3708
3709 // Note that it is possible for a parameter with no default argument to
3710 // follow a parameter with a default argument.
3711 unsigned NumRequiredArgs = 0;
3712 unsigned MinParamsSoFar = 0;
3713 for (auto *Param : parameters()) {
3714 if (!Param->isParameterPack()) {
3715 ++MinParamsSoFar;
3716 if (!Param->hasDefaultArg())
3717 NumRequiredArgs = MinParamsSoFar;
3718 }
3719 }
3720 return NumRequiredArgs;
3721 }
3722
hasCXXExplicitFunctionObjectParameter() const3723 bool FunctionDecl::hasCXXExplicitFunctionObjectParameter() const {
3724 return getNumParams() != 0 && getParamDecl(0)->isExplicitObjectParameter();
3725 }
3726
getNumNonObjectParams() const3727 unsigned FunctionDecl::getNumNonObjectParams() const {
3728 return getNumParams() -
3729 static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter());
3730 }
3731
getMinRequiredExplicitArguments() const3732 unsigned FunctionDecl::getMinRequiredExplicitArguments() const {
3733 return getMinRequiredArguments() -
3734 static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter());
3735 }
3736
hasOneParamOrDefaultArgs() const3737 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3738 return getNumParams() == 1 ||
3739 (getNumParams() > 1 &&
3740 llvm::all_of(llvm::drop_begin(parameters()),
3741 [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3742 }
3743
3744 /// The combination of the extern and inline keywords under MSVC forces
3745 /// the function to be required.
3746 ///
3747 /// Note: This function assumes that we will only get called when isInlined()
3748 /// would return true for this FunctionDecl.
isMSExternInline() const3749 bool FunctionDecl::isMSExternInline() const {
3750 assert(isInlined() && "expected to get called on an inlined function!");
3751
3752 const ASTContext &Context = getASTContext();
3753 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3754 !hasAttr<DLLExportAttr>())
3755 return false;
3756
3757 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3758 FD = FD->getPreviousDecl())
3759 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3760 return true;
3761
3762 return false;
3763 }
3764
redeclForcesDefMSVC(const FunctionDecl * Redecl)3765 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3766 if (Redecl->getStorageClass() != SC_Extern)
3767 return false;
3768
3769 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3770 FD = FD->getPreviousDecl())
3771 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3772 return false;
3773
3774 return true;
3775 }
3776
RedeclForcesDefC99(const FunctionDecl * Redecl)3777 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3778 // Only consider file-scope declarations in this test.
3779 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3780 return false;
3781
3782 // Only consider explicit declarations; the presence of a builtin for a
3783 // libcall shouldn't affect whether a definition is externally visible.
3784 if (Redecl->isImplicit())
3785 return false;
3786
3787 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3788 return true; // Not an inline definition
3789
3790 return false;
3791 }
3792
3793 /// For a function declaration in C or C++, determine whether this
3794 /// declaration causes the definition to be externally visible.
3795 ///
3796 /// For instance, this determines if adding the current declaration to the set
3797 /// of redeclarations of the given functions causes
3798 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const3799 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3800 assert(!doesThisDeclarationHaveABody() &&
3801 "Must have a declaration without a body.");
3802
3803 const ASTContext &Context = getASTContext();
3804
3805 if (Context.getLangOpts().MSVCCompat) {
3806 const FunctionDecl *Definition;
3807 if (hasBody(Definition) && Definition->isInlined() &&
3808 redeclForcesDefMSVC(this))
3809 return true;
3810 }
3811
3812 if (Context.getLangOpts().CPlusPlus)
3813 return false;
3814
3815 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3816 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3817 // an externally visible definition.
3818 //
3819 // FIXME: What happens if gnu_inline gets added on after the first
3820 // declaration?
3821 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3822 return false;
3823
3824 const FunctionDecl *Prev = this;
3825 bool FoundBody = false;
3826 while ((Prev = Prev->getPreviousDecl())) {
3827 FoundBody |= Prev->doesThisDeclarationHaveABody();
3828
3829 if (Prev->doesThisDeclarationHaveABody()) {
3830 // If it's not the case that both 'inline' and 'extern' are
3831 // specified on the definition, then it is always externally visible.
3832 if (!Prev->isInlineSpecified() ||
3833 Prev->getStorageClass() != SC_Extern)
3834 return false;
3835 } else if (Prev->isInlineSpecified() &&
3836 Prev->getStorageClass() != SC_Extern) {
3837 return false;
3838 }
3839 }
3840 return FoundBody;
3841 }
3842
3843 // C99 6.7.4p6:
3844 // [...] If all of the file scope declarations for a function in a
3845 // translation unit include the inline function specifier without extern,
3846 // then the definition in that translation unit is an inline definition.
3847 if (isInlineSpecified() && getStorageClass() != SC_Extern)
3848 return false;
3849 const FunctionDecl *Prev = this;
3850 bool FoundBody = false;
3851 while ((Prev = Prev->getPreviousDecl())) {
3852 FoundBody |= Prev->doesThisDeclarationHaveABody();
3853 if (RedeclForcesDefC99(Prev))
3854 return false;
3855 }
3856 return FoundBody;
3857 }
3858
getFunctionTypeLoc() const3859 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3860 const TypeSourceInfo *TSI = getTypeSourceInfo();
3861 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3862 : FunctionTypeLoc();
3863 }
3864
getReturnTypeSourceRange() const3865 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3866 FunctionTypeLoc FTL = getFunctionTypeLoc();
3867 if (!FTL)
3868 return SourceRange();
3869
3870 // Skip self-referential return types.
3871 const SourceManager &SM = getASTContext().getSourceManager();
3872 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3873 SourceLocation Boundary = getNameInfo().getBeginLoc();
3874 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3875 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3876 return SourceRange();
3877
3878 return RTRange;
3879 }
3880
getParametersSourceRange() const3881 SourceRange FunctionDecl::getParametersSourceRange() const {
3882 unsigned NP = getNumParams();
3883 SourceLocation EllipsisLoc = getEllipsisLoc();
3884
3885 if (NP == 0 && EllipsisLoc.isInvalid())
3886 return SourceRange();
3887
3888 SourceLocation Begin =
3889 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3890 SourceLocation End = EllipsisLoc.isValid()
3891 ? EllipsisLoc
3892 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3893
3894 return SourceRange(Begin, End);
3895 }
3896
getExceptionSpecSourceRange() const3897 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3898 FunctionTypeLoc FTL = getFunctionTypeLoc();
3899 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3900 }
3901
3902 /// For an inline function definition in C, or for a gnu_inline function
3903 /// in C++, determine whether the definition will be externally visible.
3904 ///
3905 /// Inline function definitions are always available for inlining optimizations.
3906 /// However, depending on the language dialect, declaration specifiers, and
3907 /// attributes, the definition of an inline function may or may not be
3908 /// "externally" visible to other translation units in the program.
3909 ///
3910 /// In C99, inline definitions are not externally visible by default. However,
3911 /// if even one of the global-scope declarations is marked "extern inline", the
3912 /// inline definition becomes externally visible (C99 6.7.4p6).
3913 ///
3914 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3915 /// definition, we use the GNU semantics for inline, which are nearly the
3916 /// opposite of C99 semantics. In particular, "inline" by itself will create
3917 /// an externally visible symbol, but "extern inline" will not create an
3918 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const3919 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3920 assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3921 hasAttr<AliasAttr>()) &&
3922 "Must be a function definition");
3923 assert(isInlined() && "Function must be inline");
3924 ASTContext &Context = getASTContext();
3925
3926 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3927 // Note: If you change the logic here, please change
3928 // doesDeclarationForceExternallyVisibleDefinition as well.
3929 //
3930 // If it's not the case that both 'inline' and 'extern' are
3931 // specified on the definition, then this inline definition is
3932 // externally visible.
3933 if (Context.getLangOpts().CPlusPlus)
3934 return false;
3935 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3936 return true;
3937
3938 // If any declaration is 'inline' but not 'extern', then this definition
3939 // is externally visible.
3940 for (auto *Redecl : redecls()) {
3941 if (Redecl->isInlineSpecified() &&
3942 Redecl->getStorageClass() != SC_Extern)
3943 return true;
3944 }
3945
3946 return false;
3947 }
3948
3949 // The rest of this function is C-only.
3950 assert(!Context.getLangOpts().CPlusPlus &&
3951 "should not use C inline rules in C++");
3952
3953 // C99 6.7.4p6:
3954 // [...] If all of the file scope declarations for a function in a
3955 // translation unit include the inline function specifier without extern,
3956 // then the definition in that translation unit is an inline definition.
3957 for (auto *Redecl : redecls()) {
3958 if (RedeclForcesDefC99(Redecl))
3959 return true;
3960 }
3961
3962 // C99 6.7.4p6:
3963 // An inline definition does not provide an external definition for the
3964 // function, and does not forbid an external definition in another
3965 // translation unit.
3966 return false;
3967 }
3968
3969 /// getOverloadedOperator - Which C++ overloaded operator this
3970 /// function represents, if any.
getOverloadedOperator() const3971 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3972 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3973 return getDeclName().getCXXOverloadedOperator();
3974 return OO_None;
3975 }
3976
3977 /// getLiteralIdentifier - The literal suffix identifier this function
3978 /// represents, if any.
getLiteralIdentifier() const3979 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3980 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3981 return getDeclName().getCXXLiteralIdentifier();
3982 return nullptr;
3983 }
3984
getTemplatedKind() const3985 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3986 if (TemplateOrSpecialization.isNull())
3987 return TK_NonTemplate;
3988 if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) {
3989 if (isa<FunctionDecl>(ND))
3990 return TK_DependentNonTemplate;
3991 assert(isa<FunctionTemplateDecl>(ND) &&
3992 "No other valid types in NamedDecl");
3993 return TK_FunctionTemplate;
3994 }
3995 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3996 return TK_MemberSpecialization;
3997 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3998 return TK_FunctionTemplateSpecialization;
3999 if (TemplateOrSpecialization.is
4000 <DependentFunctionTemplateSpecializationInfo*>())
4001 return TK_DependentFunctionTemplateSpecialization;
4002
4003 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
4004 }
4005
getInstantiatedFromMemberFunction() const4006 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
4007 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
4008 return cast<FunctionDecl>(Info->getInstantiatedFrom());
4009
4010 return nullptr;
4011 }
4012
getMemberSpecializationInfo() const4013 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
4014 if (auto *MSI =
4015 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4016 return MSI;
4017 if (auto *FTSI = TemplateOrSpecialization
4018 .dyn_cast<FunctionTemplateSpecializationInfo *>())
4019 return FTSI->getMemberSpecializationInfo();
4020 return nullptr;
4021 }
4022
4023 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)4024 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
4025 FunctionDecl *FD,
4026 TemplateSpecializationKind TSK) {
4027 assert(TemplateOrSpecialization.isNull() &&
4028 "Member function is already a specialization");
4029 MemberSpecializationInfo *Info
4030 = new (C) MemberSpecializationInfo(FD, TSK);
4031 TemplateOrSpecialization = Info;
4032 }
4033
getDescribedFunctionTemplate() const4034 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
4035 return dyn_cast_if_present<FunctionTemplateDecl>(
4036 TemplateOrSpecialization.dyn_cast<NamedDecl *>());
4037 }
4038
setDescribedFunctionTemplate(FunctionTemplateDecl * Template)4039 void FunctionDecl::setDescribedFunctionTemplate(
4040 FunctionTemplateDecl *Template) {
4041 assert(TemplateOrSpecialization.isNull() &&
4042 "Member function is already a specialization");
4043 TemplateOrSpecialization = Template;
4044 }
4045
isFunctionTemplateSpecialization() const4046 bool FunctionDecl::isFunctionTemplateSpecialization() const {
4047 return TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>() ||
4048 TemplateOrSpecialization
4049 .is<DependentFunctionTemplateSpecializationInfo *>();
4050 }
4051
setInstantiatedFromDecl(FunctionDecl * FD)4052 void FunctionDecl::setInstantiatedFromDecl(FunctionDecl *FD) {
4053 assert(TemplateOrSpecialization.isNull() &&
4054 "Function is already a specialization");
4055 TemplateOrSpecialization = FD;
4056 }
4057
getInstantiatedFromDecl() const4058 FunctionDecl *FunctionDecl::getInstantiatedFromDecl() const {
4059 return dyn_cast_if_present<FunctionDecl>(
4060 TemplateOrSpecialization.dyn_cast<NamedDecl *>());
4061 }
4062
isImplicitlyInstantiable() const4063 bool FunctionDecl::isImplicitlyInstantiable() const {
4064 // If the function is invalid, it can't be implicitly instantiated.
4065 if (isInvalidDecl())
4066 return false;
4067
4068 switch (getTemplateSpecializationKindForInstantiation()) {
4069 case TSK_Undeclared:
4070 case TSK_ExplicitInstantiationDefinition:
4071 case TSK_ExplicitSpecialization:
4072 return false;
4073
4074 case TSK_ImplicitInstantiation:
4075 return true;
4076
4077 case TSK_ExplicitInstantiationDeclaration:
4078 // Handled below.
4079 break;
4080 }
4081
4082 // Find the actual template from which we will instantiate.
4083 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
4084 bool HasPattern = false;
4085 if (PatternDecl)
4086 HasPattern = PatternDecl->hasBody(PatternDecl);
4087
4088 // C++0x [temp.explicit]p9:
4089 // Except for inline functions, other explicit instantiation declarations
4090 // have the effect of suppressing the implicit instantiation of the entity
4091 // to which they refer.
4092 if (!HasPattern || !PatternDecl)
4093 return true;
4094
4095 return PatternDecl->isInlined();
4096 }
4097
isTemplateInstantiation() const4098 bool FunctionDecl::isTemplateInstantiation() const {
4099 // FIXME: Remove this, it's not clear what it means. (Which template
4100 // specialization kind?)
4101 return clang::isTemplateInstantiation(getTemplateSpecializationKind());
4102 }
4103
4104 FunctionDecl *
getTemplateInstantiationPattern(bool ForDefinition) const4105 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
4106 // If this is a generic lambda call operator specialization, its
4107 // instantiation pattern is always its primary template's pattern
4108 // even if its primary template was instantiated from another
4109 // member template (which happens with nested generic lambdas).
4110 // Since a lambda's call operator's body is transformed eagerly,
4111 // we don't have to go hunting for a prototype definition template
4112 // (i.e. instantiated-from-member-template) to use as an instantiation
4113 // pattern.
4114
4115 if (isGenericLambdaCallOperatorSpecialization(
4116 dyn_cast<CXXMethodDecl>(this))) {
4117 assert(getPrimaryTemplate() && "not a generic lambda call operator?");
4118 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
4119 }
4120
4121 // Check for a declaration of this function that was instantiated from a
4122 // friend definition.
4123 const FunctionDecl *FD = nullptr;
4124 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
4125 FD = this;
4126
4127 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
4128 if (ForDefinition &&
4129 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
4130 return nullptr;
4131 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
4132 }
4133
4134 if (ForDefinition &&
4135 !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
4136 return nullptr;
4137
4138 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
4139 // If we hit a point where the user provided a specialization of this
4140 // template, we're done looking.
4141 while (!ForDefinition || !Primary->isMemberSpecialization()) {
4142 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
4143 if (!NewPrimary)
4144 break;
4145 Primary = NewPrimary;
4146 }
4147
4148 return getDefinitionOrSelf(Primary->getTemplatedDecl());
4149 }
4150
4151 return nullptr;
4152 }
4153
getPrimaryTemplate() const4154 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
4155 if (FunctionTemplateSpecializationInfo *Info
4156 = TemplateOrSpecialization
4157 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4158 return Info->getTemplate();
4159 }
4160 return nullptr;
4161 }
4162
4163 FunctionTemplateSpecializationInfo *
getTemplateSpecializationInfo() const4164 FunctionDecl::getTemplateSpecializationInfo() const {
4165 return TemplateOrSpecialization
4166 .dyn_cast<FunctionTemplateSpecializationInfo *>();
4167 }
4168
4169 const TemplateArgumentList *
getTemplateSpecializationArgs() const4170 FunctionDecl::getTemplateSpecializationArgs() const {
4171 if (FunctionTemplateSpecializationInfo *Info
4172 = TemplateOrSpecialization
4173 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4174 return Info->TemplateArguments;
4175 }
4176 return nullptr;
4177 }
4178
4179 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const4180 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
4181 if (FunctionTemplateSpecializationInfo *Info
4182 = TemplateOrSpecialization
4183 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
4184 return Info->TemplateArgumentsAsWritten;
4185 }
4186 if (DependentFunctionTemplateSpecializationInfo *Info =
4187 TemplateOrSpecialization
4188 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>()) {
4189 return Info->TemplateArgumentsAsWritten;
4190 }
4191 return nullptr;
4192 }
4193
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)4194 void FunctionDecl::setFunctionTemplateSpecialization(
4195 ASTContext &C, FunctionTemplateDecl *Template,
4196 TemplateArgumentList *TemplateArgs, void *InsertPos,
4197 TemplateSpecializationKind TSK,
4198 const TemplateArgumentListInfo *TemplateArgsAsWritten,
4199 SourceLocation PointOfInstantiation) {
4200 assert((TemplateOrSpecialization.isNull() ||
4201 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
4202 "Member function is already a specialization");
4203 assert(TSK != TSK_Undeclared &&
4204 "Must specify the type of function template specialization");
4205 assert((TemplateOrSpecialization.isNull() ||
4206 getFriendObjectKind() != FOK_None ||
4207 TSK == TSK_ExplicitSpecialization) &&
4208 "Member specialization must be an explicit specialization");
4209 FunctionTemplateSpecializationInfo *Info =
4210 FunctionTemplateSpecializationInfo::Create(
4211 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
4212 PointOfInstantiation,
4213 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
4214 TemplateOrSpecialization = Info;
4215 Template->addSpecialization(Info, InsertPos);
4216 }
4217
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo * TemplateArgs)4218 void FunctionDecl::setDependentTemplateSpecialization(
4219 ASTContext &Context, const UnresolvedSetImpl &Templates,
4220 const TemplateArgumentListInfo *TemplateArgs) {
4221 assert(TemplateOrSpecialization.isNull());
4222 DependentFunctionTemplateSpecializationInfo *Info =
4223 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
4224 TemplateArgs);
4225 TemplateOrSpecialization = Info;
4226 }
4227
4228 DependentFunctionTemplateSpecializationInfo *
getDependentSpecializationInfo() const4229 FunctionDecl::getDependentSpecializationInfo() const {
4230 return TemplateOrSpecialization
4231 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
4232 }
4233
4234 DependentFunctionTemplateSpecializationInfo *
Create(ASTContext & Context,const UnresolvedSetImpl & Candidates,const TemplateArgumentListInfo * TArgs)4235 DependentFunctionTemplateSpecializationInfo::Create(
4236 ASTContext &Context, const UnresolvedSetImpl &Candidates,
4237 const TemplateArgumentListInfo *TArgs) {
4238 const auto *TArgsWritten =
4239 TArgs ? ASTTemplateArgumentListInfo::Create(Context, *TArgs) : nullptr;
4240 return new (Context.Allocate(
4241 totalSizeToAlloc<FunctionTemplateDecl *>(Candidates.size())))
4242 DependentFunctionTemplateSpecializationInfo(Candidates, TArgsWritten);
4243 }
4244
4245 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Candidates,const ASTTemplateArgumentListInfo * TemplateArgsWritten)4246 DependentFunctionTemplateSpecializationInfo(
4247 const UnresolvedSetImpl &Candidates,
4248 const ASTTemplateArgumentListInfo *TemplateArgsWritten)
4249 : NumCandidates(Candidates.size()),
4250 TemplateArgumentsAsWritten(TemplateArgsWritten) {
4251 std::transform(Candidates.begin(), Candidates.end(),
4252 getTrailingObjects<FunctionTemplateDecl *>(),
4253 [](NamedDecl *ND) {
4254 return cast<FunctionTemplateDecl>(ND->getUnderlyingDecl());
4255 });
4256 }
4257
getTemplateSpecializationKind() const4258 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
4259 // For a function template specialization, query the specialization
4260 // information object.
4261 if (FunctionTemplateSpecializationInfo *FTSInfo =
4262 TemplateOrSpecialization
4263 .dyn_cast<FunctionTemplateSpecializationInfo *>())
4264 return FTSInfo->getTemplateSpecializationKind();
4265
4266 if (MemberSpecializationInfo *MSInfo =
4267 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4268 return MSInfo->getTemplateSpecializationKind();
4269
4270 // A dependent function template specialization is an explicit specialization,
4271 // except when it's a friend declaration.
4272 if (TemplateOrSpecialization
4273 .is<DependentFunctionTemplateSpecializationInfo *>() &&
4274 getFriendObjectKind() == FOK_None)
4275 return TSK_ExplicitSpecialization;
4276
4277 return TSK_Undeclared;
4278 }
4279
4280 TemplateSpecializationKind
getTemplateSpecializationKindForInstantiation() const4281 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
4282 // This is the same as getTemplateSpecializationKind(), except that for a
4283 // function that is both a function template specialization and a member
4284 // specialization, we prefer the member specialization information. Eg:
4285 //
4286 // template<typename T> struct A {
4287 // template<typename U> void f() {}
4288 // template<> void f<int>() {}
4289 // };
4290 //
4291 // Within the templated CXXRecordDecl, A<T>::f<int> is a dependent function
4292 // template specialization; both getTemplateSpecializationKind() and
4293 // getTemplateSpecializationKindForInstantiation() will return
4294 // TSK_ExplicitSpecialization.
4295 //
4296 // For A<int>::f<int>():
4297 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
4298 // * getTemplateSpecializationKindForInstantiation() will return
4299 // TSK_ImplicitInstantiation
4300 //
4301 // This reflects the facts that A<int>::f<int> is an explicit specialization
4302 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
4303 // from A::f<int> if a definition is needed.
4304 if (FunctionTemplateSpecializationInfo *FTSInfo =
4305 TemplateOrSpecialization
4306 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
4307 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
4308 return MSInfo->getTemplateSpecializationKind();
4309 return FTSInfo->getTemplateSpecializationKind();
4310 }
4311
4312 if (MemberSpecializationInfo *MSInfo =
4313 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4314 return MSInfo->getTemplateSpecializationKind();
4315
4316 if (TemplateOrSpecialization
4317 .is<DependentFunctionTemplateSpecializationInfo *>() &&
4318 getFriendObjectKind() == FOK_None)
4319 return TSK_ExplicitSpecialization;
4320
4321 return TSK_Undeclared;
4322 }
4323
4324 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)4325 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4326 SourceLocation PointOfInstantiation) {
4327 if (FunctionTemplateSpecializationInfo *FTSInfo
4328 = TemplateOrSpecialization.dyn_cast<
4329 FunctionTemplateSpecializationInfo*>()) {
4330 FTSInfo->setTemplateSpecializationKind(TSK);
4331 if (TSK != TSK_ExplicitSpecialization &&
4332 PointOfInstantiation.isValid() &&
4333 FTSInfo->getPointOfInstantiation().isInvalid()) {
4334 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
4335 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4336 L->InstantiationRequested(this);
4337 }
4338 } else if (MemberSpecializationInfo *MSInfo
4339 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
4340 MSInfo->setTemplateSpecializationKind(TSK);
4341 if (TSK != TSK_ExplicitSpecialization &&
4342 PointOfInstantiation.isValid() &&
4343 MSInfo->getPointOfInstantiation().isInvalid()) {
4344 MSInfo->setPointOfInstantiation(PointOfInstantiation);
4345 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4346 L->InstantiationRequested(this);
4347 }
4348 } else
4349 llvm_unreachable("Function cannot have a template specialization kind");
4350 }
4351
getPointOfInstantiation() const4352 SourceLocation FunctionDecl::getPointOfInstantiation() const {
4353 if (FunctionTemplateSpecializationInfo *FTSInfo
4354 = TemplateOrSpecialization.dyn_cast<
4355 FunctionTemplateSpecializationInfo*>())
4356 return FTSInfo->getPointOfInstantiation();
4357 if (MemberSpecializationInfo *MSInfo =
4358 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4359 return MSInfo->getPointOfInstantiation();
4360
4361 return SourceLocation();
4362 }
4363
isOutOfLine() const4364 bool FunctionDecl::isOutOfLine() const {
4365 if (Decl::isOutOfLine())
4366 return true;
4367
4368 // If this function was instantiated from a member function of a
4369 // class template, check whether that member function was defined out-of-line.
4370 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4371 const FunctionDecl *Definition;
4372 if (FD->hasBody(Definition))
4373 return Definition->isOutOfLine();
4374 }
4375
4376 // If this function was instantiated from a function template,
4377 // check whether that function template was defined out-of-line.
4378 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4379 const FunctionDecl *Definition;
4380 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4381 return Definition->isOutOfLine();
4382 }
4383
4384 return false;
4385 }
4386
getSourceRange() const4387 SourceRange FunctionDecl::getSourceRange() const {
4388 return SourceRange(getOuterLocStart(), EndRangeLoc);
4389 }
4390
getMemoryFunctionKind() const4391 unsigned FunctionDecl::getMemoryFunctionKind() const {
4392 IdentifierInfo *FnInfo = getIdentifier();
4393
4394 if (!FnInfo)
4395 return 0;
4396
4397 // Builtin handling.
4398 switch (getBuiltinID()) {
4399 case Builtin::BI__builtin_memset:
4400 case Builtin::BI__builtin___memset_chk:
4401 case Builtin::BImemset:
4402 return Builtin::BImemset;
4403
4404 case Builtin::BI__builtin_memcpy:
4405 case Builtin::BI__builtin___memcpy_chk:
4406 case Builtin::BImemcpy:
4407 return Builtin::BImemcpy;
4408
4409 case Builtin::BI__builtin_mempcpy:
4410 case Builtin::BI__builtin___mempcpy_chk:
4411 case Builtin::BImempcpy:
4412 return Builtin::BImempcpy;
4413
4414 case Builtin::BI__builtin_memmove:
4415 case Builtin::BI__builtin___memmove_chk:
4416 case Builtin::BImemmove:
4417 return Builtin::BImemmove;
4418
4419 case Builtin::BIstrlcpy:
4420 case Builtin::BI__builtin___strlcpy_chk:
4421 return Builtin::BIstrlcpy;
4422
4423 case Builtin::BIstrlcat:
4424 case Builtin::BI__builtin___strlcat_chk:
4425 return Builtin::BIstrlcat;
4426
4427 case Builtin::BI__builtin_memcmp:
4428 case Builtin::BImemcmp:
4429 return Builtin::BImemcmp;
4430
4431 case Builtin::BI__builtin_bcmp:
4432 case Builtin::BIbcmp:
4433 return Builtin::BIbcmp;
4434
4435 case Builtin::BI__builtin_strncpy:
4436 case Builtin::BI__builtin___strncpy_chk:
4437 case Builtin::BIstrncpy:
4438 return Builtin::BIstrncpy;
4439
4440 case Builtin::BI__builtin_strncmp:
4441 case Builtin::BIstrncmp:
4442 return Builtin::BIstrncmp;
4443
4444 case Builtin::BI__builtin_strncasecmp:
4445 case Builtin::BIstrncasecmp:
4446 return Builtin::BIstrncasecmp;
4447
4448 case Builtin::BI__builtin_strncat:
4449 case Builtin::BI__builtin___strncat_chk:
4450 case Builtin::BIstrncat:
4451 return Builtin::BIstrncat;
4452
4453 case Builtin::BI__builtin_strndup:
4454 case Builtin::BIstrndup:
4455 return Builtin::BIstrndup;
4456
4457 case Builtin::BI__builtin_strlen:
4458 case Builtin::BIstrlen:
4459 return Builtin::BIstrlen;
4460
4461 case Builtin::BI__builtin_bzero:
4462 case Builtin::BIbzero:
4463 return Builtin::BIbzero;
4464
4465 case Builtin::BI__builtin_bcopy:
4466 case Builtin::BIbcopy:
4467 return Builtin::BIbcopy;
4468
4469 case Builtin::BIfree:
4470 return Builtin::BIfree;
4471
4472 default:
4473 if (isExternC()) {
4474 if (FnInfo->isStr("memset"))
4475 return Builtin::BImemset;
4476 if (FnInfo->isStr("memcpy"))
4477 return Builtin::BImemcpy;
4478 if (FnInfo->isStr("mempcpy"))
4479 return Builtin::BImempcpy;
4480 if (FnInfo->isStr("memmove"))
4481 return Builtin::BImemmove;
4482 if (FnInfo->isStr("memcmp"))
4483 return Builtin::BImemcmp;
4484 if (FnInfo->isStr("bcmp"))
4485 return Builtin::BIbcmp;
4486 if (FnInfo->isStr("strncpy"))
4487 return Builtin::BIstrncpy;
4488 if (FnInfo->isStr("strncmp"))
4489 return Builtin::BIstrncmp;
4490 if (FnInfo->isStr("strncasecmp"))
4491 return Builtin::BIstrncasecmp;
4492 if (FnInfo->isStr("strncat"))
4493 return Builtin::BIstrncat;
4494 if (FnInfo->isStr("strndup"))
4495 return Builtin::BIstrndup;
4496 if (FnInfo->isStr("strlen"))
4497 return Builtin::BIstrlen;
4498 if (FnInfo->isStr("bzero"))
4499 return Builtin::BIbzero;
4500 if (FnInfo->isStr("bcopy"))
4501 return Builtin::BIbcopy;
4502 } else if (isInStdNamespace()) {
4503 if (FnInfo->isStr("free"))
4504 return Builtin::BIfree;
4505 }
4506 break;
4507 }
4508 return 0;
4509 }
4510
getODRHash() const4511 unsigned FunctionDecl::getODRHash() const {
4512 assert(hasODRHash());
4513 return ODRHash;
4514 }
4515
getODRHash()4516 unsigned FunctionDecl::getODRHash() {
4517 if (hasODRHash())
4518 return ODRHash;
4519
4520 if (auto *FT = getInstantiatedFromMemberFunction()) {
4521 setHasODRHash(true);
4522 ODRHash = FT->getODRHash();
4523 return ODRHash;
4524 }
4525
4526 class ODRHash Hash;
4527 Hash.AddFunctionDecl(this);
4528 setHasODRHash(true);
4529 ODRHash = Hash.CalculateHash();
4530 return ODRHash;
4531 }
4532
4533 //===----------------------------------------------------------------------===//
4534 // FieldDecl Implementation
4535 //===----------------------------------------------------------------------===//
4536
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,const IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)4537 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4538 SourceLocation StartLoc, SourceLocation IdLoc,
4539 const IdentifierInfo *Id, QualType T,
4540 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4541 InClassInitStyle InitStyle) {
4542 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4543 BW, Mutable, InitStyle);
4544 }
4545
CreateDeserialized(ASTContext & C,GlobalDeclID ID)4546 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
4547 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4548 SourceLocation(), nullptr, QualType(), nullptr,
4549 nullptr, false, ICIS_NoInit);
4550 }
4551
isAnonymousStructOrUnion() const4552 bool FieldDecl::isAnonymousStructOrUnion() const {
4553 if (!isImplicit() || getDeclName())
4554 return false;
4555
4556 if (const auto *Record = getType()->getAs<RecordType>())
4557 return Record->getDecl()->isAnonymousStructOrUnion();
4558
4559 return false;
4560 }
4561
getInClassInitializer() const4562 Expr *FieldDecl::getInClassInitializer() const {
4563 if (!hasInClassInitializer())
4564 return nullptr;
4565
4566 LazyDeclStmtPtr InitPtr = BitField ? InitAndBitWidth->Init : Init;
4567 return cast_if_present<Expr>(
4568 InitPtr.isOffset() ? InitPtr.get(getASTContext().getExternalSource())
4569 : InitPtr.get(nullptr));
4570 }
4571
setInClassInitializer(Expr * NewInit)4572 void FieldDecl::setInClassInitializer(Expr *NewInit) {
4573 setLazyInClassInitializer(LazyDeclStmtPtr(NewInit));
4574 }
4575
setLazyInClassInitializer(LazyDeclStmtPtr NewInit)4576 void FieldDecl::setLazyInClassInitializer(LazyDeclStmtPtr NewInit) {
4577 assert(hasInClassInitializer() && !getInClassInitializer());
4578 if (BitField)
4579 InitAndBitWidth->Init = NewInit;
4580 else
4581 Init = NewInit;
4582 }
4583
getBitWidthValue(const ASTContext & Ctx) const4584 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4585 assert(isBitField() && "not a bitfield");
4586 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4587 }
4588
isZeroLengthBitField(const ASTContext & Ctx) const4589 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4590 return isUnnamedBitField() && !getBitWidth()->isValueDependent() &&
4591 getBitWidthValue(Ctx) == 0;
4592 }
4593
isZeroSize(const ASTContext & Ctx) const4594 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4595 if (isZeroLengthBitField(Ctx))
4596 return true;
4597
4598 // C++2a [intro.object]p7:
4599 // An object has nonzero size if it
4600 // -- is not a potentially-overlapping subobject, or
4601 if (!hasAttr<NoUniqueAddressAttr>())
4602 return false;
4603
4604 // -- is not of class type, or
4605 const auto *RT = getType()->getAs<RecordType>();
4606 if (!RT)
4607 return false;
4608 const RecordDecl *RD = RT->getDecl()->getDefinition();
4609 if (!RD) {
4610 assert(isInvalidDecl() && "valid field has incomplete type");
4611 return false;
4612 }
4613
4614 // -- [has] virtual member functions or virtual base classes, or
4615 // -- has subobjects of nonzero size or bit-fields of nonzero length
4616 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4617 if (!CXXRD->isEmpty())
4618 return false;
4619
4620 // Otherwise, [...] the circumstances under which the object has zero size
4621 // are implementation-defined.
4622 if (!Ctx.getTargetInfo().getCXXABI().isMicrosoft())
4623 return true;
4624
4625 // MS ABI: has nonzero size if it is a class type with class type fields,
4626 // whether or not they have nonzero size
4627 return !llvm::any_of(CXXRD->fields(), [](const FieldDecl *Field) {
4628 return Field->getType()->getAs<RecordType>();
4629 });
4630 }
4631
isPotentiallyOverlapping() const4632 bool FieldDecl::isPotentiallyOverlapping() const {
4633 return hasAttr<NoUniqueAddressAttr>() && getType()->getAsCXXRecordDecl();
4634 }
4635
getFieldIndex() const4636 unsigned FieldDecl::getFieldIndex() const {
4637 const FieldDecl *Canonical = getCanonicalDecl();
4638 if (Canonical != this)
4639 return Canonical->getFieldIndex();
4640
4641 if (CachedFieldIndex) return CachedFieldIndex - 1;
4642
4643 unsigned Index = 0;
4644 const RecordDecl *RD = getParent()->getDefinition();
4645 assert(RD && "requested index for field of struct with no definition");
4646
4647 for (auto *Field : RD->fields()) {
4648 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4649 assert(Field->getCanonicalDecl()->CachedFieldIndex == Index + 1 &&
4650 "overflow in field numbering");
4651 ++Index;
4652 }
4653
4654 assert(CachedFieldIndex && "failed to find field in parent");
4655 return CachedFieldIndex - 1;
4656 }
4657
getSourceRange() const4658 SourceRange FieldDecl::getSourceRange() const {
4659 const Expr *FinalExpr = getInClassInitializer();
4660 if (!FinalExpr)
4661 FinalExpr = getBitWidth();
4662 if (FinalExpr)
4663 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4664 return DeclaratorDecl::getSourceRange();
4665 }
4666
setCapturedVLAType(const VariableArrayType * VLAType)4667 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4668 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4669 "capturing type in non-lambda or captured record.");
4670 assert(StorageKind == ISK_NoInit && !BitField &&
4671 "bit-field or field with default member initializer cannot capture "
4672 "VLA type");
4673 StorageKind = ISK_CapturedVLAType;
4674 CapturedVLAType = VLAType;
4675 }
4676
printName(raw_ostream & OS,const PrintingPolicy & Policy) const4677 void FieldDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4678 // Print unnamed members using name of their type.
4679 if (isAnonymousStructOrUnion()) {
4680 this->getType().print(OS, Policy);
4681 return;
4682 }
4683 // Otherwise, do the normal printing.
4684 DeclaratorDecl::printName(OS, Policy);
4685 }
4686
4687 //===----------------------------------------------------------------------===//
4688 // TagDecl Implementation
4689 //===----------------------------------------------------------------------===//
4690
TagDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,TagDecl * PrevDecl,SourceLocation StartL)4691 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4692 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4693 SourceLocation StartL)
4694 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4695 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4696 assert((DK != Enum || TK == TagTypeKind::Enum) &&
4697 "EnumDecl not matched with TagTypeKind::Enum");
4698 setPreviousDecl(PrevDecl);
4699 setTagKind(TK);
4700 setCompleteDefinition(false);
4701 setBeingDefined(false);
4702 setEmbeddedInDeclarator(false);
4703 setFreeStanding(false);
4704 setCompleteDefinitionRequired(false);
4705 TagDeclBits.IsThisDeclarationADemotedDefinition = false;
4706 }
4707
getOuterLocStart() const4708 SourceLocation TagDecl::getOuterLocStart() const {
4709 return getTemplateOrInnerLocStart(this);
4710 }
4711
getSourceRange() const4712 SourceRange TagDecl::getSourceRange() const {
4713 SourceLocation RBraceLoc = BraceRange.getEnd();
4714 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4715 return SourceRange(getOuterLocStart(), E);
4716 }
4717
getCanonicalDecl()4718 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4719
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)4720 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4721 TypedefNameDeclOrQualifier = TDD;
4722 if (const Type *T = getTypeForDecl()) {
4723 (void)T;
4724 assert(T->isLinkageValid());
4725 }
4726 assert(isLinkageValid());
4727 }
4728
startDefinition()4729 void TagDecl::startDefinition() {
4730 setBeingDefined(true);
4731
4732 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4733 struct CXXRecordDecl::DefinitionData *Data =
4734 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4735 for (auto *I : redecls())
4736 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4737 }
4738 }
4739
completeDefinition()4740 void TagDecl::completeDefinition() {
4741 assert((!isa<CXXRecordDecl>(this) ||
4742 cast<CXXRecordDecl>(this)->hasDefinition()) &&
4743 "definition completed but not started");
4744
4745 setCompleteDefinition(true);
4746 setBeingDefined(false);
4747
4748 if (ASTMutationListener *L = getASTMutationListener())
4749 L->CompletedTagDefinition(this);
4750 }
4751
getDefinition() const4752 TagDecl *TagDecl::getDefinition() const {
4753 if (isCompleteDefinition())
4754 return const_cast<TagDecl *>(this);
4755
4756 // If it's possible for us to have an out-of-date definition, check now.
4757 if (mayHaveOutOfDateDef()) {
4758 if (IdentifierInfo *II = getIdentifier()) {
4759 if (II->isOutOfDate()) {
4760 updateOutOfDate(*II);
4761 }
4762 }
4763 }
4764
4765 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4766 return CXXRD->getDefinition();
4767
4768 for (auto *R : redecls())
4769 if (R->isCompleteDefinition())
4770 return R;
4771
4772 return nullptr;
4773 }
4774
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)4775 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4776 if (QualifierLoc) {
4777 // Make sure the extended qualifier info is allocated.
4778 if (!hasExtInfo())
4779 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4780 // Set qualifier info.
4781 getExtInfo()->QualifierLoc = QualifierLoc;
4782 } else {
4783 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4784 if (hasExtInfo()) {
4785 if (getExtInfo()->NumTemplParamLists == 0) {
4786 getASTContext().Deallocate(getExtInfo());
4787 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4788 }
4789 else
4790 getExtInfo()->QualifierLoc = QualifierLoc;
4791 }
4792 }
4793 }
4794
printName(raw_ostream & OS,const PrintingPolicy & Policy) const4795 void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4796 DeclarationName Name = getDeclName();
4797 // If the name is supposed to have an identifier but does not have one, then
4798 // the tag is anonymous and we should print it differently.
4799 if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) {
4800 // If the caller wanted to print a qualified name, they've already printed
4801 // the scope. And if the caller doesn't want that, the scope information
4802 // is already printed as part of the type.
4803 PrintingPolicy Copy(Policy);
4804 Copy.SuppressScope = true;
4805 getASTContext().getTagDeclType(this).print(OS, Copy);
4806 return;
4807 }
4808 // Otherwise, do the normal printing.
4809 Name.print(OS, Policy);
4810 }
4811
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)4812 void TagDecl::setTemplateParameterListsInfo(
4813 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4814 assert(!TPLists.empty());
4815 // Make sure the extended decl info is allocated.
4816 if (!hasExtInfo())
4817 // Allocate external info struct.
4818 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4819 // Set the template parameter lists info.
4820 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4821 }
4822
4823 //===----------------------------------------------------------------------===//
4824 // EnumDecl Implementation
4825 //===----------------------------------------------------------------------===//
4826
EnumDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool Scoped,bool ScopedUsingClassTag,bool Fixed)4827 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4828 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4829 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4830 : TagDecl(Enum, TagTypeKind::Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4831 assert(Scoped || !ScopedUsingClassTag);
4832 IntegerType = nullptr;
4833 setNumPositiveBits(0);
4834 setNumNegativeBits(0);
4835 setScoped(Scoped);
4836 setScopedUsingClassTag(ScopedUsingClassTag);
4837 setFixed(Fixed);
4838 setHasODRHash(false);
4839 ODRHash = 0;
4840 }
4841
anchor()4842 void EnumDecl::anchor() {}
4843
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)4844 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4845 SourceLocation StartLoc, SourceLocation IdLoc,
4846 IdentifierInfo *Id,
4847 EnumDecl *PrevDecl, bool IsScoped,
4848 bool IsScopedUsingClassTag, bool IsFixed) {
4849 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4850 IsScoped, IsScopedUsingClassTag, IsFixed);
4851 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4852 C.getTypeDeclType(Enum, PrevDecl);
4853 return Enum;
4854 }
4855
CreateDeserialized(ASTContext & C,GlobalDeclID ID)4856 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
4857 EnumDecl *Enum =
4858 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4859 nullptr, nullptr, false, false, false);
4860 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4861 return Enum;
4862 }
4863
getIntegerTypeRange() const4864 SourceRange EnumDecl::getIntegerTypeRange() const {
4865 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4866 return TI->getTypeLoc().getSourceRange();
4867 return SourceRange();
4868 }
4869
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)4870 void EnumDecl::completeDefinition(QualType NewType,
4871 QualType NewPromotionType,
4872 unsigned NumPositiveBits,
4873 unsigned NumNegativeBits) {
4874 assert(!isCompleteDefinition() && "Cannot redefine enums!");
4875 if (!IntegerType)
4876 IntegerType = NewType.getTypePtr();
4877 PromotionType = NewPromotionType;
4878 setNumPositiveBits(NumPositiveBits);
4879 setNumNegativeBits(NumNegativeBits);
4880 TagDecl::completeDefinition();
4881 }
4882
isClosed() const4883 bool EnumDecl::isClosed() const {
4884 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4885 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4886 return true;
4887 }
4888
isClosedFlag() const4889 bool EnumDecl::isClosedFlag() const {
4890 return isClosed() && hasAttr<FlagEnumAttr>();
4891 }
4892
isClosedNonFlag() const4893 bool EnumDecl::isClosedNonFlag() const {
4894 return isClosed() && !hasAttr<FlagEnumAttr>();
4895 }
4896
getTemplateSpecializationKind() const4897 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4898 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4899 return MSI->getTemplateSpecializationKind();
4900
4901 return TSK_Undeclared;
4902 }
4903
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)4904 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4905 SourceLocation PointOfInstantiation) {
4906 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4907 assert(MSI && "Not an instantiated member enumeration?");
4908 MSI->setTemplateSpecializationKind(TSK);
4909 if (TSK != TSK_ExplicitSpecialization &&
4910 PointOfInstantiation.isValid() &&
4911 MSI->getPointOfInstantiation().isInvalid())
4912 MSI->setPointOfInstantiation(PointOfInstantiation);
4913 }
4914
getTemplateInstantiationPattern() const4915 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4916 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4917 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4918 EnumDecl *ED = getInstantiatedFromMemberEnum();
4919 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4920 ED = NewED;
4921 return getDefinitionOrSelf(ED);
4922 }
4923 }
4924
4925 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4926 "couldn't find pattern for enum instantiation");
4927 return nullptr;
4928 }
4929
getInstantiatedFromMemberEnum() const4930 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4931 if (SpecializationInfo)
4932 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4933
4934 return nullptr;
4935 }
4936
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)4937 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4938 TemplateSpecializationKind TSK) {
4939 assert(!SpecializationInfo && "Member enum is already a specialization");
4940 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4941 }
4942
getODRHash()4943 unsigned EnumDecl::getODRHash() {
4944 if (hasODRHash())
4945 return ODRHash;
4946
4947 class ODRHash Hash;
4948 Hash.AddEnumDecl(this);
4949 setHasODRHash(true);
4950 ODRHash = Hash.CalculateHash();
4951 return ODRHash;
4952 }
4953
getSourceRange() const4954 SourceRange EnumDecl::getSourceRange() const {
4955 auto Res = TagDecl::getSourceRange();
4956 // Set end-point to enum-base, e.g. enum foo : ^bar
4957 if (auto *TSI = getIntegerTypeSourceInfo()) {
4958 // TagDecl doesn't know about the enum base.
4959 if (!getBraceRange().getEnd().isValid())
4960 Res.setEnd(TSI->getTypeLoc().getEndLoc());
4961 }
4962 return Res;
4963 }
4964
getValueRange(llvm::APInt & Max,llvm::APInt & Min) const4965 void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const {
4966 unsigned Bitwidth = getASTContext().getIntWidth(getIntegerType());
4967 unsigned NumNegativeBits = getNumNegativeBits();
4968 unsigned NumPositiveBits = getNumPositiveBits();
4969
4970 if (NumNegativeBits) {
4971 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
4972 Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
4973 Min = -Max;
4974 } else {
4975 Max = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
4976 Min = llvm::APInt::getZero(Bitwidth);
4977 }
4978 }
4979
4980 //===----------------------------------------------------------------------===//
4981 // RecordDecl Implementation
4982 //===----------------------------------------------------------------------===//
4983
RecordDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)4984 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4985 DeclContext *DC, SourceLocation StartLoc,
4986 SourceLocation IdLoc, IdentifierInfo *Id,
4987 RecordDecl *PrevDecl)
4988 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4989 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4990 setHasFlexibleArrayMember(false);
4991 setAnonymousStructOrUnion(false);
4992 setHasObjectMember(false);
4993 setHasVolatileMember(false);
4994 setHasLoadedFieldsFromExternalStorage(false);
4995 setNonTrivialToPrimitiveDefaultInitialize(false);
4996 setNonTrivialToPrimitiveCopy(false);
4997 setNonTrivialToPrimitiveDestroy(false);
4998 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4999 setHasNonTrivialToPrimitiveDestructCUnion(false);
5000 setHasNonTrivialToPrimitiveCopyCUnion(false);
5001 setParamDestroyedInCallee(false);
5002 setArgPassingRestrictions(RecordArgPassingKind::CanPassInRegs);
5003 setIsRandomized(false);
5004 setODRHash(0);
5005 }
5006
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)5007 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
5008 SourceLocation StartLoc, SourceLocation IdLoc,
5009 IdentifierInfo *Id, RecordDecl* PrevDecl) {
5010 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
5011 StartLoc, IdLoc, Id, PrevDecl);
5012 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
5013
5014 C.getTypeDeclType(R, PrevDecl);
5015 return R;
5016 }
5017
CreateDeserialized(const ASTContext & C,GlobalDeclID ID)5018 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C,
5019 GlobalDeclID ID) {
5020 RecordDecl *R = new (C, ID)
5021 RecordDecl(Record, TagTypeKind::Struct, C, nullptr, SourceLocation(),
5022 SourceLocation(), nullptr, nullptr);
5023 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
5024 return R;
5025 }
5026
isInjectedClassName() const5027 bool RecordDecl::isInjectedClassName() const {
5028 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
5029 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
5030 }
5031
isLambda() const5032 bool RecordDecl::isLambda() const {
5033 if (auto RD = dyn_cast<CXXRecordDecl>(this))
5034 return RD->isLambda();
5035 return false;
5036 }
5037
isCapturedRecord() const5038 bool RecordDecl::isCapturedRecord() const {
5039 return hasAttr<CapturedRecordAttr>();
5040 }
5041
setCapturedRecord()5042 void RecordDecl::setCapturedRecord() {
5043 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
5044 }
5045
isOrContainsUnion() const5046 bool RecordDecl::isOrContainsUnion() const {
5047 if (isUnion())
5048 return true;
5049
5050 if (const RecordDecl *Def = getDefinition()) {
5051 for (const FieldDecl *FD : Def->fields()) {
5052 const RecordType *RT = FD->getType()->getAs<RecordType>();
5053 if (RT && RT->getDecl()->isOrContainsUnion())
5054 return true;
5055 }
5056 }
5057
5058 return false;
5059 }
5060
field_begin() const5061 RecordDecl::field_iterator RecordDecl::field_begin() const {
5062 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
5063 LoadFieldsFromExternalStorage();
5064 // This is necessary for correctness for C++ with modules.
5065 // FIXME: Come up with a test case that breaks without definition.
5066 if (RecordDecl *D = getDefinition(); D && D != this)
5067 return D->field_begin();
5068 return field_iterator(decl_iterator(FirstDecl));
5069 }
5070
5071 /// completeDefinition - Notes that the definition of this type is now
5072 /// complete.
completeDefinition()5073 void RecordDecl::completeDefinition() {
5074 assert(!isCompleteDefinition() && "Cannot redefine record!");
5075 TagDecl::completeDefinition();
5076
5077 ASTContext &Ctx = getASTContext();
5078
5079 // Layouts are dumped when computed, so if we are dumping for all complete
5080 // types, we need to force usage to get types that wouldn't be used elsewhere.
5081 //
5082 // If the type is dependent, then we can't compute its layout because there
5083 // is no way for us to know the size or alignment of a dependent type. Also
5084 // ignore declarations marked as invalid since 'getASTRecordLayout()' asserts
5085 // on that.
5086 if (Ctx.getLangOpts().DumpRecordLayoutsComplete && !isDependentType() &&
5087 !isInvalidDecl())
5088 (void)Ctx.getASTRecordLayout(this);
5089 }
5090
5091 /// isMsStruct - Get whether or not this record uses ms_struct layout.
5092 /// This which can be turned on with an attribute, pragma, or the
5093 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const5094 bool RecordDecl::isMsStruct(const ASTContext &C) const {
5095 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
5096 }
5097
reorderDecls(const SmallVectorImpl<Decl * > & Decls)5098 void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) {
5099 std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false);
5100 LastDecl->NextInContextAndBits.setPointer(nullptr);
5101 setIsRandomized(true);
5102 }
5103
LoadFieldsFromExternalStorage() const5104 void RecordDecl::LoadFieldsFromExternalStorage() const {
5105 ExternalASTSource *Source = getASTContext().getExternalSource();
5106 assert(hasExternalLexicalStorage() && Source && "No external storage?");
5107
5108 // Notify that we have a RecordDecl doing some initialization.
5109 ExternalASTSource::Deserializing TheFields(Source);
5110
5111 SmallVector<Decl*, 64> Decls;
5112 setHasLoadedFieldsFromExternalStorage(true);
5113 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
5114 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
5115 }, Decls);
5116
5117 #ifndef NDEBUG
5118 // Check that all decls we got were FieldDecls.
5119 for (unsigned i=0, e=Decls.size(); i != e; ++i)
5120 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
5121 #endif
5122
5123 if (Decls.empty())
5124 return;
5125
5126 auto [ExternalFirst, ExternalLast] =
5127 BuildDeclChain(Decls,
5128 /*FieldsAlreadyLoaded=*/false);
5129 ExternalLast->NextInContextAndBits.setPointer(FirstDecl);
5130 FirstDecl = ExternalFirst;
5131 if (!LastDecl)
5132 LastDecl = ExternalLast;
5133 }
5134
mayInsertExtraPadding(bool EmitRemark) const5135 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
5136 ASTContext &Context = getASTContext();
5137 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
5138 (SanitizerKind::Address | SanitizerKind::KernelAddress);
5139 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
5140 return false;
5141 const auto &NoSanitizeList = Context.getNoSanitizeList();
5142 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
5143 // We may be able to relax some of these requirements.
5144 int ReasonToReject = -1;
5145 if (!CXXRD || CXXRD->isExternCContext())
5146 ReasonToReject = 0; // is not C++.
5147 else if (CXXRD->hasAttr<PackedAttr>())
5148 ReasonToReject = 1; // is packed.
5149 else if (CXXRD->isUnion())
5150 ReasonToReject = 2; // is a union.
5151 else if (CXXRD->isTriviallyCopyable())
5152 ReasonToReject = 3; // is trivially copyable.
5153 else if (CXXRD->hasTrivialDestructor())
5154 ReasonToReject = 4; // has trivial destructor.
5155 else if (CXXRD->isStandardLayout())
5156 ReasonToReject = 5; // is standard layout.
5157 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
5158 "field-padding"))
5159 ReasonToReject = 6; // is in an excluded file.
5160 else if (NoSanitizeList.containsType(
5161 EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
5162 ReasonToReject = 7; // The type is excluded.
5163
5164 if (EmitRemark) {
5165 if (ReasonToReject >= 0)
5166 Context.getDiagnostics().Report(
5167 getLocation(),
5168 diag::remark_sanitize_address_insert_extra_padding_rejected)
5169 << getQualifiedNameAsString() << ReasonToReject;
5170 else
5171 Context.getDiagnostics().Report(
5172 getLocation(),
5173 diag::remark_sanitize_address_insert_extra_padding_accepted)
5174 << getQualifiedNameAsString();
5175 }
5176 return ReasonToReject < 0;
5177 }
5178
findFirstNamedDataMember() const5179 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
5180 for (const auto *I : fields()) {
5181 if (I->getIdentifier())
5182 return I;
5183
5184 if (const auto *RT = I->getType()->getAs<RecordType>())
5185 if (const FieldDecl *NamedDataMember =
5186 RT->getDecl()->findFirstNamedDataMember())
5187 return NamedDataMember;
5188 }
5189
5190 // We didn't find a named data member.
5191 return nullptr;
5192 }
5193
getODRHash()5194 unsigned RecordDecl::getODRHash() {
5195 if (hasODRHash())
5196 return RecordDeclBits.ODRHash;
5197
5198 // Only calculate hash on first call of getODRHash per record.
5199 ODRHash Hash;
5200 Hash.AddRecordDecl(this);
5201 // For RecordDecl the ODRHash is stored in the remaining 26
5202 // bit of RecordDeclBits, adjust the hash to accomodate.
5203 setODRHash(Hash.CalculateHash() >> 6);
5204 return RecordDeclBits.ODRHash;
5205 }
5206
5207 //===----------------------------------------------------------------------===//
5208 // BlockDecl Implementation
5209 //===----------------------------------------------------------------------===//
5210
BlockDecl(DeclContext * DC,SourceLocation CaretLoc)5211 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
5212 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
5213 setIsVariadic(false);
5214 setCapturesCXXThis(false);
5215 setBlockMissingReturnType(true);
5216 setIsConversionFromLambda(false);
5217 setDoesNotEscape(false);
5218 setCanAvoidCopyToHeap(false);
5219 }
5220
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)5221 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
5222 assert(!ParamInfo && "Already has param info!");
5223
5224 // Zero params -> null pointer.
5225 if (!NewParamInfo.empty()) {
5226 NumParams = NewParamInfo.size();
5227 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
5228 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
5229 }
5230 }
5231
setCaptures(ASTContext & Context,ArrayRef<Capture> Captures,bool CapturesCXXThis)5232 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
5233 bool CapturesCXXThis) {
5234 this->setCapturesCXXThis(CapturesCXXThis);
5235 this->NumCaptures = Captures.size();
5236
5237 if (Captures.empty()) {
5238 this->Captures = nullptr;
5239 return;
5240 }
5241
5242 this->Captures = Captures.copy(Context).data();
5243 }
5244
capturesVariable(const VarDecl * variable) const5245 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
5246 for (const auto &I : captures())
5247 // Only auto vars can be captured, so no redeclaration worries.
5248 if (I.getVariable() == variable)
5249 return true;
5250
5251 return false;
5252 }
5253
getSourceRange() const5254 SourceRange BlockDecl::getSourceRange() const {
5255 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
5256 }
5257
5258 //===----------------------------------------------------------------------===//
5259 // Other Decl Allocation/Deallocation Method Implementations
5260 //===----------------------------------------------------------------------===//
5261
anchor()5262 void TranslationUnitDecl::anchor() {}
5263
Create(ASTContext & C)5264 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
5265 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
5266 }
5267
setAnonymousNamespace(NamespaceDecl * D)5268 void TranslationUnitDecl::setAnonymousNamespace(NamespaceDecl *D) {
5269 AnonymousNamespace = D;
5270
5271 if (ASTMutationListener *Listener = Ctx.getASTMutationListener())
5272 Listener->AddedAnonymousNamespace(this, D);
5273 }
5274
anchor()5275 void PragmaCommentDecl::anchor() {}
5276
Create(const ASTContext & C,TranslationUnitDecl * DC,SourceLocation CommentLoc,PragmaMSCommentKind CommentKind,StringRef Arg)5277 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
5278 TranslationUnitDecl *DC,
5279 SourceLocation CommentLoc,
5280 PragmaMSCommentKind CommentKind,
5281 StringRef Arg) {
5282 PragmaCommentDecl *PCD =
5283 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
5284 PragmaCommentDecl(DC, CommentLoc, CommentKind);
5285 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
5286 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
5287 return PCD;
5288 }
5289
CreateDeserialized(ASTContext & C,GlobalDeclID ID,unsigned ArgSize)5290 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
5291 GlobalDeclID ID,
5292 unsigned ArgSize) {
5293 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
5294 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
5295 }
5296
anchor()5297 void PragmaDetectMismatchDecl::anchor() {}
5298
5299 PragmaDetectMismatchDecl *
Create(const ASTContext & C,TranslationUnitDecl * DC,SourceLocation Loc,StringRef Name,StringRef Value)5300 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
5301 SourceLocation Loc, StringRef Name,
5302 StringRef Value) {
5303 size_t ValueStart = Name.size() + 1;
5304 PragmaDetectMismatchDecl *PDMD =
5305 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
5306 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
5307 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
5308 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
5309 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
5310 Value.size());
5311 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
5312 return PDMD;
5313 }
5314
5315 PragmaDetectMismatchDecl *
CreateDeserialized(ASTContext & C,GlobalDeclID ID,unsigned NameValueSize)5316 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5317 unsigned NameValueSize) {
5318 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
5319 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
5320 }
5321
anchor()5322 void ExternCContextDecl::anchor() {}
5323
Create(const ASTContext & C,TranslationUnitDecl * DC)5324 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
5325 TranslationUnitDecl *DC) {
5326 return new (C, DC) ExternCContextDecl(DC);
5327 }
5328
anchor()5329 void LabelDecl::anchor() {}
5330
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)5331 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5332 SourceLocation IdentL, IdentifierInfo *II) {
5333 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
5334 }
5335
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)5336 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5337 SourceLocation IdentL, IdentifierInfo *II,
5338 SourceLocation GnuLabelL) {
5339 assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
5340 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
5341 }
5342
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5343 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5344 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
5345 SourceLocation());
5346 }
5347
setMSAsmLabel(StringRef Name)5348 void LabelDecl::setMSAsmLabel(StringRef Name) {
5349 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
5350 memcpy(Buffer, Name.data(), Name.size());
5351 Buffer[Name.size()] = '\0';
5352 MSAsmName = Buffer;
5353 }
5354
anchor()5355 void ValueDecl::anchor() {}
5356
isWeak() const5357 bool ValueDecl::isWeak() const {
5358 auto *MostRecent = getMostRecentDecl();
5359 return MostRecent->hasAttr<WeakAttr>() ||
5360 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
5361 }
5362
isInitCapture() const5363 bool ValueDecl::isInitCapture() const {
5364 if (auto *Var = llvm::dyn_cast<VarDecl>(this))
5365 return Var->isInitCapture();
5366 return false;
5367 }
5368
anchor()5369 void ImplicitParamDecl::anchor() {}
5370
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type,ImplicitParamKind ParamKind)5371 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
5372 SourceLocation IdLoc,
5373 IdentifierInfo *Id, QualType Type,
5374 ImplicitParamKind ParamKind) {
5375 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
5376 }
5377
Create(ASTContext & C,QualType Type,ImplicitParamKind ParamKind)5378 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
5379 ImplicitParamKind ParamKind) {
5380 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
5381 }
5382
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5383 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
5384 GlobalDeclID ID) {
5385 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
5386 }
5387
5388 FunctionDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool UsesFPIntrin,bool isInlineSpecified,bool hasWrittenPrototype,ConstexprSpecKind ConstexprKind,Expr * TrailingRequiresClause)5389 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
5390 const DeclarationNameInfo &NameInfo, QualType T,
5391 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
5392 bool isInlineSpecified, bool hasWrittenPrototype,
5393 ConstexprSpecKind ConstexprKind,
5394 Expr *TrailingRequiresClause) {
5395 FunctionDecl *New = new (C, DC) FunctionDecl(
5396 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
5397 isInlineSpecified, ConstexprKind, TrailingRequiresClause);
5398 New->setHasWrittenPrototype(hasWrittenPrototype);
5399 return New;
5400 }
5401
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5402 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5403 return new (C, ID) FunctionDecl(
5404 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
5405 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
5406 }
5407
Create(ASTContext & C,DeclContext * DC,SourceLocation L)5408 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5409 return new (C, DC) BlockDecl(DC, L);
5410 }
5411
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5412 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5413 return new (C, ID) BlockDecl(nullptr, SourceLocation());
5414 }
5415
CapturedDecl(DeclContext * DC,unsigned NumParams)5416 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
5417 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
5418 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
5419
Create(ASTContext & C,DeclContext * DC,unsigned NumParams)5420 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
5421 unsigned NumParams) {
5422 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5423 CapturedDecl(DC, NumParams);
5424 }
5425
CreateDeserialized(ASTContext & C,GlobalDeclID ID,unsigned NumParams)5426 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5427 unsigned NumParams) {
5428 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5429 CapturedDecl(nullptr, NumParams);
5430 }
5431
getBody() const5432 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
setBody(Stmt * B)5433 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
5434
isNothrow() const5435 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
setNothrow(bool Nothrow)5436 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
5437
EnumConstantDecl(const ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)5438 EnumConstantDecl::EnumConstantDecl(const ASTContext &C, DeclContext *DC,
5439 SourceLocation L, IdentifierInfo *Id,
5440 QualType T, Expr *E, const llvm::APSInt &V)
5441 : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt *)E) {
5442 setInitVal(C, V);
5443 }
5444
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)5445 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
5446 SourceLocation L,
5447 IdentifierInfo *Id, QualType T,
5448 Expr *E, const llvm::APSInt &V) {
5449 return new (C, CD) EnumConstantDecl(C, CD, L, Id, T, E, V);
5450 }
5451
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5452 EnumConstantDecl *EnumConstantDecl::CreateDeserialized(ASTContext &C,
5453 GlobalDeclID ID) {
5454 return new (C, ID) EnumConstantDecl(C, nullptr, SourceLocation(), nullptr,
5455 QualType(), nullptr, llvm::APSInt());
5456 }
5457
anchor()5458 void IndirectFieldDecl::anchor() {}
5459
IndirectFieldDecl(ASTContext & C,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,MutableArrayRef<NamedDecl * > CH)5460 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
5461 SourceLocation L, DeclarationName N,
5462 QualType T,
5463 MutableArrayRef<NamedDecl *> CH)
5464 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
5465 ChainingSize(CH.size()) {
5466 // In C++, indirect field declarations conflict with tag declarations in the
5467 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
5468 if (C.getLangOpts().CPlusPlus)
5469 IdentifierNamespace |= IDNS_Tag;
5470 }
5471
5472 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,const IdentifierInfo * Id,QualType T,llvm::MutableArrayRef<NamedDecl * > CH)5473 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
5474 const IdentifierInfo *Id, QualType T,
5475 llvm::MutableArrayRef<NamedDecl *> CH) {
5476 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
5477 }
5478
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5479 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
5480 GlobalDeclID ID) {
5481 return new (C, ID)
5482 IndirectFieldDecl(C, nullptr, SourceLocation(), DeclarationName(),
5483 QualType(), std::nullopt);
5484 }
5485
getSourceRange() const5486 SourceRange EnumConstantDecl::getSourceRange() const {
5487 SourceLocation End = getLocation();
5488 if (Init)
5489 End = Init->getEndLoc();
5490 return SourceRange(getLocation(), End);
5491 }
5492
anchor()5493 void TypeDecl::anchor() {}
5494
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,const IdentifierInfo * Id,TypeSourceInfo * TInfo)5495 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
5496 SourceLocation StartLoc, SourceLocation IdLoc,
5497 const IdentifierInfo *Id,
5498 TypeSourceInfo *TInfo) {
5499 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5500 }
5501
anchor()5502 void TypedefNameDecl::anchor() {}
5503
getAnonDeclWithTypedefName(bool AnyRedecl) const5504 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
5505 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
5506 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5507 auto *ThisTypedef = this;
5508 if (AnyRedecl && OwningTypedef) {
5509 OwningTypedef = OwningTypedef->getCanonicalDecl();
5510 ThisTypedef = ThisTypedef->getCanonicalDecl();
5511 }
5512 if (OwningTypedef == ThisTypedef)
5513 return TT->getDecl();
5514 }
5515
5516 return nullptr;
5517 }
5518
isTransparentTagSlow() const5519 bool TypedefNameDecl::isTransparentTagSlow() const {
5520 auto determineIsTransparent = [&]() {
5521 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5522 if (auto *TD = TT->getDecl()) {
5523 if (TD->getName() != getName())
5524 return false;
5525 SourceLocation TTLoc = getLocation();
5526 SourceLocation TDLoc = TD->getLocation();
5527 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5528 return false;
5529 SourceManager &SM = getASTContext().getSourceManager();
5530 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5531 }
5532 }
5533 return false;
5534 };
5535
5536 bool isTransparent = determineIsTransparent();
5537 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5538 return isTransparent;
5539 }
5540
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5541 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5542 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5543 nullptr, nullptr);
5544 }
5545
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,const IdentifierInfo * Id,TypeSourceInfo * TInfo)5546 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5547 SourceLocation StartLoc,
5548 SourceLocation IdLoc,
5549 const IdentifierInfo *Id,
5550 TypeSourceInfo *TInfo) {
5551 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5552 }
5553
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5554 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C,
5555 GlobalDeclID ID) {
5556 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5557 SourceLocation(), nullptr, nullptr);
5558 }
5559
getSourceRange() const5560 SourceRange TypedefDecl::getSourceRange() const {
5561 SourceLocation RangeEnd = getLocation();
5562 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5563 if (typeIsPostfix(TInfo->getType()))
5564 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5565 }
5566 return SourceRange(getBeginLoc(), RangeEnd);
5567 }
5568
getSourceRange() const5569 SourceRange TypeAliasDecl::getSourceRange() const {
5570 SourceLocation RangeEnd = getBeginLoc();
5571 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5572 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5573 return SourceRange(getBeginLoc(), RangeEnd);
5574 }
5575
anchor()5576 void FileScopeAsmDecl::anchor() {}
5577
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)5578 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5579 StringLiteral *Str,
5580 SourceLocation AsmLoc,
5581 SourceLocation RParenLoc) {
5582 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5583 }
5584
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5585 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5586 GlobalDeclID ID) {
5587 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5588 SourceLocation());
5589 }
5590
anchor()5591 void TopLevelStmtDecl::anchor() {}
5592
Create(ASTContext & C,Stmt * Statement)5593 TopLevelStmtDecl *TopLevelStmtDecl::Create(ASTContext &C, Stmt *Statement) {
5594 assert(C.getLangOpts().IncrementalExtensions &&
5595 "Must be used only in incremental mode");
5596
5597 SourceLocation Loc = Statement ? Statement->getBeginLoc() : SourceLocation();
5598 DeclContext *DC = C.getTranslationUnitDecl();
5599
5600 return new (C, DC) TopLevelStmtDecl(DC, Loc, Statement);
5601 }
5602
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5603 TopLevelStmtDecl *TopLevelStmtDecl::CreateDeserialized(ASTContext &C,
5604 GlobalDeclID ID) {
5605 return new (C, ID)
5606 TopLevelStmtDecl(/*DC=*/nullptr, SourceLocation(), /*S=*/nullptr);
5607 }
5608
getSourceRange() const5609 SourceRange TopLevelStmtDecl::getSourceRange() const {
5610 return SourceRange(getLocation(), Statement->getEndLoc());
5611 }
5612
setStmt(Stmt * S)5613 void TopLevelStmtDecl::setStmt(Stmt *S) {
5614 assert(S);
5615 Statement = S;
5616 setLocation(Statement->getBeginLoc());
5617 }
5618
anchor()5619 void EmptyDecl::anchor() {}
5620
Create(ASTContext & C,DeclContext * DC,SourceLocation L)5621 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5622 return new (C, DC) EmptyDecl(DC, L);
5623 }
5624
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5625 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5626 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5627 }
5628
HLSLBufferDecl(DeclContext * DC,bool CBuffer,SourceLocation KwLoc,IdentifierInfo * ID,SourceLocation IDLoc,SourceLocation LBrace)5629 HLSLBufferDecl::HLSLBufferDecl(DeclContext *DC, bool CBuffer,
5630 SourceLocation KwLoc, IdentifierInfo *ID,
5631 SourceLocation IDLoc, SourceLocation LBrace)
5632 : NamedDecl(Decl::Kind::HLSLBuffer, DC, IDLoc, DeclarationName(ID)),
5633 DeclContext(Decl::Kind::HLSLBuffer), LBraceLoc(LBrace), KwLoc(KwLoc),
5634 IsCBuffer(CBuffer) {}
5635
Create(ASTContext & C,DeclContext * LexicalParent,bool CBuffer,SourceLocation KwLoc,IdentifierInfo * ID,SourceLocation IDLoc,SourceLocation LBrace)5636 HLSLBufferDecl *HLSLBufferDecl::Create(ASTContext &C,
5637 DeclContext *LexicalParent, bool CBuffer,
5638 SourceLocation KwLoc, IdentifierInfo *ID,
5639 SourceLocation IDLoc,
5640 SourceLocation LBrace) {
5641 // For hlsl like this
5642 // cbuffer A {
5643 // cbuffer B {
5644 // }
5645 // }
5646 // compiler should treat it as
5647 // cbuffer A {
5648 // }
5649 // cbuffer B {
5650 // }
5651 // FIXME: support nested buffers if required for back-compat.
5652 DeclContext *DC = LexicalParent;
5653 HLSLBufferDecl *Result =
5654 new (C, DC) HLSLBufferDecl(DC, CBuffer, KwLoc, ID, IDLoc, LBrace);
5655 return Result;
5656 }
5657
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5658 HLSLBufferDecl *HLSLBufferDecl::CreateDeserialized(ASTContext &C,
5659 GlobalDeclID ID) {
5660 return new (C, ID) HLSLBufferDecl(nullptr, false, SourceLocation(), nullptr,
5661 SourceLocation(), SourceLocation());
5662 }
5663
5664 //===----------------------------------------------------------------------===//
5665 // ImportDecl Implementation
5666 //===----------------------------------------------------------------------===//
5667
5668 /// Retrieve the number of module identifiers needed to name the given
5669 /// module.
getNumModuleIdentifiers(Module * Mod)5670 static unsigned getNumModuleIdentifiers(Module *Mod) {
5671 unsigned Result = 1;
5672 while (Mod->Parent) {
5673 Mod = Mod->Parent;
5674 ++Result;
5675 }
5676 return Result;
5677 }
5678
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)5679 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5680 Module *Imported,
5681 ArrayRef<SourceLocation> IdentifierLocs)
5682 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5683 NextLocalImportAndComplete(nullptr, true) {
5684 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5685 auto *StoredLocs = getTrailingObjects<SourceLocation>();
5686 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5687 StoredLocs);
5688 }
5689
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)5690 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5691 Module *Imported, SourceLocation EndLoc)
5692 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5693 NextLocalImportAndComplete(nullptr, false) {
5694 *getTrailingObjects<SourceLocation>() = EndLoc;
5695 }
5696
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)5697 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5698 SourceLocation StartLoc, Module *Imported,
5699 ArrayRef<SourceLocation> IdentifierLocs) {
5700 return new (C, DC,
5701 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5702 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5703 }
5704
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)5705 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5706 SourceLocation StartLoc,
5707 Module *Imported,
5708 SourceLocation EndLoc) {
5709 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5710 ImportDecl(DC, StartLoc, Imported, EndLoc);
5711 Import->setImplicit();
5712 return Import;
5713 }
5714
CreateDeserialized(ASTContext & C,GlobalDeclID ID,unsigned NumLocations)5715 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5716 unsigned NumLocations) {
5717 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5718 ImportDecl(EmptyShell());
5719 }
5720
getIdentifierLocs() const5721 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5722 if (!isImportComplete())
5723 return std::nullopt;
5724
5725 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5726 return llvm::ArrayRef(StoredLocs,
5727 getNumModuleIdentifiers(getImportedModule()));
5728 }
5729
getSourceRange() const5730 SourceRange ImportDecl::getSourceRange() const {
5731 if (!isImportComplete())
5732 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5733
5734 return SourceRange(getLocation(), getIdentifierLocs().back());
5735 }
5736
5737 //===----------------------------------------------------------------------===//
5738 // ExportDecl Implementation
5739 //===----------------------------------------------------------------------===//
5740
anchor()5741 void ExportDecl::anchor() {}
5742
Create(ASTContext & C,DeclContext * DC,SourceLocation ExportLoc)5743 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5744 SourceLocation ExportLoc) {
5745 return new (C, DC) ExportDecl(DC, ExportLoc);
5746 }
5747
CreateDeserialized(ASTContext & C,GlobalDeclID ID)5748 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5749 return new (C, ID) ExportDecl(nullptr, SourceLocation());
5750 }
5751
IsArmStreamingFunction(const FunctionDecl * FD,bool IncludeLocallyStreaming)5752 bool clang::IsArmStreamingFunction(const FunctionDecl *FD,
5753 bool IncludeLocallyStreaming) {
5754 if (IncludeLocallyStreaming)
5755 if (FD->hasAttr<ArmLocallyStreamingAttr>())
5756 return true;
5757
5758 if (const Type *Ty = FD->getType().getTypePtrOrNull())
5759 if (const auto *FPT = Ty->getAs<FunctionProtoType>())
5760 if (FPT->getAArch64SMEAttributes() &
5761 FunctionType::SME_PStateSMEnabledMask)
5762 return true;
5763
5764 return false;
5765 }
5766