1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
13 /// Atomic optimizer uses following strategies to compute scan and reduced
14 /// values
15 /// 1. DPP -
16 /// This is the most efficient implementation for scan. DPP uses Whole Wave
17 /// Mode (WWM)
18 /// 2. Iterative -
19 // An alternative implementation iterates over all active lanes
20 /// of Wavefront using llvm.cttz and performs scan using readlane & writelane
21 /// intrinsics
22 //===----------------------------------------------------------------------===//
23
24 #include "AMDGPU.h"
25 #include "GCNSubtarget.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/UniformityAnalysis.h"
28 #include "llvm/CodeGen/TargetPassConfig.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstVisitor.h"
31 #include "llvm/IR/IntrinsicsAMDGPU.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35
36 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
37
38 using namespace llvm;
39 using namespace llvm::AMDGPU;
40
41 namespace {
42
43 struct ReplacementInfo {
44 Instruction *I;
45 AtomicRMWInst::BinOp Op;
46 unsigned ValIdx;
47 bool ValDivergent;
48 };
49
50 class AMDGPUAtomicOptimizer : public FunctionPass {
51 public:
52 static char ID;
53 ScanOptions ScanImpl;
AMDGPUAtomicOptimizer(ScanOptions ScanImpl)54 AMDGPUAtomicOptimizer(ScanOptions ScanImpl)
55 : FunctionPass(ID), ScanImpl(ScanImpl) {}
56
57 bool runOnFunction(Function &F) override;
58
getAnalysisUsage(AnalysisUsage & AU) const59 void getAnalysisUsage(AnalysisUsage &AU) const override {
60 AU.addPreserved<DominatorTreeWrapperPass>();
61 AU.addRequired<UniformityInfoWrapperPass>();
62 AU.addRequired<TargetPassConfig>();
63 }
64 };
65
66 class AMDGPUAtomicOptimizerImpl
67 : public InstVisitor<AMDGPUAtomicOptimizerImpl> {
68 private:
69 SmallVector<ReplacementInfo, 8> ToReplace;
70 const UniformityInfo *UA;
71 const DataLayout *DL;
72 DomTreeUpdater &DTU;
73 const GCNSubtarget *ST;
74 bool IsPixelShader;
75 ScanOptions ScanImpl;
76
77 Value *buildReduction(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
78 Value *const Identity) const;
79 Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
80 Value *const Identity) const;
81 Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const;
82
83 std::pair<Value *, Value *>
84 buildScanIteratively(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
85 Value *const Identity, Value *V, Instruction &I,
86 BasicBlock *ComputeLoop, BasicBlock *ComputeEnd) const;
87
88 void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
89 bool ValDivergent) const;
90
91 public:
92 AMDGPUAtomicOptimizerImpl() = delete;
93
AMDGPUAtomicOptimizerImpl(const UniformityInfo * UA,const DataLayout * DL,DomTreeUpdater & DTU,const GCNSubtarget * ST,bool IsPixelShader,ScanOptions ScanImpl)94 AMDGPUAtomicOptimizerImpl(const UniformityInfo *UA, const DataLayout *DL,
95 DomTreeUpdater &DTU, const GCNSubtarget *ST,
96 bool IsPixelShader, ScanOptions ScanImpl)
97 : UA(UA), DL(DL), DTU(DTU), ST(ST), IsPixelShader(IsPixelShader),
98 ScanImpl(ScanImpl) {}
99
100 bool run(Function &F);
101
102 void visitAtomicRMWInst(AtomicRMWInst &I);
103 void visitIntrinsicInst(IntrinsicInst &I);
104 };
105
106 } // namespace
107
108 char AMDGPUAtomicOptimizer::ID = 0;
109
110 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
111
runOnFunction(Function & F)112 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
113 if (skipFunction(F)) {
114 return false;
115 }
116
117 const UniformityInfo *UA =
118 &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
119 const DataLayout *DL = &F.getDataLayout();
120
121 DominatorTreeWrapperPass *const DTW =
122 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
123 DomTreeUpdater DTU(DTW ? &DTW->getDomTree() : nullptr,
124 DomTreeUpdater::UpdateStrategy::Lazy);
125
126 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
127 const TargetMachine &TM = TPC.getTM<TargetMachine>();
128 const GCNSubtarget *ST = &TM.getSubtarget<GCNSubtarget>(F);
129
130 bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
131
132 return AMDGPUAtomicOptimizerImpl(UA, DL, DTU, ST, IsPixelShader, ScanImpl)
133 .run(F);
134 }
135
run(Function & F,FunctionAnalysisManager & AM)136 PreservedAnalyses AMDGPUAtomicOptimizerPass::run(Function &F,
137 FunctionAnalysisManager &AM) {
138
139 const auto *UA = &AM.getResult<UniformityInfoAnalysis>(F);
140 const DataLayout *DL = &F.getDataLayout();
141
142 DomTreeUpdater DTU(&AM.getResult<DominatorTreeAnalysis>(F),
143 DomTreeUpdater::UpdateStrategy::Lazy);
144 const GCNSubtarget *ST = &TM.getSubtarget<GCNSubtarget>(F);
145
146 bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
147
148 bool IsChanged =
149 AMDGPUAtomicOptimizerImpl(UA, DL, DTU, ST, IsPixelShader, ScanImpl)
150 .run(F);
151
152 if (!IsChanged) {
153 return PreservedAnalyses::all();
154 }
155
156 PreservedAnalyses PA;
157 PA.preserve<DominatorTreeAnalysis>();
158 return PA;
159 }
160
run(Function & F)161 bool AMDGPUAtomicOptimizerImpl::run(Function &F) {
162
163 // Scan option None disables the Pass
164 if (ScanImpl == ScanOptions::None) {
165 return false;
166 }
167
168 visit(F);
169
170 const bool Changed = !ToReplace.empty();
171
172 for (ReplacementInfo &Info : ToReplace) {
173 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
174 }
175
176 ToReplace.clear();
177
178 return Changed;
179 }
180
isLegalCrossLaneType(Type * Ty)181 static bool isLegalCrossLaneType(Type *Ty) {
182 switch (Ty->getTypeID()) {
183 case Type::FloatTyID:
184 case Type::DoubleTyID:
185 return true;
186 case Type::IntegerTyID: {
187 unsigned Size = Ty->getIntegerBitWidth();
188 return (Size == 32 || Size == 64);
189 }
190 default:
191 return false;
192 }
193 }
194
visitAtomicRMWInst(AtomicRMWInst & I)195 void AMDGPUAtomicOptimizerImpl::visitAtomicRMWInst(AtomicRMWInst &I) {
196 // Early exit for unhandled address space atomic instructions.
197 switch (I.getPointerAddressSpace()) {
198 default:
199 return;
200 case AMDGPUAS::GLOBAL_ADDRESS:
201 case AMDGPUAS::LOCAL_ADDRESS:
202 break;
203 }
204
205 AtomicRMWInst::BinOp Op = I.getOperation();
206
207 switch (Op) {
208 default:
209 return;
210 case AtomicRMWInst::Add:
211 case AtomicRMWInst::Sub:
212 case AtomicRMWInst::And:
213 case AtomicRMWInst::Or:
214 case AtomicRMWInst::Xor:
215 case AtomicRMWInst::Max:
216 case AtomicRMWInst::Min:
217 case AtomicRMWInst::UMax:
218 case AtomicRMWInst::UMin:
219 case AtomicRMWInst::FAdd:
220 case AtomicRMWInst::FSub:
221 case AtomicRMWInst::FMax:
222 case AtomicRMWInst::FMin:
223 break;
224 }
225
226 // Only 32 and 64 bit floating point atomic ops are supported.
227 if (AtomicRMWInst::isFPOperation(Op) &&
228 !(I.getType()->isFloatTy() || I.getType()->isDoubleTy())) {
229 return;
230 }
231
232 const unsigned PtrIdx = 0;
233 const unsigned ValIdx = 1;
234
235 // If the pointer operand is divergent, then each lane is doing an atomic
236 // operation on a different address, and we cannot optimize that.
237 if (UA->isDivergentUse(I.getOperandUse(PtrIdx))) {
238 return;
239 }
240
241 bool ValDivergent = UA->isDivergentUse(I.getOperandUse(ValIdx));
242
243 // If the value operand is divergent, each lane is contributing a different
244 // value to the atomic calculation. We can only optimize divergent values if
245 // we have DPP available on our subtarget (for DPP strategy), and the atomic
246 // operation is 32 or 64 bits.
247 if (ValDivergent) {
248 if (ScanImpl == ScanOptions::DPP && !ST->hasDPP())
249 return;
250
251 if (!isLegalCrossLaneType(I.getType()))
252 return;
253 }
254
255 // If we get here, we can optimize the atomic using a single wavefront-wide
256 // atomic operation to do the calculation for the entire wavefront, so
257 // remember the instruction so we can come back to it.
258 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
259
260 ToReplace.push_back(Info);
261 }
262
visitIntrinsicInst(IntrinsicInst & I)263 void AMDGPUAtomicOptimizerImpl::visitIntrinsicInst(IntrinsicInst &I) {
264 AtomicRMWInst::BinOp Op;
265
266 switch (I.getIntrinsicID()) {
267 default:
268 return;
269 case Intrinsic::amdgcn_struct_buffer_atomic_add:
270 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
271 case Intrinsic::amdgcn_raw_buffer_atomic_add:
272 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
273 Op = AtomicRMWInst::Add;
274 break;
275 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
276 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
277 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
278 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
279 Op = AtomicRMWInst::Sub;
280 break;
281 case Intrinsic::amdgcn_struct_buffer_atomic_and:
282 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
283 case Intrinsic::amdgcn_raw_buffer_atomic_and:
284 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
285 Op = AtomicRMWInst::And;
286 break;
287 case Intrinsic::amdgcn_struct_buffer_atomic_or:
288 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
289 case Intrinsic::amdgcn_raw_buffer_atomic_or:
290 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
291 Op = AtomicRMWInst::Or;
292 break;
293 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
294 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
295 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
296 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
297 Op = AtomicRMWInst::Xor;
298 break;
299 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
300 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
301 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
302 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
303 Op = AtomicRMWInst::Min;
304 break;
305 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
306 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
307 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
308 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
309 Op = AtomicRMWInst::UMin;
310 break;
311 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
312 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
313 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
314 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
315 Op = AtomicRMWInst::Max;
316 break;
317 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
318 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
319 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
320 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
321 Op = AtomicRMWInst::UMax;
322 break;
323 }
324
325 const unsigned ValIdx = 0;
326
327 const bool ValDivergent = UA->isDivergentUse(I.getOperandUse(ValIdx));
328
329 // If the value operand is divergent, each lane is contributing a different
330 // value to the atomic calculation. We can only optimize divergent values if
331 // we have DPP available on our subtarget (for DPP strategy), and the atomic
332 // operation is 32 or 64 bits.
333 if (ValDivergent) {
334 if (ScanImpl == ScanOptions::DPP && !ST->hasDPP())
335 return;
336
337 if (!isLegalCrossLaneType(I.getType()))
338 return;
339 }
340
341 // If any of the other arguments to the intrinsic are divergent, we can't
342 // optimize the operation.
343 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
344 if (UA->isDivergentUse(I.getOperandUse(Idx))) {
345 return;
346 }
347 }
348
349 // If we get here, we can optimize the atomic using a single wavefront-wide
350 // atomic operation to do the calculation for the entire wavefront, so
351 // remember the instruction so we can come back to it.
352 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
353
354 ToReplace.push_back(Info);
355 }
356
357 // Use the builder to create the non-atomic counterpart of the specified
358 // atomicrmw binary op.
buildNonAtomicBinOp(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * LHS,Value * RHS)359 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
360 Value *LHS, Value *RHS) {
361 CmpInst::Predicate Pred;
362
363 switch (Op) {
364 default:
365 llvm_unreachable("Unhandled atomic op");
366 case AtomicRMWInst::Add:
367 return B.CreateBinOp(Instruction::Add, LHS, RHS);
368 case AtomicRMWInst::FAdd:
369 return B.CreateFAdd(LHS, RHS);
370 case AtomicRMWInst::Sub:
371 return B.CreateBinOp(Instruction::Sub, LHS, RHS);
372 case AtomicRMWInst::FSub:
373 return B.CreateFSub(LHS, RHS);
374 case AtomicRMWInst::And:
375 return B.CreateBinOp(Instruction::And, LHS, RHS);
376 case AtomicRMWInst::Or:
377 return B.CreateBinOp(Instruction::Or, LHS, RHS);
378 case AtomicRMWInst::Xor:
379 return B.CreateBinOp(Instruction::Xor, LHS, RHS);
380
381 case AtomicRMWInst::Max:
382 Pred = CmpInst::ICMP_SGT;
383 break;
384 case AtomicRMWInst::Min:
385 Pred = CmpInst::ICMP_SLT;
386 break;
387 case AtomicRMWInst::UMax:
388 Pred = CmpInst::ICMP_UGT;
389 break;
390 case AtomicRMWInst::UMin:
391 Pred = CmpInst::ICMP_ULT;
392 break;
393 case AtomicRMWInst::FMax:
394 return B.CreateMaxNum(LHS, RHS);
395 case AtomicRMWInst::FMin:
396 return B.CreateMinNum(LHS, RHS);
397 }
398 Value *Cond = B.CreateICmp(Pred, LHS, RHS);
399 return B.CreateSelect(Cond, LHS, RHS);
400 }
401
402 // Use the builder to create a reduction of V across the wavefront, with all
403 // lanes active, returning the same result in all lanes.
buildReduction(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * V,Value * const Identity) const404 Value *AMDGPUAtomicOptimizerImpl::buildReduction(IRBuilder<> &B,
405 AtomicRMWInst::BinOp Op,
406 Value *V,
407 Value *const Identity) const {
408 Type *AtomicTy = V->getType();
409 Module *M = B.GetInsertBlock()->getModule();
410 Function *UpdateDPP =
411 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
412
413 // Reduce within each row of 16 lanes.
414 for (unsigned Idx = 0; Idx < 4; Idx++) {
415 V = buildNonAtomicBinOp(
416 B, Op, V,
417 B.CreateCall(UpdateDPP,
418 {Identity, V, B.getInt32(DPP::ROW_XMASK0 | 1 << Idx),
419 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
420 }
421
422 // Reduce within each pair of rows (i.e. 32 lanes).
423 assert(ST->hasPermLaneX16());
424 Value *Permlanex16Call = B.CreateIntrinsic(
425 V->getType(), Intrinsic::amdgcn_permlanex16,
426 {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()});
427 V = buildNonAtomicBinOp(B, Op, V, Permlanex16Call);
428 if (ST->isWave32()) {
429 return V;
430 }
431
432 if (ST->hasPermLane64()) {
433 // Reduce across the upper and lower 32 lanes.
434 Value *Permlane64Call =
435 B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_permlane64, V);
436 return buildNonAtomicBinOp(B, Op, V, Permlane64Call);
437 }
438
439 // Pick an arbitrary lane from 0..31 and an arbitrary lane from 32..63 and
440 // combine them with a scalar operation.
441 Function *ReadLane =
442 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, AtomicTy);
443 Value *Lane0 = B.CreateCall(ReadLane, {V, B.getInt32(0)});
444 Value *Lane32 = B.CreateCall(ReadLane, {V, B.getInt32(32)});
445 return buildNonAtomicBinOp(B, Op, Lane0, Lane32);
446 }
447
448 // Use the builder to create an inclusive scan of V across the wavefront, with
449 // all lanes active.
buildScan(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * V,Value * Identity) const450 Value *AMDGPUAtomicOptimizerImpl::buildScan(IRBuilder<> &B,
451 AtomicRMWInst::BinOp Op, Value *V,
452 Value *Identity) const {
453 Type *AtomicTy = V->getType();
454 Module *M = B.GetInsertBlock()->getModule();
455 Function *UpdateDPP =
456 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
457
458 for (unsigned Idx = 0; Idx < 4; Idx++) {
459 V = buildNonAtomicBinOp(
460 B, Op, V,
461 B.CreateCall(UpdateDPP,
462 {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx),
463 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
464 }
465 if (ST->hasDPPBroadcasts()) {
466 // GFX9 has DPP row broadcast operations.
467 V = buildNonAtomicBinOp(
468 B, Op, V,
469 B.CreateCall(UpdateDPP,
470 {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa),
471 B.getInt32(0xf), B.getFalse()}));
472 V = buildNonAtomicBinOp(
473 B, Op, V,
474 B.CreateCall(UpdateDPP,
475 {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc),
476 B.getInt32(0xf), B.getFalse()}));
477 } else {
478 // On GFX10 all DPP operations are confined to a single row. To get cross-
479 // row operations we have to use permlane or readlane.
480
481 // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes
482 // 48..63).
483 assert(ST->hasPermLaneX16());
484 Value *PermX = B.CreateIntrinsic(
485 V->getType(), Intrinsic::amdgcn_permlanex16,
486 {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()});
487
488 Value *UpdateDPPCall = B.CreateCall(
489 UpdateDPP, {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID),
490 B.getInt32(0xa), B.getInt32(0xf), B.getFalse()});
491 V = buildNonAtomicBinOp(B, Op, V, UpdateDPPCall);
492
493 if (!ST->isWave32()) {
494 // Combine lane 31 into lanes 32..63.
495 Value *const Lane31 = B.CreateIntrinsic(
496 V->getType(), Intrinsic::amdgcn_readlane, {V, B.getInt32(31)});
497
498 Value *UpdateDPPCall = B.CreateCall(
499 UpdateDPP, {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID),
500 B.getInt32(0xc), B.getInt32(0xf), B.getFalse()});
501
502 V = buildNonAtomicBinOp(B, Op, V, UpdateDPPCall);
503 }
504 }
505 return V;
506 }
507
508 // Use the builder to create a shift right of V across the wavefront, with all
509 // lanes active, to turn an inclusive scan into an exclusive scan.
buildShiftRight(IRBuilder<> & B,Value * V,Value * Identity) const510 Value *AMDGPUAtomicOptimizerImpl::buildShiftRight(IRBuilder<> &B, Value *V,
511 Value *Identity) const {
512 Type *AtomicTy = V->getType();
513 Module *M = B.GetInsertBlock()->getModule();
514 Function *UpdateDPP =
515 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
516 if (ST->hasDPPWavefrontShifts()) {
517 // GFX9 has DPP wavefront shift operations.
518 V = B.CreateCall(UpdateDPP,
519 {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf),
520 B.getInt32(0xf), B.getFalse()});
521 } else {
522 Function *ReadLane =
523 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, AtomicTy);
524 Function *WriteLane =
525 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, AtomicTy);
526
527 // On GFX10 all DPP operations are confined to a single row. To get cross-
528 // row operations we have to use permlane or readlane.
529 Value *Old = V;
530 V = B.CreateCall(UpdateDPP,
531 {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1),
532 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
533
534 // Copy the old lane 15 to the new lane 16.
535 V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}),
536 B.getInt32(16), V});
537
538 if (!ST->isWave32()) {
539 // Copy the old lane 31 to the new lane 32.
540 V = B.CreateCall(
541 WriteLane,
542 {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V});
543
544 // Copy the old lane 47 to the new lane 48.
545 V = B.CreateCall(
546 WriteLane,
547 {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V});
548 }
549 }
550
551 return V;
552 }
553
554 // Use the builder to create an exclusive scan and compute the final reduced
555 // value using an iterative approach. This provides an alternative
556 // implementation to DPP which uses WMM for scan computations. This API iterate
557 // over active lanes to read, compute and update the value using
558 // readlane and writelane intrinsics.
buildScanIteratively(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * const Identity,Value * V,Instruction & I,BasicBlock * ComputeLoop,BasicBlock * ComputeEnd) const559 std::pair<Value *, Value *> AMDGPUAtomicOptimizerImpl::buildScanIteratively(
560 IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *const Identity, Value *V,
561 Instruction &I, BasicBlock *ComputeLoop, BasicBlock *ComputeEnd) const {
562 auto *Ty = I.getType();
563 auto *WaveTy = B.getIntNTy(ST->getWavefrontSize());
564 auto *EntryBB = I.getParent();
565 auto NeedResult = !I.use_empty();
566
567 auto *Ballot =
568 B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue());
569
570 // Start inserting instructions for ComputeLoop block
571 B.SetInsertPoint(ComputeLoop);
572 // Phi nodes for Accumulator, Scan results destination, and Active Lanes
573 auto *Accumulator = B.CreatePHI(Ty, 2, "Accumulator");
574 Accumulator->addIncoming(Identity, EntryBB);
575 PHINode *OldValuePhi = nullptr;
576 if (NeedResult) {
577 OldValuePhi = B.CreatePHI(Ty, 2, "OldValuePhi");
578 OldValuePhi->addIncoming(PoisonValue::get(Ty), EntryBB);
579 }
580 auto *ActiveBits = B.CreatePHI(WaveTy, 2, "ActiveBits");
581 ActiveBits->addIncoming(Ballot, EntryBB);
582
583 // Use llvm.cttz instrinsic to find the lowest remaining active lane.
584 auto *FF1 =
585 B.CreateIntrinsic(Intrinsic::cttz, WaveTy, {ActiveBits, B.getTrue()});
586
587 auto *LaneIdxInt = B.CreateTrunc(FF1, B.getInt32Ty());
588
589 // Get the value required for atomic operation
590 Value *LaneValue = B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_readlane,
591 {V, LaneIdxInt});
592
593 // Perform writelane if intermediate scan results are required later in the
594 // kernel computations
595 Value *OldValue = nullptr;
596 if (NeedResult) {
597 OldValue = B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_writelane,
598 {Accumulator, LaneIdxInt, OldValuePhi});
599 OldValuePhi->addIncoming(OldValue, ComputeLoop);
600 }
601
602 // Accumulate the results
603 auto *NewAccumulator = buildNonAtomicBinOp(B, Op, Accumulator, LaneValue);
604 Accumulator->addIncoming(NewAccumulator, ComputeLoop);
605
606 // Set bit to zero of current active lane so that for next iteration llvm.cttz
607 // return the next active lane
608 auto *Mask = B.CreateShl(ConstantInt::get(WaveTy, 1), FF1);
609
610 auto *InverseMask = B.CreateXor(Mask, ConstantInt::get(WaveTy, -1));
611 auto *NewActiveBits = B.CreateAnd(ActiveBits, InverseMask);
612 ActiveBits->addIncoming(NewActiveBits, ComputeLoop);
613
614 // Branch out of the loop when all lanes are processed.
615 auto *IsEnd = B.CreateICmpEQ(NewActiveBits, ConstantInt::get(WaveTy, 0));
616 B.CreateCondBr(IsEnd, ComputeEnd, ComputeLoop);
617
618 B.SetInsertPoint(ComputeEnd);
619
620 return {OldValue, NewAccumulator};
621 }
622
getIdentityValueForAtomicOp(Type * const Ty,AtomicRMWInst::BinOp Op)623 static Constant *getIdentityValueForAtomicOp(Type *const Ty,
624 AtomicRMWInst::BinOp Op) {
625 LLVMContext &C = Ty->getContext();
626 const unsigned BitWidth = Ty->getPrimitiveSizeInBits();
627 switch (Op) {
628 default:
629 llvm_unreachable("Unhandled atomic op");
630 case AtomicRMWInst::Add:
631 case AtomicRMWInst::Sub:
632 case AtomicRMWInst::Or:
633 case AtomicRMWInst::Xor:
634 case AtomicRMWInst::UMax:
635 return ConstantInt::get(C, APInt::getMinValue(BitWidth));
636 case AtomicRMWInst::And:
637 case AtomicRMWInst::UMin:
638 return ConstantInt::get(C, APInt::getMaxValue(BitWidth));
639 case AtomicRMWInst::Max:
640 return ConstantInt::get(C, APInt::getSignedMinValue(BitWidth));
641 case AtomicRMWInst::Min:
642 return ConstantInt::get(C, APInt::getSignedMaxValue(BitWidth));
643 case AtomicRMWInst::FAdd:
644 return ConstantFP::get(C, APFloat::getZero(Ty->getFltSemantics(), true));
645 case AtomicRMWInst::FSub:
646 return ConstantFP::get(C, APFloat::getZero(Ty->getFltSemantics(), false));
647 case AtomicRMWInst::FMin:
648 case AtomicRMWInst::FMax:
649 // FIXME: atomicrmw fmax/fmin behave like llvm.maxnum/minnum so NaN is the
650 // closest thing they have to an identity, but it still does not preserve
651 // the difference between quiet and signaling NaNs or NaNs with different
652 // payloads.
653 return ConstantFP::get(C, APFloat::getNaN(Ty->getFltSemantics()));
654 }
655 }
656
buildMul(IRBuilder<> & B,Value * LHS,Value * RHS)657 static Value *buildMul(IRBuilder<> &B, Value *LHS, Value *RHS) {
658 const ConstantInt *CI = dyn_cast<ConstantInt>(LHS);
659 return (CI && CI->isOne()) ? RHS : B.CreateMul(LHS, RHS);
660 }
661
optimizeAtomic(Instruction & I,AtomicRMWInst::BinOp Op,unsigned ValIdx,bool ValDivergent) const662 void AMDGPUAtomicOptimizerImpl::optimizeAtomic(Instruction &I,
663 AtomicRMWInst::BinOp Op,
664 unsigned ValIdx,
665 bool ValDivergent) const {
666 // Start building just before the instruction.
667 IRBuilder<> B(&I);
668
669 if (AtomicRMWInst::isFPOperation(Op)) {
670 B.setIsFPConstrained(I.getFunction()->hasFnAttribute(Attribute::StrictFP));
671 }
672
673 // If we are in a pixel shader, because of how we have to mask out helper
674 // lane invocations, we need to record the entry and exit BB's.
675 BasicBlock *PixelEntryBB = nullptr;
676 BasicBlock *PixelExitBB = nullptr;
677
678 // If we're optimizing an atomic within a pixel shader, we need to wrap the
679 // entire atomic operation in a helper-lane check. We do not want any helper
680 // lanes that are around only for the purposes of derivatives to take part
681 // in any cross-lane communication, and we use a branch on whether the lane is
682 // live to do this.
683 if (IsPixelShader) {
684 // Record I's original position as the entry block.
685 PixelEntryBB = I.getParent();
686
687 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
688 Instruction *const NonHelperTerminator =
689 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, &DTU, nullptr);
690
691 // Record I's new position as the exit block.
692 PixelExitBB = I.getParent();
693
694 I.moveBefore(NonHelperTerminator);
695 B.SetInsertPoint(&I);
696 }
697
698 Type *const Ty = I.getType();
699 Type *Int32Ty = B.getInt32Ty();
700 bool isAtomicFloatingPointTy = Ty->isFloatingPointTy();
701 [[maybe_unused]] const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
702
703 // This is the value in the atomic operation we need to combine in order to
704 // reduce the number of atomic operations.
705 Value *V = I.getOperand(ValIdx);
706
707 // We need to know how many lanes are active within the wavefront, and we do
708 // this by doing a ballot of active lanes.
709 Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize());
710 CallInst *const Ballot =
711 B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue());
712
713 // We need to know how many lanes are active within the wavefront that are
714 // below us. If we counted each lane linearly starting from 0, a lane is
715 // below us only if its associated index was less than ours. We do this by
716 // using the mbcnt intrinsic.
717 Value *Mbcnt;
718 if (ST->isWave32()) {
719 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
720 {Ballot, B.getInt32(0)});
721 } else {
722 Value *const ExtractLo = B.CreateTrunc(Ballot, Int32Ty);
723 Value *const ExtractHi = B.CreateTrunc(B.CreateLShr(Ballot, 32), Int32Ty);
724 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
725 {ExtractLo, B.getInt32(0)});
726 Mbcnt =
727 B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt});
728 }
729
730 Function *F = I.getFunction();
731 LLVMContext &C = F->getContext();
732
733 // For atomic sub, perform scan with add operation and allow one lane to
734 // subtract the reduced value later.
735 AtomicRMWInst::BinOp ScanOp = Op;
736 if (Op == AtomicRMWInst::Sub) {
737 ScanOp = AtomicRMWInst::Add;
738 } else if (Op == AtomicRMWInst::FSub) {
739 ScanOp = AtomicRMWInst::FAdd;
740 }
741 Value *Identity = getIdentityValueForAtomicOp(Ty, ScanOp);
742
743 Value *ExclScan = nullptr;
744 Value *NewV = nullptr;
745
746 const bool NeedResult = !I.use_empty();
747
748 BasicBlock *ComputeLoop = nullptr;
749 BasicBlock *ComputeEnd = nullptr;
750 // If we have a divergent value in each lane, we need to combine the value
751 // using DPP.
752 if (ValDivergent) {
753 if (ScanImpl == ScanOptions::DPP) {
754 // First we need to set all inactive invocations to the identity value, so
755 // that they can correctly contribute to the final result.
756 NewV =
757 B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
758 if (!NeedResult && ST->hasPermLaneX16()) {
759 // On GFX10 the permlanex16 instruction helps us build a reduction
760 // without too many readlanes and writelanes, which are generally bad
761 // for performance.
762 NewV = buildReduction(B, ScanOp, NewV, Identity);
763 } else {
764 NewV = buildScan(B, ScanOp, NewV, Identity);
765 if (NeedResult)
766 ExclScan = buildShiftRight(B, NewV, Identity);
767 // Read the value from the last lane, which has accumulated the values
768 // of each active lane in the wavefront. This will be our new value
769 // which we will provide to the atomic operation.
770 Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1);
771 NewV = B.CreateIntrinsic(Ty, Intrinsic::amdgcn_readlane,
772 {NewV, LastLaneIdx});
773 }
774 // Finally mark the readlanes in the WWM section.
775 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, NewV);
776 } else if (ScanImpl == ScanOptions::Iterative) {
777 // Alternative implementation for scan
778 ComputeLoop = BasicBlock::Create(C, "ComputeLoop", F);
779 ComputeEnd = BasicBlock::Create(C, "ComputeEnd", F);
780 std::tie(ExclScan, NewV) = buildScanIteratively(B, ScanOp, Identity, V, I,
781 ComputeLoop, ComputeEnd);
782 } else {
783 llvm_unreachable("Atomic Optimzer is disabled for None strategy");
784 }
785 } else {
786 switch (Op) {
787 default:
788 llvm_unreachable("Unhandled atomic op");
789
790 case AtomicRMWInst::Add:
791 case AtomicRMWInst::Sub: {
792 // The new value we will be contributing to the atomic operation is the
793 // old value times the number of active lanes.
794 Value *const Ctpop = B.CreateIntCast(
795 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
796 NewV = buildMul(B, V, Ctpop);
797 break;
798 }
799 case AtomicRMWInst::FAdd:
800 case AtomicRMWInst::FSub: {
801 Value *const Ctpop = B.CreateIntCast(
802 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Int32Ty, false);
803 Value *const CtpopFP = B.CreateUIToFP(Ctpop, Ty);
804 NewV = B.CreateFMul(V, CtpopFP);
805 break;
806 }
807 case AtomicRMWInst::And:
808 case AtomicRMWInst::Or:
809 case AtomicRMWInst::Max:
810 case AtomicRMWInst::Min:
811 case AtomicRMWInst::UMax:
812 case AtomicRMWInst::UMin:
813 case AtomicRMWInst::FMin:
814 case AtomicRMWInst::FMax:
815 // These operations with a uniform value are idempotent: doing the atomic
816 // operation multiple times has the same effect as doing it once.
817 NewV = V;
818 break;
819
820 case AtomicRMWInst::Xor:
821 // The new value we will be contributing to the atomic operation is the
822 // old value times the parity of the number of active lanes.
823 Value *const Ctpop = B.CreateIntCast(
824 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
825 NewV = buildMul(B, V, B.CreateAnd(Ctpop, 1));
826 break;
827 }
828 }
829
830 // We only want a single lane to enter our new control flow, and we do this
831 // by checking if there are any active lanes below us. Only one lane will
832 // have 0 active lanes below us, so that will be the only one to progress.
833 Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getInt32(0));
834
835 // Store I's original basic block before we split the block.
836 BasicBlock *const OriginalBB = I.getParent();
837
838 // We need to introduce some new control flow to force a single lane to be
839 // active. We do this by splitting I's basic block at I, and introducing the
840 // new block such that:
841 // entry --> single_lane -\
842 // \------------------> exit
843 Instruction *const SingleLaneTerminator =
844 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, &DTU, nullptr);
845
846 // At this point, we have split the I's block to allow one lane in wavefront
847 // to update the precomputed reduced value. Also, completed the codegen for
848 // new control flow i.e. iterative loop which perform reduction and scan using
849 // ComputeLoop and ComputeEnd.
850 // For the new control flow, we need to move branch instruction i.e.
851 // terminator created during SplitBlockAndInsertIfThen from I's block to
852 // ComputeEnd block. We also need to set up predecessor to next block when
853 // single lane done updating the final reduced value.
854 BasicBlock *Predecessor = nullptr;
855 if (ValDivergent && ScanImpl == ScanOptions::Iterative) {
856 // Move terminator from I's block to ComputeEnd block.
857 //
858 // OriginalBB is known to have a branch as terminator because
859 // SplitBlockAndInsertIfThen will have inserted one.
860 BranchInst *Terminator = cast<BranchInst>(OriginalBB->getTerminator());
861 B.SetInsertPoint(ComputeEnd);
862 Terminator->removeFromParent();
863 B.Insert(Terminator);
864
865 // Branch to ComputeLoop Block unconditionally from the I's block for
866 // iterative approach.
867 B.SetInsertPoint(OriginalBB);
868 B.CreateBr(ComputeLoop);
869
870 // Update the dominator tree for new control flow.
871 SmallVector<DominatorTree::UpdateType, 6> DomTreeUpdates(
872 {{DominatorTree::Insert, OriginalBB, ComputeLoop},
873 {DominatorTree::Insert, ComputeLoop, ComputeEnd}});
874
875 // We're moving the terminator from EntryBB to ComputeEnd, make sure we move
876 // the DT edges as well.
877 for (auto *Succ : Terminator->successors()) {
878 DomTreeUpdates.push_back({DominatorTree::Insert, ComputeEnd, Succ});
879 DomTreeUpdates.push_back({DominatorTree::Delete, OriginalBB, Succ});
880 }
881
882 DTU.applyUpdates(DomTreeUpdates);
883
884 Predecessor = ComputeEnd;
885 } else {
886 Predecessor = OriginalBB;
887 }
888 // Move the IR builder into single_lane next.
889 B.SetInsertPoint(SingleLaneTerminator);
890
891 // Clone the original atomic operation into single lane, replacing the
892 // original value with our newly created one.
893 Instruction *const NewI = I.clone();
894 B.Insert(NewI);
895 NewI->setOperand(ValIdx, NewV);
896
897 // Move the IR builder into exit next, and start inserting just before the
898 // original instruction.
899 B.SetInsertPoint(&I);
900
901 if (NeedResult) {
902 // Create a PHI node to get our new atomic result into the exit block.
903 PHINode *const PHI = B.CreatePHI(Ty, 2);
904 PHI->addIncoming(PoisonValue::get(Ty), Predecessor);
905 PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
906
907 // We need to broadcast the value who was the lowest active lane (the first
908 // lane) to all other lanes in the wavefront. We use an intrinsic for this,
909 // but have to handle 64-bit broadcasts with two calls to this intrinsic.
910 Value *BroadcastI = nullptr;
911 BroadcastI = B.CreateIntrinsic(Ty, Intrinsic::amdgcn_readfirstlane, PHI);
912
913 // Now that we have the result of our single atomic operation, we need to
914 // get our individual lane's slice into the result. We use the lane offset
915 // we previously calculated combined with the atomic result value we got
916 // from the first lane, to get our lane's index into the atomic result.
917 Value *LaneOffset = nullptr;
918 if (ValDivergent) {
919 if (ScanImpl == ScanOptions::DPP) {
920 LaneOffset =
921 B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, ExclScan);
922 } else if (ScanImpl == ScanOptions::Iterative) {
923 LaneOffset = ExclScan;
924 } else {
925 llvm_unreachable("Atomic Optimzer is disabled for None strategy");
926 }
927 } else {
928 Mbcnt = isAtomicFloatingPointTy ? B.CreateUIToFP(Mbcnt, Ty)
929 : B.CreateIntCast(Mbcnt, Ty, false);
930 switch (Op) {
931 default:
932 llvm_unreachable("Unhandled atomic op");
933 case AtomicRMWInst::Add:
934 case AtomicRMWInst::Sub:
935 LaneOffset = buildMul(B, V, Mbcnt);
936 break;
937 case AtomicRMWInst::And:
938 case AtomicRMWInst::Or:
939 case AtomicRMWInst::Max:
940 case AtomicRMWInst::Min:
941 case AtomicRMWInst::UMax:
942 case AtomicRMWInst::UMin:
943 case AtomicRMWInst::FMin:
944 case AtomicRMWInst::FMax:
945 LaneOffset = B.CreateSelect(Cond, Identity, V);
946 break;
947 case AtomicRMWInst::Xor:
948 LaneOffset = buildMul(B, V, B.CreateAnd(Mbcnt, 1));
949 break;
950 case AtomicRMWInst::FAdd:
951 case AtomicRMWInst::FSub: {
952 LaneOffset = B.CreateFMul(V, Mbcnt);
953 break;
954 }
955 }
956 }
957 Value *Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
958 if (isAtomicFloatingPointTy) {
959 // For fadd/fsub the first active lane of LaneOffset should be the
960 // identity (-0.0 for fadd or +0.0 for fsub) but the value we calculated
961 // is V * +0.0 which might have the wrong sign or might be nan (if V is
962 // inf or nan).
963 //
964 // For all floating point ops if the in-memory value was a nan then the
965 // binop we just built might have quieted it or changed its payload.
966 //
967 // Correct all these problems by using BroadcastI as the result in the
968 // first active lane.
969 Result = B.CreateSelect(Cond, BroadcastI, Result);
970 }
971
972 if (IsPixelShader) {
973 // Need a final PHI to reconverge to above the helper lane branch mask.
974 B.SetInsertPoint(PixelExitBB, PixelExitBB->getFirstNonPHIIt());
975
976 PHINode *const PHI = B.CreatePHI(Ty, 2);
977 PHI->addIncoming(PoisonValue::get(Ty), PixelEntryBB);
978 PHI->addIncoming(Result, I.getParent());
979 I.replaceAllUsesWith(PHI);
980 } else {
981 // Replace the original atomic instruction with the new one.
982 I.replaceAllUsesWith(Result);
983 }
984 }
985
986 // And delete the original.
987 I.eraseFromParent();
988 }
989
990 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
991 "AMDGPU atomic optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)992 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
993 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
994 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
995 "AMDGPU atomic optimizations", false, false)
996
997 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass(ScanOptions ScanStrategy) {
998 return new AMDGPUAtomicOptimizer(ScanStrategy);
999 }
1000