xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
13 /// Atomic optimizer uses following strategies to compute scan and reduced
14 /// values
15 /// 1. DPP -
16 ///   This is the most efficient implementation for scan. DPP uses Whole Wave
17 ///   Mode (WWM)
18 /// 2. Iterative -
19 //    An alternative implementation iterates over all active lanes
20 ///   of Wavefront using llvm.cttz and performs scan  using readlane & writelane
21 ///   intrinsics
22 //===----------------------------------------------------------------------===//
23 
24 #include "AMDGPU.h"
25 #include "GCNSubtarget.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/UniformityAnalysis.h"
28 #include "llvm/CodeGen/TargetPassConfig.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstVisitor.h"
31 #include "llvm/IR/IntrinsicsAMDGPU.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 
36 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
37 
38 using namespace llvm;
39 using namespace llvm::AMDGPU;
40 
41 namespace {
42 
43 struct ReplacementInfo {
44   Instruction *I;
45   AtomicRMWInst::BinOp Op;
46   unsigned ValIdx;
47   bool ValDivergent;
48 };
49 
50 class AMDGPUAtomicOptimizer : public FunctionPass {
51 public:
52   static char ID;
53   ScanOptions ScanImpl;
AMDGPUAtomicOptimizer(ScanOptions ScanImpl)54   AMDGPUAtomicOptimizer(ScanOptions ScanImpl)
55       : FunctionPass(ID), ScanImpl(ScanImpl) {}
56 
57   bool runOnFunction(Function &F) override;
58 
getAnalysisUsage(AnalysisUsage & AU) const59   void getAnalysisUsage(AnalysisUsage &AU) const override {
60     AU.addPreserved<DominatorTreeWrapperPass>();
61     AU.addRequired<UniformityInfoWrapperPass>();
62     AU.addRequired<TargetPassConfig>();
63   }
64 };
65 
66 class AMDGPUAtomicOptimizerImpl
67     : public InstVisitor<AMDGPUAtomicOptimizerImpl> {
68 private:
69   SmallVector<ReplacementInfo, 8> ToReplace;
70   const UniformityInfo *UA;
71   const DataLayout *DL;
72   DomTreeUpdater &DTU;
73   const GCNSubtarget *ST;
74   bool IsPixelShader;
75   ScanOptions ScanImpl;
76 
77   Value *buildReduction(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
78                         Value *const Identity) const;
79   Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
80                    Value *const Identity) const;
81   Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const;
82 
83   std::pair<Value *, Value *>
84   buildScanIteratively(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
85                        Value *const Identity, Value *V, Instruction &I,
86                        BasicBlock *ComputeLoop, BasicBlock *ComputeEnd) const;
87 
88   void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
89                       bool ValDivergent) const;
90 
91 public:
92   AMDGPUAtomicOptimizerImpl() = delete;
93 
AMDGPUAtomicOptimizerImpl(const UniformityInfo * UA,const DataLayout * DL,DomTreeUpdater & DTU,const GCNSubtarget * ST,bool IsPixelShader,ScanOptions ScanImpl)94   AMDGPUAtomicOptimizerImpl(const UniformityInfo *UA, const DataLayout *DL,
95                             DomTreeUpdater &DTU, const GCNSubtarget *ST,
96                             bool IsPixelShader, ScanOptions ScanImpl)
97       : UA(UA), DL(DL), DTU(DTU), ST(ST), IsPixelShader(IsPixelShader),
98         ScanImpl(ScanImpl) {}
99 
100   bool run(Function &F);
101 
102   void visitAtomicRMWInst(AtomicRMWInst &I);
103   void visitIntrinsicInst(IntrinsicInst &I);
104 };
105 
106 } // namespace
107 
108 char AMDGPUAtomicOptimizer::ID = 0;
109 
110 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
111 
runOnFunction(Function & F)112 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
113   if (skipFunction(F)) {
114     return false;
115   }
116 
117   const UniformityInfo *UA =
118       &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
119   const DataLayout *DL = &F.getDataLayout();
120 
121   DominatorTreeWrapperPass *const DTW =
122       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
123   DomTreeUpdater DTU(DTW ? &DTW->getDomTree() : nullptr,
124                      DomTreeUpdater::UpdateStrategy::Lazy);
125 
126   const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
127   const TargetMachine &TM = TPC.getTM<TargetMachine>();
128   const GCNSubtarget *ST = &TM.getSubtarget<GCNSubtarget>(F);
129 
130   bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
131 
132   return AMDGPUAtomicOptimizerImpl(UA, DL, DTU, ST, IsPixelShader, ScanImpl)
133       .run(F);
134 }
135 
run(Function & F,FunctionAnalysisManager & AM)136 PreservedAnalyses AMDGPUAtomicOptimizerPass::run(Function &F,
137                                                  FunctionAnalysisManager &AM) {
138 
139   const auto *UA = &AM.getResult<UniformityInfoAnalysis>(F);
140   const DataLayout *DL = &F.getDataLayout();
141 
142   DomTreeUpdater DTU(&AM.getResult<DominatorTreeAnalysis>(F),
143                      DomTreeUpdater::UpdateStrategy::Lazy);
144   const GCNSubtarget *ST = &TM.getSubtarget<GCNSubtarget>(F);
145 
146   bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
147 
148   bool IsChanged =
149       AMDGPUAtomicOptimizerImpl(UA, DL, DTU, ST, IsPixelShader, ScanImpl)
150           .run(F);
151 
152   if (!IsChanged) {
153     return PreservedAnalyses::all();
154   }
155 
156   PreservedAnalyses PA;
157   PA.preserve<DominatorTreeAnalysis>();
158   return PA;
159 }
160 
run(Function & F)161 bool AMDGPUAtomicOptimizerImpl::run(Function &F) {
162 
163   // Scan option None disables the Pass
164   if (ScanImpl == ScanOptions::None) {
165     return false;
166   }
167 
168   visit(F);
169 
170   const bool Changed = !ToReplace.empty();
171 
172   for (ReplacementInfo &Info : ToReplace) {
173     optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
174   }
175 
176   ToReplace.clear();
177 
178   return Changed;
179 }
180 
isLegalCrossLaneType(Type * Ty)181 static bool isLegalCrossLaneType(Type *Ty) {
182   switch (Ty->getTypeID()) {
183   case Type::FloatTyID:
184   case Type::DoubleTyID:
185     return true;
186   case Type::IntegerTyID: {
187     unsigned Size = Ty->getIntegerBitWidth();
188     return (Size == 32 || Size == 64);
189   }
190   default:
191     return false;
192   }
193 }
194 
visitAtomicRMWInst(AtomicRMWInst & I)195 void AMDGPUAtomicOptimizerImpl::visitAtomicRMWInst(AtomicRMWInst &I) {
196   // Early exit for unhandled address space atomic instructions.
197   switch (I.getPointerAddressSpace()) {
198   default:
199     return;
200   case AMDGPUAS::GLOBAL_ADDRESS:
201   case AMDGPUAS::LOCAL_ADDRESS:
202     break;
203   }
204 
205   AtomicRMWInst::BinOp Op = I.getOperation();
206 
207   switch (Op) {
208   default:
209     return;
210   case AtomicRMWInst::Add:
211   case AtomicRMWInst::Sub:
212   case AtomicRMWInst::And:
213   case AtomicRMWInst::Or:
214   case AtomicRMWInst::Xor:
215   case AtomicRMWInst::Max:
216   case AtomicRMWInst::Min:
217   case AtomicRMWInst::UMax:
218   case AtomicRMWInst::UMin:
219   case AtomicRMWInst::FAdd:
220   case AtomicRMWInst::FSub:
221   case AtomicRMWInst::FMax:
222   case AtomicRMWInst::FMin:
223     break;
224   }
225 
226   // Only 32 and 64 bit floating point atomic ops are supported.
227   if (AtomicRMWInst::isFPOperation(Op) &&
228       !(I.getType()->isFloatTy() || I.getType()->isDoubleTy())) {
229     return;
230   }
231 
232   const unsigned PtrIdx = 0;
233   const unsigned ValIdx = 1;
234 
235   // If the pointer operand is divergent, then each lane is doing an atomic
236   // operation on a different address, and we cannot optimize that.
237   if (UA->isDivergentUse(I.getOperandUse(PtrIdx))) {
238     return;
239   }
240 
241   bool ValDivergent = UA->isDivergentUse(I.getOperandUse(ValIdx));
242 
243   // If the value operand is divergent, each lane is contributing a different
244   // value to the atomic calculation. We can only optimize divergent values if
245   // we have DPP available on our subtarget (for DPP strategy), and the atomic
246   // operation is 32 or 64 bits.
247   if (ValDivergent) {
248     if (ScanImpl == ScanOptions::DPP && !ST->hasDPP())
249       return;
250 
251     if (!isLegalCrossLaneType(I.getType()))
252       return;
253   }
254 
255   // If we get here, we can optimize the atomic using a single wavefront-wide
256   // atomic operation to do the calculation for the entire wavefront, so
257   // remember the instruction so we can come back to it.
258   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
259 
260   ToReplace.push_back(Info);
261 }
262 
visitIntrinsicInst(IntrinsicInst & I)263 void AMDGPUAtomicOptimizerImpl::visitIntrinsicInst(IntrinsicInst &I) {
264   AtomicRMWInst::BinOp Op;
265 
266   switch (I.getIntrinsicID()) {
267   default:
268     return;
269   case Intrinsic::amdgcn_struct_buffer_atomic_add:
270   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
271   case Intrinsic::amdgcn_raw_buffer_atomic_add:
272   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
273     Op = AtomicRMWInst::Add;
274     break;
275   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
276   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
277   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
278   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
279     Op = AtomicRMWInst::Sub;
280     break;
281   case Intrinsic::amdgcn_struct_buffer_atomic_and:
282   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
283   case Intrinsic::amdgcn_raw_buffer_atomic_and:
284   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
285     Op = AtomicRMWInst::And;
286     break;
287   case Intrinsic::amdgcn_struct_buffer_atomic_or:
288   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
289   case Intrinsic::amdgcn_raw_buffer_atomic_or:
290   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
291     Op = AtomicRMWInst::Or;
292     break;
293   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
294   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
295   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
296   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
297     Op = AtomicRMWInst::Xor;
298     break;
299   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
300   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
301   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
302   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
303     Op = AtomicRMWInst::Min;
304     break;
305   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
306   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
307   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
308   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
309     Op = AtomicRMWInst::UMin;
310     break;
311   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
312   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
313   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
314   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
315     Op = AtomicRMWInst::Max;
316     break;
317   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
318   case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
319   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
320   case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
321     Op = AtomicRMWInst::UMax;
322     break;
323   }
324 
325   const unsigned ValIdx = 0;
326 
327   const bool ValDivergent = UA->isDivergentUse(I.getOperandUse(ValIdx));
328 
329   // If the value operand is divergent, each lane is contributing a different
330   // value to the atomic calculation. We can only optimize divergent values if
331   // we have DPP available on our subtarget (for DPP strategy), and the atomic
332   // operation is 32 or 64 bits.
333   if (ValDivergent) {
334     if (ScanImpl == ScanOptions::DPP && !ST->hasDPP())
335       return;
336 
337     if (!isLegalCrossLaneType(I.getType()))
338       return;
339   }
340 
341   // If any of the other arguments to the intrinsic are divergent, we can't
342   // optimize the operation.
343   for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
344     if (UA->isDivergentUse(I.getOperandUse(Idx))) {
345       return;
346     }
347   }
348 
349   // If we get here, we can optimize the atomic using a single wavefront-wide
350   // atomic operation to do the calculation for the entire wavefront, so
351   // remember the instruction so we can come back to it.
352   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
353 
354   ToReplace.push_back(Info);
355 }
356 
357 // Use the builder to create the non-atomic counterpart of the specified
358 // atomicrmw binary op.
buildNonAtomicBinOp(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * LHS,Value * RHS)359 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
360                                   Value *LHS, Value *RHS) {
361   CmpInst::Predicate Pred;
362 
363   switch (Op) {
364   default:
365     llvm_unreachable("Unhandled atomic op");
366   case AtomicRMWInst::Add:
367     return B.CreateBinOp(Instruction::Add, LHS, RHS);
368   case AtomicRMWInst::FAdd:
369     return B.CreateFAdd(LHS, RHS);
370   case AtomicRMWInst::Sub:
371     return B.CreateBinOp(Instruction::Sub, LHS, RHS);
372   case AtomicRMWInst::FSub:
373     return B.CreateFSub(LHS, RHS);
374   case AtomicRMWInst::And:
375     return B.CreateBinOp(Instruction::And, LHS, RHS);
376   case AtomicRMWInst::Or:
377     return B.CreateBinOp(Instruction::Or, LHS, RHS);
378   case AtomicRMWInst::Xor:
379     return B.CreateBinOp(Instruction::Xor, LHS, RHS);
380 
381   case AtomicRMWInst::Max:
382     Pred = CmpInst::ICMP_SGT;
383     break;
384   case AtomicRMWInst::Min:
385     Pred = CmpInst::ICMP_SLT;
386     break;
387   case AtomicRMWInst::UMax:
388     Pred = CmpInst::ICMP_UGT;
389     break;
390   case AtomicRMWInst::UMin:
391     Pred = CmpInst::ICMP_ULT;
392     break;
393   case AtomicRMWInst::FMax:
394     return B.CreateMaxNum(LHS, RHS);
395   case AtomicRMWInst::FMin:
396     return B.CreateMinNum(LHS, RHS);
397   }
398   Value *Cond = B.CreateICmp(Pred, LHS, RHS);
399   return B.CreateSelect(Cond, LHS, RHS);
400 }
401 
402 // Use the builder to create a reduction of V across the wavefront, with all
403 // lanes active, returning the same result in all lanes.
buildReduction(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * V,Value * const Identity) const404 Value *AMDGPUAtomicOptimizerImpl::buildReduction(IRBuilder<> &B,
405                                                  AtomicRMWInst::BinOp Op,
406                                                  Value *V,
407                                                  Value *const Identity) const {
408   Type *AtomicTy = V->getType();
409   Module *M = B.GetInsertBlock()->getModule();
410   Function *UpdateDPP =
411       Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
412 
413   // Reduce within each row of 16 lanes.
414   for (unsigned Idx = 0; Idx < 4; Idx++) {
415     V = buildNonAtomicBinOp(
416         B, Op, V,
417         B.CreateCall(UpdateDPP,
418                      {Identity, V, B.getInt32(DPP::ROW_XMASK0 | 1 << Idx),
419                       B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
420   }
421 
422   // Reduce within each pair of rows (i.e. 32 lanes).
423   assert(ST->hasPermLaneX16());
424   Value *Permlanex16Call = B.CreateIntrinsic(
425       V->getType(), Intrinsic::amdgcn_permlanex16,
426       {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()});
427   V = buildNonAtomicBinOp(B, Op, V, Permlanex16Call);
428   if (ST->isWave32()) {
429     return V;
430   }
431 
432   if (ST->hasPermLane64()) {
433     // Reduce across the upper and lower 32 lanes.
434     Value *Permlane64Call =
435         B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_permlane64, V);
436     return buildNonAtomicBinOp(B, Op, V, Permlane64Call);
437   }
438 
439   // Pick an arbitrary lane from 0..31 and an arbitrary lane from 32..63 and
440   // combine them with a scalar operation.
441   Function *ReadLane =
442       Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, AtomicTy);
443   Value *Lane0 = B.CreateCall(ReadLane, {V, B.getInt32(0)});
444   Value *Lane32 = B.CreateCall(ReadLane, {V, B.getInt32(32)});
445   return buildNonAtomicBinOp(B, Op, Lane0, Lane32);
446 }
447 
448 // Use the builder to create an inclusive scan of V across the wavefront, with
449 // all lanes active.
buildScan(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * V,Value * Identity) const450 Value *AMDGPUAtomicOptimizerImpl::buildScan(IRBuilder<> &B,
451                                             AtomicRMWInst::BinOp Op, Value *V,
452                                             Value *Identity) const {
453   Type *AtomicTy = V->getType();
454   Module *M = B.GetInsertBlock()->getModule();
455   Function *UpdateDPP =
456       Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
457 
458   for (unsigned Idx = 0; Idx < 4; Idx++) {
459     V = buildNonAtomicBinOp(
460         B, Op, V,
461         B.CreateCall(UpdateDPP,
462                      {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx),
463                       B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
464   }
465   if (ST->hasDPPBroadcasts()) {
466     // GFX9 has DPP row broadcast operations.
467     V = buildNonAtomicBinOp(
468         B, Op, V,
469         B.CreateCall(UpdateDPP,
470                      {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa),
471                       B.getInt32(0xf), B.getFalse()}));
472     V = buildNonAtomicBinOp(
473         B, Op, V,
474         B.CreateCall(UpdateDPP,
475                      {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc),
476                       B.getInt32(0xf), B.getFalse()}));
477   } else {
478     // On GFX10 all DPP operations are confined to a single row. To get cross-
479     // row operations we have to use permlane or readlane.
480 
481     // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes
482     // 48..63).
483     assert(ST->hasPermLaneX16());
484     Value *PermX = B.CreateIntrinsic(
485         V->getType(), Intrinsic::amdgcn_permlanex16,
486         {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()});
487 
488     Value *UpdateDPPCall = B.CreateCall(
489         UpdateDPP, {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID),
490                     B.getInt32(0xa), B.getInt32(0xf), B.getFalse()});
491     V = buildNonAtomicBinOp(B, Op, V, UpdateDPPCall);
492 
493     if (!ST->isWave32()) {
494       // Combine lane 31 into lanes 32..63.
495       Value *const Lane31 = B.CreateIntrinsic(
496           V->getType(), Intrinsic::amdgcn_readlane, {V, B.getInt32(31)});
497 
498       Value *UpdateDPPCall = B.CreateCall(
499           UpdateDPP, {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID),
500                       B.getInt32(0xc), B.getInt32(0xf), B.getFalse()});
501 
502       V = buildNonAtomicBinOp(B, Op, V, UpdateDPPCall);
503     }
504   }
505   return V;
506 }
507 
508 // Use the builder to create a shift right of V across the wavefront, with all
509 // lanes active, to turn an inclusive scan into an exclusive scan.
buildShiftRight(IRBuilder<> & B,Value * V,Value * Identity) const510 Value *AMDGPUAtomicOptimizerImpl::buildShiftRight(IRBuilder<> &B, Value *V,
511                                                   Value *Identity) const {
512   Type *AtomicTy = V->getType();
513   Module *M = B.GetInsertBlock()->getModule();
514   Function *UpdateDPP =
515       Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
516   if (ST->hasDPPWavefrontShifts()) {
517     // GFX9 has DPP wavefront shift operations.
518     V = B.CreateCall(UpdateDPP,
519                      {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf),
520                       B.getInt32(0xf), B.getFalse()});
521   } else {
522     Function *ReadLane =
523         Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, AtomicTy);
524     Function *WriteLane =
525         Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, AtomicTy);
526 
527     // On GFX10 all DPP operations are confined to a single row. To get cross-
528     // row operations we have to use permlane or readlane.
529     Value *Old = V;
530     V = B.CreateCall(UpdateDPP,
531                      {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1),
532                       B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
533 
534     // Copy the old lane 15 to the new lane 16.
535     V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}),
536                                  B.getInt32(16), V});
537 
538     if (!ST->isWave32()) {
539       // Copy the old lane 31 to the new lane 32.
540       V = B.CreateCall(
541           WriteLane,
542           {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V});
543 
544       // Copy the old lane 47 to the new lane 48.
545       V = B.CreateCall(
546           WriteLane,
547           {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V});
548     }
549   }
550 
551   return V;
552 }
553 
554 // Use the builder to create an exclusive scan and compute the final reduced
555 // value using an iterative approach. This provides an alternative
556 // implementation to DPP which uses WMM for scan computations. This API iterate
557 // over active lanes to read, compute and update the value using
558 // readlane and writelane intrinsics.
buildScanIteratively(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * const Identity,Value * V,Instruction & I,BasicBlock * ComputeLoop,BasicBlock * ComputeEnd) const559 std::pair<Value *, Value *> AMDGPUAtomicOptimizerImpl::buildScanIteratively(
560     IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *const Identity, Value *V,
561     Instruction &I, BasicBlock *ComputeLoop, BasicBlock *ComputeEnd) const {
562   auto *Ty = I.getType();
563   auto *WaveTy = B.getIntNTy(ST->getWavefrontSize());
564   auto *EntryBB = I.getParent();
565   auto NeedResult = !I.use_empty();
566 
567   auto *Ballot =
568       B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue());
569 
570   // Start inserting instructions for ComputeLoop block
571   B.SetInsertPoint(ComputeLoop);
572   // Phi nodes for Accumulator, Scan results destination, and Active Lanes
573   auto *Accumulator = B.CreatePHI(Ty, 2, "Accumulator");
574   Accumulator->addIncoming(Identity, EntryBB);
575   PHINode *OldValuePhi = nullptr;
576   if (NeedResult) {
577     OldValuePhi = B.CreatePHI(Ty, 2, "OldValuePhi");
578     OldValuePhi->addIncoming(PoisonValue::get(Ty), EntryBB);
579   }
580   auto *ActiveBits = B.CreatePHI(WaveTy, 2, "ActiveBits");
581   ActiveBits->addIncoming(Ballot, EntryBB);
582 
583   // Use llvm.cttz instrinsic to find the lowest remaining active lane.
584   auto *FF1 =
585       B.CreateIntrinsic(Intrinsic::cttz, WaveTy, {ActiveBits, B.getTrue()});
586 
587   auto *LaneIdxInt = B.CreateTrunc(FF1, B.getInt32Ty());
588 
589   // Get the value required for atomic operation
590   Value *LaneValue = B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_readlane,
591                                        {V, LaneIdxInt});
592 
593   // Perform writelane if intermediate scan results are required later in the
594   // kernel computations
595   Value *OldValue = nullptr;
596   if (NeedResult) {
597     OldValue = B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_writelane,
598                                  {Accumulator, LaneIdxInt, OldValuePhi});
599     OldValuePhi->addIncoming(OldValue, ComputeLoop);
600   }
601 
602   // Accumulate the results
603   auto *NewAccumulator = buildNonAtomicBinOp(B, Op, Accumulator, LaneValue);
604   Accumulator->addIncoming(NewAccumulator, ComputeLoop);
605 
606   // Set bit to zero of current active lane so that for next iteration llvm.cttz
607   // return the next active lane
608   auto *Mask = B.CreateShl(ConstantInt::get(WaveTy, 1), FF1);
609 
610   auto *InverseMask = B.CreateXor(Mask, ConstantInt::get(WaveTy, -1));
611   auto *NewActiveBits = B.CreateAnd(ActiveBits, InverseMask);
612   ActiveBits->addIncoming(NewActiveBits, ComputeLoop);
613 
614   // Branch out of the loop when all lanes are processed.
615   auto *IsEnd = B.CreateICmpEQ(NewActiveBits, ConstantInt::get(WaveTy, 0));
616   B.CreateCondBr(IsEnd, ComputeEnd, ComputeLoop);
617 
618   B.SetInsertPoint(ComputeEnd);
619 
620   return {OldValue, NewAccumulator};
621 }
622 
getIdentityValueForAtomicOp(Type * const Ty,AtomicRMWInst::BinOp Op)623 static Constant *getIdentityValueForAtomicOp(Type *const Ty,
624                                              AtomicRMWInst::BinOp Op) {
625   LLVMContext &C = Ty->getContext();
626   const unsigned BitWidth = Ty->getPrimitiveSizeInBits();
627   switch (Op) {
628   default:
629     llvm_unreachable("Unhandled atomic op");
630   case AtomicRMWInst::Add:
631   case AtomicRMWInst::Sub:
632   case AtomicRMWInst::Or:
633   case AtomicRMWInst::Xor:
634   case AtomicRMWInst::UMax:
635     return ConstantInt::get(C, APInt::getMinValue(BitWidth));
636   case AtomicRMWInst::And:
637   case AtomicRMWInst::UMin:
638     return ConstantInt::get(C, APInt::getMaxValue(BitWidth));
639   case AtomicRMWInst::Max:
640     return ConstantInt::get(C, APInt::getSignedMinValue(BitWidth));
641   case AtomicRMWInst::Min:
642     return ConstantInt::get(C, APInt::getSignedMaxValue(BitWidth));
643   case AtomicRMWInst::FAdd:
644     return ConstantFP::get(C, APFloat::getZero(Ty->getFltSemantics(), true));
645   case AtomicRMWInst::FSub:
646     return ConstantFP::get(C, APFloat::getZero(Ty->getFltSemantics(), false));
647   case AtomicRMWInst::FMin:
648   case AtomicRMWInst::FMax:
649     // FIXME: atomicrmw fmax/fmin behave like llvm.maxnum/minnum so NaN is the
650     // closest thing they have to an identity, but it still does not preserve
651     // the difference between quiet and signaling NaNs or NaNs with different
652     // payloads.
653     return ConstantFP::get(C, APFloat::getNaN(Ty->getFltSemantics()));
654   }
655 }
656 
buildMul(IRBuilder<> & B,Value * LHS,Value * RHS)657 static Value *buildMul(IRBuilder<> &B, Value *LHS, Value *RHS) {
658   const ConstantInt *CI = dyn_cast<ConstantInt>(LHS);
659   return (CI && CI->isOne()) ? RHS : B.CreateMul(LHS, RHS);
660 }
661 
optimizeAtomic(Instruction & I,AtomicRMWInst::BinOp Op,unsigned ValIdx,bool ValDivergent) const662 void AMDGPUAtomicOptimizerImpl::optimizeAtomic(Instruction &I,
663                                                AtomicRMWInst::BinOp Op,
664                                                unsigned ValIdx,
665                                                bool ValDivergent) const {
666   // Start building just before the instruction.
667   IRBuilder<> B(&I);
668 
669   if (AtomicRMWInst::isFPOperation(Op)) {
670     B.setIsFPConstrained(I.getFunction()->hasFnAttribute(Attribute::StrictFP));
671   }
672 
673   // If we are in a pixel shader, because of how we have to mask out helper
674   // lane invocations, we need to record the entry and exit BB's.
675   BasicBlock *PixelEntryBB = nullptr;
676   BasicBlock *PixelExitBB = nullptr;
677 
678   // If we're optimizing an atomic within a pixel shader, we need to wrap the
679   // entire atomic operation in a helper-lane check. We do not want any helper
680   // lanes that are around only for the purposes of derivatives to take part
681   // in any cross-lane communication, and we use a branch on whether the lane is
682   // live to do this.
683   if (IsPixelShader) {
684     // Record I's original position as the entry block.
685     PixelEntryBB = I.getParent();
686 
687     Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
688     Instruction *const NonHelperTerminator =
689         SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, &DTU, nullptr);
690 
691     // Record I's new position as the exit block.
692     PixelExitBB = I.getParent();
693 
694     I.moveBefore(NonHelperTerminator);
695     B.SetInsertPoint(&I);
696   }
697 
698   Type *const Ty = I.getType();
699   Type *Int32Ty = B.getInt32Ty();
700   bool isAtomicFloatingPointTy = Ty->isFloatingPointTy();
701   [[maybe_unused]] const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
702 
703   // This is the value in the atomic operation we need to combine in order to
704   // reduce the number of atomic operations.
705   Value *V = I.getOperand(ValIdx);
706 
707   // We need to know how many lanes are active within the wavefront, and we do
708   // this by doing a ballot of active lanes.
709   Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize());
710   CallInst *const Ballot =
711       B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue());
712 
713   // We need to know how many lanes are active within the wavefront that are
714   // below us. If we counted each lane linearly starting from 0, a lane is
715   // below us only if its associated index was less than ours. We do this by
716   // using the mbcnt intrinsic.
717   Value *Mbcnt;
718   if (ST->isWave32()) {
719     Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
720                               {Ballot, B.getInt32(0)});
721   } else {
722     Value *const ExtractLo = B.CreateTrunc(Ballot, Int32Ty);
723     Value *const ExtractHi = B.CreateTrunc(B.CreateLShr(Ballot, 32), Int32Ty);
724     Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
725                               {ExtractLo, B.getInt32(0)});
726     Mbcnt =
727         B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt});
728   }
729 
730   Function *F = I.getFunction();
731   LLVMContext &C = F->getContext();
732 
733   // For atomic sub, perform scan with add operation and allow one lane to
734   // subtract the reduced value later.
735   AtomicRMWInst::BinOp ScanOp = Op;
736   if (Op == AtomicRMWInst::Sub) {
737     ScanOp = AtomicRMWInst::Add;
738   } else if (Op == AtomicRMWInst::FSub) {
739     ScanOp = AtomicRMWInst::FAdd;
740   }
741   Value *Identity = getIdentityValueForAtomicOp(Ty, ScanOp);
742 
743   Value *ExclScan = nullptr;
744   Value *NewV = nullptr;
745 
746   const bool NeedResult = !I.use_empty();
747 
748   BasicBlock *ComputeLoop = nullptr;
749   BasicBlock *ComputeEnd = nullptr;
750   // If we have a divergent value in each lane, we need to combine the value
751   // using DPP.
752   if (ValDivergent) {
753     if (ScanImpl == ScanOptions::DPP) {
754       // First we need to set all inactive invocations to the identity value, so
755       // that they can correctly contribute to the final result.
756       NewV =
757           B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
758       if (!NeedResult && ST->hasPermLaneX16()) {
759         // On GFX10 the permlanex16 instruction helps us build a reduction
760         // without too many readlanes and writelanes, which are generally bad
761         // for performance.
762         NewV = buildReduction(B, ScanOp, NewV, Identity);
763       } else {
764         NewV = buildScan(B, ScanOp, NewV, Identity);
765         if (NeedResult)
766           ExclScan = buildShiftRight(B, NewV, Identity);
767         // Read the value from the last lane, which has accumulated the values
768         // of each active lane in the wavefront. This will be our new value
769         // which we will provide to the atomic operation.
770         Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1);
771         NewV = B.CreateIntrinsic(Ty, Intrinsic::amdgcn_readlane,
772                                  {NewV, LastLaneIdx});
773       }
774       // Finally mark the readlanes in the WWM section.
775       NewV = B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, NewV);
776     } else if (ScanImpl == ScanOptions::Iterative) {
777       // Alternative implementation for scan
778       ComputeLoop = BasicBlock::Create(C, "ComputeLoop", F);
779       ComputeEnd = BasicBlock::Create(C, "ComputeEnd", F);
780       std::tie(ExclScan, NewV) = buildScanIteratively(B, ScanOp, Identity, V, I,
781                                                       ComputeLoop, ComputeEnd);
782     } else {
783       llvm_unreachable("Atomic Optimzer is disabled for None strategy");
784     }
785   } else {
786     switch (Op) {
787     default:
788       llvm_unreachable("Unhandled atomic op");
789 
790     case AtomicRMWInst::Add:
791     case AtomicRMWInst::Sub: {
792       // The new value we will be contributing to the atomic operation is the
793       // old value times the number of active lanes.
794       Value *const Ctpop = B.CreateIntCast(
795           B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
796       NewV = buildMul(B, V, Ctpop);
797       break;
798     }
799     case AtomicRMWInst::FAdd:
800     case AtomicRMWInst::FSub: {
801       Value *const Ctpop = B.CreateIntCast(
802           B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Int32Ty, false);
803       Value *const CtpopFP = B.CreateUIToFP(Ctpop, Ty);
804       NewV = B.CreateFMul(V, CtpopFP);
805       break;
806     }
807     case AtomicRMWInst::And:
808     case AtomicRMWInst::Or:
809     case AtomicRMWInst::Max:
810     case AtomicRMWInst::Min:
811     case AtomicRMWInst::UMax:
812     case AtomicRMWInst::UMin:
813     case AtomicRMWInst::FMin:
814     case AtomicRMWInst::FMax:
815       // These operations with a uniform value are idempotent: doing the atomic
816       // operation multiple times has the same effect as doing it once.
817       NewV = V;
818       break;
819 
820     case AtomicRMWInst::Xor:
821       // The new value we will be contributing to the atomic operation is the
822       // old value times the parity of the number of active lanes.
823       Value *const Ctpop = B.CreateIntCast(
824           B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
825       NewV = buildMul(B, V, B.CreateAnd(Ctpop, 1));
826       break;
827     }
828   }
829 
830   // We only want a single lane to enter our new control flow, and we do this
831   // by checking if there are any active lanes below us. Only one lane will
832   // have 0 active lanes below us, so that will be the only one to progress.
833   Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getInt32(0));
834 
835   // Store I's original basic block before we split the block.
836   BasicBlock *const OriginalBB = I.getParent();
837 
838   // We need to introduce some new control flow to force a single lane to be
839   // active. We do this by splitting I's basic block at I, and introducing the
840   // new block such that:
841   // entry --> single_lane -\
842   //       \------------------> exit
843   Instruction *const SingleLaneTerminator =
844       SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, &DTU, nullptr);
845 
846   // At this point, we have split the I's block to allow one lane in wavefront
847   // to update the precomputed reduced value. Also, completed the codegen for
848   // new control flow i.e. iterative loop which perform reduction and scan using
849   // ComputeLoop and ComputeEnd.
850   // For the new control flow, we need to move branch instruction i.e.
851   // terminator created during SplitBlockAndInsertIfThen from I's block to
852   // ComputeEnd block. We also need to set up predecessor to next block when
853   // single lane done updating the final reduced value.
854   BasicBlock *Predecessor = nullptr;
855   if (ValDivergent && ScanImpl == ScanOptions::Iterative) {
856     // Move terminator from I's block to ComputeEnd block.
857     //
858     // OriginalBB is known to have a branch as terminator because
859     // SplitBlockAndInsertIfThen will have inserted one.
860     BranchInst *Terminator = cast<BranchInst>(OriginalBB->getTerminator());
861     B.SetInsertPoint(ComputeEnd);
862     Terminator->removeFromParent();
863     B.Insert(Terminator);
864 
865     // Branch to ComputeLoop Block unconditionally from the I's block for
866     // iterative approach.
867     B.SetInsertPoint(OriginalBB);
868     B.CreateBr(ComputeLoop);
869 
870     // Update the dominator tree for new control flow.
871     SmallVector<DominatorTree::UpdateType, 6> DomTreeUpdates(
872         {{DominatorTree::Insert, OriginalBB, ComputeLoop},
873          {DominatorTree::Insert, ComputeLoop, ComputeEnd}});
874 
875     // We're moving the terminator from EntryBB to ComputeEnd, make sure we move
876     // the DT edges as well.
877     for (auto *Succ : Terminator->successors()) {
878       DomTreeUpdates.push_back({DominatorTree::Insert, ComputeEnd, Succ});
879       DomTreeUpdates.push_back({DominatorTree::Delete, OriginalBB, Succ});
880     }
881 
882     DTU.applyUpdates(DomTreeUpdates);
883 
884     Predecessor = ComputeEnd;
885   } else {
886     Predecessor = OriginalBB;
887   }
888   // Move the IR builder into single_lane next.
889   B.SetInsertPoint(SingleLaneTerminator);
890 
891   // Clone the original atomic operation into single lane, replacing the
892   // original value with our newly created one.
893   Instruction *const NewI = I.clone();
894   B.Insert(NewI);
895   NewI->setOperand(ValIdx, NewV);
896 
897   // Move the IR builder into exit next, and start inserting just before the
898   // original instruction.
899   B.SetInsertPoint(&I);
900 
901   if (NeedResult) {
902     // Create a PHI node to get our new atomic result into the exit block.
903     PHINode *const PHI = B.CreatePHI(Ty, 2);
904     PHI->addIncoming(PoisonValue::get(Ty), Predecessor);
905     PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
906 
907     // We need to broadcast the value who was the lowest active lane (the first
908     // lane) to all other lanes in the wavefront. We use an intrinsic for this,
909     // but have to handle 64-bit broadcasts with two calls to this intrinsic.
910     Value *BroadcastI = nullptr;
911     BroadcastI = B.CreateIntrinsic(Ty, Intrinsic::amdgcn_readfirstlane, PHI);
912 
913     // Now that we have the result of our single atomic operation, we need to
914     // get our individual lane's slice into the result. We use the lane offset
915     // we previously calculated combined with the atomic result value we got
916     // from the first lane, to get our lane's index into the atomic result.
917     Value *LaneOffset = nullptr;
918     if (ValDivergent) {
919       if (ScanImpl == ScanOptions::DPP) {
920         LaneOffset =
921             B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, ExclScan);
922       } else if (ScanImpl == ScanOptions::Iterative) {
923         LaneOffset = ExclScan;
924       } else {
925         llvm_unreachable("Atomic Optimzer is disabled for None strategy");
926       }
927     } else {
928       Mbcnt = isAtomicFloatingPointTy ? B.CreateUIToFP(Mbcnt, Ty)
929                                       : B.CreateIntCast(Mbcnt, Ty, false);
930       switch (Op) {
931       default:
932         llvm_unreachable("Unhandled atomic op");
933       case AtomicRMWInst::Add:
934       case AtomicRMWInst::Sub:
935         LaneOffset = buildMul(B, V, Mbcnt);
936         break;
937       case AtomicRMWInst::And:
938       case AtomicRMWInst::Or:
939       case AtomicRMWInst::Max:
940       case AtomicRMWInst::Min:
941       case AtomicRMWInst::UMax:
942       case AtomicRMWInst::UMin:
943       case AtomicRMWInst::FMin:
944       case AtomicRMWInst::FMax:
945         LaneOffset = B.CreateSelect(Cond, Identity, V);
946         break;
947       case AtomicRMWInst::Xor:
948         LaneOffset = buildMul(B, V, B.CreateAnd(Mbcnt, 1));
949         break;
950       case AtomicRMWInst::FAdd:
951       case AtomicRMWInst::FSub: {
952         LaneOffset = B.CreateFMul(V, Mbcnt);
953         break;
954       }
955       }
956     }
957     Value *Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
958     if (isAtomicFloatingPointTy) {
959       // For fadd/fsub the first active lane of LaneOffset should be the
960       // identity (-0.0 for fadd or +0.0 for fsub) but the value we calculated
961       // is V * +0.0 which might have the wrong sign or might be nan (if V is
962       // inf or nan).
963       //
964       // For all floating point ops if the in-memory value was a nan then the
965       // binop we just built might have quieted it or changed its payload.
966       //
967       // Correct all these problems by using BroadcastI as the result in the
968       // first active lane.
969       Result = B.CreateSelect(Cond, BroadcastI, Result);
970     }
971 
972     if (IsPixelShader) {
973       // Need a final PHI to reconverge to above the helper lane branch mask.
974       B.SetInsertPoint(PixelExitBB, PixelExitBB->getFirstNonPHIIt());
975 
976       PHINode *const PHI = B.CreatePHI(Ty, 2);
977       PHI->addIncoming(PoisonValue::get(Ty), PixelEntryBB);
978       PHI->addIncoming(Result, I.getParent());
979       I.replaceAllUsesWith(PHI);
980     } else {
981       // Replace the original atomic instruction with the new one.
982       I.replaceAllUsesWith(Result);
983     }
984   }
985 
986   // And delete the original.
987   I.eraseFromParent();
988 }
989 
990 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
991                       "AMDGPU atomic optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)992 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
993 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
994 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
995                     "AMDGPU atomic optimizations", false, false)
996 
997 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass(ScanOptions ScanStrategy) {
998   return new AMDGPUAtomicOptimizer(ScanStrategy);
999 }
1000