1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California.
6 * Copyright (c) 2004 The FreeBSD Foundation
7 * Copyright (c) 2004-2008 Robert N. M. Watson
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * Comments on the socket life cycle:
37 *
38 * soalloc() sets of socket layer state for a socket, called only by
39 * socreate() and sonewconn(). Socket layer private.
40 *
41 * sodealloc() tears down socket layer state for a socket, called only by
42 * sofree() and sonewconn(). Socket layer private.
43 *
44 * pru_attach() associates protocol layer state with an allocated socket;
45 * called only once, may fail, aborting socket allocation. This is called
46 * from socreate() and sonewconn(). Socket layer private.
47 *
48 * pru_detach() disassociates protocol layer state from an attached socket,
49 * and will be called exactly once for sockets in which pru_attach() has
50 * been successfully called. If pru_attach() returned an error,
51 * pru_detach() will not be called. Socket layer private.
52 *
53 * pru_abort() and pru_close() notify the protocol layer that the last
54 * consumer of a socket is starting to tear down the socket, and that the
55 * protocol should terminate the connection. Historically, pru_abort() also
56 * detached protocol state from the socket state, but this is no longer the
57 * case.
58 *
59 * socreate() creates a socket and attaches protocol state. This is a public
60 * interface that may be used by socket layer consumers to create new
61 * sockets.
62 *
63 * sonewconn() creates a socket and attaches protocol state. This is a
64 * public interface that may be used by protocols to create new sockets when
65 * a new connection is received and will be available for accept() on a
66 * listen socket.
67 *
68 * soclose() destroys a socket after possibly waiting for it to disconnect.
69 * This is a public interface that socket consumers should use to close and
70 * release a socket when done with it.
71 *
72 * soabort() destroys a socket without waiting for it to disconnect (used
73 * only for incoming connections that are already partially or fully
74 * connected). This is used internally by the socket layer when clearing
75 * listen socket queues (due to overflow or close on the listen socket), but
76 * is also a public interface protocols may use to abort connections in
77 * their incomplete listen queues should they no longer be required. Sockets
78 * placed in completed connection listen queues should not be aborted for
79 * reasons described in the comment above the soclose() implementation. This
80 * is not a general purpose close routine, and except in the specific
81 * circumstances described here, should not be used.
82 *
83 * sofree() will free a socket and its protocol state if all references on
84 * the socket have been released, and is the public interface to attempt to
85 * free a socket when a reference is removed. This is a socket layer private
86 * interface.
87 *
88 * NOTE: In addition to socreate() and soclose(), which provide a single
89 * socket reference to the consumer to be managed as required, there are two
90 * calls to explicitly manage socket references, soref(), and sorele().
91 * Currently, these are generally required only when transitioning a socket
92 * from a listen queue to a file descriptor, in order to prevent garbage
93 * collection of the socket at an untimely moment. For a number of reasons,
94 * these interfaces are not preferred, and should be avoided.
95 *
96 * NOTE: With regard to VNETs the general rule is that callers do not set
97 * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
98 * sofree(), sorele(), sonewconn() and sorflush(), which are usually called
99 * from a pre-set VNET context. sopoll_generic() currently does not need a
100 * VNET context to be set.
101 */
102
103 #include <sys/cdefs.h>
104 #include "opt_inet.h"
105 #include "opt_inet6.h"
106 #include "opt_kern_tls.h"
107 #include "opt_ktrace.h"
108 #include "opt_sctp.h"
109
110 #include <sys/param.h>
111 #include <sys/systm.h>
112 #include <sys/capsicum.h>
113 #include <sys/fcntl.h>
114 #include <sys/limits.h>
115 #include <sys/lock.h>
116 #include <sys/mac.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/domain.h>
121 #include <sys/file.h> /* for struct knote */
122 #include <sys/hhook.h>
123 #include <sys/kernel.h>
124 #include <sys/khelp.h>
125 #include <sys/kthread.h>
126 #include <sys/ktls.h>
127 #include <sys/event.h>
128 #include <sys/eventhandler.h>
129 #include <sys/poll.h>
130 #include <sys/proc.h>
131 #include <sys/protosw.h>
132 #include <sys/sbuf.h>
133 #include <sys/socket.h>
134 #include <sys/socketvar.h>
135 #include <sys/resourcevar.h>
136 #include <net/route.h>
137 #include <sys/sched.h>
138 #include <sys/signalvar.h>
139 #include <sys/smp.h>
140 #include <sys/stat.h>
141 #include <sys/sx.h>
142 #include <sys/sysctl.h>
143 #include <sys/taskqueue.h>
144 #include <sys/uio.h>
145 #include <sys/un.h>
146 #include <sys/unpcb.h>
147 #include <sys/jail.h>
148 #include <sys/syslog.h>
149 #include <netinet/in.h>
150 #include <netinet/in_pcb.h>
151 #include <netinet/tcp.h>
152
153 #include <net/vnet.h>
154
155 #include <security/mac/mac_framework.h>
156 #include <security/mac/mac_internal.h>
157
158 #include <vm/uma.h>
159
160 #ifdef COMPAT_FREEBSD32
161 #include <sys/mount.h>
162 #include <sys/sysent.h>
163 #include <compat/freebsd32/freebsd32.h>
164 #endif
165
166 static int soreceive_generic_locked(struct socket *so,
167 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
168 struct mbuf **controlp, int *flagsp);
169 static int soreceive_rcvoob(struct socket *so, struct uio *uio,
170 int flags);
171 static int soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
172 struct sockaddr **psa, struct uio *uio, struct mbuf **mp,
173 struct mbuf **controlp, int flags);
174 static int sosend_generic_locked(struct socket *so, struct sockaddr *addr,
175 struct uio *uio, struct mbuf *top, struct mbuf *control,
176 int flags, struct thread *td);
177 static void so_rdknl_lock(void *);
178 static void so_rdknl_unlock(void *);
179 static void so_rdknl_assert_lock(void *, int);
180 static void so_wrknl_lock(void *);
181 static void so_wrknl_unlock(void *);
182 static void so_wrknl_assert_lock(void *, int);
183
184 static void filt_sordetach(struct knote *kn);
185 static int filt_soread(struct knote *kn, long hint);
186 static void filt_sowdetach(struct knote *kn);
187 static int filt_sowrite(struct knote *kn, long hint);
188 static int filt_soempty(struct knote *kn, long hint);
189 fo_kqfilter_t soo_kqfilter;
190
191 static const struct filterops soread_filtops = {
192 .f_isfd = 1,
193 .f_detach = filt_sordetach,
194 .f_event = filt_soread,
195 };
196 static const struct filterops sowrite_filtops = {
197 .f_isfd = 1,
198 .f_detach = filt_sowdetach,
199 .f_event = filt_sowrite,
200 };
201 static const struct filterops soempty_filtops = {
202 .f_isfd = 1,
203 .f_detach = filt_sowdetach,
204 .f_event = filt_soempty,
205 };
206
207 so_gen_t so_gencnt; /* generation count for sockets */
208
209 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
210 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
211
212 #define VNET_SO_ASSERT(so) \
213 VNET_ASSERT(curvnet != NULL, \
214 ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
215
216 #ifdef SOCKET_HHOOK
217 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
218 #define V_socket_hhh VNET(socket_hhh)
219 static inline int hhook_run_socket(struct socket *, void *, int32_t);
220 #endif
221
222 #ifdef COMPAT_FREEBSD32
223 #ifdef __amd64__
224 /* off_t has 4-byte alignment on i386 but not on other 32-bit platforms. */
225 #define __splice32_packed __packed
226 #else
227 #define __splice32_packed
228 #endif
229 struct splice32 {
230 int32_t sp_fd;
231 int64_t sp_max;
232 struct timeval32 sp_idle;
233 } __splice32_packed;
234 #undef __splice32_packed
235 #endif
236
237 /*
238 * Limit on the number of connections in the listen queue waiting
239 * for accept(2).
240 * NB: The original sysctl somaxconn is still available but hidden
241 * to prevent confusion about the actual purpose of this number.
242 */
243 VNET_DEFINE_STATIC(u_int, somaxconn) = SOMAXCONN;
244 #define V_somaxconn VNET(somaxconn)
245
246 static int
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)247 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
248 {
249 int error;
250 u_int val;
251
252 val = V_somaxconn;
253 error = sysctl_handle_int(oidp, &val, 0, req);
254 if (error || !req->newptr )
255 return (error);
256
257 /*
258 * The purpose of the UINT_MAX / 3 limit, is so that the formula
259 * 3 * sol_qlimit / 2
260 * below, will not overflow.
261 */
262
263 if (val < 1 || val > UINT_MAX / 3)
264 return (EINVAL);
265
266 V_somaxconn = val;
267 return (0);
268 }
269 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
270 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
271 sysctl_somaxconn, "IU",
272 "Maximum listen socket pending connection accept queue size");
273 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
274 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0,
275 sizeof(u_int), sysctl_somaxconn, "IU",
276 "Maximum listen socket pending connection accept queue size (compat)");
277
278 static u_int numopensockets;
279 static int
sysctl_numopensockets(SYSCTL_HANDLER_ARGS)280 sysctl_numopensockets(SYSCTL_HANDLER_ARGS)
281 {
282 u_int val;
283
284 #ifdef VIMAGE
285 if(!IS_DEFAULT_VNET(curvnet))
286 val = curvnet->vnet_sockcnt;
287 else
288 #endif
289 val = numopensockets;
290 return (sysctl_handle_int(oidp, &val, 0, req));
291 }
292 SYSCTL_PROC(_kern_ipc, OID_AUTO, numopensockets,
293 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_VNET, 0, sizeof(u_int),
294 sysctl_numopensockets, "IU", "Number of open sockets");
295
296 /*
297 * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
298 * so_gencnt field.
299 */
300 static struct mtx so_global_mtx;
301 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
302
303 /*
304 * General IPC sysctl name space, used by sockets and a variety of other IPC
305 * types.
306 */
307 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
308 "IPC");
309
310 /*
311 * Initialize the socket subsystem and set up the socket
312 * memory allocator.
313 */
314 static uma_zone_t socket_zone;
315 int maxsockets;
316
317 static void
socket_zone_change(void * tag)318 socket_zone_change(void *tag)
319 {
320
321 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
322 }
323
324 static int splice_init_state;
325 static struct sx splice_init_lock;
326 SX_SYSINIT(splice_init_lock, &splice_init_lock, "splice_init");
327
328 static SYSCTL_NODE(_kern_ipc, OID_AUTO, splice, CTLFLAG_RW, 0,
329 "Settings relating to the SO_SPLICE socket option");
330
331 static bool splice_receive_stream = true;
332 SYSCTL_BOOL(_kern_ipc_splice, OID_AUTO, receive_stream, CTLFLAG_RWTUN,
333 &splice_receive_stream, 0,
334 "Use soreceive_stream() for stream splices");
335
336 static uma_zone_t splice_zone;
337 static struct proc *splice_proc;
338 struct splice_wq {
339 struct mtx mtx;
340 STAILQ_HEAD(, so_splice) head;
341 bool running;
342 } __aligned(CACHE_LINE_SIZE);
343 static struct splice_wq *splice_wq;
344 static uint32_t splice_index = 0;
345
346 static void so_splice_timeout(void *arg, int pending);
347 static void so_splice_xfer(struct so_splice *s);
348 static int so_unsplice(struct socket *so, bool timeout);
349
350 static void
splice_work_thread(void * ctx)351 splice_work_thread(void *ctx)
352 {
353 struct splice_wq *wq = ctx;
354 struct so_splice *s, *s_temp;
355 STAILQ_HEAD(, so_splice) local_head;
356 int cpu;
357
358 cpu = wq - splice_wq;
359 if (bootverbose)
360 printf("starting so_splice worker thread for CPU %d\n", cpu);
361
362 for (;;) {
363 mtx_lock(&wq->mtx);
364 while (STAILQ_EMPTY(&wq->head)) {
365 wq->running = false;
366 mtx_sleep(wq, &wq->mtx, 0, "-", 0);
367 wq->running = true;
368 }
369 STAILQ_INIT(&local_head);
370 STAILQ_CONCAT(&local_head, &wq->head);
371 STAILQ_INIT(&wq->head);
372 mtx_unlock(&wq->mtx);
373 STAILQ_FOREACH_SAFE(s, &local_head, next, s_temp) {
374 mtx_lock(&s->mtx);
375 CURVNET_SET(s->src->so_vnet);
376 so_splice_xfer(s);
377 CURVNET_RESTORE();
378 }
379 }
380 }
381
382 static void
so_splice_dispatch_async(struct so_splice * sp)383 so_splice_dispatch_async(struct so_splice *sp)
384 {
385 struct splice_wq *wq;
386 bool running;
387
388 wq = &splice_wq[sp->wq_index];
389 mtx_lock(&wq->mtx);
390 STAILQ_INSERT_TAIL(&wq->head, sp, next);
391 running = wq->running;
392 mtx_unlock(&wq->mtx);
393 if (!running)
394 wakeup(wq);
395 }
396
397 void
so_splice_dispatch(struct so_splice * sp)398 so_splice_dispatch(struct so_splice *sp)
399 {
400 mtx_assert(&sp->mtx, MA_OWNED);
401
402 if (sp->state != SPLICE_IDLE) {
403 mtx_unlock(&sp->mtx);
404 } else {
405 sp->state = SPLICE_QUEUED;
406 mtx_unlock(&sp->mtx);
407 so_splice_dispatch_async(sp);
408 }
409 }
410
411 static int
splice_zinit(void * mem,int size __unused,int flags __unused)412 splice_zinit(void *mem, int size __unused, int flags __unused)
413 {
414 struct so_splice *s;
415
416 s = (struct so_splice *)mem;
417 mtx_init(&s->mtx, "so_splice", NULL, MTX_DEF);
418 return (0);
419 }
420
421 static void
splice_zfini(void * mem,int size)422 splice_zfini(void *mem, int size)
423 {
424 struct so_splice *s;
425
426 s = (struct so_splice *)mem;
427 mtx_destroy(&s->mtx);
428 }
429
430 static int
splice_init(void)431 splice_init(void)
432 {
433 struct thread *td;
434 int error, i, state;
435
436 state = atomic_load_acq_int(&splice_init_state);
437 if (__predict_true(state > 0))
438 return (0);
439 if (state < 0)
440 return (ENXIO);
441 sx_xlock(&splice_init_lock);
442 if (splice_init_state != 0) {
443 sx_xunlock(&splice_init_lock);
444 return (0);
445 }
446
447 splice_zone = uma_zcreate("splice", sizeof(struct so_splice), NULL,
448 NULL, splice_zinit, splice_zfini, UMA_ALIGN_CACHE, 0);
449
450 splice_wq = mallocarray(mp_maxid + 1, sizeof(*splice_wq), M_TEMP,
451 M_WAITOK | M_ZERO);
452
453 /*
454 * Initialize the workqueues to run the splice work. We create a
455 * work queue for each CPU.
456 */
457 CPU_FOREACH(i) {
458 STAILQ_INIT(&splice_wq[i].head);
459 mtx_init(&splice_wq[i].mtx, "splice work queue", NULL, MTX_DEF);
460 }
461
462 /* Start kthreads for each workqueue. */
463 error = 0;
464 CPU_FOREACH(i) {
465 error = kproc_kthread_add(splice_work_thread, &splice_wq[i],
466 &splice_proc, &td, 0, 0, "so_splice", "thr_%d", i);
467 if (error) {
468 printf("Can't add so_splice thread %d error %d\n",
469 i, error);
470 break;
471 }
472
473 /*
474 * It's possible to create loops with SO_SPLICE; ensure that
475 * worker threads aren't able to starve the system too easily.
476 */
477 thread_lock(td);
478 sched_prio(td, PUSER);
479 thread_unlock(td);
480 }
481
482 splice_init_state = error != 0 ? -1 : 1;
483 sx_xunlock(&splice_init_lock);
484
485 return (error);
486 }
487
488 /*
489 * Lock a pair of socket's I/O locks for splicing. Avoid blocking while holding
490 * one lock in order to avoid potential deadlocks in case there is some other
491 * code path which acquires more than one I/O lock at a time.
492 */
493 static void
splice_lock_pair(struct socket * so_src,struct socket * so_dst)494 splice_lock_pair(struct socket *so_src, struct socket *so_dst)
495 {
496 int error;
497
498 for (;;) {
499 error = SOCK_IO_SEND_LOCK(so_dst, SBL_WAIT | SBL_NOINTR);
500 KASSERT(error == 0,
501 ("%s: failed to lock send I/O lock: %d", __func__, error));
502 error = SOCK_IO_RECV_LOCK(so_src, 0);
503 KASSERT(error == 0 || error == EWOULDBLOCK,
504 ("%s: failed to lock recv I/O lock: %d", __func__, error));
505 if (error == 0)
506 break;
507 SOCK_IO_SEND_UNLOCK(so_dst);
508
509 error = SOCK_IO_RECV_LOCK(so_src, SBL_WAIT | SBL_NOINTR);
510 KASSERT(error == 0,
511 ("%s: failed to lock recv I/O lock: %d", __func__, error));
512 error = SOCK_IO_SEND_LOCK(so_dst, 0);
513 KASSERT(error == 0 || error == EWOULDBLOCK,
514 ("%s: failed to lock send I/O lock: %d", __func__, error));
515 if (error == 0)
516 break;
517 SOCK_IO_RECV_UNLOCK(so_src);
518 }
519 }
520
521 static void
splice_unlock_pair(struct socket * so_src,struct socket * so_dst)522 splice_unlock_pair(struct socket *so_src, struct socket *so_dst)
523 {
524 SOCK_IO_RECV_UNLOCK(so_src);
525 SOCK_IO_SEND_UNLOCK(so_dst);
526 }
527
528 /*
529 * Move data from the source to the sink. Assumes that both of the relevant
530 * socket I/O locks are held.
531 */
532 static int
so_splice_xfer_data(struct socket * so_src,struct socket * so_dst,off_t max,ssize_t * lenp)533 so_splice_xfer_data(struct socket *so_src, struct socket *so_dst, off_t max,
534 ssize_t *lenp)
535 {
536 struct uio uio;
537 struct mbuf *m;
538 struct sockbuf *sb_src, *sb_dst;
539 ssize_t len;
540 long space;
541 int error, flags;
542
543 SOCK_IO_RECV_ASSERT_LOCKED(so_src);
544 SOCK_IO_SEND_ASSERT_LOCKED(so_dst);
545
546 error = 0;
547 m = NULL;
548 memset(&uio, 0, sizeof(uio));
549
550 sb_src = &so_src->so_rcv;
551 sb_dst = &so_dst->so_snd;
552
553 space = sbspace(sb_dst);
554 if (space < 0)
555 space = 0;
556 len = MIN(max, MIN(space, sbavail(sb_src)));
557 if (len == 0) {
558 SOCK_RECVBUF_LOCK(so_src);
559 if ((sb_src->sb_state & SBS_CANTRCVMORE) != 0)
560 error = EPIPE;
561 SOCK_RECVBUF_UNLOCK(so_src);
562 } else {
563 flags = MSG_DONTWAIT;
564 uio.uio_resid = len;
565 if (splice_receive_stream && sb_src->sb_tls_info == NULL) {
566 error = soreceive_stream_locked(so_src, sb_src, NULL,
567 &uio, &m, NULL, flags);
568 } else {
569 error = soreceive_generic_locked(so_src, NULL,
570 &uio, &m, NULL, &flags);
571 }
572 if (error != 0 && m != NULL) {
573 m_freem(m);
574 m = NULL;
575 }
576 }
577 if (m != NULL) {
578 len -= uio.uio_resid;
579 error = sosend_generic_locked(so_dst, NULL, NULL, m, NULL,
580 MSG_DONTWAIT, curthread);
581 } else if (error == 0) {
582 len = 0;
583 SOCK_SENDBUF_LOCK(so_dst);
584 if ((sb_dst->sb_state & SBS_CANTSENDMORE) != 0)
585 error = EPIPE;
586 SOCK_SENDBUF_UNLOCK(so_dst);
587 }
588 if (error == 0)
589 *lenp = len;
590 return (error);
591 }
592
593 /*
594 * Transfer data from the source to the sink.
595 */
596 static void
so_splice_xfer(struct so_splice * sp)597 so_splice_xfer(struct so_splice *sp)
598 {
599 struct socket *so_src, *so_dst;
600 off_t max;
601 ssize_t len;
602 int error;
603
604 mtx_assert(&sp->mtx, MA_OWNED);
605 KASSERT(sp->state == SPLICE_QUEUED || sp->state == SPLICE_CLOSING,
606 ("so_splice_xfer: invalid state %d", sp->state));
607 KASSERT(sp->max != 0, ("so_splice_xfer: max == 0"));
608
609 if (sp->state == SPLICE_CLOSING) {
610 /* Userspace asked us to close the splice. */
611 goto closing;
612 }
613
614 sp->state = SPLICE_RUNNING;
615 so_src = sp->src;
616 so_dst = sp->dst;
617 max = sp->max > 0 ? sp->max - so_src->so_splice_sent : OFF_MAX;
618 if (max < 0)
619 max = 0;
620
621 /*
622 * Lock the sockets in order to block userspace from doing anything
623 * sneaky. If an error occurs or one of the sockets can no longer
624 * transfer data, we will automatically unsplice.
625 */
626 mtx_unlock(&sp->mtx);
627 splice_lock_pair(so_src, so_dst);
628
629 error = so_splice_xfer_data(so_src, so_dst, max, &len);
630
631 mtx_lock(&sp->mtx);
632
633 /*
634 * Update our stats while still holding the socket locks. This
635 * synchronizes with getsockopt(SO_SPLICE), see the comment there.
636 */
637 if (error == 0) {
638 KASSERT(len >= 0, ("%s: len %zd < 0", __func__, len));
639 so_src->so_splice_sent += len;
640 }
641 splice_unlock_pair(so_src, so_dst);
642
643 switch (sp->state) {
644 case SPLICE_CLOSING:
645 closing:
646 sp->state = SPLICE_CLOSED;
647 wakeup(sp);
648 mtx_unlock(&sp->mtx);
649 break;
650 case SPLICE_RUNNING:
651 if (error != 0 ||
652 (sp->max > 0 && so_src->so_splice_sent >= sp->max)) {
653 sp->state = SPLICE_EXCEPTION;
654 soref(so_src);
655 mtx_unlock(&sp->mtx);
656 (void)so_unsplice(so_src, false);
657 sorele(so_src);
658 } else {
659 /*
660 * Locklessly check for additional bytes in the source's
661 * receive buffer and queue more work if possible. We
662 * may end up queuing needless work, but that's ok, and
663 * if we race with a thread inserting more data into the
664 * buffer and observe sbavail() == 0, the splice mutex
665 * ensures that splice_push() will queue more work for
666 * us.
667 */
668 if (sbavail(&so_src->so_rcv) > 0 &&
669 sbspace(&so_dst->so_snd) > 0) {
670 sp->state = SPLICE_QUEUED;
671 mtx_unlock(&sp->mtx);
672 so_splice_dispatch_async(sp);
673 } else {
674 sp->state = SPLICE_IDLE;
675 mtx_unlock(&sp->mtx);
676 }
677 }
678 break;
679 default:
680 __assert_unreachable();
681 }
682 }
683
684 static void
socket_init(void * tag)685 socket_init(void *tag)
686 {
687
688 socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
689 NULL, NULL, UMA_ALIGN_PTR, 0);
690 maxsockets = uma_zone_set_max(socket_zone, maxsockets);
691 uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
692 EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
693 EVENTHANDLER_PRI_FIRST);
694 }
695 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
696
697 #ifdef SOCKET_HHOOK
698 static void
socket_hhook_register(int subtype)699 socket_hhook_register(int subtype)
700 {
701
702 if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
703 &V_socket_hhh[subtype],
704 HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
705 printf("%s: WARNING: unable to register hook\n", __func__);
706 }
707
708 static void
socket_hhook_deregister(int subtype)709 socket_hhook_deregister(int subtype)
710 {
711
712 if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
713 printf("%s: WARNING: unable to deregister hook\n", __func__);
714 }
715
716 static void
socket_vnet_init(const void * unused __unused)717 socket_vnet_init(const void *unused __unused)
718 {
719 int i;
720
721 /* We expect a contiguous range */
722 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
723 socket_hhook_register(i);
724 }
725 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
726 socket_vnet_init, NULL);
727
728 static void
socket_vnet_uninit(const void * unused __unused)729 socket_vnet_uninit(const void *unused __unused)
730 {
731 int i;
732
733 for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
734 socket_hhook_deregister(i);
735 }
736 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
737 socket_vnet_uninit, NULL);
738 #endif /* SOCKET_HHOOK */
739
740 /*
741 * Initialise maxsockets. This SYSINIT must be run after
742 * tunable_mbinit().
743 */
744 static void
init_maxsockets(void * ignored)745 init_maxsockets(void *ignored)
746 {
747
748 TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
749 maxsockets = imax(maxsockets, maxfiles);
750 }
751 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
752
753 /*
754 * Sysctl to get and set the maximum global sockets limit. Notify protocols
755 * of the change so that they can update their dependent limits as required.
756 */
757 static int
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)758 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
759 {
760 int error, newmaxsockets;
761
762 newmaxsockets = maxsockets;
763 error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
764 if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
765 if (newmaxsockets > maxsockets &&
766 newmaxsockets <= maxfiles) {
767 maxsockets = newmaxsockets;
768 EVENTHANDLER_INVOKE(maxsockets_change);
769 } else
770 error = EINVAL;
771 }
772 return (error);
773 }
774 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
775 CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
776 &maxsockets, 0, sysctl_maxsockets, "IU",
777 "Maximum number of sockets available");
778
779 /*
780 * Socket operation routines. These routines are called by the routines in
781 * sys_socket.c or from a system process, and implement the semantics of
782 * socket operations by switching out to the protocol specific routines.
783 */
784
785 /*
786 * Get a socket structure from our zone, and initialize it. Note that it
787 * would probably be better to allocate socket and PCB at the same time, but
788 * I'm not convinced that all the protocols can be easily modified to do
789 * this.
790 *
791 * soalloc() returns a socket with a ref count of 0.
792 */
793 static struct socket *
soalloc(struct vnet * vnet)794 soalloc(struct vnet *vnet)
795 {
796 struct socket *so;
797
798 so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
799 if (so == NULL)
800 return (NULL);
801 #ifdef MAC
802 if (mac_socket_init(so, M_NOWAIT) != 0) {
803 uma_zfree(socket_zone, so);
804 return (NULL);
805 }
806 #endif
807 if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
808 uma_zfree(socket_zone, so);
809 return (NULL);
810 }
811
812 /*
813 * The socket locking protocol allows to lock 2 sockets at a time,
814 * however, the first one must be a listening socket. WITNESS lacks
815 * a feature to change class of an existing lock, so we use DUPOK.
816 */
817 mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
818 mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
819 mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
820 so->so_rcv.sb_sel = &so->so_rdsel;
821 so->so_snd.sb_sel = &so->so_wrsel;
822 sx_init(&so->so_snd_sx, "so_snd_sx");
823 sx_init(&so->so_rcv_sx, "so_rcv_sx");
824 TAILQ_INIT(&so->so_snd.sb_aiojobq);
825 TAILQ_INIT(&so->so_rcv.sb_aiojobq);
826 TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
827 TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
828 #ifdef VIMAGE
829 VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
830 __func__, __LINE__, so));
831 so->so_vnet = vnet;
832 #endif
833 #ifdef SOCKET_HHOOK
834 /* We shouldn't need the so_global_mtx */
835 if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
836 /* Do we need more comprehensive error returns? */
837 uma_zfree(socket_zone, so);
838 return (NULL);
839 }
840 #endif
841 mtx_lock(&so_global_mtx);
842 so->so_gencnt = ++so_gencnt;
843 ++numopensockets;
844 #ifdef VIMAGE
845 vnet->vnet_sockcnt++;
846 #endif
847 mtx_unlock(&so_global_mtx);
848
849 return (so);
850 }
851
852 /*
853 * Free the storage associated with a socket at the socket layer, tear down
854 * locks, labels, etc. All protocol state is assumed already to have been
855 * torn down (and possibly never set up) by the caller.
856 */
857 void
sodealloc(struct socket * so)858 sodealloc(struct socket *so)
859 {
860
861 KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
862 KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
863
864 mtx_lock(&so_global_mtx);
865 so->so_gencnt = ++so_gencnt;
866 --numopensockets; /* Could be below, but faster here. */
867 #ifdef VIMAGE
868 VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
869 __func__, __LINE__, so));
870 so->so_vnet->vnet_sockcnt--;
871 #endif
872 mtx_unlock(&so_global_mtx);
873 #ifdef MAC
874 mac_socket_destroy(so);
875 #endif
876 #ifdef SOCKET_HHOOK
877 hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
878 #endif
879
880 khelp_destroy_osd(&so->osd);
881 if (SOLISTENING(so)) {
882 if (so->sol_accept_filter != NULL)
883 accept_filt_setopt(so, NULL);
884 } else {
885 if (so->so_rcv.sb_hiwat)
886 (void)chgsbsize(so->so_cred->cr_uidinfo,
887 &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
888 if (so->so_snd.sb_hiwat)
889 (void)chgsbsize(so->so_cred->cr_uidinfo,
890 &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
891 sx_destroy(&so->so_snd_sx);
892 sx_destroy(&so->so_rcv_sx);
893 mtx_destroy(&so->so_snd_mtx);
894 mtx_destroy(&so->so_rcv_mtx);
895 }
896 crfree(so->so_cred);
897 mtx_destroy(&so->so_lock);
898 uma_zfree(socket_zone, so);
899 }
900
901 /*
902 * socreate returns a socket with a ref count of 1 and a file descriptor
903 * reference. The socket should be closed with soclose().
904 */
905 int
socreate(int dom,struct socket ** aso,int type,int proto,struct ucred * cred,struct thread * td)906 socreate(int dom, struct socket **aso, int type, int proto,
907 struct ucred *cred, struct thread *td)
908 {
909 struct protosw *prp;
910 struct socket *so;
911 int error;
912
913 /*
914 * XXX: divert(4) historically abused PF_INET. Keep this compatibility
915 * shim until all applications have been updated.
916 */
917 if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
918 proto == IPPROTO_DIVERT)) {
919 dom = PF_DIVERT;
920 printf("%s uses obsolete way to create divert(4) socket\n",
921 td->td_proc->p_comm);
922 }
923
924 prp = pffindproto(dom, type, proto);
925 if (prp == NULL) {
926 /* No support for domain. */
927 if (pffinddomain(dom) == NULL)
928 return (EAFNOSUPPORT);
929 /* No support for socket type. */
930 if (proto == 0 && type != 0)
931 return (EPROTOTYPE);
932 return (EPROTONOSUPPORT);
933 }
934
935 MPASS(prp->pr_attach);
936
937 if ((prp->pr_flags & PR_CAPATTACH) == 0) {
938 if (CAP_TRACING(td))
939 ktrcapfail(CAPFAIL_PROTO, &proto);
940 if (IN_CAPABILITY_MODE(td))
941 return (ECAPMODE);
942 }
943
944 if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
945 return (EPROTONOSUPPORT);
946
947 so = soalloc(CRED_TO_VNET(cred));
948 if (so == NULL)
949 return (ENOBUFS);
950
951 so->so_type = type;
952 so->so_cred = crhold(cred);
953 if ((prp->pr_domain->dom_family == PF_INET) ||
954 (prp->pr_domain->dom_family == PF_INET6) ||
955 (prp->pr_domain->dom_family == PF_ROUTE))
956 so->so_fibnum = td->td_proc->p_fibnum;
957 else
958 so->so_fibnum = 0;
959 so->so_proto = prp;
960 #ifdef MAC
961 mac_socket_create(cred, so);
962 #endif
963 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
964 so_rdknl_assert_lock);
965 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
966 so_wrknl_assert_lock);
967 if ((prp->pr_flags & PR_SOCKBUF) == 0) {
968 so->so_snd.sb_mtx = &so->so_snd_mtx;
969 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
970 }
971 /*
972 * Auto-sizing of socket buffers is managed by the protocols and
973 * the appropriate flags must be set in the pru_attach function.
974 */
975 CURVNET_SET(so->so_vnet);
976 error = prp->pr_attach(so, proto, td);
977 CURVNET_RESTORE();
978 if (error) {
979 sodealloc(so);
980 return (error);
981 }
982 soref(so);
983 *aso = so;
984 return (0);
985 }
986
987 #ifdef REGRESSION
988 static int regression_sonewconn_earlytest = 1;
989 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
990 ®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
991 #endif
992
993 static int sooverprio = LOG_DEBUG;
994 SYSCTL_INT(_kern_ipc, OID_AUTO, sooverprio, CTLFLAG_RW,
995 &sooverprio, 0, "Log priority for listen socket overflows: 0..7 or -1 to disable");
996
997 static struct timeval overinterval = { 60, 0 };
998 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
999 &overinterval,
1000 "Delay in seconds between warnings for listen socket overflows");
1001
1002 /*
1003 * When an attempt at a new connection is noted on a socket which supports
1004 * accept(2), the protocol has two options:
1005 * 1) Call legacy sonewconn() function, which would call protocol attach
1006 * method, same as used for socket(2).
1007 * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
1008 * and then call solisten_enqueue().
1009 *
1010 * Note: the ref count on the socket is 0 on return.
1011 */
1012 struct socket *
solisten_clone(struct socket * head)1013 solisten_clone(struct socket *head)
1014 {
1015 struct sbuf descrsb;
1016 struct socket *so;
1017 int len, overcount;
1018 u_int qlen;
1019 const char localprefix[] = "local:";
1020 char descrbuf[SUNPATHLEN + sizeof(localprefix)];
1021 #if defined(INET6)
1022 char addrbuf[INET6_ADDRSTRLEN];
1023 #elif defined(INET)
1024 char addrbuf[INET_ADDRSTRLEN];
1025 #endif
1026 bool dolog, over;
1027
1028 SOLISTEN_LOCK(head);
1029 over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
1030 #ifdef REGRESSION
1031 if (regression_sonewconn_earlytest && over) {
1032 #else
1033 if (over) {
1034 #endif
1035 head->sol_overcount++;
1036 dolog = (sooverprio >= 0) &&
1037 !!ratecheck(&head->sol_lastover, &overinterval);
1038
1039 /*
1040 * If we're going to log, copy the overflow count and queue
1041 * length from the listen socket before dropping the lock.
1042 * Also, reset the overflow count.
1043 */
1044 if (dolog) {
1045 overcount = head->sol_overcount;
1046 head->sol_overcount = 0;
1047 qlen = head->sol_qlen;
1048 }
1049 SOLISTEN_UNLOCK(head);
1050
1051 if (dolog) {
1052 /*
1053 * Try to print something descriptive about the
1054 * socket for the error message.
1055 */
1056 sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
1057 SBUF_FIXEDLEN);
1058 switch (head->so_proto->pr_domain->dom_family) {
1059 #if defined(INET) || defined(INET6)
1060 #ifdef INET
1061 case AF_INET:
1062 #endif
1063 #ifdef INET6
1064 case AF_INET6:
1065 if (head->so_proto->pr_domain->dom_family ==
1066 AF_INET6 ||
1067 (sotoinpcb(head)->inp_inc.inc_flags &
1068 INC_ISIPV6)) {
1069 ip6_sprintf(addrbuf,
1070 &sotoinpcb(head)->inp_inc.inc6_laddr);
1071 sbuf_printf(&descrsb, "[%s]", addrbuf);
1072 } else
1073 #endif
1074 {
1075 #ifdef INET
1076 inet_ntoa_r(
1077 sotoinpcb(head)->inp_inc.inc_laddr,
1078 addrbuf);
1079 sbuf_cat(&descrsb, addrbuf);
1080 #endif
1081 }
1082 sbuf_printf(&descrsb, ":%hu (proto %u)",
1083 ntohs(sotoinpcb(head)->inp_inc.inc_lport),
1084 head->so_proto->pr_protocol);
1085 break;
1086 #endif /* INET || INET6 */
1087 case AF_UNIX:
1088 sbuf_cat(&descrsb, localprefix);
1089 if (sotounpcb(head)->unp_addr != NULL)
1090 len =
1091 sotounpcb(head)->unp_addr->sun_len -
1092 offsetof(struct sockaddr_un,
1093 sun_path);
1094 else
1095 len = 0;
1096 if (len > 0)
1097 sbuf_bcat(&descrsb,
1098 sotounpcb(head)->unp_addr->sun_path,
1099 len);
1100 else
1101 sbuf_cat(&descrsb, "(unknown)");
1102 break;
1103 }
1104
1105 /*
1106 * If we can't print something more specific, at least
1107 * print the domain name.
1108 */
1109 if (sbuf_finish(&descrsb) != 0 ||
1110 sbuf_len(&descrsb) <= 0) {
1111 sbuf_clear(&descrsb);
1112 sbuf_cat(&descrsb,
1113 head->so_proto->pr_domain->dom_name ?:
1114 "unknown");
1115 sbuf_finish(&descrsb);
1116 }
1117 KASSERT(sbuf_len(&descrsb) > 0,
1118 ("%s: sbuf creation failed", __func__));
1119 /*
1120 * Preserve the historic listen queue overflow log
1121 * message, that starts with "sonewconn:". It has
1122 * been known to sysadmins for years and also test
1123 * sys/kern/sonewconn_overflow checks for it.
1124 */
1125 if (head->so_cred == 0) {
1126 log(LOG_PRI(sooverprio),
1127 "sonewconn: pcb %p (%s): "
1128 "Listen queue overflow: %i already in "
1129 "queue awaiting acceptance (%d "
1130 "occurrences)\n", head->so_pcb,
1131 sbuf_data(&descrsb),
1132 qlen, overcount);
1133 } else {
1134 log(LOG_PRI(sooverprio),
1135 "sonewconn: pcb %p (%s): "
1136 "Listen queue overflow: "
1137 "%i already in queue awaiting acceptance "
1138 "(%d occurrences), euid %d, rgid %d, jail %s\n",
1139 head->so_pcb, sbuf_data(&descrsb), qlen,
1140 overcount, head->so_cred->cr_uid,
1141 head->so_cred->cr_rgid,
1142 head->so_cred->cr_prison ?
1143 head->so_cred->cr_prison->pr_name :
1144 "not_jailed");
1145 }
1146 sbuf_delete(&descrsb);
1147
1148 overcount = 0;
1149 }
1150
1151 return (NULL);
1152 }
1153 SOLISTEN_UNLOCK(head);
1154 VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
1155 __func__, head));
1156 so = soalloc(head->so_vnet);
1157 if (so == NULL) {
1158 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1159 "limit reached or out of memory\n",
1160 __func__, head->so_pcb);
1161 return (NULL);
1162 }
1163 so->so_listen = head;
1164 so->so_type = head->so_type;
1165 /*
1166 * POSIX is ambiguous on what options an accept(2)ed socket should
1167 * inherit from the listener. Words "create a new socket" may be
1168 * interpreted as not inheriting anything. Best programming practice
1169 * for application developers is to not rely on such inheritance.
1170 * FreeBSD had historically inherited all so_options excluding
1171 * SO_ACCEPTCONN, which virtually means all SOL_SOCKET level options,
1172 * including those completely irrelevant to a new born socket. For
1173 * compatibility with older versions we will inherit a list of
1174 * meaningful options.
1175 * The crucial bit to inherit is SO_ACCEPTFILTER. We need it present
1176 * in the child socket for soisconnected() promoting socket from the
1177 * incomplete queue to complete. It will be cleared before the child
1178 * gets available to accept(2).
1179 */
1180 so->so_options = head->so_options & (SO_ACCEPTFILTER | SO_KEEPALIVE |
1181 SO_DONTROUTE | SO_LINGER | SO_OOBINLINE | SO_NOSIGPIPE);
1182 so->so_linger = head->so_linger;
1183 so->so_state = head->so_state;
1184 so->so_fibnum = head->so_fibnum;
1185 so->so_proto = head->so_proto;
1186 so->so_cred = crhold(head->so_cred);
1187 #ifdef SOCKET_HHOOK
1188 if (V_socket_hhh[HHOOK_SOCKET_NEWCONN]->hhh_nhooks > 0) {
1189 if (hhook_run_socket(so, head, HHOOK_SOCKET_NEWCONN)) {
1190 sodealloc(so);
1191 log(LOG_DEBUG, "%s: hhook run failed\n", __func__);
1192 return (NULL);
1193 }
1194 }
1195 #endif
1196 #ifdef MAC
1197 mac_socket_newconn(head, so);
1198 #endif
1199 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1200 so_rdknl_assert_lock);
1201 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1202 so_wrknl_assert_lock);
1203 VNET_SO_ASSERT(head);
1204 if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
1205 sodealloc(so);
1206 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1207 __func__, head->so_pcb);
1208 return (NULL);
1209 }
1210 so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
1211 so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
1212 so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
1213 so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
1214 so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
1215 so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
1216 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1217 so->so_snd.sb_mtx = &so->so_snd_mtx;
1218 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1219 }
1220
1221 return (so);
1222 }
1223
1224 /* Connstatus may be 0 or SS_ISCONNECTED. */
1225 struct socket *
1226 sonewconn(struct socket *head, int connstatus)
1227 {
1228 struct socket *so;
1229
1230 if ((so = solisten_clone(head)) == NULL)
1231 return (NULL);
1232
1233 if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
1234 sodealloc(so);
1235 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
1236 __func__, head->so_pcb);
1237 return (NULL);
1238 }
1239
1240 (void)solisten_enqueue(so, connstatus);
1241
1242 return (so);
1243 }
1244
1245 /*
1246 * Enqueue socket cloned by solisten_clone() to the listen queue of the
1247 * listener it has been cloned from.
1248 *
1249 * Return 'true' if socket landed on complete queue, otherwise 'false'.
1250 */
1251 bool
1252 solisten_enqueue(struct socket *so, int connstatus)
1253 {
1254 struct socket *head = so->so_listen;
1255
1256 MPASS(refcount_load(&so->so_count) == 0);
1257 refcount_init(&so->so_count, 1);
1258
1259 SOLISTEN_LOCK(head);
1260 if (head->sol_accept_filter != NULL)
1261 connstatus = 0;
1262 so->so_state |= connstatus;
1263 soref(head); /* A socket on (in)complete queue refs head. */
1264 if (connstatus) {
1265 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
1266 so->so_qstate = SQ_COMP;
1267 head->sol_qlen++;
1268 solisten_wakeup(head); /* unlocks */
1269 return (true);
1270 } else {
1271 /*
1272 * Keep removing sockets from the head until there's room for
1273 * us to insert on the tail. In pre-locking revisions, this
1274 * was a simple if(), but as we could be racing with other
1275 * threads and soabort() requires dropping locks, we must
1276 * loop waiting for the condition to be true.
1277 */
1278 while (head->sol_incqlen > head->sol_qlimit) {
1279 struct socket *sp;
1280
1281 sp = TAILQ_FIRST(&head->sol_incomp);
1282 TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
1283 head->sol_incqlen--;
1284 SOCK_LOCK(sp);
1285 sp->so_qstate = SQ_NONE;
1286 sp->so_listen = NULL;
1287 SOCK_UNLOCK(sp);
1288 sorele_locked(head); /* does SOLISTEN_UNLOCK, head stays */
1289 soabort(sp);
1290 SOLISTEN_LOCK(head);
1291 }
1292 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
1293 so->so_qstate = SQ_INCOMP;
1294 head->sol_incqlen++;
1295 SOLISTEN_UNLOCK(head);
1296 return (false);
1297 }
1298 }
1299
1300 #if defined(SCTP) || defined(SCTP_SUPPORT)
1301 /*
1302 * Socket part of sctp_peeloff(). Detach a new socket from an
1303 * association. The new socket is returned with a reference.
1304 *
1305 * XXXGL: reduce copy-paste with solisten_clone().
1306 */
1307 struct socket *
1308 sopeeloff(struct socket *head)
1309 {
1310 struct socket *so;
1311
1312 VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
1313 __func__, __LINE__, head));
1314 so = soalloc(head->so_vnet);
1315 if (so == NULL) {
1316 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
1317 "limit reached or out of memory\n",
1318 __func__, head->so_pcb);
1319 return (NULL);
1320 }
1321 so->so_type = head->so_type;
1322 so->so_options = head->so_options;
1323 so->so_linger = head->so_linger;
1324 so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
1325 so->so_fibnum = head->so_fibnum;
1326 so->so_proto = head->so_proto;
1327 so->so_cred = crhold(head->so_cred);
1328 #ifdef MAC
1329 mac_socket_newconn(head, so);
1330 #endif
1331 knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
1332 so_rdknl_assert_lock);
1333 knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
1334 so_wrknl_assert_lock);
1335 VNET_SO_ASSERT(head);
1336 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
1337 sodealloc(so);
1338 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
1339 __func__, head->so_pcb);
1340 return (NULL);
1341 }
1342 if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
1343 sodealloc(so);
1344 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
1345 __func__, head->so_pcb);
1346 return (NULL);
1347 }
1348 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
1349 so->so_snd.sb_lowat = head->so_snd.sb_lowat;
1350 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
1351 so->so_snd.sb_timeo = head->so_snd.sb_timeo;
1352 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
1353 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
1354 if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
1355 so->so_snd.sb_mtx = &so->so_snd_mtx;
1356 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
1357 }
1358
1359 soref(so);
1360
1361 return (so);
1362 }
1363 #endif /* SCTP */
1364
1365 int
1366 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
1367 {
1368 int error;
1369
1370 CURVNET_SET(so->so_vnet);
1371 error = so->so_proto->pr_bind(so, nam, td);
1372 CURVNET_RESTORE();
1373 return (error);
1374 }
1375
1376 int
1377 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
1378 {
1379 int error;
1380
1381 CURVNET_SET(so->so_vnet);
1382 error = so->so_proto->pr_bindat(fd, so, nam, td);
1383 CURVNET_RESTORE();
1384 return (error);
1385 }
1386
1387 /*
1388 * solisten() transitions a socket from a non-listening state to a listening
1389 * state, but can also be used to update the listen queue depth on an
1390 * existing listen socket. The protocol will call back into the sockets
1391 * layer using solisten_proto_check() and solisten_proto() to check and set
1392 * socket-layer listen state. Call backs are used so that the protocol can
1393 * acquire both protocol and socket layer locks in whatever order is required
1394 * by the protocol.
1395 *
1396 * Protocol implementors are advised to hold the socket lock across the
1397 * socket-layer test and set to avoid races at the socket layer.
1398 */
1399 int
1400 solisten(struct socket *so, int backlog, struct thread *td)
1401 {
1402 int error;
1403
1404 CURVNET_SET(so->so_vnet);
1405 error = so->so_proto->pr_listen(so, backlog, td);
1406 CURVNET_RESTORE();
1407 return (error);
1408 }
1409
1410 /*
1411 * Prepare for a call to solisten_proto(). Acquire all socket buffer locks in
1412 * order to interlock with socket I/O.
1413 */
1414 int
1415 solisten_proto_check(struct socket *so)
1416 {
1417 SOCK_LOCK_ASSERT(so);
1418
1419 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1420 SS_ISDISCONNECTING)) != 0)
1421 return (EINVAL);
1422
1423 /*
1424 * Sleeping is not permitted here, so simply fail if userspace is
1425 * attempting to transmit or receive on the socket. This kind of
1426 * transient failure is not ideal, but it should occur only if userspace
1427 * is misusing the socket interfaces.
1428 */
1429 if (!sx_try_xlock(&so->so_snd_sx))
1430 return (EAGAIN);
1431 if (!sx_try_xlock(&so->so_rcv_sx)) {
1432 sx_xunlock(&so->so_snd_sx);
1433 return (EAGAIN);
1434 }
1435 mtx_lock(&so->so_snd_mtx);
1436 mtx_lock(&so->so_rcv_mtx);
1437
1438 /* Interlock with soo_aio_queue() and KTLS. */
1439 if (!SOLISTENING(so)) {
1440 bool ktls;
1441
1442 #ifdef KERN_TLS
1443 ktls = so->so_snd.sb_tls_info != NULL ||
1444 so->so_rcv.sb_tls_info != NULL;
1445 #else
1446 ktls = false;
1447 #endif
1448 if (ktls ||
1449 (so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
1450 (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0) {
1451 solisten_proto_abort(so);
1452 return (EINVAL);
1453 }
1454 }
1455
1456 return (0);
1457 }
1458
1459 /*
1460 * Undo the setup done by solisten_proto_check().
1461 */
1462 void
1463 solisten_proto_abort(struct socket *so)
1464 {
1465 mtx_unlock(&so->so_snd_mtx);
1466 mtx_unlock(&so->so_rcv_mtx);
1467 sx_xunlock(&so->so_snd_sx);
1468 sx_xunlock(&so->so_rcv_sx);
1469 }
1470
1471 void
1472 solisten_proto(struct socket *so, int backlog)
1473 {
1474 int sbrcv_lowat, sbsnd_lowat;
1475 u_int sbrcv_hiwat, sbsnd_hiwat;
1476 short sbrcv_flags, sbsnd_flags;
1477 sbintime_t sbrcv_timeo, sbsnd_timeo;
1478
1479 SOCK_LOCK_ASSERT(so);
1480 KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
1481 SS_ISDISCONNECTING)) == 0,
1482 ("%s: bad socket state %p", __func__, so));
1483
1484 if (SOLISTENING(so))
1485 goto listening;
1486
1487 /*
1488 * Change this socket to listening state.
1489 */
1490 sbrcv_lowat = so->so_rcv.sb_lowat;
1491 sbsnd_lowat = so->so_snd.sb_lowat;
1492 sbrcv_hiwat = so->so_rcv.sb_hiwat;
1493 sbsnd_hiwat = so->so_snd.sb_hiwat;
1494 sbrcv_flags = so->so_rcv.sb_flags;
1495 sbsnd_flags = so->so_snd.sb_flags;
1496 sbrcv_timeo = so->so_rcv.sb_timeo;
1497 sbsnd_timeo = so->so_snd.sb_timeo;
1498
1499 #ifdef MAC
1500 mac_socketpeer_label_free(so->so_peerlabel);
1501 #endif
1502
1503 if (!(so->so_proto->pr_flags & PR_SOCKBUF)) {
1504 sbdestroy(so, SO_SND);
1505 sbdestroy(so, SO_RCV);
1506 }
1507
1508 #ifdef INVARIANTS
1509 bzero(&so->so_rcv,
1510 sizeof(struct socket) - offsetof(struct socket, so_rcv));
1511 #endif
1512
1513 so->sol_sbrcv_lowat = sbrcv_lowat;
1514 so->sol_sbsnd_lowat = sbsnd_lowat;
1515 so->sol_sbrcv_hiwat = sbrcv_hiwat;
1516 so->sol_sbsnd_hiwat = sbsnd_hiwat;
1517 so->sol_sbrcv_flags = sbrcv_flags;
1518 so->sol_sbsnd_flags = sbsnd_flags;
1519 so->sol_sbrcv_timeo = sbrcv_timeo;
1520 so->sol_sbsnd_timeo = sbsnd_timeo;
1521
1522 so->sol_qlen = so->sol_incqlen = 0;
1523 TAILQ_INIT(&so->sol_incomp);
1524 TAILQ_INIT(&so->sol_comp);
1525
1526 so->sol_accept_filter = NULL;
1527 so->sol_accept_filter_arg = NULL;
1528 so->sol_accept_filter_str = NULL;
1529
1530 so->sol_upcall = NULL;
1531 so->sol_upcallarg = NULL;
1532
1533 so->so_options |= SO_ACCEPTCONN;
1534
1535 listening:
1536 if (backlog < 0 || backlog > V_somaxconn)
1537 backlog = V_somaxconn;
1538 so->sol_qlimit = backlog;
1539
1540 mtx_unlock(&so->so_snd_mtx);
1541 mtx_unlock(&so->so_rcv_mtx);
1542 sx_xunlock(&so->so_snd_sx);
1543 sx_xunlock(&so->so_rcv_sx);
1544 }
1545
1546 /*
1547 * Wakeup listeners/subsystems once we have a complete connection.
1548 * Enters with lock, returns unlocked.
1549 */
1550 void
1551 solisten_wakeup(struct socket *sol)
1552 {
1553
1554 if (sol->sol_upcall != NULL)
1555 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
1556 else {
1557 selwakeuppri(&sol->so_rdsel, PSOCK);
1558 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
1559 }
1560 SOLISTEN_UNLOCK(sol);
1561 wakeup_one(&sol->sol_comp);
1562 if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
1563 pgsigio(&sol->so_sigio, SIGIO, 0);
1564 }
1565
1566 /*
1567 * Return single connection off a listening socket queue. Main consumer of
1568 * the function is kern_accept4(). Some modules, that do their own accept
1569 * management also use the function. The socket reference held by the
1570 * listen queue is handed to the caller.
1571 *
1572 * Listening socket must be locked on entry and is returned unlocked on
1573 * return.
1574 * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
1575 */
1576 int
1577 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
1578 {
1579 struct socket *so;
1580 int error;
1581
1582 SOLISTEN_LOCK_ASSERT(head);
1583
1584 while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
1585 head->so_error == 0) {
1586 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
1587 "accept", 0);
1588 if (error != 0) {
1589 SOLISTEN_UNLOCK(head);
1590 return (error);
1591 }
1592 }
1593 if (head->so_error) {
1594 error = head->so_error;
1595 head->so_error = 0;
1596 } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
1597 error = EWOULDBLOCK;
1598 else
1599 error = 0;
1600 if (error) {
1601 SOLISTEN_UNLOCK(head);
1602 return (error);
1603 }
1604 so = TAILQ_FIRST(&head->sol_comp);
1605 SOCK_LOCK(so);
1606 KASSERT(so->so_qstate == SQ_COMP,
1607 ("%s: so %p not SQ_COMP", __func__, so));
1608 head->sol_qlen--;
1609 so->so_qstate = SQ_NONE;
1610 so->so_listen = NULL;
1611 TAILQ_REMOVE(&head->sol_comp, so, so_list);
1612 if (flags & ACCEPT4_INHERIT)
1613 so->so_state |= (head->so_state & SS_NBIO);
1614 else
1615 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
1616 SOCK_UNLOCK(so);
1617 sorele_locked(head);
1618
1619 *ret = so;
1620 return (0);
1621 }
1622
1623 static struct so_splice *
1624 so_splice_alloc(off_t max)
1625 {
1626 struct so_splice *sp;
1627
1628 sp = uma_zalloc(splice_zone, M_WAITOK);
1629 sp->src = NULL;
1630 sp->dst = NULL;
1631 sp->max = max > 0 ? max : -1;
1632 do {
1633 sp->wq_index = atomic_fetchadd_32(&splice_index, 1) %
1634 (mp_maxid + 1);
1635 } while (CPU_ABSENT(sp->wq_index));
1636 sp->state = SPLICE_INIT;
1637 TIMEOUT_TASK_INIT(taskqueue_thread, &sp->timeout, 0, so_splice_timeout,
1638 sp);
1639 return (sp);
1640 }
1641
1642 static void
1643 so_splice_free(struct so_splice *sp)
1644 {
1645 KASSERT(sp->state == SPLICE_CLOSED,
1646 ("so_splice_free: sp %p not closed", sp));
1647 uma_zfree(splice_zone, sp);
1648 }
1649
1650 static void
1651 so_splice_timeout(void *arg, int pending __unused)
1652 {
1653 struct so_splice *sp;
1654
1655 sp = arg;
1656 (void)so_unsplice(sp->src, true);
1657 }
1658
1659 /*
1660 * Splice the output from so to the input of so2.
1661 */
1662 static int
1663 so_splice(struct socket *so, struct socket *so2, struct splice *splice)
1664 {
1665 struct so_splice *sp;
1666 int error;
1667
1668 if (splice->sp_max < 0)
1669 return (EINVAL);
1670 /* Handle only TCP for now; TODO: other streaming protos */
1671 if (so->so_proto->pr_protocol != IPPROTO_TCP ||
1672 so2->so_proto->pr_protocol != IPPROTO_TCP)
1673 return (EPROTONOSUPPORT);
1674 if (so->so_vnet != so2->so_vnet)
1675 return (EINVAL);
1676
1677 /* so_splice_xfer() assumes that we're using these implementations. */
1678 KASSERT(so->so_proto->pr_sosend == sosend_generic,
1679 ("so_splice: sosend not sosend_generic"));
1680 KASSERT(so2->so_proto->pr_soreceive == soreceive_generic ||
1681 so2->so_proto->pr_soreceive == soreceive_stream,
1682 ("so_splice: soreceive not soreceive_generic/stream"));
1683
1684 sp = so_splice_alloc(splice->sp_max);
1685 so->so_splice_sent = 0;
1686 sp->src = so;
1687 sp->dst = so2;
1688
1689 error = 0;
1690 SOCK_LOCK(so);
1691 if (SOLISTENING(so))
1692 error = EINVAL;
1693 else if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1694 error = ENOTCONN;
1695 else if (so->so_splice != NULL)
1696 error = EBUSY;
1697 if (error != 0) {
1698 SOCK_UNLOCK(so);
1699 uma_zfree(splice_zone, sp);
1700 return (error);
1701 }
1702 soref(so);
1703 so->so_splice = sp;
1704 SOCK_RECVBUF_LOCK(so);
1705 so->so_rcv.sb_flags |= SB_SPLICED;
1706 SOCK_RECVBUF_UNLOCK(so);
1707 SOCK_UNLOCK(so);
1708
1709 error = 0;
1710 SOCK_LOCK(so2);
1711 if (SOLISTENING(so2))
1712 error = EINVAL;
1713 else if ((so2->so_state & (SS_ISCONNECTED | SS_ISCONNECTING)) == 0)
1714 error = ENOTCONN;
1715 else if (so2->so_splice_back != NULL)
1716 error = EBUSY;
1717 if (error != 0) {
1718 SOCK_UNLOCK(so2);
1719 SOCK_LOCK(so);
1720 so->so_splice = NULL;
1721 SOCK_RECVBUF_LOCK(so);
1722 so->so_rcv.sb_flags &= ~SB_SPLICED;
1723 SOCK_RECVBUF_UNLOCK(so);
1724 SOCK_UNLOCK(so);
1725 sorele(so);
1726 uma_zfree(splice_zone, sp);
1727 return (error);
1728 }
1729 soref(so2);
1730 so2->so_splice_back = sp;
1731 SOCK_SENDBUF_LOCK(so2);
1732 so2->so_snd.sb_flags |= SB_SPLICED;
1733 mtx_lock(&sp->mtx);
1734 SOCK_SENDBUF_UNLOCK(so2);
1735 SOCK_UNLOCK(so2);
1736
1737 if (splice->sp_idle.tv_sec != 0 || splice->sp_idle.tv_usec != 0) {
1738 taskqueue_enqueue_timeout_sbt(taskqueue_thread, &sp->timeout,
1739 tvtosbt(splice->sp_idle), 0, C_PREL(4));
1740 }
1741
1742 /*
1743 * Transfer any data already present in the socket buffer.
1744 */
1745 KASSERT(sp->state == SPLICE_INIT,
1746 ("so_splice: splice %p state %d", sp, sp->state));
1747 sp->state = SPLICE_QUEUED;
1748 so_splice_xfer(sp);
1749 return (0);
1750 }
1751
1752 static int
1753 so_unsplice(struct socket *so, bool timeout)
1754 {
1755 struct socket *so2;
1756 struct so_splice *sp;
1757 bool drain;
1758
1759 /*
1760 * First unset SB_SPLICED and hide the splice structure so that
1761 * wakeup routines will stop enqueuing work. This also ensures that
1762 * a only a single thread will proceed with the unsplice.
1763 */
1764 SOCK_LOCK(so);
1765 if (SOLISTENING(so)) {
1766 SOCK_UNLOCK(so);
1767 return (EINVAL);
1768 }
1769 SOCK_RECVBUF_LOCK(so);
1770 if ((so->so_rcv.sb_flags & SB_SPLICED) == 0) {
1771 SOCK_RECVBUF_UNLOCK(so);
1772 SOCK_UNLOCK(so);
1773 return (ENOTCONN);
1774 }
1775 sp = so->so_splice;
1776 mtx_lock(&sp->mtx);
1777 if (sp->state == SPLICE_INIT) {
1778 /*
1779 * A splice is in the middle of being set up.
1780 */
1781 mtx_unlock(&sp->mtx);
1782 SOCK_RECVBUF_UNLOCK(so);
1783 SOCK_UNLOCK(so);
1784 return (ENOTCONN);
1785 }
1786 mtx_unlock(&sp->mtx);
1787 so->so_rcv.sb_flags &= ~SB_SPLICED;
1788 so->so_splice = NULL;
1789 SOCK_RECVBUF_UNLOCK(so);
1790 SOCK_UNLOCK(so);
1791
1792 so2 = sp->dst;
1793 SOCK_LOCK(so2);
1794 KASSERT(!SOLISTENING(so2), ("%s: so2 is listening", __func__));
1795 SOCK_SENDBUF_LOCK(so2);
1796 KASSERT((so2->so_snd.sb_flags & SB_SPLICED) != 0,
1797 ("%s: so2 is not spliced", __func__));
1798 KASSERT(so2->so_splice_back == sp,
1799 ("%s: so_splice_back != sp", __func__));
1800 so2->so_snd.sb_flags &= ~SB_SPLICED;
1801 so2->so_splice_back = NULL;
1802 SOCK_SENDBUF_UNLOCK(so2);
1803 SOCK_UNLOCK(so2);
1804
1805 /*
1806 * No new work is being enqueued. The worker thread might be
1807 * splicing data right now, in which case we want to wait for it to
1808 * finish before proceeding.
1809 */
1810 mtx_lock(&sp->mtx);
1811 switch (sp->state) {
1812 case SPLICE_QUEUED:
1813 case SPLICE_RUNNING:
1814 sp->state = SPLICE_CLOSING;
1815 while (sp->state == SPLICE_CLOSING)
1816 msleep(sp, &sp->mtx, PSOCK, "unsplice", 0);
1817 break;
1818 case SPLICE_IDLE:
1819 case SPLICE_EXCEPTION:
1820 sp->state = SPLICE_CLOSED;
1821 break;
1822 default:
1823 __assert_unreachable();
1824 }
1825 if (!timeout) {
1826 drain = taskqueue_cancel_timeout(taskqueue_thread, &sp->timeout,
1827 NULL) != 0;
1828 } else {
1829 drain = false;
1830 }
1831 mtx_unlock(&sp->mtx);
1832 if (drain)
1833 taskqueue_drain_timeout(taskqueue_thread, &sp->timeout);
1834
1835 /*
1836 * Now we hold the sole reference to the splice structure.
1837 * Clean up: signal userspace and release socket references.
1838 */
1839 sorwakeup(so);
1840 CURVNET_SET(so->so_vnet);
1841 sorele(so);
1842 sowwakeup(so2);
1843 sorele(so2);
1844 CURVNET_RESTORE();
1845 so_splice_free(sp);
1846 return (0);
1847 }
1848
1849 /*
1850 * Free socket upon release of the very last reference.
1851 */
1852 static void
1853 sofree(struct socket *so)
1854 {
1855 struct protosw *pr = so->so_proto;
1856
1857 SOCK_LOCK_ASSERT(so);
1858 KASSERT(refcount_load(&so->so_count) == 0,
1859 ("%s: so %p has references", __func__, so));
1860 KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
1861 ("%s: so %p is on listen queue", __func__, so));
1862 KASSERT(SOLISTENING(so) || (so->so_rcv.sb_flags & SB_SPLICED) == 0,
1863 ("%s: so %p rcvbuf is spliced", __func__, so));
1864 KASSERT(SOLISTENING(so) || (so->so_snd.sb_flags & SB_SPLICED) == 0,
1865 ("%s: so %p sndbuf is spliced", __func__, so));
1866 KASSERT(so->so_splice == NULL && so->so_splice_back == NULL,
1867 ("%s: so %p has spliced data", __func__, so));
1868
1869 SOCK_UNLOCK(so);
1870
1871 if (so->so_dtor != NULL)
1872 so->so_dtor(so);
1873
1874 VNET_SO_ASSERT(so);
1875 if (pr->pr_detach != NULL)
1876 pr->pr_detach(so);
1877
1878 if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
1879 /*
1880 * From this point on, we assume that no other references to
1881 * this socket exist anywhere else in the stack. Therefore,
1882 * no locks need to be acquired or held.
1883 */
1884 #ifdef INVARIANTS
1885 SOCK_SENDBUF_LOCK(so);
1886 SOCK_RECVBUF_LOCK(so);
1887 #endif
1888 sbdestroy(so, SO_SND);
1889 sbdestroy(so, SO_RCV);
1890 #ifdef INVARIANTS
1891 SOCK_SENDBUF_UNLOCK(so);
1892 SOCK_RECVBUF_UNLOCK(so);
1893 #endif
1894 }
1895 seldrain(&so->so_rdsel);
1896 seldrain(&so->so_wrsel);
1897 knlist_destroy(&so->so_rdsel.si_note);
1898 knlist_destroy(&so->so_wrsel.si_note);
1899 sodealloc(so);
1900 }
1901
1902 /*
1903 * Release a reference on a socket while holding the socket lock.
1904 * Unlocks the socket lock before returning.
1905 */
1906 void
1907 sorele_locked(struct socket *so)
1908 {
1909 SOCK_LOCK_ASSERT(so);
1910 if (refcount_release(&so->so_count))
1911 sofree(so);
1912 else
1913 SOCK_UNLOCK(so);
1914 }
1915
1916 /*
1917 * Close a socket on last file table reference removal. Initiate disconnect
1918 * if connected. Free socket when disconnect complete.
1919 *
1920 * This function will sorele() the socket. Note that soclose() may be called
1921 * prior to the ref count reaching zero. The actual socket structure will
1922 * not be freed until the ref count reaches zero.
1923 */
1924 int
1925 soclose(struct socket *so)
1926 {
1927 struct accept_queue lqueue;
1928 int error = 0;
1929 bool listening, last __diagused;
1930
1931 CURVNET_SET(so->so_vnet);
1932 funsetown(&so->so_sigio);
1933 if (so->so_state & SS_ISCONNECTED) {
1934 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
1935 error = sodisconnect(so);
1936 if (error) {
1937 if (error == ENOTCONN)
1938 error = 0;
1939 goto drop;
1940 }
1941 }
1942
1943 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
1944 if ((so->so_state & SS_ISDISCONNECTING) &&
1945 (so->so_state & SS_NBIO))
1946 goto drop;
1947 while (so->so_state & SS_ISCONNECTED) {
1948 error = tsleep(&so->so_timeo,
1949 PSOCK | PCATCH, "soclos",
1950 so->so_linger * hz);
1951 if (error)
1952 break;
1953 }
1954 }
1955 }
1956
1957 drop:
1958 if (so->so_proto->pr_close != NULL)
1959 so->so_proto->pr_close(so);
1960
1961 SOCK_LOCK(so);
1962 if ((listening = SOLISTENING(so))) {
1963 struct socket *sp;
1964
1965 TAILQ_INIT(&lqueue);
1966 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
1967 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
1968
1969 so->sol_qlen = so->sol_incqlen = 0;
1970
1971 TAILQ_FOREACH(sp, &lqueue, so_list) {
1972 SOCK_LOCK(sp);
1973 sp->so_qstate = SQ_NONE;
1974 sp->so_listen = NULL;
1975 SOCK_UNLOCK(sp);
1976 last = refcount_release(&so->so_count);
1977 KASSERT(!last, ("%s: released last reference for %p",
1978 __func__, so));
1979 }
1980 }
1981 sorele_locked(so);
1982 if (listening) {
1983 struct socket *sp, *tsp;
1984
1985 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
1986 soabort(sp);
1987 }
1988 CURVNET_RESTORE();
1989 return (error);
1990 }
1991
1992 /*
1993 * soabort() is used to abruptly tear down a connection, such as when a
1994 * resource limit is reached (listen queue depth exceeded), or if a listen
1995 * socket is closed while there are sockets waiting to be accepted.
1996 *
1997 * This interface is tricky, because it is called on an unreferenced socket,
1998 * and must be called only by a thread that has actually removed the socket
1999 * from the listen queue it was on. Likely this thread holds the last
2000 * reference on the socket and soabort() will proceed with sofree(). But
2001 * it might be not the last, as the sockets on the listen queues are seen
2002 * from the protocol side.
2003 *
2004 * This interface will call into the protocol code, so must not be called
2005 * with any socket locks held. Protocols do call it while holding their own
2006 * recursible protocol mutexes, but this is something that should be subject
2007 * to review in the future.
2008 *
2009 * Usually socket should have a single reference left, but this is not a
2010 * requirement. In the past, when we have had named references for file
2011 * descriptor and protocol, we asserted that none of them are being held.
2012 */
2013 void
2014 soabort(struct socket *so)
2015 {
2016
2017 VNET_SO_ASSERT(so);
2018
2019 if (so->so_proto->pr_abort != NULL)
2020 so->so_proto->pr_abort(so);
2021 SOCK_LOCK(so);
2022 sorele_locked(so);
2023 }
2024
2025 int
2026 soaccept(struct socket *so, struct sockaddr *sa)
2027 {
2028 #ifdef INVARIANTS
2029 u_char len = sa->sa_len;
2030 #endif
2031 int error;
2032
2033 CURVNET_SET(so->so_vnet);
2034 error = so->so_proto->pr_accept(so, sa);
2035 KASSERT(sa->sa_len <= len,
2036 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2037 CURVNET_RESTORE();
2038 return (error);
2039 }
2040
2041 int
2042 sopeeraddr(struct socket *so, struct sockaddr *sa)
2043 {
2044 #ifdef INVARIANTS
2045 u_char len = sa->sa_len;
2046 #endif
2047 int error;
2048
2049 CURVNET_ASSERT_SET();
2050
2051 error = so->so_proto->pr_peeraddr(so, sa);
2052 KASSERT(sa->sa_len <= len,
2053 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2054
2055 return (error);
2056 }
2057
2058 int
2059 sosockaddr(struct socket *so, struct sockaddr *sa)
2060 {
2061 #ifdef INVARIANTS
2062 u_char len = sa->sa_len;
2063 #endif
2064 int error;
2065
2066 CURVNET_SET(so->so_vnet);
2067 error = so->so_proto->pr_sockaddr(so, sa);
2068 KASSERT(sa->sa_len <= len,
2069 ("%s: protocol %p sockaddr overflow", __func__, so->so_proto));
2070 CURVNET_RESTORE();
2071
2072 return (error);
2073 }
2074
2075 int
2076 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
2077 {
2078
2079 return (soconnectat(AT_FDCWD, so, nam, td));
2080 }
2081
2082 int
2083 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
2084 {
2085 int error;
2086
2087 CURVNET_SET(so->so_vnet);
2088
2089 /*
2090 * If protocol is connection-based, can only connect once.
2091 * Otherwise, if connected, try to disconnect first. This allows
2092 * user to disconnect by connecting to, e.g., a null address.
2093 *
2094 * Note, this check is racy and may need to be re-evaluated at the
2095 * protocol layer.
2096 */
2097 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
2098 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
2099 (error = sodisconnect(so)))) {
2100 error = EISCONN;
2101 } else {
2102 /*
2103 * Prevent accumulated error from previous connection from
2104 * biting us.
2105 */
2106 so->so_error = 0;
2107 if (fd == AT_FDCWD) {
2108 error = so->so_proto->pr_connect(so, nam, td);
2109 } else {
2110 error = so->so_proto->pr_connectat(fd, so, nam, td);
2111 }
2112 }
2113 CURVNET_RESTORE();
2114
2115 return (error);
2116 }
2117
2118 int
2119 soconnect2(struct socket *so1, struct socket *so2)
2120 {
2121 int error;
2122
2123 CURVNET_SET(so1->so_vnet);
2124 error = so1->so_proto->pr_connect2(so1, so2);
2125 CURVNET_RESTORE();
2126 return (error);
2127 }
2128
2129 int
2130 sodisconnect(struct socket *so)
2131 {
2132 int error;
2133
2134 if ((so->so_state & SS_ISCONNECTED) == 0)
2135 return (ENOTCONN);
2136 if (so->so_state & SS_ISDISCONNECTING)
2137 return (EALREADY);
2138 VNET_SO_ASSERT(so);
2139 error = so->so_proto->pr_disconnect(so);
2140 return (error);
2141 }
2142
2143 int
2144 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
2145 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2146 {
2147 long space;
2148 ssize_t resid;
2149 int clen = 0, error, dontroute;
2150
2151 KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
2152 KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
2153 ("sosend_dgram: !PR_ATOMIC"));
2154
2155 if (uio != NULL)
2156 resid = uio->uio_resid;
2157 else
2158 resid = top->m_pkthdr.len;
2159 /*
2160 * In theory resid should be unsigned. However, space must be
2161 * signed, as it might be less than 0 if we over-committed, and we
2162 * must use a signed comparison of space and resid. On the other
2163 * hand, a negative resid causes us to loop sending 0-length
2164 * segments to the protocol.
2165 */
2166 if (resid < 0) {
2167 error = EINVAL;
2168 goto out;
2169 }
2170
2171 dontroute =
2172 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
2173 if (td != NULL)
2174 td->td_ru.ru_msgsnd++;
2175 if (control != NULL)
2176 clen = control->m_len;
2177
2178 SOCKBUF_LOCK(&so->so_snd);
2179 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2180 SOCKBUF_UNLOCK(&so->so_snd);
2181 error = EPIPE;
2182 goto out;
2183 }
2184 if (so->so_error) {
2185 error = so->so_error;
2186 so->so_error = 0;
2187 SOCKBUF_UNLOCK(&so->so_snd);
2188 goto out;
2189 }
2190 if ((so->so_state & SS_ISCONNECTED) == 0) {
2191 /*
2192 * `sendto' and `sendmsg' is allowed on a connection-based
2193 * socket if it supports implied connect. Return ENOTCONN if
2194 * not connected and no address is supplied.
2195 */
2196 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2197 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2198 if (!(resid == 0 && clen != 0)) {
2199 SOCKBUF_UNLOCK(&so->so_snd);
2200 error = ENOTCONN;
2201 goto out;
2202 }
2203 } else if (addr == NULL) {
2204 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2205 error = ENOTCONN;
2206 else
2207 error = EDESTADDRREQ;
2208 SOCKBUF_UNLOCK(&so->so_snd);
2209 goto out;
2210 }
2211 }
2212
2213 /*
2214 * Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
2215 * problem and need fixing.
2216 */
2217 space = sbspace(&so->so_snd);
2218 if (flags & MSG_OOB)
2219 space += 1024;
2220 space -= clen;
2221 SOCKBUF_UNLOCK(&so->so_snd);
2222 if (resid > space) {
2223 error = EMSGSIZE;
2224 goto out;
2225 }
2226 if (uio == NULL) {
2227 resid = 0;
2228 if (flags & MSG_EOR)
2229 top->m_flags |= M_EOR;
2230 } else {
2231 /*
2232 * Copy the data from userland into a mbuf chain.
2233 * If no data is to be copied in, a single empty mbuf
2234 * is returned.
2235 */
2236 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
2237 (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
2238 if (top == NULL) {
2239 error = EFAULT; /* only possible error */
2240 goto out;
2241 }
2242 space -= resid - uio->uio_resid;
2243 resid = uio->uio_resid;
2244 }
2245 KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
2246 /*
2247 * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
2248 * than with.
2249 */
2250 if (dontroute) {
2251 SOCK_LOCK(so);
2252 so->so_options |= SO_DONTROUTE;
2253 SOCK_UNLOCK(so);
2254 }
2255 /*
2256 * XXX all the SBS_CANTSENDMORE checks previously done could be out
2257 * of date. We could have received a reset packet in an interrupt or
2258 * maybe we slept while doing page faults in uiomove() etc. We could
2259 * probably recheck again inside the locking protection here, but
2260 * there are probably other places that this also happens. We must
2261 * rethink this.
2262 */
2263 VNET_SO_ASSERT(so);
2264 error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
2265 /*
2266 * If the user set MSG_EOF, the protocol understands this flag and
2267 * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
2268 */
2269 ((flags & MSG_EOF) &&
2270 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2271 (resid <= 0)) ?
2272 PRUS_EOF :
2273 /* If there is more to send set PRUS_MORETOCOME */
2274 (flags & MSG_MORETOCOME) ||
2275 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
2276 top, addr, control, td);
2277 if (dontroute) {
2278 SOCK_LOCK(so);
2279 so->so_options &= ~SO_DONTROUTE;
2280 SOCK_UNLOCK(so);
2281 }
2282 clen = 0;
2283 control = NULL;
2284 top = NULL;
2285 out:
2286 if (top != NULL)
2287 m_freem(top);
2288 if (control != NULL)
2289 m_freem(control);
2290 return (error);
2291 }
2292
2293 /*
2294 * Send on a socket. If send must go all at once and message is larger than
2295 * send buffering, then hard error. Lock against other senders. If must go
2296 * all at once and not enough room now, then inform user that this would
2297 * block and do nothing. Otherwise, if nonblocking, send as much as
2298 * possible. The data to be sent is described by "uio" if nonzero, otherwise
2299 * by the mbuf chain "top" (which must be null if uio is not). Data provided
2300 * in mbuf chain must be small enough to send all at once.
2301 *
2302 * Returns nonzero on error, timeout or signal; callers must check for short
2303 * counts if EINTR/ERESTART are returned. Data and control buffers are freed
2304 * on return.
2305 */
2306 static int
2307 sosend_generic_locked(struct socket *so, struct sockaddr *addr, struct uio *uio,
2308 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2309 {
2310 long space;
2311 ssize_t resid;
2312 int clen = 0, error, dontroute;
2313 int atomic = sosendallatonce(so) || top;
2314 int pr_send_flag;
2315 #ifdef KERN_TLS
2316 struct ktls_session *tls;
2317 int tls_enq_cnt, tls_send_flag;
2318 uint8_t tls_rtype;
2319
2320 tls = NULL;
2321 tls_rtype = TLS_RLTYPE_APP;
2322 #endif
2323
2324 SOCK_IO_SEND_ASSERT_LOCKED(so);
2325
2326 if (uio != NULL)
2327 resid = uio->uio_resid;
2328 else if ((top->m_flags & M_PKTHDR) != 0)
2329 resid = top->m_pkthdr.len;
2330 else
2331 resid = m_length(top, NULL);
2332 /*
2333 * In theory resid should be unsigned. However, space must be
2334 * signed, as it might be less than 0 if we over-committed, and we
2335 * must use a signed comparison of space and resid. On the other
2336 * hand, a negative resid causes us to loop sending 0-length
2337 * segments to the protocol.
2338 *
2339 * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
2340 * type sockets since that's an error.
2341 */
2342 if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
2343 error = EINVAL;
2344 goto out;
2345 }
2346
2347 dontroute =
2348 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
2349 (so->so_proto->pr_flags & PR_ATOMIC);
2350 if (td != NULL)
2351 td->td_ru.ru_msgsnd++;
2352 if (control != NULL)
2353 clen = control->m_len;
2354
2355 #ifdef KERN_TLS
2356 tls_send_flag = 0;
2357 tls = ktls_hold(so->so_snd.sb_tls_info);
2358 if (tls != NULL) {
2359 if (tls->mode == TCP_TLS_MODE_SW)
2360 tls_send_flag = PRUS_NOTREADY;
2361
2362 if (control != NULL) {
2363 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2364
2365 if (clen >= sizeof(*cm) &&
2366 cm->cmsg_type == TLS_SET_RECORD_TYPE) {
2367 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
2368 clen = 0;
2369 m_freem(control);
2370 control = NULL;
2371 atomic = 1;
2372 }
2373 }
2374
2375 if (resid == 0 && !ktls_permit_empty_frames(tls)) {
2376 error = EINVAL;
2377 goto out;
2378 }
2379 }
2380 #endif
2381
2382 restart:
2383 do {
2384 SOCKBUF_LOCK(&so->so_snd);
2385 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2386 SOCKBUF_UNLOCK(&so->so_snd);
2387 error = EPIPE;
2388 goto out;
2389 }
2390 if (so->so_error) {
2391 error = so->so_error;
2392 so->so_error = 0;
2393 SOCKBUF_UNLOCK(&so->so_snd);
2394 goto out;
2395 }
2396 if ((so->so_state & SS_ISCONNECTED) == 0) {
2397 /*
2398 * `sendto' and `sendmsg' is allowed on a connection-
2399 * based socket if it supports implied connect.
2400 * Return ENOTCONN if not connected and no address is
2401 * supplied.
2402 */
2403 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
2404 (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
2405 if (!(resid == 0 && clen != 0)) {
2406 SOCKBUF_UNLOCK(&so->so_snd);
2407 error = ENOTCONN;
2408 goto out;
2409 }
2410 } else if (addr == NULL) {
2411 SOCKBUF_UNLOCK(&so->so_snd);
2412 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
2413 error = ENOTCONN;
2414 else
2415 error = EDESTADDRREQ;
2416 goto out;
2417 }
2418 }
2419 space = sbspace(&so->so_snd);
2420 if (flags & MSG_OOB)
2421 space += 1024;
2422 if ((atomic && resid > so->so_snd.sb_hiwat) ||
2423 clen > so->so_snd.sb_hiwat) {
2424 SOCKBUF_UNLOCK(&so->so_snd);
2425 error = EMSGSIZE;
2426 goto out;
2427 }
2428 if (space < resid + clen &&
2429 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
2430 if ((so->so_state & SS_NBIO) ||
2431 (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
2432 SOCKBUF_UNLOCK(&so->so_snd);
2433 error = EWOULDBLOCK;
2434 goto out;
2435 }
2436 error = sbwait(so, SO_SND);
2437 SOCKBUF_UNLOCK(&so->so_snd);
2438 if (error)
2439 goto out;
2440 goto restart;
2441 }
2442 SOCKBUF_UNLOCK(&so->so_snd);
2443 space -= clen;
2444 do {
2445 if (uio == NULL) {
2446 resid = 0;
2447 if (flags & MSG_EOR)
2448 top->m_flags |= M_EOR;
2449 #ifdef KERN_TLS
2450 if (tls != NULL) {
2451 ktls_frame(top, tls, &tls_enq_cnt,
2452 tls_rtype);
2453 tls_rtype = TLS_RLTYPE_APP;
2454 }
2455 #endif
2456 } else {
2457 /*
2458 * Copy the data from userland into a mbuf
2459 * chain. If resid is 0, which can happen
2460 * only if we have control to send, then
2461 * a single empty mbuf is returned. This
2462 * is a workaround to prevent protocol send
2463 * methods to panic.
2464 */
2465 #ifdef KERN_TLS
2466 if (tls != NULL) {
2467 top = m_uiotombuf(uio, M_WAITOK, space,
2468 tls->params.max_frame_len,
2469 M_EXTPG |
2470 ((flags & MSG_EOR) ? M_EOR : 0));
2471 if (top != NULL) {
2472 ktls_frame(top, tls,
2473 &tls_enq_cnt, tls_rtype);
2474 }
2475 tls_rtype = TLS_RLTYPE_APP;
2476 } else
2477 #endif
2478 top = m_uiotombuf(uio, M_WAITOK, space,
2479 (atomic ? max_hdr : 0),
2480 (atomic ? M_PKTHDR : 0) |
2481 ((flags & MSG_EOR) ? M_EOR : 0));
2482 if (top == NULL) {
2483 error = EFAULT; /* only possible error */
2484 goto out;
2485 }
2486 space -= resid - uio->uio_resid;
2487 resid = uio->uio_resid;
2488 }
2489 if (dontroute) {
2490 SOCK_LOCK(so);
2491 so->so_options |= SO_DONTROUTE;
2492 SOCK_UNLOCK(so);
2493 }
2494 /*
2495 * XXX all the SBS_CANTSENDMORE checks previously
2496 * done could be out of date. We could have received
2497 * a reset packet in an interrupt or maybe we slept
2498 * while doing page faults in uiomove() etc. We
2499 * could probably recheck again inside the locking
2500 * protection here, but there are probably other
2501 * places that this also happens. We must rethink
2502 * this.
2503 */
2504 VNET_SO_ASSERT(so);
2505
2506 pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
2507 /*
2508 * If the user set MSG_EOF, the protocol understands
2509 * this flag and nothing left to send then use
2510 * PRU_SEND_EOF instead of PRU_SEND.
2511 */
2512 ((flags & MSG_EOF) &&
2513 (so->so_proto->pr_flags & PR_IMPLOPCL) &&
2514 (resid <= 0)) ?
2515 PRUS_EOF :
2516 /* If there is more to send set PRUS_MORETOCOME. */
2517 (flags & MSG_MORETOCOME) ||
2518 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
2519
2520 #ifdef KERN_TLS
2521 pr_send_flag |= tls_send_flag;
2522 #endif
2523
2524 error = so->so_proto->pr_send(so, pr_send_flag, top,
2525 addr, control, td);
2526
2527 if (dontroute) {
2528 SOCK_LOCK(so);
2529 so->so_options &= ~SO_DONTROUTE;
2530 SOCK_UNLOCK(so);
2531 }
2532
2533 #ifdef KERN_TLS
2534 if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
2535 if (error != 0) {
2536 m_freem(top);
2537 top = NULL;
2538 } else {
2539 soref(so);
2540 ktls_enqueue(top, so, tls_enq_cnt);
2541 }
2542 }
2543 #endif
2544 clen = 0;
2545 control = NULL;
2546 top = NULL;
2547 if (error)
2548 goto out;
2549 } while (resid && space > 0);
2550 } while (resid);
2551
2552 out:
2553 #ifdef KERN_TLS
2554 if (tls != NULL)
2555 ktls_free(tls);
2556 #endif
2557 if (top != NULL)
2558 m_freem(top);
2559 if (control != NULL)
2560 m_freem(control);
2561 return (error);
2562 }
2563
2564 int
2565 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
2566 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2567 {
2568 int error;
2569
2570 error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
2571 if (error)
2572 return (error);
2573 error = sosend_generic_locked(so, addr, uio, top, control, flags, td);
2574 SOCK_IO_SEND_UNLOCK(so);
2575 return (error);
2576 }
2577
2578 /*
2579 * Send to a socket from a kernel thread.
2580 *
2581 * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
2582 * Exception is nfs/bootp_subr.c. It is arguable that the VNET context needs
2583 * to be set at all. This function should just boil down to a static inline
2584 * calling the protocol method.
2585 */
2586 int
2587 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2588 struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
2589 {
2590 int error;
2591
2592 CURVNET_SET(so->so_vnet);
2593 error = so->so_proto->pr_sosend(so, addr, uio,
2594 top, control, flags, td);
2595 CURVNET_RESTORE();
2596 return (error);
2597 }
2598
2599 /*
2600 * send(2), write(2) or aio_write(2) on a socket.
2601 */
2602 int
2603 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
2604 struct mbuf *control, int flags, struct proc *userproc)
2605 {
2606 struct thread *td;
2607 ssize_t len;
2608 int error;
2609
2610 td = uio->uio_td;
2611 len = uio->uio_resid;
2612 CURVNET_SET(so->so_vnet);
2613 error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
2614 td);
2615 CURVNET_RESTORE();
2616 if (error != 0) {
2617 /*
2618 * Clear transient errors for stream protocols if they made
2619 * some progress. Make exclusion for aio(4) that would
2620 * schedule a new write in case of EWOULDBLOCK and clear
2621 * error itself. See soaio_process_job().
2622 */
2623 if (uio->uio_resid != len &&
2624 (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
2625 userproc == NULL &&
2626 (error == ERESTART || error == EINTR ||
2627 error == EWOULDBLOCK))
2628 error = 0;
2629 /* Generation of SIGPIPE can be controlled per socket. */
2630 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
2631 (flags & MSG_NOSIGNAL) == 0) {
2632 if (userproc != NULL) {
2633 /* aio(4) job */
2634 PROC_LOCK(userproc);
2635 kern_psignal(userproc, SIGPIPE);
2636 PROC_UNLOCK(userproc);
2637 } else {
2638 PROC_LOCK(td->td_proc);
2639 tdsignal(td, SIGPIPE);
2640 PROC_UNLOCK(td->td_proc);
2641 }
2642 }
2643 }
2644 return (error);
2645 }
2646
2647 /*
2648 * The part of soreceive() that implements reading non-inline out-of-band
2649 * data from a socket. For more complete comments, see soreceive(), from
2650 * which this code originated.
2651 *
2652 * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
2653 * unable to return an mbuf chain to the caller.
2654 */
2655 static int
2656 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
2657 {
2658 struct protosw *pr = so->so_proto;
2659 struct mbuf *m;
2660 int error;
2661
2662 KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
2663 VNET_SO_ASSERT(so);
2664
2665 m = m_get(M_WAITOK, MT_DATA);
2666 error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
2667 if (error)
2668 goto bad;
2669 do {
2670 error = uiomove(mtod(m, void *),
2671 (int) min(uio->uio_resid, m->m_len), uio);
2672 m = m_free(m);
2673 } while (uio->uio_resid && error == 0 && m);
2674 bad:
2675 if (m != NULL)
2676 m_freem(m);
2677 return (error);
2678 }
2679
2680 /*
2681 * Following replacement or removal of the first mbuf on the first mbuf chain
2682 * of a socket buffer, push necessary state changes back into the socket
2683 * buffer so that other consumers see the values consistently. 'nextrecord'
2684 * is the callers locally stored value of the original value of
2685 * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
2686 * NOTE: 'nextrecord' may be NULL.
2687 */
2688 static __inline void
2689 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
2690 {
2691
2692 SOCKBUF_LOCK_ASSERT(sb);
2693 /*
2694 * First, update for the new value of nextrecord. If necessary, make
2695 * it the first record.
2696 */
2697 if (sb->sb_mb != NULL)
2698 sb->sb_mb->m_nextpkt = nextrecord;
2699 else
2700 sb->sb_mb = nextrecord;
2701
2702 /*
2703 * Now update any dependent socket buffer fields to reflect the new
2704 * state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
2705 * addition of a second clause that takes care of the case where
2706 * sb_mb has been updated, but remains the last record.
2707 */
2708 if (sb->sb_mb == NULL) {
2709 sb->sb_mbtail = NULL;
2710 sb->sb_lastrecord = NULL;
2711 } else if (sb->sb_mb->m_nextpkt == NULL)
2712 sb->sb_lastrecord = sb->sb_mb;
2713 }
2714
2715 /*
2716 * Implement receive operations on a socket. We depend on the way that
2717 * records are added to the sockbuf by sbappend. In particular, each record
2718 * (mbufs linked through m_next) must begin with an address if the protocol
2719 * so specifies, followed by an optional mbuf or mbufs containing ancillary
2720 * data, and then zero or more mbufs of data. In order to allow parallelism
2721 * between network receive and copying to user space, as well as avoid
2722 * sleeping with a mutex held, we release the socket buffer mutex during the
2723 * user space copy. Although the sockbuf is locked, new data may still be
2724 * appended, and thus we must maintain consistency of the sockbuf during that
2725 * time.
2726 *
2727 * The caller may receive the data as a single mbuf chain by supplying an
2728 * mbuf **mp0 for use in returning the chain. The uio is then used only for
2729 * the count in uio_resid.
2730 */
2731 static int
2732 soreceive_generic_locked(struct socket *so, struct sockaddr **psa,
2733 struct uio *uio, struct mbuf **mp, struct mbuf **controlp, int *flagsp)
2734 {
2735 struct mbuf *m;
2736 int flags, error, offset;
2737 ssize_t len;
2738 struct protosw *pr = so->so_proto;
2739 struct mbuf *nextrecord;
2740 int moff, type = 0;
2741 ssize_t orig_resid = uio->uio_resid;
2742 bool report_real_len = false;
2743
2744 SOCK_IO_RECV_ASSERT_LOCKED(so);
2745
2746 error = 0;
2747 if (flagsp != NULL) {
2748 report_real_len = *flagsp & MSG_TRUNC;
2749 *flagsp &= ~MSG_TRUNC;
2750 flags = *flagsp &~ MSG_EOR;
2751 } else
2752 flags = 0;
2753
2754 restart:
2755 SOCKBUF_LOCK(&so->so_rcv);
2756 m = so->so_rcv.sb_mb;
2757 /*
2758 * If we have less data than requested, block awaiting more (subject
2759 * to any timeout) if:
2760 * 1. the current count is less than the low water mark, or
2761 * 2. MSG_DONTWAIT is not set
2762 */
2763 if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
2764 sbavail(&so->so_rcv) < uio->uio_resid) &&
2765 sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
2766 m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
2767 KASSERT(m != NULL || !sbavail(&so->so_rcv),
2768 ("receive: m == %p sbavail == %u",
2769 m, sbavail(&so->so_rcv)));
2770 if (so->so_error || so->so_rerror) {
2771 if (m != NULL)
2772 goto dontblock;
2773 if (so->so_error)
2774 error = so->so_error;
2775 else
2776 error = so->so_rerror;
2777 if ((flags & MSG_PEEK) == 0) {
2778 if (so->so_error)
2779 so->so_error = 0;
2780 else
2781 so->so_rerror = 0;
2782 }
2783 SOCKBUF_UNLOCK(&so->so_rcv);
2784 goto release;
2785 }
2786 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2787 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
2788 if (m != NULL)
2789 goto dontblock;
2790 #ifdef KERN_TLS
2791 else if (so->so_rcv.sb_tlsdcc == 0 &&
2792 so->so_rcv.sb_tlscc == 0) {
2793 #else
2794 else {
2795 #endif
2796 SOCKBUF_UNLOCK(&so->so_rcv);
2797 goto release;
2798 }
2799 }
2800 for (; m != NULL; m = m->m_next)
2801 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
2802 m = so->so_rcv.sb_mb;
2803 goto dontblock;
2804 }
2805 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
2806 SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
2807 (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
2808 SOCKBUF_UNLOCK(&so->so_rcv);
2809 error = ENOTCONN;
2810 goto release;
2811 }
2812 if (uio->uio_resid == 0 && !report_real_len) {
2813 SOCKBUF_UNLOCK(&so->so_rcv);
2814 goto release;
2815 }
2816 if ((so->so_state & SS_NBIO) ||
2817 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
2818 SOCKBUF_UNLOCK(&so->so_rcv);
2819 error = EWOULDBLOCK;
2820 goto release;
2821 }
2822 SBLASTRECORDCHK(&so->so_rcv);
2823 SBLASTMBUFCHK(&so->so_rcv);
2824 error = sbwait(so, SO_RCV);
2825 SOCKBUF_UNLOCK(&so->so_rcv);
2826 if (error)
2827 goto release;
2828 goto restart;
2829 }
2830 dontblock:
2831 /*
2832 * From this point onward, we maintain 'nextrecord' as a cache of the
2833 * pointer to the next record in the socket buffer. We must keep the
2834 * various socket buffer pointers and local stack versions of the
2835 * pointers in sync, pushing out modifications before dropping the
2836 * socket buffer mutex, and re-reading them when picking it up.
2837 *
2838 * Otherwise, we will race with the network stack appending new data
2839 * or records onto the socket buffer by using inconsistent/stale
2840 * versions of the field, possibly resulting in socket buffer
2841 * corruption.
2842 *
2843 * By holding the high-level sblock(), we prevent simultaneous
2844 * readers from pulling off the front of the socket buffer.
2845 */
2846 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2847 if (uio->uio_td)
2848 uio->uio_td->td_ru.ru_msgrcv++;
2849 KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
2850 SBLASTRECORDCHK(&so->so_rcv);
2851 SBLASTMBUFCHK(&so->so_rcv);
2852 nextrecord = m->m_nextpkt;
2853 if (pr->pr_flags & PR_ADDR) {
2854 KASSERT(m->m_type == MT_SONAME,
2855 ("m->m_type == %d", m->m_type));
2856 orig_resid = 0;
2857 if (psa != NULL)
2858 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
2859 M_NOWAIT);
2860 if (flags & MSG_PEEK) {
2861 m = m->m_next;
2862 } else {
2863 sbfree(&so->so_rcv, m);
2864 so->so_rcv.sb_mb = m_free(m);
2865 m = so->so_rcv.sb_mb;
2866 sockbuf_pushsync(&so->so_rcv, nextrecord);
2867 }
2868 }
2869
2870 /*
2871 * Process one or more MT_CONTROL mbufs present before any data mbufs
2872 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
2873 * just copy the data; if !MSG_PEEK, we call into the protocol to
2874 * perform externalization (or freeing if controlp == NULL).
2875 */
2876 if (m != NULL && m->m_type == MT_CONTROL) {
2877 struct mbuf *cm = NULL, *cmn;
2878 struct mbuf **cme = &cm;
2879 #ifdef KERN_TLS
2880 struct cmsghdr *cmsg;
2881 struct tls_get_record tgr;
2882
2883 /*
2884 * For MSG_TLSAPPDATA, check for an alert record.
2885 * If found, return ENXIO without removing
2886 * it from the receive queue. This allows a subsequent
2887 * call without MSG_TLSAPPDATA to receive it.
2888 * Note that, for TLS, there should only be a single
2889 * control mbuf with the TLS_GET_RECORD message in it.
2890 */
2891 if (flags & MSG_TLSAPPDATA) {
2892 cmsg = mtod(m, struct cmsghdr *);
2893 if (cmsg->cmsg_type == TLS_GET_RECORD &&
2894 cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
2895 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
2896 if (__predict_false(tgr.tls_type ==
2897 TLS_RLTYPE_ALERT)) {
2898 SOCKBUF_UNLOCK(&so->so_rcv);
2899 error = ENXIO;
2900 goto release;
2901 }
2902 }
2903 }
2904 #endif
2905
2906 do {
2907 if (flags & MSG_PEEK) {
2908 if (controlp != NULL) {
2909 *controlp = m_copym(m, 0, m->m_len,
2910 M_NOWAIT);
2911 controlp = &(*controlp)->m_next;
2912 }
2913 m = m->m_next;
2914 } else {
2915 sbfree(&so->so_rcv, m);
2916 so->so_rcv.sb_mb = m->m_next;
2917 m->m_next = NULL;
2918 *cme = m;
2919 cme = &(*cme)->m_next;
2920 m = so->so_rcv.sb_mb;
2921 }
2922 } while (m != NULL && m->m_type == MT_CONTROL);
2923 if ((flags & MSG_PEEK) == 0)
2924 sockbuf_pushsync(&so->so_rcv, nextrecord);
2925 while (cm != NULL) {
2926 cmn = cm->m_next;
2927 cm->m_next = NULL;
2928 if (pr->pr_domain->dom_externalize != NULL) {
2929 SOCKBUF_UNLOCK(&so->so_rcv);
2930 VNET_SO_ASSERT(so);
2931 error = (*pr->pr_domain->dom_externalize)
2932 (cm, controlp, flags);
2933 SOCKBUF_LOCK(&so->so_rcv);
2934 } else if (controlp != NULL)
2935 *controlp = cm;
2936 else
2937 m_freem(cm);
2938 if (controlp != NULL) {
2939 while (*controlp != NULL)
2940 controlp = &(*controlp)->m_next;
2941 }
2942 cm = cmn;
2943 }
2944 if (m != NULL)
2945 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
2946 else
2947 nextrecord = so->so_rcv.sb_mb;
2948 orig_resid = 0;
2949 }
2950 if (m != NULL) {
2951 if ((flags & MSG_PEEK) == 0) {
2952 KASSERT(m->m_nextpkt == nextrecord,
2953 ("soreceive: post-control, nextrecord !sync"));
2954 if (nextrecord == NULL) {
2955 KASSERT(so->so_rcv.sb_mb == m,
2956 ("soreceive: post-control, sb_mb!=m"));
2957 KASSERT(so->so_rcv.sb_lastrecord == m,
2958 ("soreceive: post-control, lastrecord!=m"));
2959 }
2960 }
2961 type = m->m_type;
2962 if (type == MT_OOBDATA)
2963 flags |= MSG_OOB;
2964 } else {
2965 if ((flags & MSG_PEEK) == 0) {
2966 KASSERT(so->so_rcv.sb_mb == nextrecord,
2967 ("soreceive: sb_mb != nextrecord"));
2968 if (so->so_rcv.sb_mb == NULL) {
2969 KASSERT(so->so_rcv.sb_lastrecord == NULL,
2970 ("soreceive: sb_lastercord != NULL"));
2971 }
2972 }
2973 }
2974 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2975 SBLASTRECORDCHK(&so->so_rcv);
2976 SBLASTMBUFCHK(&so->so_rcv);
2977
2978 /*
2979 * Now continue to read any data mbufs off of the head of the socket
2980 * buffer until the read request is satisfied. Note that 'type' is
2981 * used to store the type of any mbuf reads that have happened so far
2982 * such that soreceive() can stop reading if the type changes, which
2983 * causes soreceive() to return only one of regular data and inline
2984 * out-of-band data in a single socket receive operation.
2985 */
2986 moff = 0;
2987 offset = 0;
2988 while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
2989 && error == 0) {
2990 /*
2991 * If the type of mbuf has changed since the last mbuf
2992 * examined ('type'), end the receive operation.
2993 */
2994 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
2995 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
2996 if (type != m->m_type)
2997 break;
2998 } else if (type == MT_OOBDATA)
2999 break;
3000 else
3001 KASSERT(m->m_type == MT_DATA,
3002 ("m->m_type == %d", m->m_type));
3003 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
3004 len = uio->uio_resid;
3005 if (so->so_oobmark && len > so->so_oobmark - offset)
3006 len = so->so_oobmark - offset;
3007 if (len > m->m_len - moff)
3008 len = m->m_len - moff;
3009 /*
3010 * If mp is set, just pass back the mbufs. Otherwise copy
3011 * them out via the uio, then free. Sockbuf must be
3012 * consistent here (points to current mbuf, it points to next
3013 * record) when we drop priority; we must note any additions
3014 * to the sockbuf when we block interrupts again.
3015 */
3016 if (mp == NULL) {
3017 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3018 SBLASTRECORDCHK(&so->so_rcv);
3019 SBLASTMBUFCHK(&so->so_rcv);
3020 SOCKBUF_UNLOCK(&so->so_rcv);
3021 if ((m->m_flags & M_EXTPG) != 0)
3022 error = m_unmapped_uiomove(m, moff, uio,
3023 (int)len);
3024 else
3025 error = uiomove(mtod(m, char *) + moff,
3026 (int)len, uio);
3027 SOCKBUF_LOCK(&so->so_rcv);
3028 if (error) {
3029 /*
3030 * The MT_SONAME mbuf has already been removed
3031 * from the record, so it is necessary to
3032 * remove the data mbufs, if any, to preserve
3033 * the invariant in the case of PR_ADDR that
3034 * requires MT_SONAME mbufs at the head of
3035 * each record.
3036 */
3037 if (pr->pr_flags & PR_ATOMIC &&
3038 ((flags & MSG_PEEK) == 0))
3039 (void)sbdroprecord_locked(&so->so_rcv);
3040 SOCKBUF_UNLOCK(&so->so_rcv);
3041 goto release;
3042 }
3043 } else
3044 uio->uio_resid -= len;
3045 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3046 if (len == m->m_len - moff) {
3047 if (m->m_flags & M_EOR)
3048 flags |= MSG_EOR;
3049 if (flags & MSG_PEEK) {
3050 m = m->m_next;
3051 moff = 0;
3052 } else {
3053 nextrecord = m->m_nextpkt;
3054 sbfree(&so->so_rcv, m);
3055 if (mp != NULL) {
3056 m->m_nextpkt = NULL;
3057 *mp = m;
3058 mp = &m->m_next;
3059 so->so_rcv.sb_mb = m = m->m_next;
3060 *mp = NULL;
3061 } else {
3062 so->so_rcv.sb_mb = m_free(m);
3063 m = so->so_rcv.sb_mb;
3064 }
3065 sockbuf_pushsync(&so->so_rcv, nextrecord);
3066 SBLASTRECORDCHK(&so->so_rcv);
3067 SBLASTMBUFCHK(&so->so_rcv);
3068 }
3069 } else {
3070 if (flags & MSG_PEEK)
3071 moff += len;
3072 else {
3073 if (mp != NULL) {
3074 if (flags & MSG_DONTWAIT) {
3075 *mp = m_copym(m, 0, len,
3076 M_NOWAIT);
3077 if (*mp == NULL) {
3078 /*
3079 * m_copym() couldn't
3080 * allocate an mbuf.
3081 * Adjust uio_resid back
3082 * (it was adjusted
3083 * down by len bytes,
3084 * which we didn't end
3085 * up "copying" over).
3086 */
3087 uio->uio_resid += len;
3088 break;
3089 }
3090 } else {
3091 SOCKBUF_UNLOCK(&so->so_rcv);
3092 *mp = m_copym(m, 0, len,
3093 M_WAITOK);
3094 SOCKBUF_LOCK(&so->so_rcv);
3095 }
3096 }
3097 sbcut_locked(&so->so_rcv, len);
3098 }
3099 }
3100 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3101 if (so->so_oobmark) {
3102 if ((flags & MSG_PEEK) == 0) {
3103 so->so_oobmark -= len;
3104 if (so->so_oobmark == 0) {
3105 so->so_rcv.sb_state |= SBS_RCVATMARK;
3106 break;
3107 }
3108 } else {
3109 offset += len;
3110 if (offset == so->so_oobmark)
3111 break;
3112 }
3113 }
3114 if (flags & MSG_EOR)
3115 break;
3116 /*
3117 * If the MSG_WAITALL flag is set (for non-atomic socket), we
3118 * must not quit until "uio->uio_resid == 0" or an error
3119 * termination. If a signal/timeout occurs, return with a
3120 * short count but without error. Keep sockbuf locked
3121 * against other readers.
3122 */
3123 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
3124 !sosendallatonce(so) && nextrecord == NULL) {
3125 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3126 if (so->so_error || so->so_rerror ||
3127 so->so_rcv.sb_state & SBS_CANTRCVMORE)
3128 break;
3129 /*
3130 * Notify the protocol that some data has been
3131 * drained before blocking.
3132 */
3133 if (pr->pr_flags & PR_WANTRCVD) {
3134 SOCKBUF_UNLOCK(&so->so_rcv);
3135 VNET_SO_ASSERT(so);
3136 pr->pr_rcvd(so, flags);
3137 SOCKBUF_LOCK(&so->so_rcv);
3138 if (__predict_false(so->so_rcv.sb_mb == NULL &&
3139 (so->so_error || so->so_rerror ||
3140 so->so_rcv.sb_state & SBS_CANTRCVMORE)))
3141 break;
3142 }
3143 SBLASTRECORDCHK(&so->so_rcv);
3144 SBLASTMBUFCHK(&so->so_rcv);
3145 /*
3146 * We could receive some data while was notifying
3147 * the protocol. Skip blocking in this case.
3148 */
3149 if (so->so_rcv.sb_mb == NULL) {
3150 error = sbwait(so, SO_RCV);
3151 if (error) {
3152 SOCKBUF_UNLOCK(&so->so_rcv);
3153 goto release;
3154 }
3155 }
3156 m = so->so_rcv.sb_mb;
3157 if (m != NULL)
3158 nextrecord = m->m_nextpkt;
3159 }
3160 }
3161
3162 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3163 if (m != NULL && pr->pr_flags & PR_ATOMIC) {
3164 if (report_real_len)
3165 uio->uio_resid -= m_length(m, NULL) - moff;
3166 flags |= MSG_TRUNC;
3167 if ((flags & MSG_PEEK) == 0)
3168 (void) sbdroprecord_locked(&so->so_rcv);
3169 }
3170 if ((flags & MSG_PEEK) == 0) {
3171 if (m == NULL) {
3172 /*
3173 * First part is an inline SB_EMPTY_FIXUP(). Second
3174 * part makes sure sb_lastrecord is up-to-date if
3175 * there is still data in the socket buffer.
3176 */
3177 so->so_rcv.sb_mb = nextrecord;
3178 if (so->so_rcv.sb_mb == NULL) {
3179 so->so_rcv.sb_mbtail = NULL;
3180 so->so_rcv.sb_lastrecord = NULL;
3181 } else if (nextrecord->m_nextpkt == NULL)
3182 so->so_rcv.sb_lastrecord = nextrecord;
3183 }
3184 SBLASTRECORDCHK(&so->so_rcv);
3185 SBLASTMBUFCHK(&so->so_rcv);
3186 /*
3187 * If soreceive() is being done from the socket callback,
3188 * then don't need to generate ACK to peer to update window,
3189 * since ACK will be generated on return to TCP.
3190 */
3191 if (!(flags & MSG_SOCALLBCK) &&
3192 (pr->pr_flags & PR_WANTRCVD)) {
3193 SOCKBUF_UNLOCK(&so->so_rcv);
3194 VNET_SO_ASSERT(so);
3195 pr->pr_rcvd(so, flags);
3196 SOCKBUF_LOCK(&so->so_rcv);
3197 }
3198 }
3199 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3200 if (orig_resid == uio->uio_resid && orig_resid &&
3201 (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
3202 SOCKBUF_UNLOCK(&so->so_rcv);
3203 goto restart;
3204 }
3205 SOCKBUF_UNLOCK(&so->so_rcv);
3206
3207 if (flagsp != NULL)
3208 *flagsp |= flags;
3209 release:
3210 return (error);
3211 }
3212
3213 int
3214 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
3215 struct mbuf **mp, struct mbuf **controlp, int *flagsp)
3216 {
3217 int error, flags;
3218
3219 if (psa != NULL)
3220 *psa = NULL;
3221 if (controlp != NULL)
3222 *controlp = NULL;
3223 if (flagsp != NULL) {
3224 flags = *flagsp;
3225 if ((flags & MSG_OOB) != 0)
3226 return (soreceive_rcvoob(so, uio, flags));
3227 } else {
3228 flags = 0;
3229 }
3230 if (mp != NULL)
3231 *mp = NULL;
3232
3233 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3234 if (error)
3235 return (error);
3236 error = soreceive_generic_locked(so, psa, uio, mp, controlp, flagsp);
3237 SOCK_IO_RECV_UNLOCK(so);
3238 return (error);
3239 }
3240
3241 /*
3242 * Optimized version of soreceive() for stream (TCP) sockets.
3243 */
3244 static int
3245 soreceive_stream_locked(struct socket *so, struct sockbuf *sb,
3246 struct sockaddr **psa, struct uio *uio, struct mbuf **mp0,
3247 struct mbuf **controlp, int flags)
3248 {
3249 int len = 0, error = 0, oresid;
3250 struct mbuf *m, *n = NULL;
3251
3252 SOCK_IO_RECV_ASSERT_LOCKED(so);
3253
3254 /* Easy one, no space to copyout anything. */
3255 if (uio->uio_resid == 0)
3256 return (EINVAL);
3257 oresid = uio->uio_resid;
3258
3259 SOCKBUF_LOCK(sb);
3260 /* We will never ever get anything unless we are or were connected. */
3261 if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
3262 error = ENOTCONN;
3263 goto out;
3264 }
3265
3266 restart:
3267 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3268
3269 /* Abort if socket has reported problems. */
3270 if (so->so_error) {
3271 if (sbavail(sb) > 0)
3272 goto deliver;
3273 if (oresid > uio->uio_resid)
3274 goto out;
3275 error = so->so_error;
3276 if (!(flags & MSG_PEEK))
3277 so->so_error = 0;
3278 goto out;
3279 }
3280
3281 /* Door is closed. Deliver what is left, if any. */
3282 if (sb->sb_state & SBS_CANTRCVMORE) {
3283 if (sbavail(sb) > 0)
3284 goto deliver;
3285 else
3286 goto out;
3287 }
3288
3289 /* Socket buffer is empty and we shall not block. */
3290 if (sbavail(sb) == 0 &&
3291 ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
3292 error = EAGAIN;
3293 goto out;
3294 }
3295
3296 /* Socket buffer got some data that we shall deliver now. */
3297 if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
3298 ((so->so_state & SS_NBIO) ||
3299 (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
3300 sbavail(sb) >= sb->sb_lowat ||
3301 sbavail(sb) >= uio->uio_resid ||
3302 sbavail(sb) >= sb->sb_hiwat) ) {
3303 goto deliver;
3304 }
3305
3306 /* On MSG_WAITALL we must wait until all data or error arrives. */
3307 if ((flags & MSG_WAITALL) &&
3308 (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
3309 goto deliver;
3310
3311 /*
3312 * Wait and block until (more) data comes in.
3313 * NB: Drops the sockbuf lock during wait.
3314 */
3315 error = sbwait(so, SO_RCV);
3316 if (error)
3317 goto out;
3318 goto restart;
3319
3320 deliver:
3321 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3322 KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
3323 KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
3324
3325 /* Statistics. */
3326 if (uio->uio_td)
3327 uio->uio_td->td_ru.ru_msgrcv++;
3328
3329 /* Fill uio until full or current end of socket buffer is reached. */
3330 len = min(uio->uio_resid, sbavail(sb));
3331 if (mp0 != NULL) {
3332 /* Dequeue as many mbufs as possible. */
3333 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
3334 if (*mp0 == NULL)
3335 *mp0 = sb->sb_mb;
3336 else
3337 m_cat(*mp0, sb->sb_mb);
3338 for (m = sb->sb_mb;
3339 m != NULL && m->m_len <= len;
3340 m = m->m_next) {
3341 KASSERT(!(m->m_flags & M_NOTAVAIL),
3342 ("%s: m %p not available", __func__, m));
3343 len -= m->m_len;
3344 uio->uio_resid -= m->m_len;
3345 sbfree(sb, m);
3346 n = m;
3347 }
3348 n->m_next = NULL;
3349 sb->sb_mb = m;
3350 sb->sb_lastrecord = sb->sb_mb;
3351 if (sb->sb_mb == NULL)
3352 SB_EMPTY_FIXUP(sb);
3353 }
3354 /* Copy the remainder. */
3355 if (len > 0) {
3356 KASSERT(sb->sb_mb != NULL,
3357 ("%s: len > 0 && sb->sb_mb empty", __func__));
3358
3359 m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
3360 if (m == NULL)
3361 len = 0; /* Don't flush data from sockbuf. */
3362 else
3363 uio->uio_resid -= len;
3364 if (*mp0 != NULL)
3365 m_cat(*mp0, m);
3366 else
3367 *mp0 = m;
3368 if (*mp0 == NULL) {
3369 error = ENOBUFS;
3370 goto out;
3371 }
3372 }
3373 } else {
3374 /* NB: Must unlock socket buffer as uiomove may sleep. */
3375 SOCKBUF_UNLOCK(sb);
3376 error = m_mbuftouio(uio, sb->sb_mb, len);
3377 SOCKBUF_LOCK(sb);
3378 if (error)
3379 goto out;
3380 }
3381 SBLASTRECORDCHK(sb);
3382 SBLASTMBUFCHK(sb);
3383
3384 /*
3385 * Remove the delivered data from the socket buffer unless we
3386 * were only peeking.
3387 */
3388 if (!(flags & MSG_PEEK)) {
3389 if (len > 0)
3390 sbdrop_locked(sb, len);
3391
3392 /* Notify protocol that we drained some data. */
3393 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
3394 (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
3395 !(flags & MSG_SOCALLBCK))) {
3396 SOCKBUF_UNLOCK(sb);
3397 VNET_SO_ASSERT(so);
3398 so->so_proto->pr_rcvd(so, flags);
3399 SOCKBUF_LOCK(sb);
3400 }
3401 }
3402
3403 /*
3404 * For MSG_WAITALL we may have to loop again and wait for
3405 * more data to come in.
3406 */
3407 if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
3408 goto restart;
3409 out:
3410 SBLASTRECORDCHK(sb);
3411 SBLASTMBUFCHK(sb);
3412 SOCKBUF_UNLOCK(sb);
3413 return (error);
3414 }
3415
3416 int
3417 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
3418 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3419 {
3420 struct sockbuf *sb;
3421 int error, flags;
3422
3423 sb = &so->so_rcv;
3424
3425 /* We only do stream sockets. */
3426 if (so->so_type != SOCK_STREAM)
3427 return (EINVAL);
3428 if (psa != NULL)
3429 *psa = NULL;
3430 if (flagsp != NULL)
3431 flags = *flagsp & ~MSG_EOR;
3432 else
3433 flags = 0;
3434 if (controlp != NULL)
3435 *controlp = NULL;
3436 if (flags & MSG_OOB)
3437 return (soreceive_rcvoob(so, uio, flags));
3438 if (mp0 != NULL)
3439 *mp0 = NULL;
3440
3441 #ifdef KERN_TLS
3442 /*
3443 * KTLS store TLS records as records with a control message to
3444 * describe the framing.
3445 *
3446 * We check once here before acquiring locks to optimize the
3447 * common case.
3448 */
3449 if (sb->sb_tls_info != NULL)
3450 return (soreceive_generic(so, psa, uio, mp0, controlp,
3451 flagsp));
3452 #endif
3453
3454 /*
3455 * Prevent other threads from reading from the socket. This lock may be
3456 * dropped in order to sleep waiting for data to arrive.
3457 */
3458 error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
3459 if (error)
3460 return (error);
3461 #ifdef KERN_TLS
3462 if (__predict_false(sb->sb_tls_info != NULL)) {
3463 SOCK_IO_RECV_UNLOCK(so);
3464 return (soreceive_generic(so, psa, uio, mp0, controlp,
3465 flagsp));
3466 }
3467 #endif
3468 error = soreceive_stream_locked(so, sb, psa, uio, mp0, controlp, flags);
3469 SOCK_IO_RECV_UNLOCK(so);
3470 return (error);
3471 }
3472
3473 /*
3474 * Optimized version of soreceive() for simple datagram cases from userspace.
3475 * Unlike in the stream case, we're able to drop a datagram if copyout()
3476 * fails, and because we handle datagrams atomically, we don't need to use a
3477 * sleep lock to prevent I/O interlacing.
3478 */
3479 int
3480 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
3481 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3482 {
3483 struct mbuf *m, *m2;
3484 int flags, error;
3485 ssize_t len;
3486 struct protosw *pr = so->so_proto;
3487 struct mbuf *nextrecord;
3488
3489 if (psa != NULL)
3490 *psa = NULL;
3491 if (controlp != NULL)
3492 *controlp = NULL;
3493 if (flagsp != NULL)
3494 flags = *flagsp &~ MSG_EOR;
3495 else
3496 flags = 0;
3497
3498 /*
3499 * For any complicated cases, fall back to the full
3500 * soreceive_generic().
3501 */
3502 if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
3503 return (soreceive_generic(so, psa, uio, mp0, controlp,
3504 flagsp));
3505
3506 /*
3507 * Enforce restrictions on use.
3508 */
3509 KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
3510 ("soreceive_dgram: wantrcvd"));
3511 KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
3512 KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
3513 ("soreceive_dgram: SBS_RCVATMARK"));
3514 KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
3515 ("soreceive_dgram: P_CONNREQUIRED"));
3516
3517 /*
3518 * Loop blocking while waiting for a datagram.
3519 */
3520 SOCKBUF_LOCK(&so->so_rcv);
3521 while ((m = so->so_rcv.sb_mb) == NULL) {
3522 KASSERT(sbavail(&so->so_rcv) == 0,
3523 ("soreceive_dgram: sb_mb NULL but sbavail %u",
3524 sbavail(&so->so_rcv)));
3525 if (so->so_error) {
3526 error = so->so_error;
3527 so->so_error = 0;
3528 SOCKBUF_UNLOCK(&so->so_rcv);
3529 return (error);
3530 }
3531 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
3532 uio->uio_resid == 0) {
3533 SOCKBUF_UNLOCK(&so->so_rcv);
3534 return (0);
3535 }
3536 if ((so->so_state & SS_NBIO) ||
3537 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
3538 SOCKBUF_UNLOCK(&so->so_rcv);
3539 return (EWOULDBLOCK);
3540 }
3541 SBLASTRECORDCHK(&so->so_rcv);
3542 SBLASTMBUFCHK(&so->so_rcv);
3543 error = sbwait(so, SO_RCV);
3544 if (error) {
3545 SOCKBUF_UNLOCK(&so->so_rcv);
3546 return (error);
3547 }
3548 }
3549 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
3550
3551 if (uio->uio_td)
3552 uio->uio_td->td_ru.ru_msgrcv++;
3553 SBLASTRECORDCHK(&so->so_rcv);
3554 SBLASTMBUFCHK(&so->so_rcv);
3555 nextrecord = m->m_nextpkt;
3556 if (nextrecord == NULL) {
3557 KASSERT(so->so_rcv.sb_lastrecord == m,
3558 ("soreceive_dgram: lastrecord != m"));
3559 }
3560
3561 KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
3562 ("soreceive_dgram: m_nextpkt != nextrecord"));
3563
3564 /*
3565 * Pull 'm' and its chain off the front of the packet queue.
3566 */
3567 so->so_rcv.sb_mb = NULL;
3568 sockbuf_pushsync(&so->so_rcv, nextrecord);
3569
3570 /*
3571 * Walk 'm's chain and free that many bytes from the socket buffer.
3572 */
3573 for (m2 = m; m2 != NULL; m2 = m2->m_next)
3574 sbfree(&so->so_rcv, m2);
3575
3576 /*
3577 * Do a few last checks before we let go of the lock.
3578 */
3579 SBLASTRECORDCHK(&so->so_rcv);
3580 SBLASTMBUFCHK(&so->so_rcv);
3581 SOCKBUF_UNLOCK(&so->so_rcv);
3582
3583 if (pr->pr_flags & PR_ADDR) {
3584 KASSERT(m->m_type == MT_SONAME,
3585 ("m->m_type == %d", m->m_type));
3586 if (psa != NULL)
3587 *psa = sodupsockaddr(mtod(m, struct sockaddr *),
3588 M_WAITOK);
3589 m = m_free(m);
3590 }
3591 KASSERT(m, ("%s: no data or control after soname", __func__));
3592
3593 /*
3594 * Packet to copyout() is now in 'm' and it is disconnected from the
3595 * queue.
3596 *
3597 * Process one or more MT_CONTROL mbufs present before any data mbufs
3598 * in the first mbuf chain on the socket buffer. We call into the
3599 * protocol to perform externalization (or freeing if controlp ==
3600 * NULL). In some cases there can be only MT_CONTROL mbufs without
3601 * MT_DATA mbufs.
3602 */
3603 if (m->m_type == MT_CONTROL) {
3604 struct mbuf *cm = NULL, *cmn;
3605 struct mbuf **cme = &cm;
3606
3607 do {
3608 m2 = m->m_next;
3609 m->m_next = NULL;
3610 *cme = m;
3611 cme = &(*cme)->m_next;
3612 m = m2;
3613 } while (m != NULL && m->m_type == MT_CONTROL);
3614 while (cm != NULL) {
3615 cmn = cm->m_next;
3616 cm->m_next = NULL;
3617 if (pr->pr_domain->dom_externalize != NULL) {
3618 error = (*pr->pr_domain->dom_externalize)
3619 (cm, controlp, flags);
3620 } else if (controlp != NULL)
3621 *controlp = cm;
3622 else
3623 m_freem(cm);
3624 if (controlp != NULL) {
3625 while (*controlp != NULL)
3626 controlp = &(*controlp)->m_next;
3627 }
3628 cm = cmn;
3629 }
3630 }
3631 KASSERT(m == NULL || m->m_type == MT_DATA,
3632 ("soreceive_dgram: !data"));
3633 while (m != NULL && uio->uio_resid > 0) {
3634 len = uio->uio_resid;
3635 if (len > m->m_len)
3636 len = m->m_len;
3637 error = uiomove(mtod(m, char *), (int)len, uio);
3638 if (error) {
3639 m_freem(m);
3640 return (error);
3641 }
3642 if (len == m->m_len)
3643 m = m_free(m);
3644 else {
3645 m->m_data += len;
3646 m->m_len -= len;
3647 }
3648 }
3649 if (m != NULL) {
3650 flags |= MSG_TRUNC;
3651 m_freem(m);
3652 }
3653 if (flagsp != NULL)
3654 *flagsp |= flags;
3655 return (0);
3656 }
3657
3658 int
3659 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
3660 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
3661 {
3662 int error;
3663
3664 CURVNET_SET(so->so_vnet);
3665 error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
3666 CURVNET_RESTORE();
3667 return (error);
3668 }
3669
3670 int
3671 soshutdown(struct socket *so, enum shutdown_how how)
3672 {
3673 int error;
3674
3675 CURVNET_SET(so->so_vnet);
3676 error = so->so_proto->pr_shutdown(so, how);
3677 CURVNET_RESTORE();
3678
3679 return (error);
3680 }
3681
3682 /*
3683 * Used by several pr_shutdown implementations that use generic socket buffers.
3684 */
3685 void
3686 sorflush(struct socket *so)
3687 {
3688 int error;
3689
3690 VNET_SO_ASSERT(so);
3691
3692 /*
3693 * Dislodge threads currently blocked in receive and wait to acquire
3694 * a lock against other simultaneous readers before clearing the
3695 * socket buffer. Don't let our acquire be interrupted by a signal
3696 * despite any existing socket disposition on interruptable waiting.
3697 *
3698 * The SOCK_IO_RECV_LOCK() is important here as there some pr_soreceive
3699 * methods that read the top of the socket buffer without acquisition
3700 * of the socket buffer mutex, assuming that top of the buffer
3701 * exclusively belongs to the read(2) syscall. This is handy when
3702 * performing MSG_PEEK.
3703 */
3704 socantrcvmore(so);
3705
3706 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
3707 if (error != 0) {
3708 KASSERT(SOLISTENING(so),
3709 ("%s: soiolock(%p) failed", __func__, so));
3710 return;
3711 }
3712
3713 sbrelease(so, SO_RCV);
3714 SOCK_IO_RECV_UNLOCK(so);
3715
3716 }
3717
3718 int
3719 sosetfib(struct socket *so, int fibnum)
3720 {
3721 if (fibnum < 0 || fibnum >= rt_numfibs)
3722 return (EINVAL);
3723
3724 SOCK_LOCK(so);
3725 so->so_fibnum = fibnum;
3726 SOCK_UNLOCK(so);
3727
3728 return (0);
3729 }
3730
3731 #ifdef SOCKET_HHOOK
3732 /*
3733 * Wrapper for Socket established helper hook.
3734 * Parameters: socket, context of the hook point, hook id.
3735 */
3736 static inline int
3737 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
3738 {
3739 struct socket_hhook_data hhook_data = {
3740 .so = so,
3741 .hctx = hctx,
3742 .m = NULL,
3743 .status = 0
3744 };
3745
3746 CURVNET_SET(so->so_vnet);
3747 HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
3748 CURVNET_RESTORE();
3749
3750 /* Ugly but needed, since hhooks return void for now */
3751 return (hhook_data.status);
3752 }
3753 #endif
3754
3755 /*
3756 * Perhaps this routine, and sooptcopyout(), below, ought to come in an
3757 * additional variant to handle the case where the option value needs to be
3758 * some kind of integer, but not a specific size. In addition to their use
3759 * here, these functions are also called by the protocol-level pr_ctloutput()
3760 * routines.
3761 */
3762 int
3763 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
3764 {
3765 size_t valsize;
3766
3767 /*
3768 * If the user gives us more than we wanted, we ignore it, but if we
3769 * don't get the minimum length the caller wants, we return EINVAL.
3770 * On success, sopt->sopt_valsize is set to however much we actually
3771 * retrieved.
3772 */
3773 if ((valsize = sopt->sopt_valsize) < minlen)
3774 return EINVAL;
3775 if (valsize > len)
3776 sopt->sopt_valsize = valsize = len;
3777
3778 if (sopt->sopt_td != NULL)
3779 return (copyin(sopt->sopt_val, buf, valsize));
3780
3781 bcopy(sopt->sopt_val, buf, valsize);
3782 return (0);
3783 }
3784
3785 /*
3786 * Kernel version of setsockopt(2).
3787 *
3788 * XXX: optlen is size_t, not socklen_t
3789 */
3790 int
3791 so_setsockopt(struct socket *so, int level, int optname, void *optval,
3792 size_t optlen)
3793 {
3794 struct sockopt sopt;
3795
3796 sopt.sopt_level = level;
3797 sopt.sopt_name = optname;
3798 sopt.sopt_dir = SOPT_SET;
3799 sopt.sopt_val = optval;
3800 sopt.sopt_valsize = optlen;
3801 sopt.sopt_td = NULL;
3802 return (sosetopt(so, &sopt));
3803 }
3804
3805 int
3806 sosetopt(struct socket *so, struct sockopt *sopt)
3807 {
3808 int error, optval;
3809 struct linger l;
3810 struct timeval tv;
3811 sbintime_t val, *valp;
3812 uint32_t val32;
3813 #ifdef MAC
3814 struct mac extmac;
3815 #endif
3816
3817 CURVNET_SET(so->so_vnet);
3818 error = 0;
3819 if (sopt->sopt_level != SOL_SOCKET) {
3820 error = (*so->so_proto->pr_ctloutput)(so, sopt);
3821 } else {
3822 switch (sopt->sopt_name) {
3823 case SO_ACCEPTFILTER:
3824 error = accept_filt_setopt(so, sopt);
3825 if (error)
3826 goto bad;
3827 break;
3828
3829 case SO_LINGER:
3830 error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
3831 if (error)
3832 goto bad;
3833 if (l.l_linger < 0 ||
3834 l.l_linger > USHRT_MAX ||
3835 l.l_linger > (INT_MAX / hz)) {
3836 error = EDOM;
3837 goto bad;
3838 }
3839 SOCK_LOCK(so);
3840 so->so_linger = l.l_linger;
3841 if (l.l_onoff)
3842 so->so_options |= SO_LINGER;
3843 else
3844 so->so_options &= ~SO_LINGER;
3845 SOCK_UNLOCK(so);
3846 break;
3847
3848 case SO_DEBUG:
3849 case SO_KEEPALIVE:
3850 case SO_DONTROUTE:
3851 case SO_USELOOPBACK:
3852 case SO_BROADCAST:
3853 case SO_REUSEADDR:
3854 case SO_REUSEPORT:
3855 case SO_REUSEPORT_LB:
3856 case SO_OOBINLINE:
3857 case SO_TIMESTAMP:
3858 case SO_BINTIME:
3859 case SO_NOSIGPIPE:
3860 case SO_NO_DDP:
3861 case SO_NO_OFFLOAD:
3862 case SO_RERROR:
3863 error = sooptcopyin(sopt, &optval, sizeof optval,
3864 sizeof optval);
3865 if (error)
3866 goto bad;
3867 SOCK_LOCK(so);
3868 if (optval)
3869 so->so_options |= sopt->sopt_name;
3870 else
3871 so->so_options &= ~sopt->sopt_name;
3872 SOCK_UNLOCK(so);
3873 break;
3874
3875 case SO_SETFIB:
3876 error = so->so_proto->pr_ctloutput(so, sopt);
3877 break;
3878
3879 case SO_USER_COOKIE:
3880 error = sooptcopyin(sopt, &val32, sizeof val32,
3881 sizeof val32);
3882 if (error)
3883 goto bad;
3884 so->so_user_cookie = val32;
3885 break;
3886
3887 case SO_SNDBUF:
3888 case SO_RCVBUF:
3889 case SO_SNDLOWAT:
3890 case SO_RCVLOWAT:
3891 error = so->so_proto->pr_setsbopt(so, sopt);
3892 if (error)
3893 goto bad;
3894 break;
3895
3896 case SO_SNDTIMEO:
3897 case SO_RCVTIMEO:
3898 #ifdef COMPAT_FREEBSD32
3899 if (SV_CURPROC_FLAG(SV_ILP32)) {
3900 struct timeval32 tv32;
3901
3902 error = sooptcopyin(sopt, &tv32, sizeof tv32,
3903 sizeof tv32);
3904 CP(tv32, tv, tv_sec);
3905 CP(tv32, tv, tv_usec);
3906 } else
3907 #endif
3908 error = sooptcopyin(sopt, &tv, sizeof tv,
3909 sizeof tv);
3910 if (error)
3911 goto bad;
3912 if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
3913 tv.tv_usec >= 1000000) {
3914 error = EDOM;
3915 goto bad;
3916 }
3917 if (tv.tv_sec > INT32_MAX)
3918 val = SBT_MAX;
3919 else
3920 val = tvtosbt(tv);
3921 SOCK_LOCK(so);
3922 valp = sopt->sopt_name == SO_SNDTIMEO ?
3923 (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
3924 &so->so_snd.sb_timeo) :
3925 (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
3926 &so->so_rcv.sb_timeo);
3927 *valp = val;
3928 SOCK_UNLOCK(so);
3929 break;
3930
3931 case SO_LABEL:
3932 #ifdef MAC
3933 error = sooptcopyin(sopt, &extmac, sizeof extmac,
3934 sizeof extmac);
3935 if (error)
3936 goto bad;
3937 error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
3938 so, &extmac);
3939 #else
3940 error = EOPNOTSUPP;
3941 #endif
3942 break;
3943
3944 case SO_TS_CLOCK:
3945 error = sooptcopyin(sopt, &optval, sizeof optval,
3946 sizeof optval);
3947 if (error)
3948 goto bad;
3949 if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
3950 error = EINVAL;
3951 goto bad;
3952 }
3953 so->so_ts_clock = optval;
3954 break;
3955
3956 case SO_MAX_PACING_RATE:
3957 error = sooptcopyin(sopt, &val32, sizeof(val32),
3958 sizeof(val32));
3959 if (error)
3960 goto bad;
3961 so->so_max_pacing_rate = val32;
3962 break;
3963
3964 case SO_SPLICE: {
3965 struct splice splice;
3966
3967 #ifdef COMPAT_FREEBSD32
3968 if (SV_CURPROC_FLAG(SV_ILP32)) {
3969 struct splice32 splice32;
3970
3971 error = sooptcopyin(sopt, &splice32,
3972 sizeof(splice32), sizeof(splice32));
3973 if (error == 0) {
3974 splice.sp_fd = splice32.sp_fd;
3975 splice.sp_max = splice32.sp_max;
3976 CP(splice32.sp_idle, splice.sp_idle,
3977 tv_sec);
3978 CP(splice32.sp_idle, splice.sp_idle,
3979 tv_usec);
3980 }
3981 } else
3982 #endif
3983 {
3984 error = sooptcopyin(sopt, &splice,
3985 sizeof(splice), sizeof(splice));
3986 }
3987 if (error)
3988 goto bad;
3989 #ifdef KTRACE
3990 if (KTRPOINT(curthread, KTR_STRUCT))
3991 ktrsplice(&splice);
3992 #endif
3993
3994 error = splice_init();
3995 if (error != 0)
3996 goto bad;
3997
3998 if (splice.sp_fd >= 0) {
3999 struct file *fp;
4000 struct socket *so2;
4001
4002 if (!cap_rights_contains(sopt->sopt_rights,
4003 &cap_recv_rights)) {
4004 error = ENOTCAPABLE;
4005 goto bad;
4006 }
4007 error = getsock(sopt->sopt_td, splice.sp_fd,
4008 &cap_send_rights, &fp);
4009 if (error != 0)
4010 goto bad;
4011 so2 = fp->f_data;
4012
4013 error = so_splice(so, so2, &splice);
4014 fdrop(fp, sopt->sopt_td);
4015 } else {
4016 error = so_unsplice(so, false);
4017 }
4018 break;
4019 }
4020 default:
4021 #ifdef SOCKET_HHOOK
4022 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4023 error = hhook_run_socket(so, sopt,
4024 HHOOK_SOCKET_OPT);
4025 else
4026 #endif
4027 error = ENOPROTOOPT;
4028 break;
4029 }
4030 if (error == 0)
4031 (void)(*so->so_proto->pr_ctloutput)(so, sopt);
4032 }
4033 bad:
4034 CURVNET_RESTORE();
4035 return (error);
4036 }
4037
4038 /*
4039 * Helper routine for getsockopt.
4040 */
4041 int
4042 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
4043 {
4044 int error;
4045 size_t valsize;
4046
4047 error = 0;
4048
4049 /*
4050 * Documented get behavior is that we always return a value, possibly
4051 * truncated to fit in the user's buffer. Traditional behavior is
4052 * that we always tell the user precisely how much we copied, rather
4053 * than something useful like the total amount we had available for
4054 * her. Note that this interface is not idempotent; the entire
4055 * answer must be generated ahead of time.
4056 */
4057 valsize = min(len, sopt->sopt_valsize);
4058 sopt->sopt_valsize = valsize;
4059 if (sopt->sopt_val != NULL) {
4060 if (sopt->sopt_td != NULL)
4061 error = copyout(buf, sopt->sopt_val, valsize);
4062 else
4063 bcopy(buf, sopt->sopt_val, valsize);
4064 }
4065 return (error);
4066 }
4067
4068 int
4069 sogetopt(struct socket *so, struct sockopt *sopt)
4070 {
4071 int error, optval;
4072 struct linger l;
4073 struct timeval tv;
4074 #ifdef MAC
4075 struct mac extmac;
4076 #endif
4077
4078 CURVNET_SET(so->so_vnet);
4079 error = 0;
4080 if (sopt->sopt_level != SOL_SOCKET) {
4081 error = (*so->so_proto->pr_ctloutput)(so, sopt);
4082 CURVNET_RESTORE();
4083 return (error);
4084 } else {
4085 switch (sopt->sopt_name) {
4086 case SO_ACCEPTFILTER:
4087 error = accept_filt_getopt(so, sopt);
4088 break;
4089
4090 case SO_LINGER:
4091 SOCK_LOCK(so);
4092 l.l_onoff = so->so_options & SO_LINGER;
4093 l.l_linger = so->so_linger;
4094 SOCK_UNLOCK(so);
4095 error = sooptcopyout(sopt, &l, sizeof l);
4096 break;
4097
4098 case SO_USELOOPBACK:
4099 case SO_DONTROUTE:
4100 case SO_DEBUG:
4101 case SO_KEEPALIVE:
4102 case SO_REUSEADDR:
4103 case SO_REUSEPORT:
4104 case SO_REUSEPORT_LB:
4105 case SO_BROADCAST:
4106 case SO_OOBINLINE:
4107 case SO_ACCEPTCONN:
4108 case SO_TIMESTAMP:
4109 case SO_BINTIME:
4110 case SO_NOSIGPIPE:
4111 case SO_NO_DDP:
4112 case SO_NO_OFFLOAD:
4113 case SO_RERROR:
4114 optval = so->so_options & sopt->sopt_name;
4115 integer:
4116 error = sooptcopyout(sopt, &optval, sizeof optval);
4117 break;
4118
4119 case SO_FIB:
4120 SOCK_LOCK(so);
4121 optval = so->so_fibnum;
4122 SOCK_UNLOCK(so);
4123 goto integer;
4124
4125 case SO_DOMAIN:
4126 optval = so->so_proto->pr_domain->dom_family;
4127 goto integer;
4128
4129 case SO_TYPE:
4130 optval = so->so_type;
4131 goto integer;
4132
4133 case SO_PROTOCOL:
4134 optval = so->so_proto->pr_protocol;
4135 goto integer;
4136
4137 case SO_ERROR:
4138 SOCK_LOCK(so);
4139 if (so->so_error) {
4140 optval = so->so_error;
4141 so->so_error = 0;
4142 } else {
4143 optval = so->so_rerror;
4144 so->so_rerror = 0;
4145 }
4146 SOCK_UNLOCK(so);
4147 goto integer;
4148
4149 case SO_SNDBUF:
4150 SOCK_LOCK(so);
4151 optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
4152 so->so_snd.sb_hiwat;
4153 SOCK_UNLOCK(so);
4154 goto integer;
4155
4156 case SO_RCVBUF:
4157 SOCK_LOCK(so);
4158 optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
4159 so->so_rcv.sb_hiwat;
4160 SOCK_UNLOCK(so);
4161 goto integer;
4162
4163 case SO_SNDLOWAT:
4164 SOCK_LOCK(so);
4165 optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
4166 so->so_snd.sb_lowat;
4167 SOCK_UNLOCK(so);
4168 goto integer;
4169
4170 case SO_RCVLOWAT:
4171 SOCK_LOCK(so);
4172 optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
4173 so->so_rcv.sb_lowat;
4174 SOCK_UNLOCK(so);
4175 goto integer;
4176
4177 case SO_SNDTIMEO:
4178 case SO_RCVTIMEO:
4179 SOCK_LOCK(so);
4180 tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
4181 (SOLISTENING(so) ? so->sol_sbsnd_timeo :
4182 so->so_snd.sb_timeo) :
4183 (SOLISTENING(so) ? so->sol_sbrcv_timeo :
4184 so->so_rcv.sb_timeo));
4185 SOCK_UNLOCK(so);
4186 #ifdef COMPAT_FREEBSD32
4187 if (SV_CURPROC_FLAG(SV_ILP32)) {
4188 struct timeval32 tv32;
4189
4190 CP(tv, tv32, tv_sec);
4191 CP(tv, tv32, tv_usec);
4192 error = sooptcopyout(sopt, &tv32, sizeof tv32);
4193 } else
4194 #endif
4195 error = sooptcopyout(sopt, &tv, sizeof tv);
4196 break;
4197
4198 case SO_LABEL:
4199 #ifdef MAC
4200 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4201 sizeof(extmac));
4202 if (error)
4203 goto bad;
4204 error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
4205 so, &extmac);
4206 if (error)
4207 goto bad;
4208 /* Don't copy out extmac, it is unchanged. */
4209 #else
4210 error = EOPNOTSUPP;
4211 #endif
4212 break;
4213
4214 case SO_PEERLABEL:
4215 #ifdef MAC
4216 error = sooptcopyin(sopt, &extmac, sizeof(extmac),
4217 sizeof(extmac));
4218 if (error)
4219 goto bad;
4220 error = mac_getsockopt_peerlabel(
4221 sopt->sopt_td->td_ucred, so, &extmac);
4222 if (error)
4223 goto bad;
4224 /* Don't copy out extmac, it is unchanged. */
4225 #else
4226 error = EOPNOTSUPP;
4227 #endif
4228 break;
4229
4230 case SO_LISTENQLIMIT:
4231 SOCK_LOCK(so);
4232 optval = SOLISTENING(so) ? so->sol_qlimit : 0;
4233 SOCK_UNLOCK(so);
4234 goto integer;
4235
4236 case SO_LISTENQLEN:
4237 SOCK_LOCK(so);
4238 optval = SOLISTENING(so) ? so->sol_qlen : 0;
4239 SOCK_UNLOCK(so);
4240 goto integer;
4241
4242 case SO_LISTENINCQLEN:
4243 SOCK_LOCK(so);
4244 optval = SOLISTENING(so) ? so->sol_incqlen : 0;
4245 SOCK_UNLOCK(so);
4246 goto integer;
4247
4248 case SO_TS_CLOCK:
4249 optval = so->so_ts_clock;
4250 goto integer;
4251
4252 case SO_MAX_PACING_RATE:
4253 optval = so->so_max_pacing_rate;
4254 goto integer;
4255
4256 case SO_SPLICE: {
4257 off_t n;
4258
4259 /*
4260 * Acquire the I/O lock to serialize with
4261 * so_splice_xfer(). This is not required for
4262 * correctness, but makes testing simpler: once a byte
4263 * has been transmitted to the sink and observed (e.g.,
4264 * by reading from the socket to which the sink is
4265 * connected), a subsequent getsockopt(SO_SPLICE) will
4266 * return an up-to-date value.
4267 */
4268 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
4269 if (error != 0)
4270 goto bad;
4271 SOCK_LOCK(so);
4272 if (SOLISTENING(so)) {
4273 n = 0;
4274 } else {
4275 n = so->so_splice_sent;
4276 }
4277 SOCK_UNLOCK(so);
4278 SOCK_IO_RECV_UNLOCK(so);
4279 error = sooptcopyout(sopt, &n, sizeof(n));
4280 break;
4281 }
4282
4283 default:
4284 #ifdef SOCKET_HHOOK
4285 if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
4286 error = hhook_run_socket(so, sopt,
4287 HHOOK_SOCKET_OPT);
4288 else
4289 #endif
4290 error = ENOPROTOOPT;
4291 break;
4292 }
4293 }
4294 bad:
4295 CURVNET_RESTORE();
4296 return (error);
4297 }
4298
4299 int
4300 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
4301 {
4302 struct mbuf *m, *m_prev;
4303 int sopt_size = sopt->sopt_valsize;
4304
4305 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4306 if (m == NULL)
4307 return ENOBUFS;
4308 if (sopt_size > MLEN) {
4309 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
4310 if ((m->m_flags & M_EXT) == 0) {
4311 m_free(m);
4312 return ENOBUFS;
4313 }
4314 m->m_len = min(MCLBYTES, sopt_size);
4315 } else {
4316 m->m_len = min(MLEN, sopt_size);
4317 }
4318 sopt_size -= m->m_len;
4319 *mp = m;
4320 m_prev = m;
4321
4322 while (sopt_size) {
4323 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
4324 if (m == NULL) {
4325 m_freem(*mp);
4326 return ENOBUFS;
4327 }
4328 if (sopt_size > MLEN) {
4329 MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
4330 M_NOWAIT);
4331 if ((m->m_flags & M_EXT) == 0) {
4332 m_freem(m);
4333 m_freem(*mp);
4334 return ENOBUFS;
4335 }
4336 m->m_len = min(MCLBYTES, sopt_size);
4337 } else {
4338 m->m_len = min(MLEN, sopt_size);
4339 }
4340 sopt_size -= m->m_len;
4341 m_prev->m_next = m;
4342 m_prev = m;
4343 }
4344 return (0);
4345 }
4346
4347 int
4348 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
4349 {
4350 struct mbuf *m0 = m;
4351
4352 if (sopt->sopt_val == NULL)
4353 return (0);
4354 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4355 if (sopt->sopt_td != NULL) {
4356 int error;
4357
4358 error = copyin(sopt->sopt_val, mtod(m, char *),
4359 m->m_len);
4360 if (error != 0) {
4361 m_freem(m0);
4362 return(error);
4363 }
4364 } else
4365 bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
4366 sopt->sopt_valsize -= m->m_len;
4367 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4368 m = m->m_next;
4369 }
4370 if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
4371 panic("ip6_sooptmcopyin");
4372 return (0);
4373 }
4374
4375 int
4376 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
4377 {
4378 struct mbuf *m0 = m;
4379 size_t valsize = 0;
4380
4381 if (sopt->sopt_val == NULL)
4382 return (0);
4383 while (m != NULL && sopt->sopt_valsize >= m->m_len) {
4384 if (sopt->sopt_td != NULL) {
4385 int error;
4386
4387 error = copyout(mtod(m, char *), sopt->sopt_val,
4388 m->m_len);
4389 if (error != 0) {
4390 m_freem(m0);
4391 return(error);
4392 }
4393 } else
4394 bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
4395 sopt->sopt_valsize -= m->m_len;
4396 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
4397 valsize += m->m_len;
4398 m = m->m_next;
4399 }
4400 if (m != NULL) {
4401 /* enough soopt buffer should be given from user-land */
4402 m_freem(m0);
4403 return(EINVAL);
4404 }
4405 sopt->sopt_valsize = valsize;
4406 return (0);
4407 }
4408
4409 /*
4410 * sohasoutofband(): protocol notifies socket layer of the arrival of new
4411 * out-of-band data, which will then notify socket consumers.
4412 */
4413 void
4414 sohasoutofband(struct socket *so)
4415 {
4416
4417 if (so->so_sigio != NULL)
4418 pgsigio(&so->so_sigio, SIGURG, 0);
4419 selwakeuppri(&so->so_rdsel, PSOCK);
4420 }
4421
4422 int
4423 sopoll_generic(struct socket *so, int events, struct thread *td)
4424 {
4425 int revents;
4426
4427 SOCK_LOCK(so);
4428 if (SOLISTENING(so)) {
4429 if (!(events & (POLLIN | POLLRDNORM)))
4430 revents = 0;
4431 else if (!TAILQ_EMPTY(&so->sol_comp))
4432 revents = events & (POLLIN | POLLRDNORM);
4433 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
4434 revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
4435 else {
4436 selrecord(td, &so->so_rdsel);
4437 revents = 0;
4438 }
4439 } else {
4440 revents = 0;
4441 SOCK_SENDBUF_LOCK(so);
4442 SOCK_RECVBUF_LOCK(so);
4443 if (events & (POLLIN | POLLRDNORM))
4444 if (soreadabledata(so) && !isspliced(so))
4445 revents |= events & (POLLIN | POLLRDNORM);
4446 if (events & (POLLOUT | POLLWRNORM))
4447 if (sowriteable(so) && !issplicedback(so))
4448 revents |= events & (POLLOUT | POLLWRNORM);
4449 if (events & (POLLPRI | POLLRDBAND))
4450 if (so->so_oobmark ||
4451 (so->so_rcv.sb_state & SBS_RCVATMARK))
4452 revents |= events & (POLLPRI | POLLRDBAND);
4453 if ((events & POLLINIGNEOF) == 0) {
4454 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4455 revents |= events & (POLLIN | POLLRDNORM);
4456 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
4457 revents |= POLLHUP;
4458 }
4459 }
4460 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
4461 revents |= events & POLLRDHUP;
4462 if (revents == 0) {
4463 if (events &
4464 (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
4465 selrecord(td, &so->so_rdsel);
4466 so->so_rcv.sb_flags |= SB_SEL;
4467 }
4468 if (events & (POLLOUT | POLLWRNORM)) {
4469 selrecord(td, &so->so_wrsel);
4470 so->so_snd.sb_flags |= SB_SEL;
4471 }
4472 }
4473 SOCK_RECVBUF_UNLOCK(so);
4474 SOCK_SENDBUF_UNLOCK(so);
4475 }
4476 SOCK_UNLOCK(so);
4477 return (revents);
4478 }
4479
4480 int
4481 soo_kqfilter(struct file *fp, struct knote *kn)
4482 {
4483 struct socket *so = kn->kn_fp->f_data;
4484 struct sockbuf *sb;
4485 sb_which which;
4486 struct knlist *knl;
4487
4488 switch (kn->kn_filter) {
4489 case EVFILT_READ:
4490 kn->kn_fop = &soread_filtops;
4491 knl = &so->so_rdsel.si_note;
4492 sb = &so->so_rcv;
4493 which = SO_RCV;
4494 break;
4495 case EVFILT_WRITE:
4496 kn->kn_fop = &sowrite_filtops;
4497 knl = &so->so_wrsel.si_note;
4498 sb = &so->so_snd;
4499 which = SO_SND;
4500 break;
4501 case EVFILT_EMPTY:
4502 kn->kn_fop = &soempty_filtops;
4503 knl = &so->so_wrsel.si_note;
4504 sb = &so->so_snd;
4505 which = SO_SND;
4506 break;
4507 default:
4508 return (EINVAL);
4509 }
4510
4511 SOCK_LOCK(so);
4512 if (SOLISTENING(so)) {
4513 knlist_add(knl, kn, 1);
4514 } else {
4515 SOCK_BUF_LOCK(so, which);
4516 knlist_add(knl, kn, 1);
4517 sb->sb_flags |= SB_KNOTE;
4518 SOCK_BUF_UNLOCK(so, which);
4519 }
4520 SOCK_UNLOCK(so);
4521 return (0);
4522 }
4523
4524 static void
4525 filt_sordetach(struct knote *kn)
4526 {
4527 struct socket *so = kn->kn_fp->f_data;
4528
4529 so_rdknl_lock(so);
4530 knlist_remove(&so->so_rdsel.si_note, kn, 1);
4531 if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
4532 so->so_rcv.sb_flags &= ~SB_KNOTE;
4533 so_rdknl_unlock(so);
4534 }
4535
4536 /*ARGSUSED*/
4537 static int
4538 filt_soread(struct knote *kn, long hint)
4539 {
4540 struct socket *so;
4541
4542 so = kn->kn_fp->f_data;
4543
4544 if (SOLISTENING(so)) {
4545 SOCK_LOCK_ASSERT(so);
4546 kn->kn_data = so->sol_qlen;
4547 if (so->so_error) {
4548 kn->kn_flags |= EV_EOF;
4549 kn->kn_fflags = so->so_error;
4550 return (1);
4551 }
4552 return (!TAILQ_EMPTY(&so->sol_comp));
4553 }
4554
4555 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
4556 return (0);
4557
4558 SOCK_RECVBUF_LOCK_ASSERT(so);
4559
4560 kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
4561 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
4562 kn->kn_flags |= EV_EOF;
4563 kn->kn_fflags = so->so_error;
4564 return (1);
4565 } else if (so->so_error || so->so_rerror)
4566 return (1);
4567
4568 if (kn->kn_sfflags & NOTE_LOWAT) {
4569 if (kn->kn_data >= kn->kn_sdata)
4570 return (1);
4571 } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
4572 return (1);
4573
4574 #ifdef SOCKET_HHOOK
4575 /* This hook returning non-zero indicates an event, not error */
4576 return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
4577 #else
4578 return (0);
4579 #endif
4580 }
4581
4582 static void
4583 filt_sowdetach(struct knote *kn)
4584 {
4585 struct socket *so = kn->kn_fp->f_data;
4586
4587 so_wrknl_lock(so);
4588 knlist_remove(&so->so_wrsel.si_note, kn, 1);
4589 if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
4590 so->so_snd.sb_flags &= ~SB_KNOTE;
4591 so_wrknl_unlock(so);
4592 }
4593
4594 /*ARGSUSED*/
4595 static int
4596 filt_sowrite(struct knote *kn, long hint)
4597 {
4598 struct socket *so;
4599
4600 so = kn->kn_fp->f_data;
4601
4602 if (SOLISTENING(so))
4603 return (0);
4604
4605 SOCK_SENDBUF_LOCK_ASSERT(so);
4606 kn->kn_data = sbspace(&so->so_snd);
4607
4608 #ifdef SOCKET_HHOOK
4609 hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
4610 #endif
4611
4612 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
4613 kn->kn_flags |= EV_EOF;
4614 kn->kn_fflags = so->so_error;
4615 return (1);
4616 } else if (so->so_error) /* temporary udp error */
4617 return (1);
4618 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
4619 (so->so_proto->pr_flags & PR_CONNREQUIRED))
4620 return (0);
4621 else if (kn->kn_sfflags & NOTE_LOWAT)
4622 return (kn->kn_data >= kn->kn_sdata);
4623 else
4624 return (kn->kn_data >= so->so_snd.sb_lowat);
4625 }
4626
4627 static int
4628 filt_soempty(struct knote *kn, long hint)
4629 {
4630 struct socket *so;
4631
4632 so = kn->kn_fp->f_data;
4633
4634 if (SOLISTENING(so))
4635 return (1);
4636
4637 SOCK_SENDBUF_LOCK_ASSERT(so);
4638 kn->kn_data = sbused(&so->so_snd);
4639
4640 if (kn->kn_data == 0)
4641 return (1);
4642 else
4643 return (0);
4644 }
4645
4646 int
4647 socheckuid(struct socket *so, uid_t uid)
4648 {
4649
4650 if (so == NULL)
4651 return (EPERM);
4652 if (so->so_cred->cr_uid != uid)
4653 return (EPERM);
4654 return (0);
4655 }
4656
4657 /*
4658 * These functions are used by protocols to notify the socket layer (and its
4659 * consumers) of state changes in the sockets driven by protocol-side events.
4660 */
4661
4662 /*
4663 * Procedures to manipulate state flags of socket and do appropriate wakeups.
4664 *
4665 * Normal sequence from the active (originating) side is that
4666 * soisconnecting() is called during processing of connect() call, resulting
4667 * in an eventual call to soisconnected() if/when the connection is
4668 * established. When the connection is torn down soisdisconnecting() is
4669 * called during processing of disconnect() call, and soisdisconnected() is
4670 * called when the connection to the peer is totally severed. The semantics
4671 * of these routines are such that connectionless protocols can call
4672 * soisconnected() and soisdisconnected() only, bypassing the in-progress
4673 * calls when setting up a ``connection'' takes no time.
4674 *
4675 * From the passive side, a socket is created with two queues of sockets:
4676 * so_incomp for connections in progress and so_comp for connections already
4677 * made and awaiting user acceptance. As a protocol is preparing incoming
4678 * connections, it creates a socket structure queued on so_incomp by calling
4679 * sonewconn(). When the connection is established, soisconnected() is
4680 * called, and transfers the socket structure to so_comp, making it available
4681 * to accept().
4682 *
4683 * If a socket is closed with sockets on either so_incomp or so_comp, these
4684 * sockets are dropped.
4685 *
4686 * If higher-level protocols are implemented in the kernel, the wakeups done
4687 * here will sometimes cause software-interrupt process scheduling.
4688 */
4689 void
4690 soisconnecting(struct socket *so)
4691 {
4692
4693 SOCK_LOCK(so);
4694 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
4695 so->so_state |= SS_ISCONNECTING;
4696 SOCK_UNLOCK(so);
4697 }
4698
4699 void
4700 soisconnected(struct socket *so)
4701 {
4702 bool last __diagused;
4703
4704 SOCK_LOCK(so);
4705 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING);
4706 so->so_state |= SS_ISCONNECTED;
4707
4708 if (so->so_qstate == SQ_INCOMP) {
4709 struct socket *head = so->so_listen;
4710 int ret;
4711
4712 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
4713 /*
4714 * Promoting a socket from incomplete queue to complete, we
4715 * need to go through reverse order of locking. We first do
4716 * trylock, and if that doesn't succeed, we go the hard way
4717 * leaving a reference and rechecking consistency after proper
4718 * locking.
4719 */
4720 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
4721 soref(head);
4722 SOCK_UNLOCK(so);
4723 SOLISTEN_LOCK(head);
4724 SOCK_LOCK(so);
4725 if (__predict_false(head != so->so_listen)) {
4726 /*
4727 * The socket went off the listen queue,
4728 * should be lost race to close(2) of sol.
4729 * The socket is about to soabort().
4730 */
4731 SOCK_UNLOCK(so);
4732 sorele_locked(head);
4733 return;
4734 }
4735 last = refcount_release(&head->so_count);
4736 KASSERT(!last, ("%s: released last reference for %p",
4737 __func__, head));
4738 }
4739 again:
4740 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
4741 TAILQ_REMOVE(&head->sol_incomp, so, so_list);
4742 head->sol_incqlen--;
4743 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
4744 head->sol_qlen++;
4745 so->so_qstate = SQ_COMP;
4746 SOCK_UNLOCK(so);
4747 solisten_wakeup(head); /* unlocks */
4748 } else {
4749 SOCK_RECVBUF_LOCK(so);
4750 soupcall_set(so, SO_RCV,
4751 head->sol_accept_filter->accf_callback,
4752 head->sol_accept_filter_arg);
4753 so->so_options &= ~SO_ACCEPTFILTER;
4754 ret = head->sol_accept_filter->accf_callback(so,
4755 head->sol_accept_filter_arg, M_NOWAIT);
4756 if (ret == SU_ISCONNECTED) {
4757 soupcall_clear(so, SO_RCV);
4758 SOCK_RECVBUF_UNLOCK(so);
4759 goto again;
4760 }
4761 SOCK_RECVBUF_UNLOCK(so);
4762 SOCK_UNLOCK(so);
4763 SOLISTEN_UNLOCK(head);
4764 }
4765 return;
4766 }
4767 SOCK_UNLOCK(so);
4768 wakeup(&so->so_timeo);
4769 sorwakeup(so);
4770 sowwakeup(so);
4771 }
4772
4773 void
4774 soisdisconnecting(struct socket *so)
4775 {
4776
4777 SOCK_LOCK(so);
4778 so->so_state &= ~SS_ISCONNECTING;
4779 so->so_state |= SS_ISDISCONNECTING;
4780
4781 if (!SOLISTENING(so)) {
4782 SOCK_RECVBUF_LOCK(so);
4783 socantrcvmore_locked(so);
4784 SOCK_SENDBUF_LOCK(so);
4785 socantsendmore_locked(so);
4786 }
4787 SOCK_UNLOCK(so);
4788 wakeup(&so->so_timeo);
4789 }
4790
4791 void
4792 soisdisconnected(struct socket *so)
4793 {
4794
4795 SOCK_LOCK(so);
4796
4797 /*
4798 * There is at least one reader of so_state that does not
4799 * acquire socket lock, namely soreceive_generic(). Ensure
4800 * that it never sees all flags that track connection status
4801 * cleared, by ordering the update with a barrier semantic of
4802 * our release thread fence.
4803 */
4804 so->so_state |= SS_ISDISCONNECTED;
4805 atomic_thread_fence_rel();
4806 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
4807
4808 if (!SOLISTENING(so)) {
4809 SOCK_UNLOCK(so);
4810 SOCK_RECVBUF_LOCK(so);
4811 socantrcvmore_locked(so);
4812 SOCK_SENDBUF_LOCK(so);
4813 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
4814 socantsendmore_locked(so);
4815 } else
4816 SOCK_UNLOCK(so);
4817 wakeup(&so->so_timeo);
4818 }
4819
4820 int
4821 soiolock(struct socket *so, struct sx *sx, int flags)
4822 {
4823 int error;
4824
4825 KASSERT((flags & SBL_VALID) == flags,
4826 ("soiolock: invalid flags %#x", flags));
4827
4828 if ((flags & SBL_WAIT) != 0) {
4829 if ((flags & SBL_NOINTR) != 0) {
4830 sx_xlock(sx);
4831 } else {
4832 error = sx_xlock_sig(sx);
4833 if (error != 0)
4834 return (error);
4835 }
4836 } else if (!sx_try_xlock(sx)) {
4837 return (EWOULDBLOCK);
4838 }
4839
4840 if (__predict_false(SOLISTENING(so))) {
4841 sx_xunlock(sx);
4842 return (ENOTCONN);
4843 }
4844 return (0);
4845 }
4846
4847 void
4848 soiounlock(struct sx *sx)
4849 {
4850 sx_xunlock(sx);
4851 }
4852
4853 /*
4854 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
4855 */
4856 struct sockaddr *
4857 sodupsockaddr(const struct sockaddr *sa, int mflags)
4858 {
4859 struct sockaddr *sa2;
4860
4861 sa2 = malloc(sa->sa_len, M_SONAME, mflags);
4862 if (sa2)
4863 bcopy(sa, sa2, sa->sa_len);
4864 return sa2;
4865 }
4866
4867 /*
4868 * Register per-socket destructor.
4869 */
4870 void
4871 sodtor_set(struct socket *so, so_dtor_t *func)
4872 {
4873
4874 SOCK_LOCK_ASSERT(so);
4875 so->so_dtor = func;
4876 }
4877
4878 /*
4879 * Register per-socket buffer upcalls.
4880 */
4881 void
4882 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
4883 {
4884 struct sockbuf *sb;
4885
4886 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4887
4888 switch (which) {
4889 case SO_RCV:
4890 sb = &so->so_rcv;
4891 break;
4892 case SO_SND:
4893 sb = &so->so_snd;
4894 break;
4895 }
4896 SOCK_BUF_LOCK_ASSERT(so, which);
4897 sb->sb_upcall = func;
4898 sb->sb_upcallarg = arg;
4899 sb->sb_flags |= SB_UPCALL;
4900 }
4901
4902 void
4903 soupcall_clear(struct socket *so, sb_which which)
4904 {
4905 struct sockbuf *sb;
4906
4907 KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
4908
4909 switch (which) {
4910 case SO_RCV:
4911 sb = &so->so_rcv;
4912 break;
4913 case SO_SND:
4914 sb = &so->so_snd;
4915 break;
4916 }
4917 SOCK_BUF_LOCK_ASSERT(so, which);
4918 KASSERT(sb->sb_upcall != NULL,
4919 ("%s: so %p no upcall to clear", __func__, so));
4920 sb->sb_upcall = NULL;
4921 sb->sb_upcallarg = NULL;
4922 sb->sb_flags &= ~SB_UPCALL;
4923 }
4924
4925 void
4926 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
4927 {
4928
4929 SOLISTEN_LOCK_ASSERT(so);
4930 so->sol_upcall = func;
4931 so->sol_upcallarg = arg;
4932 }
4933
4934 static void
4935 so_rdknl_lock(void *arg)
4936 {
4937 struct socket *so = arg;
4938
4939 retry:
4940 if (SOLISTENING(so)) {
4941 SOLISTEN_LOCK(so);
4942 } else {
4943 SOCK_RECVBUF_LOCK(so);
4944 if (__predict_false(SOLISTENING(so))) {
4945 SOCK_RECVBUF_UNLOCK(so);
4946 goto retry;
4947 }
4948 }
4949 }
4950
4951 static void
4952 so_rdknl_unlock(void *arg)
4953 {
4954 struct socket *so = arg;
4955
4956 if (SOLISTENING(so))
4957 SOLISTEN_UNLOCK(so);
4958 else
4959 SOCK_RECVBUF_UNLOCK(so);
4960 }
4961
4962 static void
4963 so_rdknl_assert_lock(void *arg, int what)
4964 {
4965 struct socket *so = arg;
4966
4967 if (what == LA_LOCKED) {
4968 if (SOLISTENING(so))
4969 SOLISTEN_LOCK_ASSERT(so);
4970 else
4971 SOCK_RECVBUF_LOCK_ASSERT(so);
4972 } else {
4973 if (SOLISTENING(so))
4974 SOLISTEN_UNLOCK_ASSERT(so);
4975 else
4976 SOCK_RECVBUF_UNLOCK_ASSERT(so);
4977 }
4978 }
4979
4980 static void
4981 so_wrknl_lock(void *arg)
4982 {
4983 struct socket *so = arg;
4984
4985 retry:
4986 if (SOLISTENING(so)) {
4987 SOLISTEN_LOCK(so);
4988 } else {
4989 SOCK_SENDBUF_LOCK(so);
4990 if (__predict_false(SOLISTENING(so))) {
4991 SOCK_SENDBUF_UNLOCK(so);
4992 goto retry;
4993 }
4994 }
4995 }
4996
4997 static void
4998 so_wrknl_unlock(void *arg)
4999 {
5000 struct socket *so = arg;
5001
5002 if (SOLISTENING(so))
5003 SOLISTEN_UNLOCK(so);
5004 else
5005 SOCK_SENDBUF_UNLOCK(so);
5006 }
5007
5008 static void
5009 so_wrknl_assert_lock(void *arg, int what)
5010 {
5011 struct socket *so = arg;
5012
5013 if (what == LA_LOCKED) {
5014 if (SOLISTENING(so))
5015 SOLISTEN_LOCK_ASSERT(so);
5016 else
5017 SOCK_SENDBUF_LOCK_ASSERT(so);
5018 } else {
5019 if (SOLISTENING(so))
5020 SOLISTEN_UNLOCK_ASSERT(so);
5021 else
5022 SOCK_SENDBUF_UNLOCK_ASSERT(so);
5023 }
5024 }
5025
5026 /*
5027 * Create an external-format (``xsocket'') structure using the information in
5028 * the kernel-format socket structure pointed to by so. This is done to
5029 * reduce the spew of irrelevant information over this interface, to isolate
5030 * user code from changes in the kernel structure, and potentially to provide
5031 * information-hiding if we decide that some of this information should be
5032 * hidden from users.
5033 */
5034 void
5035 sotoxsocket(struct socket *so, struct xsocket *xso)
5036 {
5037
5038 bzero(xso, sizeof(*xso));
5039 xso->xso_len = sizeof *xso;
5040 xso->xso_so = (uintptr_t)so;
5041 xso->so_type = so->so_type;
5042 xso->so_options = so->so_options;
5043 xso->so_linger = so->so_linger;
5044 xso->so_state = so->so_state;
5045 xso->so_pcb = (uintptr_t)so->so_pcb;
5046 xso->xso_protocol = so->so_proto->pr_protocol;
5047 xso->xso_family = so->so_proto->pr_domain->dom_family;
5048 xso->so_timeo = so->so_timeo;
5049 xso->so_error = so->so_error;
5050 xso->so_uid = so->so_cred->cr_uid;
5051 xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
5052 SOCK_LOCK(so);
5053 xso->so_fibnum = so->so_fibnum;
5054 if (SOLISTENING(so)) {
5055 xso->so_qlen = so->sol_qlen;
5056 xso->so_incqlen = so->sol_incqlen;
5057 xso->so_qlimit = so->sol_qlimit;
5058 xso->so_oobmark = 0;
5059 } else {
5060 xso->so_state |= so->so_qstate;
5061 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
5062 xso->so_oobmark = so->so_oobmark;
5063 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
5064 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
5065 if ((so->so_rcv.sb_flags & SB_SPLICED) != 0)
5066 xso->so_splice_so = (uintptr_t)so->so_splice->dst;
5067 }
5068 SOCK_UNLOCK(so);
5069 }
5070
5071 int
5072 so_options_get(const struct socket *so)
5073 {
5074
5075 return (so->so_options);
5076 }
5077
5078 void
5079 so_options_set(struct socket *so, int val)
5080 {
5081
5082 so->so_options = val;
5083 }
5084
5085 int
5086 so_error_get(const struct socket *so)
5087 {
5088
5089 return (so->so_error);
5090 }
5091
5092 void
5093 so_error_set(struct socket *so, int val)
5094 {
5095
5096 so->so_error = val;
5097 }
5098