xref: /freebsd/sys/contrib/openzfs/module/avl/avl.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
29  * Copyright (c) 2015 by Delphix. All rights reserved.
30  */
31 
32 /*
33  * AVL - generic AVL tree implementation for kernel use
34  *
35  * A complete description of AVL trees can be found in many CS textbooks.
36  *
37  * Here is a very brief overview. An AVL tree is a binary search tree that is
38  * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
39  * any given node, the left and right subtrees are allowed to differ in height
40  * by at most 1 level.
41  *
42  * This relaxation from a perfectly balanced binary tree allows doing
43  * insertion and deletion relatively efficiently. Searching the tree is
44  * still a fast operation, roughly O(log(N)).
45  *
46  * The key to insertion and deletion is a set of tree manipulations called
47  * rotations, which bring unbalanced subtrees back into the semi-balanced state.
48  *
49  * This implementation of AVL trees has the following peculiarities:
50  *
51  *	- The AVL specific data structures are physically embedded as fields
52  *	  in the "using" data structures.  To maintain generality the code
53  *	  must constantly translate between "avl_node_t *" and containing
54  *	  data structure "void *"s by adding/subtracting the avl_offset.
55  *
56  *	- Since the AVL data is always embedded in other structures, there is
57  *	  no locking or memory allocation in the AVL routines. This must be
58  *	  provided for by the enclosing data structure's semantics. Typically,
59  *	  avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
60  *	  exclusive write lock. Other operations require a read lock.
61  *
62  *      - The implementation uses iteration instead of explicit recursion,
63  *	  since it is intended to run on limited size kernel stacks. Since
64  *	  there is no recursion stack present to move "up" in the tree,
65  *	  there is an explicit "parent" link in the avl_node_t.
66  *
67  *      - The left/right children pointers of a node are in an array.
68  *	  In the code, variables (instead of constants) are used to represent
69  *	  left and right indices.  The implementation is written as if it only
70  *	  dealt with left handed manipulations.  By changing the value assigned
71  *	  to "left", the code also works for right handed trees.  The
72  *	  following variables/terms are frequently used:
73  *
74  *		int left;	// 0 when dealing with left children,
75  *				// 1 for dealing with right children
76  *
77  *		int left_heavy;	// -1 when left subtree is taller at some node,
78  *				// +1 when right subtree is taller
79  *
80  *		int right;	// will be the opposite of left (0 or 1)
81  *		int right_heavy;// will be the opposite of left_heavy (-1 or 1)
82  *
83  *		int direction;  // 0 for "<" (ie. left child); 1 for ">" (right)
84  *
85  *	  Though it is a little more confusing to read the code, the approach
86  *	  allows using half as much code (and hence cache footprint) for tree
87  *	  manipulations and eliminates many conditional branches.
88  *
89  *	- The avl_index_t is an opaque "cookie" used to find nodes at or
90  *	  adjacent to where a new value would be inserted in the tree. The value
91  *	  is a modified "avl_node_t *".  The bottom bit (normally 0 for a
92  *	  pointer) is set to indicate if that the new node has a value greater
93  *	  than the value of the indicated "avl_node_t *".
94  *
95  * Note - in addition to userland (e.g. libavl and libutil) and the kernel
96  * (e.g. genunix), avl.c is compiled into ld.so and kmdb's genunix module,
97  * which each have their own compilation environments and subsequent
98  * requirements. Each of these environments must be considered when adding
99  * dependencies from avl.c.
100  *
101  * Link to Illumos.org for more information on avl function:
102  * [1] https://illumos.org/man/9f/avl
103  */
104 
105 #include <sys/types.h>
106 #include <sys/param.h>
107 #include <sys/debug.h>
108 #include <sys/avl.h>
109 #include <sys/cmn_err.h>
110 #include <sys/mod.h>
111 
112 #ifndef _KERNEL
113 #include <string.h>
114 #endif
115 
116 /*
117  * Walk from one node to the previous valued node (ie. an infix walk
118  * towards the left). At any given node we do one of 2 things:
119  *
120  * - If there is a left child, go to it, then to it's rightmost descendant.
121  *
122  * - otherwise we return through parent nodes until we've come from a right
123  *   child.
124  *
125  * Return Value:
126  * NULL - if at the end of the nodes
127  * otherwise next node
128  */
129 void *
avl_walk(avl_tree_t * tree,void * oldnode,int left)130 avl_walk(avl_tree_t *tree, void	*oldnode, int left)
131 {
132 	size_t off = tree->avl_offset;
133 	avl_node_t *node = AVL_DATA2NODE(oldnode, off);
134 	int right = 1 - left;
135 	int was_child;
136 
137 
138 	/*
139 	 * nowhere to walk to if tree is empty
140 	 */
141 	if (node == NULL)
142 		return (NULL);
143 
144 	/*
145 	 * Visit the previous valued node. There are two possibilities:
146 	 *
147 	 * If this node has a left child, go down one left, then all
148 	 * the way right.
149 	 */
150 	if (node->avl_child[left] != NULL) {
151 		for (node = node->avl_child[left];
152 		    node->avl_child[right] != NULL;
153 		    node = node->avl_child[right])
154 			;
155 	/*
156 	 * Otherwise, return through left children as far as we can.
157 	 */
158 	} else {
159 		for (;;) {
160 			was_child = AVL_XCHILD(node);
161 			node = AVL_XPARENT(node);
162 			if (node == NULL)
163 				return (NULL);
164 			if (was_child == right)
165 				break;
166 		}
167 	}
168 
169 	return (AVL_NODE2DATA(node, off));
170 }
171 
172 /*
173  * Return the lowest valued node in a tree or NULL.
174  * (leftmost child from root of tree)
175  */
176 void *
avl_first(avl_tree_t * tree)177 avl_first(avl_tree_t *tree)
178 {
179 	avl_node_t *node;
180 	avl_node_t *prev = NULL;
181 	size_t off = tree->avl_offset;
182 
183 	for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
184 		prev = node;
185 
186 	if (prev != NULL)
187 		return (AVL_NODE2DATA(prev, off));
188 	return (NULL);
189 }
190 
191 /*
192  * Return the highest valued node in a tree or NULL.
193  * (rightmost child from root of tree)
194  */
195 void *
avl_last(avl_tree_t * tree)196 avl_last(avl_tree_t *tree)
197 {
198 	avl_node_t *node;
199 	avl_node_t *prev = NULL;
200 	size_t off = tree->avl_offset;
201 
202 	for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
203 		prev = node;
204 
205 	if (prev != NULL)
206 		return (AVL_NODE2DATA(prev, off));
207 	return (NULL);
208 }
209 
210 /*
211  * Access the node immediately before or after an insertion point.
212  *
213  * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
214  *
215  * Return value:
216  *	NULL: no node in the given direction
217  *	"void *"  of the found tree node
218  */
219 void *
avl_nearest(avl_tree_t * tree,avl_index_t where,int direction)220 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
221 {
222 	int child = AVL_INDEX2CHILD(where);
223 	avl_node_t *node = AVL_INDEX2NODE(where);
224 	void *data;
225 	size_t off = tree->avl_offset;
226 
227 	if (node == NULL) {
228 		ASSERT(tree->avl_root == NULL);
229 		return (NULL);
230 	}
231 	data = AVL_NODE2DATA(node, off);
232 	if (child != direction)
233 		return (data);
234 
235 	return (avl_walk(tree, data, direction));
236 }
237 
238 
239 /*
240  * Search for the node which contains "value".  The algorithm is a
241  * simple binary tree search.
242  *
243  * return value:
244  *	NULL: the value is not in the AVL tree
245  *		*where (if not NULL)  is set to indicate the insertion point
246  *	"void *"  of the found tree node
247  */
248 void *
avl_find(avl_tree_t * tree,const void * value,avl_index_t * where)249 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where)
250 {
251 	avl_node_t *node;
252 	avl_node_t *prev = NULL;
253 	int child = 0;
254 	int diff;
255 	size_t off = tree->avl_offset;
256 
257 	for (node = tree->avl_root; node != NULL;
258 	    node = node->avl_child[child]) {
259 
260 		prev = node;
261 
262 		diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
263 		ASSERT(-1 <= diff && diff <= 1);
264 		if (diff == 0) {
265 #ifdef ZFS_DEBUG
266 			if (where != NULL)
267 				*where = 0;
268 #endif
269 			return (AVL_NODE2DATA(node, off));
270 		}
271 		child = (diff > 0);
272 	}
273 
274 	if (where != NULL)
275 		*where = AVL_MKINDEX(prev, child);
276 
277 	return (NULL);
278 }
279 
280 
281 /*
282  * Perform a rotation to restore balance at the subtree given by depth.
283  *
284  * This routine is used by both insertion and deletion. The return value
285  * indicates:
286  *	 0 : subtree did not change height
287  *	!0 : subtree was reduced in height
288  *
289  * The code is written as if handling left rotations, right rotations are
290  * symmetric and handled by swapping values of variables right/left[_heavy]
291  *
292  * On input balance is the "new" balance at "node". This value is either
293  * -2 or +2.
294  */
295 static int
avl_rotation(avl_tree_t * tree,avl_node_t * node,int balance)296 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
297 {
298 	int left = !(balance < 0);	/* when balance = -2, left will be 0 */
299 	int right = 1 - left;
300 	int left_heavy = balance >> 1;
301 	int right_heavy = -left_heavy;
302 	avl_node_t *parent = AVL_XPARENT(node);
303 	avl_node_t *child = node->avl_child[left];
304 	avl_node_t *cright;
305 	avl_node_t *gchild;
306 	avl_node_t *gright;
307 	avl_node_t *gleft;
308 	int which_child = AVL_XCHILD(node);
309 	int child_bal = AVL_XBALANCE(child);
310 
311 	/*
312 	 * case 1 : node is overly left heavy, the left child is balanced or
313 	 * also left heavy. This requires the following rotation.
314 	 *
315 	 *                   (node bal:-2)
316 	 *                    /           \
317 	 *                   /             \
318 	 *              (child bal:0 or -1)
319 	 *              /    \
320 	 *             /      \
321 	 *                     cright
322 	 *
323 	 * becomes:
324 	 *
325 	 *              (child bal:1 or 0)
326 	 *              /        \
327 	 *             /          \
328 	 *                        (node bal:-1 or 0)
329 	 *                         /     \
330 	 *                        /       \
331 	 *                     cright
332 	 *
333 	 * we detect this situation by noting that child's balance is not
334 	 * right_heavy.
335 	 */
336 	if (child_bal != right_heavy) {
337 
338 		/*
339 		 * compute new balance of nodes
340 		 *
341 		 * If child used to be left heavy (now balanced) we reduced
342 		 * the height of this sub-tree -- used in "return...;" below
343 		 */
344 		child_bal += right_heavy; /* adjust towards right */
345 
346 		/*
347 		 * move "cright" to be node's left child
348 		 */
349 		cright = child->avl_child[right];
350 		node->avl_child[left] = cright;
351 		if (cright != NULL) {
352 			AVL_SETPARENT(cright, node);
353 			AVL_SETCHILD(cright, left);
354 		}
355 
356 		/*
357 		 * move node to be child's right child
358 		 */
359 		child->avl_child[right] = node;
360 		AVL_SETBALANCE(node, -child_bal);
361 		AVL_SETCHILD(node, right);
362 		AVL_SETPARENT(node, child);
363 
364 		/*
365 		 * update the pointer into this subtree
366 		 */
367 		AVL_SETBALANCE(child, child_bal);
368 		AVL_SETCHILD(child, which_child);
369 		AVL_SETPARENT(child, parent);
370 		if (parent != NULL)
371 			parent->avl_child[which_child] = child;
372 		else
373 			tree->avl_root = child;
374 
375 		return (child_bal == 0);
376 	}
377 
378 	/*
379 	 * case 2 : When node is left heavy, but child is right heavy we use
380 	 * a different rotation.
381 	 *
382 	 *                   (node b:-2)
383 	 *                    /   \
384 	 *                   /     \
385 	 *                  /       \
386 	 *             (child b:+1)
387 	 *              /     \
388 	 *             /       \
389 	 *                   (gchild b: != 0)
390 	 *                     /  \
391 	 *                    /    \
392 	 *                 gleft   gright
393 	 *
394 	 * becomes:
395 	 *
396 	 *              (gchild b:0)
397 	 *              /       \
398 	 *             /         \
399 	 *            /           \
400 	 *        (child b:?)   (node b:?)
401 	 *         /  \          /   \
402 	 *        /    \        /     \
403 	 *            gleft   gright
404 	 *
405 	 * computing the new balances is more complicated. As an example:
406 	 *	 if gchild was right_heavy, then child is now left heavy
407 	 *		else it is balanced
408 	 */
409 	gchild = child->avl_child[right];
410 	gleft = gchild->avl_child[left];
411 	gright = gchild->avl_child[right];
412 
413 	/*
414 	 * move gright to left child of node and
415 	 *
416 	 * move gleft to right child of node
417 	 */
418 	node->avl_child[left] = gright;
419 	if (gright != NULL) {
420 		AVL_SETPARENT(gright, node);
421 		AVL_SETCHILD(gright, left);
422 	}
423 
424 	child->avl_child[right] = gleft;
425 	if (gleft != NULL) {
426 		AVL_SETPARENT(gleft, child);
427 		AVL_SETCHILD(gleft, right);
428 	}
429 
430 	/*
431 	 * move child to left child of gchild and
432 	 *
433 	 * move node to right child of gchild and
434 	 *
435 	 * fixup parent of all this to point to gchild
436 	 */
437 	balance = AVL_XBALANCE(gchild);
438 	gchild->avl_child[left] = child;
439 	AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
440 	AVL_SETPARENT(child, gchild);
441 	AVL_SETCHILD(child, left);
442 
443 	gchild->avl_child[right] = node;
444 	AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
445 	AVL_SETPARENT(node, gchild);
446 	AVL_SETCHILD(node, right);
447 
448 	AVL_SETBALANCE(gchild, 0);
449 	AVL_SETPARENT(gchild, parent);
450 	AVL_SETCHILD(gchild, which_child);
451 	if (parent != NULL)
452 		parent->avl_child[which_child] = gchild;
453 	else
454 		tree->avl_root = gchild;
455 
456 	return (1);	/* the new tree is always shorter */
457 }
458 
459 
460 /*
461  * Insert a new node into an AVL tree at the specified (from avl_find()) place.
462  *
463  * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
464  * searches out to the leaf positions.  The avl_index_t indicates the node
465  * which will be the parent of the new node.
466  *
467  * After the node is inserted, a single rotation further up the tree may
468  * be necessary to maintain an acceptable AVL balance.
469  */
470 void
avl_insert(avl_tree_t * tree,void * new_data,avl_index_t where)471 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
472 {
473 	avl_node_t *node;
474 	avl_node_t *parent = AVL_INDEX2NODE(where);
475 	int old_balance;
476 	int new_balance;
477 	int which_child = AVL_INDEX2CHILD(where);
478 	size_t off = tree->avl_offset;
479 
480 #ifdef _LP64
481 	ASSERT(((uintptr_t)new_data & 0x7) == 0);
482 #endif
483 
484 	node = AVL_DATA2NODE(new_data, off);
485 
486 	/*
487 	 * First, add the node to the tree at the indicated position.
488 	 */
489 	++tree->avl_numnodes;
490 
491 	node->avl_child[0] = NULL;
492 	node->avl_child[1] = NULL;
493 
494 	AVL_SETCHILD(node, which_child);
495 	AVL_SETBALANCE(node, 0);
496 	AVL_SETPARENT(node, parent);
497 	if (parent != NULL) {
498 		ASSERT(parent->avl_child[which_child] == NULL);
499 		parent->avl_child[which_child] = node;
500 	} else {
501 		ASSERT(tree->avl_root == NULL);
502 		tree->avl_root = node;
503 	}
504 	/*
505 	 * Now, back up the tree modifying the balance of all nodes above the
506 	 * insertion point. If we get to a highly unbalanced ancestor, we
507 	 * need to do a rotation.  If we back out of the tree we are done.
508 	 * If we brought any subtree into perfect balance (0), we are also done.
509 	 */
510 	for (;;) {
511 		node = parent;
512 		if (node == NULL)
513 			return;
514 
515 		/*
516 		 * Compute the new balance
517 		 */
518 		old_balance = AVL_XBALANCE(node);
519 		new_balance = old_balance + (which_child ? 1 : -1);
520 
521 		/*
522 		 * If we introduced equal balance, then we are done immediately
523 		 */
524 		if (new_balance == 0) {
525 			AVL_SETBALANCE(node, 0);
526 			return;
527 		}
528 
529 		/*
530 		 * If both old and new are not zero we went
531 		 * from -1 to -2 balance, do a rotation.
532 		 */
533 		if (old_balance != 0)
534 			break;
535 
536 		AVL_SETBALANCE(node, new_balance);
537 		parent = AVL_XPARENT(node);
538 		which_child = AVL_XCHILD(node);
539 	}
540 
541 	/*
542 	 * perform a rotation to fix the tree and return
543 	 */
544 	(void) avl_rotation(tree, node, new_balance);
545 }
546 
547 /*
548  * Insert "new_data" in "tree" in the given "direction" either after or
549  * before (AVL_AFTER, AVL_BEFORE) the data "here".
550  *
551  * Insertions can only be done at empty leaf points in the tree, therefore
552  * if the given child of the node is already present we move to either
553  * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
554  * every other node in the tree is a leaf, this always works.
555  *
556  * To help developers using this interface, we assert that the new node
557  * is correctly ordered at every step of the way in DEBUG kernels.
558  */
559 void
avl_insert_here(avl_tree_t * tree,void * new_data,void * here,int direction)560 avl_insert_here(
561 	avl_tree_t *tree,
562 	void *new_data,
563 	void *here,
564 	int direction)
565 {
566 	avl_node_t *node;
567 	int child = direction;	/* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
568 #ifdef ZFS_DEBUG
569 	int diff;
570 #endif
571 
572 	ASSERT(tree != NULL);
573 	ASSERT(new_data != NULL);
574 	ASSERT(here != NULL);
575 	ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
576 
577 	/*
578 	 * If corresponding child of node is not NULL, go to the neighboring
579 	 * node and reverse the insertion direction.
580 	 */
581 	node = AVL_DATA2NODE(here, tree->avl_offset);
582 
583 #ifdef ZFS_DEBUG
584 	diff = tree->avl_compar(new_data, here);
585 	ASSERT(-1 <= diff && diff <= 1);
586 	ASSERT(diff != 0);
587 	ASSERT(diff > 0 ? child == 1 : child == 0);
588 #endif
589 
590 	if (node->avl_child[child] != NULL) {
591 		node = node->avl_child[child];
592 		child = 1 - child;
593 		while (node->avl_child[child] != NULL) {
594 #ifdef ZFS_DEBUG
595 			diff = tree->avl_compar(new_data,
596 			    AVL_NODE2DATA(node, tree->avl_offset));
597 			ASSERT(-1 <= diff && diff <= 1);
598 			ASSERT(diff != 0);
599 			ASSERT(diff > 0 ? child == 1 : child == 0);
600 #endif
601 			node = node->avl_child[child];
602 		}
603 #ifdef ZFS_DEBUG
604 		diff = tree->avl_compar(new_data,
605 		    AVL_NODE2DATA(node, tree->avl_offset));
606 		ASSERT(-1 <= diff && diff <= 1);
607 		ASSERT(diff != 0);
608 		ASSERT(diff > 0 ? child == 1 : child == 0);
609 #endif
610 	}
611 	ASSERT(node->avl_child[child] == NULL);
612 
613 	avl_insert(tree, new_data, AVL_MKINDEX(node, child));
614 }
615 
616 /*
617  * Add a new node to an AVL tree.  Strictly enforce that no duplicates can
618  * be added to the tree with a VERIFY which is enabled for non-DEBUG builds.
619  */
620 void
avl_add(avl_tree_t * tree,void * new_node)621 avl_add(avl_tree_t *tree, void *new_node)
622 {
623 	avl_index_t where = 0;
624 
625 	VERIFY(avl_find(tree, new_node, &where) == NULL);
626 
627 	avl_insert(tree, new_node, where);
628 }
629 
630 /*
631  * Delete a node from the AVL tree.  Deletion is similar to insertion, but
632  * with 2 complications.
633  *
634  * First, we may be deleting an interior node. Consider the following subtree:
635  *
636  *     d           c            c
637  *    / \         / \          / \
638  *   b   e       b   e        b   e
639  *  / \	        / \          /
640  * a   c       a            a
641  *
642  * When we are deleting node (d), we find and bring up an adjacent valued leaf
643  * node, say (c), to take the interior node's place. In the code this is
644  * handled by temporarily swapping (d) and (c) in the tree and then using
645  * common code to delete (d) from the leaf position.
646  *
647  * Secondly, an interior deletion from a deep tree may require more than one
648  * rotation to fix the balance. This is handled by moving up the tree through
649  * parents and applying rotations as needed. The return value from
650  * avl_rotation() is used to detect when a subtree did not change overall
651  * height due to a rotation.
652  */
653 void
avl_remove(avl_tree_t * tree,void * data)654 avl_remove(avl_tree_t *tree, void *data)
655 {
656 	avl_node_t *delete;
657 	avl_node_t *parent;
658 	avl_node_t *node;
659 	avl_node_t tmp;
660 	int old_balance;
661 	int new_balance;
662 	int left;
663 	int right;
664 	int which_child;
665 	size_t off = tree->avl_offset;
666 
667 	delete = AVL_DATA2NODE(data, off);
668 
669 	/*
670 	 * Deletion is easiest with a node that has at most 1 child.
671 	 * We swap a node with 2 children with a sequentially valued
672 	 * neighbor node. That node will have at most 1 child. Note this
673 	 * has no effect on the ordering of the remaining nodes.
674 	 *
675 	 * As an optimization, we choose the greater neighbor if the tree
676 	 * is right heavy, otherwise the left neighbor. This reduces the
677 	 * number of rotations needed.
678 	 */
679 	if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
680 
681 		/*
682 		 * choose node to swap from whichever side is taller
683 		 */
684 		old_balance = AVL_XBALANCE(delete);
685 		left = (old_balance > 0);
686 		right = 1 - left;
687 
688 		/*
689 		 * get to the previous value'd node
690 		 * (down 1 left, as far as possible right)
691 		 */
692 		for (node = delete->avl_child[left];
693 		    node->avl_child[right] != NULL;
694 		    node = node->avl_child[right])
695 			;
696 
697 		/*
698 		 * create a temp placeholder for 'node'
699 		 * move 'node' to delete's spot in the tree
700 		 */
701 		tmp = *node;
702 
703 		memcpy(node, delete, sizeof (*node));
704 		if (node->avl_child[left] == node)
705 			node->avl_child[left] = &tmp;
706 
707 		parent = AVL_XPARENT(node);
708 		if (parent != NULL)
709 			parent->avl_child[AVL_XCHILD(node)] = node;
710 		else
711 			tree->avl_root = node;
712 		AVL_SETPARENT(node->avl_child[left], node);
713 		AVL_SETPARENT(node->avl_child[right], node);
714 
715 		/*
716 		 * Put tmp where node used to be (just temporary).
717 		 * It always has a parent and at most 1 child.
718 		 */
719 		delete = &tmp;
720 		parent = AVL_XPARENT(delete);
721 		parent->avl_child[AVL_XCHILD(delete)] = delete;
722 		which_child = (delete->avl_child[1] != 0);
723 		if (delete->avl_child[which_child] != NULL)
724 			AVL_SETPARENT(delete->avl_child[which_child], delete);
725 	}
726 
727 
728 	/*
729 	 * Here we know "delete" is at least partially a leaf node. It can
730 	 * be easily removed from the tree.
731 	 */
732 	ASSERT(tree->avl_numnodes > 0);
733 	--tree->avl_numnodes;
734 	parent = AVL_XPARENT(delete);
735 	which_child = AVL_XCHILD(delete);
736 	if (delete->avl_child[0] != NULL)
737 		node = delete->avl_child[0];
738 	else
739 		node = delete->avl_child[1];
740 
741 	/*
742 	 * Connect parent directly to node (leaving out delete).
743 	 */
744 	if (node != NULL) {
745 		AVL_SETPARENT(node, parent);
746 		AVL_SETCHILD(node, which_child);
747 	}
748 	if (parent == NULL) {
749 		tree->avl_root = node;
750 		return;
751 	}
752 	parent->avl_child[which_child] = node;
753 
754 
755 	/*
756 	 * Since the subtree is now shorter, begin adjusting parent balances
757 	 * and performing any needed rotations.
758 	 */
759 	do {
760 
761 		/*
762 		 * Move up the tree and adjust the balance
763 		 *
764 		 * Capture the parent and which_child values for the next
765 		 * iteration before any rotations occur.
766 		 */
767 		node = parent;
768 		old_balance = AVL_XBALANCE(node);
769 		new_balance = old_balance - (which_child ? 1 : -1);
770 		parent = AVL_XPARENT(node);
771 		which_child = AVL_XCHILD(node);
772 
773 		/*
774 		 * If a node was in perfect balance but isn't anymore then
775 		 * we can stop, since the height didn't change above this point
776 		 * due to a deletion.
777 		 */
778 		if (old_balance == 0) {
779 			AVL_SETBALANCE(node, new_balance);
780 			break;
781 		}
782 
783 		/*
784 		 * If the new balance is zero, we don't need to rotate
785 		 * else
786 		 * need a rotation to fix the balance.
787 		 * If the rotation doesn't change the height
788 		 * of the sub-tree we have finished adjusting.
789 		 */
790 		if (new_balance == 0)
791 			AVL_SETBALANCE(node, new_balance);
792 		else if (!avl_rotation(tree, node, new_balance))
793 			break;
794 	} while (parent != NULL);
795 }
796 
797 #define	AVL_REINSERT(tree, obj)		\
798 	avl_remove((tree), (obj));	\
799 	avl_add((tree), (obj))
800 
801 boolean_t
avl_update_lt(avl_tree_t * t,void * obj)802 avl_update_lt(avl_tree_t *t, void *obj)
803 {
804 	void *neighbor;
805 
806 	ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
807 	    (t->avl_compar(obj, neighbor) <= 0));
808 
809 	neighbor = AVL_PREV(t, obj);
810 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
811 		AVL_REINSERT(t, obj);
812 		return (B_TRUE);
813 	}
814 
815 	return (B_FALSE);
816 }
817 
818 boolean_t
avl_update_gt(avl_tree_t * t,void * obj)819 avl_update_gt(avl_tree_t *t, void *obj)
820 {
821 	void *neighbor;
822 
823 	ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) ||
824 	    (t->avl_compar(obj, neighbor) >= 0));
825 
826 	neighbor = AVL_NEXT(t, obj);
827 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
828 		AVL_REINSERT(t, obj);
829 		return (B_TRUE);
830 	}
831 
832 	return (B_FALSE);
833 }
834 
835 boolean_t
avl_update(avl_tree_t * t,void * obj)836 avl_update(avl_tree_t *t, void *obj)
837 {
838 	void *neighbor;
839 
840 	neighbor = AVL_PREV(t, obj);
841 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
842 		AVL_REINSERT(t, obj);
843 		return (B_TRUE);
844 	}
845 
846 	neighbor = AVL_NEXT(t, obj);
847 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
848 		AVL_REINSERT(t, obj);
849 		return (B_TRUE);
850 	}
851 
852 	return (B_FALSE);
853 }
854 
855 void
avl_swap(avl_tree_t * tree1,avl_tree_t * tree2)856 avl_swap(avl_tree_t *tree1, avl_tree_t *tree2)
857 {
858 	avl_node_t *temp_node;
859 	ulong_t temp_numnodes;
860 
861 	ASSERT3P(tree1->avl_compar, ==, tree2->avl_compar);
862 	ASSERT3U(tree1->avl_offset, ==, tree2->avl_offset);
863 
864 	temp_node = tree1->avl_root;
865 	temp_numnodes = tree1->avl_numnodes;
866 	tree1->avl_root = tree2->avl_root;
867 	tree1->avl_numnodes = tree2->avl_numnodes;
868 	tree2->avl_root = temp_node;
869 	tree2->avl_numnodes = temp_numnodes;
870 }
871 
872 /*
873  * initialize a new AVL tree
874  */
875 void
avl_create(avl_tree_t * tree,int (* compar)(const void *,const void *),size_t size,size_t offset)876 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
877     size_t size, size_t offset)
878 {
879 	ASSERT(tree);
880 	ASSERT(compar);
881 	ASSERT(size > 0);
882 	ASSERT(size >= offset + sizeof (avl_node_t));
883 #ifdef _LP64
884 	ASSERT((offset & 0x7) == 0);
885 #endif
886 
887 	tree->avl_compar = compar;
888 	tree->avl_root = NULL;
889 	tree->avl_numnodes = 0;
890 	tree->avl_offset = offset;
891 }
892 
893 /*
894  * Delete a tree.
895  */
896 void
avl_destroy(avl_tree_t * tree)897 avl_destroy(avl_tree_t *tree)
898 {
899 	ASSERT(tree);
900 	ASSERT(tree->avl_numnodes == 0);
901 	ASSERT(tree->avl_root == NULL);
902 }
903 
904 
905 /*
906  * Return the number of nodes in an AVL tree.
907  */
908 ulong_t
avl_numnodes(avl_tree_t * tree)909 avl_numnodes(avl_tree_t *tree)
910 {
911 	ASSERT(tree);
912 	return (tree->avl_numnodes);
913 }
914 
915 boolean_t
avl_is_empty(avl_tree_t * tree)916 avl_is_empty(avl_tree_t *tree)
917 {
918 	ASSERT(tree);
919 	return (tree->avl_numnodes == 0);
920 }
921 
922 #define	CHILDBIT	(1L)
923 
924 /*
925  * Post-order tree walk used to visit all tree nodes and destroy the tree
926  * in post order. This is used for removing all the nodes from a tree without
927  * paying any cost for rebalancing it.
928  *
929  * example:
930  *
931  *	void *cookie = NULL;
932  *	my_data_t *node;
933  *
934  *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
935  *		free(node);
936  *	avl_destroy(tree);
937  *
938  * The cookie is really an avl_node_t to the current node's parent and
939  * an indication of which child you looked at last.
940  *
941  * On input, a cookie value of CHILDBIT indicates the tree is done.
942  */
943 void *
avl_destroy_nodes(avl_tree_t * tree,void ** cookie)944 avl_destroy_nodes(avl_tree_t *tree, void **cookie)
945 {
946 	avl_node_t	*node;
947 	avl_node_t	*parent;
948 	int		child;
949 	void		*first;
950 	size_t		off = tree->avl_offset;
951 
952 	/*
953 	 * Initial calls go to the first node or it's right descendant.
954 	 */
955 	if (*cookie == NULL) {
956 		first = avl_first(tree);
957 
958 		/*
959 		 * deal with an empty tree
960 		 */
961 		if (first == NULL) {
962 			*cookie = (void *)CHILDBIT;
963 			return (NULL);
964 		}
965 
966 		node = AVL_DATA2NODE(first, off);
967 		parent = AVL_XPARENT(node);
968 		goto check_right_side;
969 	}
970 
971 	/*
972 	 * If there is no parent to return to we are done.
973 	 */
974 	parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
975 	if (parent == NULL) {
976 		if (tree->avl_root != NULL) {
977 			ASSERT(tree->avl_numnodes == 1);
978 			tree->avl_root = NULL;
979 			tree->avl_numnodes = 0;
980 		}
981 		return (NULL);
982 	}
983 
984 	/*
985 	 * Remove the child pointer we just visited from the parent and tree.
986 	 */
987 	child = (uintptr_t)(*cookie) & CHILDBIT;
988 	parent->avl_child[child] = NULL;
989 	ASSERT(tree->avl_numnodes > 1);
990 	--tree->avl_numnodes;
991 
992 	/*
993 	 * If we just removed a right child or there isn't one, go up to parent.
994 	 */
995 	if (child == 1 || parent->avl_child[1] == NULL) {
996 		node = parent;
997 		parent = AVL_XPARENT(parent);
998 		goto done;
999 	}
1000 
1001 	/*
1002 	 * Do parent's right child, then leftmost descendent.
1003 	 */
1004 	node = parent->avl_child[1];
1005 	while (node->avl_child[0] != NULL) {
1006 		parent = node;
1007 		node = node->avl_child[0];
1008 	}
1009 
1010 	/*
1011 	 * If here, we moved to a left child. It may have one
1012 	 * child on the right (when balance == +1).
1013 	 */
1014 check_right_side:
1015 	if (node->avl_child[1] != NULL) {
1016 		ASSERT(AVL_XBALANCE(node) == 1);
1017 		parent = node;
1018 		node = node->avl_child[1];
1019 		ASSERT(node->avl_child[0] == NULL &&
1020 		    node->avl_child[1] == NULL);
1021 	} else {
1022 		ASSERT(AVL_XBALANCE(node) <= 0);
1023 	}
1024 
1025 done:
1026 	if (parent == NULL) {
1027 		*cookie = (void *)CHILDBIT;
1028 		ASSERT(node == tree->avl_root);
1029 	} else {
1030 		*cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1031 	}
1032 
1033 	return (AVL_NODE2DATA(node, off));
1034 }
1035 
1036 EXPORT_SYMBOL(avl_create);
1037 EXPORT_SYMBOL(avl_find);
1038 EXPORT_SYMBOL(avl_insert);
1039 EXPORT_SYMBOL(avl_insert_here);
1040 EXPORT_SYMBOL(avl_walk);
1041 EXPORT_SYMBOL(avl_first);
1042 EXPORT_SYMBOL(avl_last);
1043 EXPORT_SYMBOL(avl_nearest);
1044 EXPORT_SYMBOL(avl_add);
1045 EXPORT_SYMBOL(avl_swap);
1046 EXPORT_SYMBOL(avl_is_empty);
1047 EXPORT_SYMBOL(avl_remove);
1048 EXPORT_SYMBOL(avl_numnodes);
1049 EXPORT_SYMBOL(avl_destroy_nodes);
1050 EXPORT_SYMBOL(avl_destroy);
1051 EXPORT_SYMBOL(avl_update_lt);
1052 EXPORT_SYMBOL(avl_update_gt);
1053 EXPORT_SYMBOL(avl_update);
1054