xref: /titanic_52/usr/src/boot/lib/libz/inftrees.c (revision 4a5d661a82b942b6538acd26209d959ce98b593a)
1 /* inftrees.c -- generate Huffman trees for efficient decoding
2  * Copyright (C) 1995-2013 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 #include "zutil.h"
7 #include "inftrees.h"
8 
9 #define MAXBITS 15
10 
11 const char inflate_copyright[] =
12    " inflate 1.2.8 Copyright 1995-2013 Mark Adler ";
13 /*
14   If you use the zlib library in a product, an acknowledgment is welcome
15   in the documentation of your product. If for some reason you cannot
16   include such an acknowledgment, I would appreciate that you keep this
17   copyright string in the executable of your product.
18  */
19 
20 /*
21    Build a set of tables to decode the provided canonical Huffman code.
22    The code lengths are lens[0..codes-1].  The result starts at *table,
23    whose indices are 0..2^bits-1.  work is a writable array of at least
24    lens shorts, which is used as a work area.  type is the type of code
25    to be generated, CODES, LENS, or DISTS.  On return, zero is success,
26    -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
27    on return points to the next available entry's address.  bits is the
28    requested root table index bits, and on return it is the actual root
29    table index bits.  It will differ if the request is greater than the
30    longest code or if it is less than the shortest code.
31  */
32 int ZLIB_INTERNAL inflate_table(type, lens, codes, table, bits, work)
33 codetype type;
34 unsigned short FAR *lens;
35 unsigned codes;
36 code FAR * FAR *table;
37 unsigned FAR *bits;
38 unsigned short FAR *work;
39 {
40     unsigned len;               /* a code's length in bits */
41     unsigned sym;               /* index of code symbols */
42     unsigned min, max;          /* minimum and maximum code lengths */
43     unsigned root;              /* number of index bits for root table */
44     unsigned curr;              /* number of index bits for current table */
45     unsigned drop;              /* code bits to drop for sub-table */
46     int left;                   /* number of prefix codes available */
47     unsigned used;              /* code entries in table used */
48     unsigned huff;              /* Huffman code */
49     unsigned incr;              /* for incrementing code, index */
50     unsigned fill;              /* index for replicating entries */
51     unsigned low;               /* low bits for current root entry */
52     unsigned mask;              /* mask for low root bits */
53     code here;                  /* table entry for duplication */
54     code FAR *next;             /* next available space in table */
55     const unsigned short FAR *base;     /* base value table to use */
56     const unsigned short FAR *extra;    /* extra bits table to use */
57     int end;                    /* use base and extra for symbol > end */
58     unsigned short count[MAXBITS+1];    /* number of codes of each length */
59     unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
60     static const unsigned short lbase[31] = { /* Length codes 257..285 base */
61         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
62         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
63     static const unsigned short lext[31] = { /* Length codes 257..285 extra */
64         16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
65         19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 72, 78};
66     static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
67         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
68         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
69         8193, 12289, 16385, 24577, 0, 0};
70     static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
71         16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
72         23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
73         28, 28, 29, 29, 64, 64};
74 
75     /*
76        Process a set of code lengths to create a canonical Huffman code.  The
77        code lengths are lens[0..codes-1].  Each length corresponds to the
78        symbols 0..codes-1.  The Huffman code is generated by first sorting the
79        symbols by length from short to long, and retaining the symbol order
80        for codes with equal lengths.  Then the code starts with all zero bits
81        for the first code of the shortest length, and the codes are integer
82        increments for the same length, and zeros are appended as the length
83        increases.  For the deflate format, these bits are stored backwards
84        from their more natural integer increment ordering, and so when the
85        decoding tables are built in the large loop below, the integer codes
86        are incremented backwards.
87 
88        This routine assumes, but does not check, that all of the entries in
89        lens[] are in the range 0..MAXBITS.  The caller must assure this.
90        1..MAXBITS is interpreted as that code length.  zero means that that
91        symbol does not occur in this code.
92 
93        The codes are sorted by computing a count of codes for each length,
94        creating from that a table of starting indices for each length in the
95        sorted table, and then entering the symbols in order in the sorted
96        table.  The sorted table is work[], with that space being provided by
97        the caller.
98 
99        The length counts are used for other purposes as well, i.e. finding
100        the minimum and maximum length codes, determining if there are any
101        codes at all, checking for a valid set of lengths, and looking ahead
102        at length counts to determine sub-table sizes when building the
103        decoding tables.
104      */
105 
106     /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
107     for (len = 0; len <= MAXBITS; len++)
108         count[len] = 0;
109     for (sym = 0; sym < codes; sym++)
110         count[lens[sym]]++;
111 
112     /* bound code lengths, force root to be within code lengths */
113     root = *bits;
114     for (max = MAXBITS; max >= 1; max--)
115         if (count[max] != 0) break;
116     if (root > max) root = max;
117     if (max == 0) {                     /* no symbols to code at all */
118         here.op = (unsigned char)64;    /* invalid code marker */
119         here.bits = (unsigned char)1;
120         here.val = (unsigned short)0;
121         *(*table)++ = here;             /* make a table to force an error */
122         *(*table)++ = here;
123         *bits = 1;
124         return 0;     /* no symbols, but wait for decoding to report error */
125     }
126     for (min = 1; min < max; min++)
127         if (count[min] != 0) break;
128     if (root < min) root = min;
129 
130     /* check for an over-subscribed or incomplete set of lengths */
131     left = 1;
132     for (len = 1; len <= MAXBITS; len++) {
133         left <<= 1;
134         left -= count[len];
135         if (left < 0) return -1;        /* over-subscribed */
136     }
137     if (left > 0 && (type == CODES || max != 1))
138         return -1;                      /* incomplete set */
139 
140     /* generate offsets into symbol table for each length for sorting */
141     offs[1] = 0;
142     for (len = 1; len < MAXBITS; len++)
143         offs[len + 1] = offs[len] + count[len];
144 
145     /* sort symbols by length, by symbol order within each length */
146     for (sym = 0; sym < codes; sym++)
147         if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
148 
149     /*
150        Create and fill in decoding tables.  In this loop, the table being
151        filled is at next and has curr index bits.  The code being used is huff
152        with length len.  That code is converted to an index by dropping drop
153        bits off of the bottom.  For codes where len is less than drop + curr,
154        those top drop + curr - len bits are incremented through all values to
155        fill the table with replicated entries.
156 
157        root is the number of index bits for the root table.  When len exceeds
158        root, sub-tables are created pointed to by the root entry with an index
159        of the low root bits of huff.  This is saved in low to check for when a
160        new sub-table should be started.  drop is zero when the root table is
161        being filled, and drop is root when sub-tables are being filled.
162 
163        When a new sub-table is needed, it is necessary to look ahead in the
164        code lengths to determine what size sub-table is needed.  The length
165        counts are used for this, and so count[] is decremented as codes are
166        entered in the tables.
167 
168        used keeps track of how many table entries have been allocated from the
169        provided *table space.  It is checked for LENS and DIST tables against
170        the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
171        the initial root table size constants.  See the comments in inftrees.h
172        for more information.
173 
174        sym increments through all symbols, and the loop terminates when
175        all codes of length max, i.e. all codes, have been processed.  This
176        routine permits incomplete codes, so another loop after this one fills
177        in the rest of the decoding tables with invalid code markers.
178      */
179 
180     /* set up for code type */
181     switch (type) {
182     case CODES:
183         base = extra = work;    /* dummy value--not used */
184         end = 19;
185         break;
186     case LENS:
187         base = lbase;
188         base -= 257;
189         extra = lext;
190         extra -= 257;
191         end = 256;
192         break;
193     default:            /* DISTS */
194         base = dbase;
195         extra = dext;
196         end = -1;
197     }
198 
199     /* initialize state for loop */
200     huff = 0;                   /* starting code */
201     sym = 0;                    /* starting code symbol */
202     len = min;                  /* starting code length */
203     next = *table;              /* current table to fill in */
204     curr = root;                /* current table index bits */
205     drop = 0;                   /* current bits to drop from code for index */
206     low = (unsigned)(-1);       /* trigger new sub-table when len > root */
207     used = 1U << root;          /* use root table entries */
208     mask = used - 1;            /* mask for comparing low */
209 
210     /* check available table space */
211     if ((type == LENS && used > ENOUGH_LENS) ||
212         (type == DISTS && used > ENOUGH_DISTS))
213         return 1;
214 
215     /* process all codes and make table entries */
216     for (;;) {
217         /* create table entry */
218         here.bits = (unsigned char)(len - drop);
219         if ((int)(work[sym]) < end) {
220             here.op = (unsigned char)0;
221             here.val = work[sym];
222         }
223         else if ((int)(work[sym]) > end) {
224             here.op = (unsigned char)(extra[work[sym]]);
225             here.val = base[work[sym]];
226         }
227         else {
228             here.op = (unsigned char)(32 + 64);         /* end of block */
229             here.val = 0;
230         }
231 
232         /* replicate for those indices with low len bits equal to huff */
233         incr = 1U << (len - drop);
234         fill = 1U << curr;
235         min = fill;                 /* save offset to next table */
236         do {
237             fill -= incr;
238             next[(huff >> drop) + fill] = here;
239         } while (fill != 0);
240 
241         /* backwards increment the len-bit code huff */
242         incr = 1U << (len - 1);
243         while (huff & incr)
244             incr >>= 1;
245         if (incr != 0) {
246             huff &= incr - 1;
247             huff += incr;
248         }
249         else
250             huff = 0;
251 
252         /* go to next symbol, update count, len */
253         sym++;
254         if (--(count[len]) == 0) {
255             if (len == max) break;
256             len = lens[work[sym]];
257         }
258 
259         /* create new sub-table if needed */
260         if (len > root && (huff & mask) != low) {
261             /* if first time, transition to sub-tables */
262             if (drop == 0)
263                 drop = root;
264 
265             /* increment past last table */
266             next += min;            /* here min is 1 << curr */
267 
268             /* determine length of next table */
269             curr = len - drop;
270             left = (int)(1 << curr);
271             while (curr + drop < max) {
272                 left -= count[curr + drop];
273                 if (left <= 0) break;
274                 curr++;
275                 left <<= 1;
276             }
277 
278             /* check for enough space */
279             used += 1U << curr;
280             if ((type == LENS && used > ENOUGH_LENS) ||
281                 (type == DISTS && used > ENOUGH_DISTS))
282                 return 1;
283 
284             /* point entry in root table to sub-table */
285             low = huff & mask;
286             (*table)[low].op = (unsigned char)curr;
287             (*table)[low].bits = (unsigned char)root;
288             (*table)[low].val = (unsigned short)(next - *table);
289         }
290     }
291 
292     /* fill in remaining table entry if code is incomplete (guaranteed to have
293        at most one remaining entry, since if the code is incomplete, the
294        maximum code length that was allowed to get this far is one bit) */
295     if (huff != 0) {
296         here.op = (unsigned char)64;            /* invalid code marker */
297         here.bits = (unsigned char)(len - drop);
298         here.val = (unsigned short)0;
299         next[huff] = here;
300     }
301 
302     /* set return parameters */
303     *table += used;
304     *bits = root;
305     return 0;
306 }
307